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Real-space renormalization-group study of the Hubbard model: A modified scheme
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The real-space renormalization-group technique is applied to the Hubbard model on a linear chain with a
half-filled band; a recently proposed modified scheme is used for the renormalization of the parameters. The
result for the ground-state energy is quite improved with respect to the earlier results of the existing scheme.
Both the energy and its derivative with respect to the on-site repulsion term agree reasonably well with the
exact solution. However, it is indicated that the calculation of the correlation function and energy gap requires
further refinement of this scheme.@S0163-1829~98!01616-6#
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The development of suitable approximate techniques
solving an interacting many-fermion system remains a ch
lenging task at present. There are few exact solutions
standard approximations such as the mean-field techniqu
the perturbative approaches often turn out to be inadeq
for systems with strong fluctuations and intermediate c
pling. These lead one to develop or improve upon a nonp
turbative scheme such as the renormalization group~RG!
that is particularly capable of handling the fluctuations.
real-space version of the RG1–3 seemed to be very promisin
for studying the correlated electron systems such as the H
bard model,4 especially in low dimensions. Several modi
cations and extensions of this technique were worked ou5–7

for different types of short-ranged electronic correlations
such systems. In spite of its success in bringing out the
sential physics,1,5–7 this method suffered from a lack o
quantitative precision. The reason behind this problem
recently been addressed8,9 and consequently an approac
known as the density-matrix RG has emerged. Inspired
similar ideas for removing the ‘‘end effects’’ and the effec
of ‘‘basis truncation’’ in the finite-sized blocks used in th
existing RG scheme,1–7 we employed a differen
prescription10 for renormalization of coupling parameters f
a many-fermion system. In a preliminary calculation for t
noninteracting fermions this showed a marked improvem
over the existing RG results as far as the ground-state en
is concerned.10 In this paper we attempt an application of th
scheme to calculate the ground-state properties of the H
bard model in one dimension for a half-filled band.

We start with a generalized Hubbard Hamiltonian on
linear chain:

H5t1 (
^ i j &,s

cis
† cj s~12ni 2s2nj 2s!2

1t2 (
^ i j &,s

cis
† cj s@ni 2s~12nj 2s!1nj 2s~12ni 2s!#

1U(
i

ni↑ni↓2m(
i ,s

nis , ~1!

wherecis
† (cis) creates~annihilates! an electron with spins

at the Wannier orbital at sitei . t1 and t2 are hopping inte-
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grals between the nearest-neighbor sitesi and j . U is the
on-site correlation, whilem is the chemical potential. The
caset15t2 corresponds to the usual Hubbard model.4 We
start with t15t25t. m5U/2 for a half-filled band, which is
particle-hole symmetric on a bipartite lattice. So we proce
with the effective Hamiltonian

H5t1 (
^ i j &,s

cis
† cj s~12ni 2s2nj 2s!2

1t2 (
^ i j &,s

cis
† cj s@ni 2s~12nj 2s!1nj 2s~12ni 2s!#

2
U

2(
i

~ni↑2ni↓!
21C(

i
1i . ~2!

We have added a constant termC (1i corresponds to the
identity operator at sitei ), which is zero to start with and
accounts for the renormalization of the ground-state ene
We then divide our lattice into identical three-site block
The block Hamiltonian is diagonalized to retain the four lo
lying states of the block Hamiltonian in the subspac
$Sz50, n52%, $Sz5

1
2 , n53%, $Sz52 1

2 , n53%, and
$Sz50, n54%. These are identified with the renormalize
u0&, u↑&, u↓&, andu↑↓& states, respectively. HereSz andn
are two conserved quantities of the block Hamiltonia
namely, thez component of the total spin and the total num
ber of particles, respectively. Out of the retained states
first and the fourth are connected by the particle-hole sy
metry, while the second and the third are connected by
spin-reversal symmetry. The parameters of the Hamilton
are then renormalized within this truncated basis to yield
RG recursion relations.

Now to renormalize the on-site terms such asU andC we
use the same prescription as used in the earlier works,1,2,5–7

e.g.,

U ~n11!5E2
~n!2E3

~n! ,
~3!

C~n11!53C~n!1E2
~n! ,

where E2 and E3 are the lowest-energy states in the su
spaces$Sz50, n52% and$Sz5

1
2 , n53%, respectively. The
11 831 © 1998 The American Physical Society
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superscript (n) refers to the renormalized quantities at t
nth recursion. However, to renormalize the interblock ter
t1 andt2 we use the lowest-lying energies of a ‘‘superblock
containing two such blocks.10

At this point we consider the effect of the environment
an isolated block by immersing two such three-site blocks
a single superblock~Fig. 1! of six sites. In the renormalized
length-scale these two blocks would look like two ‘‘reno
malized’’ sites constituting a two-site block. Therefore, t
lowest-lying state with one or two particles in the renorm
ized two-site block now corresponds to that with five or s
particles in the six-site superblock withSz51/2 and 0, re-
spectively. The lowest energies of the two-site block~with
renormalized parameters! are

e2
~1!52U8/22t1812C8 ,

e2
~2!5~2U82AU82116t28

2!/212C8, ~4!

where, the subscript and superscript ofe correspond to the
block size and the particle number~in the renormalized
scale!, respectively. Primed quantities refer to the renorm
ized values of the parameters. The lowest-lying states in
six-site superblock are, however,

e6
~5!5 ẽ6

~5!~ t1 ,t2 ,U !16C,
~5!

e6
~6!5 ẽ6

~6!~ t1 ,t2 ,U !16C,

where ẽ6
(5) and ẽ6

(6) refer to the lowest energies correspon
ing to C50 in the Hamiltonian~2! in a six-site block for five
and six particles, respectively. Now we have

FIG. 1. Schematic diagram for the prescription of renormaliz
the intersite parameterst1 andt2 using a superblock of six sites:~a!
two adjacent blocks with three sites each before renormaliza
~with parameterst1 ,t2 ,U) and ~b! the renormalized version~with
parameterst18 ,t28 ,U8) of those two blocks, i.e., a block of two
renormalized ‘‘sites,’’ which is equivalent to~c! a six-site super-
block constituted of two three-site blocks~with parameters
t1 ,t2 ,U).
s

n

-

l-
e

-

e2
~1!~ t18 ,t28 ,U8,C8!. ẽ6

~5!~ t1 ,t2 ,U !16C,
~6!

e2
~2!~ t18 ,t28 ,U8,C8!. ẽ6

~6!~ t1 ,t2 ,U !16C.

These relations lead to the renormalization oft1 and t2 as

t1852U8/212E22 ẽ6
~5!~ t1 ,t2 ,U !,

~7!

t285A2U821~4E22U822 ẽ6
~6!!2/4,

which are to be used together with Eqs.~3!. The recursion
relations~3! and~7! are used to find the ground-state ener
per site for an infinte chain, given by

E05 lim
n→`

C~n!

3n
.

Instead of a six-site superblock, had we used an infinite
perblock the relations~6! would turn out to be exact equali
ties and consequently we would have obtained the ex
ground-state energy.

In Fig. 2 we have plotted the ground-state energyE0 per
site~scaled by the hopping integralt) for the half-filled Hub-
bard chain as a function of the coupling constantU/t. This
agrees reasonably well with the exact solution11 over the
whole range of coupling. It turns out that using the pres
prescription improves the result by a significant extent co
pared to that obtained in the existing RG scheme,1 which is
also shown in Fig. 2. At this point it is important to note th
although the ground-state energy turns out to be quite s
factory in this scheme the energy gap is not so well behav
This scheme fails to reproduce the Mott-Hubbard transit
at U/t50 that was present in the existing RG.1,2 In fact, in
the present scheme, a gap, given byU (`) ~the value ofU
after infinite iterations!, opens up at a finite value of (U/t)c
.6.1. Such a critical (U/t)c(.10.2) for a metal-insulator
transition in the one-dimensional Hubbard model is obtain
in the Gutzwiller approximation~GA! for a variational
calculation.12,13 The present RG approach also constructs

n

FIG. 2. Plot of E0 /t, the ground-state energy~scaled by the
hopping integral! per site, as a function of the coupling constantU/t
for the one-dimensional Hubbard chain at half filling. The res
from the present calculation is indicated by the solid curve, wh
the dotted curve shows the exact result.d shows the result obtained
in the existing scheme of the real-space RG~Ref. 1! ands shows
that obtained from Gutzwiller’s approximation.
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eratively a variational wave function and thereby yields
upper bound to the ground-state energy.1 Therefore, a com-
parison of the present result with that obtained in the GA
interesting at this point. Such a comparison shows~Fig. 2!
that the energy is much improved in the present RG sch
compared to the GA especially from the intermediate- to
strong-coupling regime. Therefore, it is clear that althou
the present scheme generates a fictitious metal-insulator~MI !
transition ~the so-called Brinkmann-Rice transition13,14 in a
GA!, it takes into account the correlation effects neglected
the GA.13

It seems that the present scheme yields an upper boun
the exact energy with uniform accuracy over the whole c
pling range. To investigate this further we calculate the slo
of the energy with respect toU. The plot of]E0 /]U (t51)
vs U/t is compared with the exact result11 in Fig. 3. It turns
out to be fairly reliable from the intermediate- to the stron
coupling regime; an improvement over that obtained fr
the existing scheme is noticeable in this region. The re
from the GA is also shown for comparison.]E0 /]U gives
the number of double occupancies (^ni↑ni↓&) in the system.
Therefore, we see that such quantities could be obtained
reasonable accuracy within the present scheme.

FIG. 3. Plot of]E0 /]U, the derivative of the ground-state en
ergy with respect to the correlation parameterU, as a function of
U/t for the one-dimensional Hubbard chain at half filling. Th
gives the average number of double occupancies^ni↑ni↓&. The solid
curve gives the result from our present calculation and the do
curve shows the exact result.d gives the result for the existing
real-space RG~Ref. 1!, while s shows the result from Gutzwiller’s
approximation.
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Since the gap does not turn out to be reliable in t
scheme it is not meaningful to calculate the long-range c
relation functions within this scheme. The basic reason
this is that while renormalizing the parameters we have
tally neglected the low-lying states of the superblock Ham
tonian in the different subspaces. Only an extension of
present scheme that properly takes into consideration
above fact is expected to correctly yield the gap and
long-range correlation functions. Some more work is
quired in this direction.

The present scheme, however, seems to be capab
finding out a very good upper bound to the ground-st
energy and the derivative of the energy~which gives an ex-
pectation value of local operators such as the double oc
pancy! for interacting fermion models. This could be usef
in problems that require a minimization of the energy o
many-fermion system coupled to some other degrees of f
dom ~e.g., phonons! within a variational approach.15 More-
over, an estimation of the free energy and its derivativ
could be achieved in a finite-temperature version16 of this
scheme and such a genralization would lead to a relia
study of the thermodynamics of the low-dimensional man
fermion models such as the Hubbard model. It is straightf
ward to generalize the present scheme to the case of
non-half-filled band17 and to the higher dimension,1,18 al-
though the latter requires some extensive numerics.

Summarizing, we have worked out a recently propos
modification of the real-space RG scheme for the o
dimensional Hubbard model for a half-filled band. The r
sults seem to be markedly improved for the ground-st
energy and its derivative, which gives the average numbe
double occupancies per site. A comparison with the ex
result shows that the energy calculated in the present me
gives a very good upper bound over the whole range of
coupling constant. However, this approach generates a fi
tious MI transition at a finiteU/t as in the GA calculation. It
turns out that here the correlation effects are taken into
count more satisfactorily compared to the GA. However, i
indicated that the present scheme requires further refinem
for the calculation of the energy gap and the long-range c
relation functions. A finite-temperature generalization of t
present scheme also seems to be of great interest.
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Nuclear Physics, Calcutta. B.B. is thankful to A. Misra f
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