
PHYSICAL REVIEW B 15 MAY 1998-IVOLUME 57, NUMBER 19
Mott-Peierls transition in the extended Peierls-Hubbard model

Eric Jeckelmann
Department of Physics and Astronomy, University of California, Irvine, California 92697

~Received 25 November 1997!

The one-dimensional extended Peierls-Hubbard model is studied at several band fillings using the density-
matrix renormalization-group method. Results show that the ground state evolves from a Mott-Peierls insula-
tor, with a correlation gap at half-filling, to a soliton lattice with a small band gap away from half-filling. It is
also confirmed that the ground state of the Peierls-Hubbard model undergoes a transition to a metallic state at
finite doping. These results show that electronic correlation effects should be taken into account in theoretical
studies of doped polyacetylene. They also show that a Mott-Peierls theory could explain the insulator-metal
transition observed in this material.@S0163-1829~98!06716-2#
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Since the discovery of the metallic phase of doped po
acetylene, this material has been extensively studied,1,2 but
the mechanism of the insulator-metal transition obser
upon doping is still poorly understood. It is known that bo
the Peierls instability and electronic correlations play a fu
damental role in the formation and properties of the insu
ing phase,3 and thus undoped polyacetylene is a Mott-Peie
insulator.4 Therefore, ten years ago, Baeriswyl, Carmelo, a
Maki5 proposed that the insulator-metal transition was a
driven by the interplay of electron-electron and electro
phonon interactions. Within the restricted Hartree-Fock
proximation, they showed the possibility of such a Mo
Peierls insulator-metal transition in the Peierls-Hubb
model, which is the simplest model of polyacetylene inclu
ing both interactions. Recently, several works using sop
ticated numerical many-body methods, such as
Gutzwiller variational wave function6 and quantum Monte
Carlo~QMC! simulations,7 have confirmed the occurrence
an insulator-metal transition in this model. On the oth
hand, Wen and Su, who applied the density-matrix renorm
ization group~DMRG! technique to this problem, dispute
the existence of this transition.8 Hartree-Fock,9 and QMC
~Ref. 7! simulations have also shown that the neare
neighbor Coulomb repulsion opposes and can prevent
formation of a metallic state in the extended Peierls-Hubb
model.

As an attempt to clarify this issue, I have studied t
properties of the extended Peierls-Hubbard model with
rameters leading to a Mott-Peierls insulating ground stat
half-filling. Accurate ground states and gaps are obtained
open chains up to 200 sites and different band fillings us
the DMRG method,10 and finite-size effects are carefull
analyzed. Results show that the ground state of a M
Peierls insulator evolves to a soliton lattice upon dopi
This soliton lattice is qualitatively similar to the ground sta
predicted by simple electron-phonon models,11,12 but both
the gap and amplitude of the lattice distortion decrease fa
in the extended Peierls-Hubbard model than in these mo
when the doping increases. An insulator-metal transition
curs at a finite doping concentration in the absence
nearest-neighbor electron-electron interaction, in agreem
with previous studies of the Peierls-Hubbard model.5–7

These results demonstrate that electronic correlations ef
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are important, and should be taken into account in theoret
studies of doped polyacetylene. They also confirm tha
Mott-Peierls theory4–6 could explain the insulator-metal tran
sition observed in polyacetylene.

The one-dimensional extended Peierls-Hubbard mode
defined by the Hamiltonian
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The operatorscl s
† (cl s) create~destroy! an electron of spin

s at sitel , nl s5cl s
† cl s andnl 5nl ↑1nl ↓ . t is the reso-

nance integral for an undistorted lattice, and fixes the ene
scale;l is the electron-phonon coupling constant; andU and
V are the on-site and nearest-neighbor Coulomb repuls
As this model has an electron-hole symmetry, only hole d
ing is examined. The doping ratey is defined as the fraction
of electrons removed from a neutral chain~which corre-
sponds to a half-filled band!. The usual dimerization orde
parameterD l describes the lattice degrees of freedom.
linear term with constantP is explicitly included in the lat-
tice elastic energy instead of the constraint on the dimer
tion order parameter used in previous works,6,8 in order to
reduce the average bond-length variation. The value oP
.0 is determined by the condition that the linear term in t
elastic energy equals zero in the ground-state configura
at half-filling. The lattice dynamics is completely neglect
in this approach, and the electron-phonon interaction is ta
into account only through the coupling between electro
and a classical lattice relaxation.

To determine the ground state of Hamiltonian~1!, one has
to find both the lattice configuration$D l % and the electronic
wave function which minimize the total energy. Using a
nite system DMRG algorithm,10 one can compute the elec
tronic ground state, its energy, and the gradient of this
ergy ~thanks to the Hellmann-Feynman theorem! for any
given lattice configuration, and thus perform the minimiz
11 838 © 1998 The American Physical Society



o
s
le

n
lt
te
ta
-

i
(

p

g
ti
y

ai
e

sid
r
ta
t

b

e
io
g-
rt

y
of
n

od
in

e-

tu

la

a
d
al
e
sp
s.

re

e
ap

re
nc
p

As

se-
oon

o not
in
his

o-

del

op-
ce
on
ers
re-
pli-
in-
nd

this
ly-

r-

e
ite
nd
nic
se

rls-
e

at-
e

-
SH
non
er,

nce
rgy

s

57 11 839BRIEF REPORTS
tion of the total energy with respect to lattice degrees
freedom $D l %.6,8 In principle, direct electronic excitation
can also be obtained by calculating excited states of the e
tronic part of Hamiltonian~1! for a fixed lattice configura-
tion. Unfortunately, while the DMRG method gives excelle
results for ground states, it is more difficult to obtain resu
for specific excited states. Therefore, I have only calcula
charge gaps, which can easily be obtained from ground-s
energies for different band fillings.6 The charge gap is be
lieved to be equal to the lowest optical-absorption energy
the thermodynamic limit of the Peierls-Hubbard modelV
50). In the extended Peierls-Hubbard model (VÞ0), the
relation between the charge gap and optical gap is com
cated by the presence of excitons.13 In this work, I have
assumed that the charge gap is roughly equivalent to the
between the ground state and the lowest charge excita
band, which will be called the optical gap, in the thermod
namic limit.

All calculations have been carried out for several ch
lengths up to 200 sites, and results have always been
trapolated to an infinite chain. Only open chains are con
ered, because the DMRG method performs much bette
this case than for periodic boundary conditions. Compu
tions have been performed, so that numerical errors on
ground-state dimerization parameterD l are smaller than
1023t. Numerical errors on gap values are estimated to
less than 1022t at half-filling, and around 1023t away from
half-filling. All these estimations of the accuracy are bas
on an analysis of the behavior of DMRG results as a funct
of the numberm of quantum states kept per block. The lar
est value ofm used in this work ranges from 80 for sho
chains~50 sites! at half-filling, to 400 for long chains~200
sites! away from half-filling. Truncation errors are typicall
between 1026 and 1027. I have also checked the accuracy
DMRG calculations against exact numerical results for lo
~up to 100 sites! noninteracting (U5V50) chains, and
against exact results for the one-dimensional Hubbard m
~D l 50 andV50!.14 Excellent agreement has been found
both cases.

My results at half-filling are in good agreement with r
sults obtained previously with DMRG~Ref. 15! and other
many-body techniques like exact diagonalizations, quan
Monte Carlo simulations, and variational methods.3 They
confirm that undoped polyacetylene is a Mott-Peierls insu
tor, which can be described with a reasonable accuracy
the extended Peierls-Hubbard models. I have determined
propriate parameters for polyacetylene by comparing mo
predictions to experimental values for the optical gap at h
filling, the optical transition energies induced by photogen
ated neutral, and charged solitons and the neutral soliton
density obtained from magnetic resonance experiment1,2

This comparison shows thatl50.1, U54V52.5t, and t
52.7 eV seem to be appropriate for polyacetylene, in ag
ment with previous studies.3,6

It is important to realize that in the Mott-Peierls regim
the optical gap at half-filling is essentially a correlation g
as in the one-dimensional Hubbard model,14 although the
electron-phonon coupling and the Peierls instability are
sponsible for features like the dimerization and the existe
of solitons. For instance, DMRG calculations predict an o
tical gapEg50.74t for the parameters mentioned above.
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the gap is only;0.04t for U5V50 andl50.1, electronic
correlations account for at least 94% of the gap. Con
quently, one expects this gap to be strongly reduced as s
as the system is doped, because electronic correlations d
contribute to the formation of a gap away from half-filling
the Hubbard model. A strong experimental evidence for t
reduction is the difference between the gap at half-filling~1.8
eV! and the energy of the optical transition induced by ph
togenerated charged solitons~0.45 eV!, which corresponds to
the gap of a lightly doped chain in our simplified model.

I have investigated the extended Peierls-Hubbard mo
at several dopant concentrations up toy516% in the Mott-
Peierls regime. In this regime, the system evolves upon d
ing from the Mott-Peierls insulating state to a soliton latti
with a small gap. The evolution of the optical gap up
doping is shown in Fig. 1 for the polyacetylene paramet
mentioned previously. As expected, the gap is strongly
duced to;0.17t as soon as the system is doped. The am
tude of the lattice distortion and the gap decrease with
creasing doping, but no transition to a metallic state is fou
up to the highest doping studied in this work (y516%). It is
possible that a transition occurs at a higher doping, but
would not be relevant for the transition observed in po
acetylene around y56%. Quantum Monte Carlo
simulations7 have also shown that the lattice distortion su
vives at high doping forV5U/2. Fory.4%, the amplitude
of the lattice distortionD l corresponds exactly to the valu
of the gap if both quantities are extrapolated to an infin
chain. Therefore, away from half-filling the gap is a ba
gap generated by the lattice modulation, though electro
correlations contribute indirectly to its formation becau
they increase the amplitude of the lattice distortion.6

The soliton lattice found in the doped extended Peie
Hubbard model is qualitatively similar to the soliton lattic
predicted by simple electron-phonon models.12 However, it
is important to realize that the evolution of the gap and l
tice distortion amplitude upon doping is different from th
predictions of the Su-Schrieffer-Heeger11 ~SSH! model
~shown in Fig. 1 forl50.2!. To reproduce the results ob
tained in the extended Peierls-Hubbard model with the S
model, one would need to use an effective electron-pho
coupling which decreases with increasing doping. Moreov
such a doping-dependent parameterl(y) should change
abruptly at half-filling to reproduce the sudden disappeara
of the correlation gap. Finally, one notes that the ene

FIG. 1. Optical gap~in units of t! of the Peierls-Hubbard~PH!
model, extended Peierls-Hubbard~EPH! model, and SSH model a
a function of doping.



a
o
.
ec

n
S

n
ke
e.
rl

th
ite
ac

a
r

tit
la
c

ga

rl

f
s
s

e
se
r

(
a

vi

fect
se
s a
i
by

as

the
e,

the
a

ll
n
rd
%.
cts
ical
the

ly-
and
ion

de
p-
ribe
the
a
s,

nd
h
s.

ts
the
up-
ro-
er
re

l
in

11 840 57BRIEF REPORTS
scales involved in both approaches differ by an order of m
nitude. For instance, my calculations indicate a gap of ab
0.07 eV aty58%, while the SSH model predicts 0.4 eV6

These results demonstrate that electronic correlation eff
in such one-dimensional systems are not reproduced
simple single-electron models with an effective electro
phonon coupling, contrary to a basic assumption of the S
theory of conducting polymers.1,11 Thus the electron-electro
interaction and electronic correlation effects should be ta
into account in theoretical studies of doped polyacetylen

In Fig. 1, one can also see that the gap of the Peie
Hubbard model withl50.1 andU52.5t vanishes at a criti-
cal doping between 8% and 12%. These results confirm
existence of a transition to a metallic state at a fin
doping.5–7 They also show that the electron-electron inter
tion can either support or oppose the Peierls instability aw
from half-filling, depending on the parameters used, as p
dicted by the restricted Hartree-Fock approximation.5,9 It
should be noted that my numerical results agree quan
tively with those presented in Ref. 8, but additional calcu
tions and an analysis of finite-size and chain-edge effe
lead to a different conclusion. Figure 2 shows the charge
as a function of the system size fory58% and 12%. The
value of the gap extrapolated to an infinite chain is clea
finite for y58%, but vanishes fory512% within numerical
errors (;1023t). The lattice dimerization parameterD l is
shown in Fig. 3 for a 200-site chain aty512%. The shape o
D l looks similar for y58%, except that the amplitude i
smaller at higher doping. However, in the insulating pha
(y<8%), theamplitude of the distortion in the middle of th
chain tends to a finite value as the chain length increa
This confirms that this lattice modulation is a genuine Peie
distortion. On the other hand, in the metallic regimey
>12%), the amplitude decreases as a power law with
exponent20.66 as the system size increases. This beha

FIG. 2. Charge gap~in units of t! of the Peierls-Hubbard mode
as a function of the inverse system size for two different dop
levels. Lines are linear extrapolations.
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demonstrates that the lattice distortion is a chain-edge ef
with a very slow asymptotic decay. The amplitude of the
Friedel oscillations is known to decrease asymptotically a
power law with an exponent21 in a one-dimensional Ferm
liquid, but density fluctuations are strongly affected
electron-electron interaction and the exponent can be
small as2 1

2 in a Luttinger liquid.16

In conclusion, I have investigated the ground state of
extended Peierls-Hubbard model in the Mott-Peierls regim
which is appropriate for polyacetylene. Results show that
ground state evolves from a Mott-Peierls insulator with
correlation gap at half-filling to a soliton lattice with a sma
band gap away from half-filling. It is also confirmed that a
insulator-metal transition occurs in the Peierls-Hubba
model at a doping concentration between 8% and 12
These results clearly show that electronic correlations effe
are important, and should be taken into account in theoret
studies of doped polyacetylene. They also suggest that
primary mechanism of the insulator-metal transition in po
acetylene is the interplay between electron-phonon
electron-electron interactions, which induces a transit
upon doping from an insulating state with a gap of;1.8 eV
to a state with a gap which is two orders of magnitu
smaller. Obviously, this theoretical investigation of the pro
erties of an ideal, infinite, and isolated chain cannot desc
the properties of actual physical systems. Understanding
insulator-metal transition of polyacetylene will require
study of a more realistic model, including lattice dynamic
interchain couplings, interaction with dopant ions, a
disorder.17 In the future I plan to study such models wit
DMRG, particularly the effects of quantum lattice dynamic
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and discussion. I wish to acknowledge support from
Swiss National Science Foundation. This work was also s
ported in part by the Campus Laboratory Collaborations P
gram of the University of California and by the NSF und
Grant No. DMR-9509945. Some of the calculations we
performed at the San Diego Supercomputer Center.
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FIG. 3. Lattice dimerization parameterDm of the Peierls-
Hubbard model aty512%.
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