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Real-space renormalization-group study of the Hubbard model: A modified scheme
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The real-space renormalization-group technique is applied to the Hubbard model on a linear chain with a
half-filled band; a recently proposed modified scheme is used for the renormalization of the parameters. The
result for the ground-state energy is quite improved with respect to the earlier results of the existing scheme.
Both the energy and its derivative with respect to the on-site repulsion term agree reasonably well with the
exact solution. However, it is indicated that the calculation of the correlation function and energy gap requires
further refinement of this schemgs0163-182¢08)01616-9

The development of suitable approximate techniques fograls between the nearest-neighbor siteend j. U is the
solving an interacting many-fermion system remains a chalen-site correlation, whileuw is the chemical potential. The
lenging task at present. There are few exact solutions ancaset;=t, corresponds to the usual Hubbard motigle
standard approximations such as the mean-field technique start witht;=t,=t. u=U/2 for a half-filled band, which is
the perturbative approaches often turn out to be inadequajgarticle-hole symmetric on a bipartite lattice. So we proceed
for systems with strong fluctuations and intermediate couwith the effective Hamiltonian
pling. These lead one to develop or improve upon a nonper-
turbative scheme such as the renormalization grdr@) + )
that is particularly capable of handling the fluctuations. A H=t E CioCio(1—Nic—Nj—)
real-space version of the RG seemed to be very promising iye
for studying the correlated electron systems such as the Hub-
bard modef, especially in low dimensions. Several modifi- HZ(%
cations and extensions of this technique were worked 6ut '
for different types of short-ranged electronic correlations in UE (ni;

I

clCiolMi_o(1=nj_ ) +n;_o(1=Ni_ )]

(o8

such systems. In spite of its success in bringing out the es- 25
sential physics;®~’ this method suffered from a lack of

quantitative precision. The reason behind this problem ha¥/e have added a constant texn (1; corresponds to the
recently been addres$etiand consequently an approach identity operator at sité), which is zero to start with and
known as the density-matrix RG has emerged. Inspired byccounts for the renormalization of the ground-state energy.
similar ideas for removing the “end effects” and the effects We then divide our lattice into identical three-site blocks.
of “basis truncation” in the finite-sized blocks used in the The block Hamiltonian is diagonalized to retain the four low-
exising RG schem&,’ we employed a different lying states of the block Hamiltonian in the subspaces
prescriptiori® for renormalization of coupling parameters for {S,=0, v=2}, {S,=3%, »=3}, {S,=—3, v=3}, and

a many-fermion system. In a preliminary calculation for the{S,=0, v=4}. These are identified with the renormalized
noninteracting fermions this showed a marked improvement0), |1}, ||), and|1]) states, respectively. He® and v
over the existing RG results as far as the ground-state energyre two conserved quantities of the block Hamiltonian,
is concerned® In this paper we attempt an application of this namely, thez component of the total spin and the total num-
scheme to calculate the ground-state properties of the Hullber of particles, respectively. Out of the retained states the

n2+CX 1. 2

bard model in one dimension for a half-filled band. first and the fourth are connected by the particle-hole sym-
We start with a generalized Hubbard Hamiltonian on ametry, while the second and the third are connected by the
linear chain: spin-reversal symmetry. The parameters of the Hamiltonian

are then renormalized within this truncated basis to yield the
‘ ) RG recursion relations.
H=t; >, CiyCio(l—Ni_s—Nj_,) Now to renormalize the on-site terms sucH.aandC we

(i) use the same prescription as used in the earlier wotRs’
e.g.,
+t2<__2> CiT(er(r[nif(r(l_nj*(r)+nj7(r(1_ni*(r)]
ij),o
(n+1) () _ M
uX > 1 SRR &)
+ niNj| — Nig,
= Mighi Mi,o io (1) C(n+1):3c(n)+E(2n),

Wherecfg(ci,,) creategannihilate$ an electron with spinr ~ where E, and E; are the lowest-energy states in the sub-
at the Wannier orbital at site t, andt, are hopping inte- spaceqS,=0, v=2} and{S,=3, v»=3}, respectively. The
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FIG. 2. Plot of Ey/t, the ground-state energigcaled by the

{t1, ta, U } hopping integralper site, as a function of the coupling constait
for the one-dimensional Hubbard chain at half filling. The result
(c) from the present calculation is indicated by the solid curve, while

the dotted curve shows the exact res@tshows the result obtained

FIG. 1. Schematic diagram for the prescription of renormalizingin the existing scheme of the real-space . 1) andO shows
the intersite parametets andt, using a superblock of six site&a) that obtained from Gutzwiller's approximation.

two adjacent blocks with three sites each before renormalization
(with parameterg,,t,,U) and(b) the renormalized versiofwith

parameterst; ,t;,U’) of those two blocks, i.e., a block of two est(ty,t5,U",C")=e(t,t,,U)+6C, ®
renormalized “sites,” which is equivalent t() a six-site super-

block constituted of two three-site blockéwith parameters el?(t],t5,U’,C")=e®(t;,t,,U)+6C.

tl,tz,U).

These relations lead to the renormalizatiort pandt, as
superscript Q) refers to the renormalized quantities at the

nth recursion. However, to renormalize the interblock terms t;=—U"/2+2E,~ e’ (t1,1,,U), @
t, andt, we use the lowest-lying energies of a “superblock”
containing two such block®. th= \/_ U2+ (4E,— U’ —2e®)2a,

At this point we consider the effect of the environment on
an isolated block by immersing two such three-site blocks inwhich are to be used together with E¢8). The recursion
a single superblockFig. 1) of six sites. In the renormalized relations(3) and(7) are used to find the ground-state energy
length-scale these two blocks would look like two “renor- per site for an infinte chain, given by
malized” sites constituting a two-site block. Therefore, the
lowest-lying state with one or two particles in the renormal- . cm
ized two-site block now corresponds to that with five or six Eo= lim—-.
particles in the six-site superblock with,=1/2 and O, re- e
spectively. The lowest energies of the two-site blgakth  Instead of a six-site superblock, had we used an infinite su-

renormalized parametgrare perblock the relation§6) would turn out to be exact equali-
ties and consequently we would have obtained the exact
eM=—U’/2—t}+2C’, ground-state energy.
In Fig. 2 we have plotted the ground-state enegyper
site (scaled by the hopping integrgl for the half-filled Hub-
2) _ ’ ’ ’ ’
e =(—U’—\U’'?+161,°)/2+2C", (4 bard chain as a function of the coupling constant. This

] ) agrees reasonably well with the exact solutfonver the
where, the subscript and superscripteotorrespond to the \yhole range of coupling. It turns out that using the present
block size and the particle numbgin the renormalized prescription improves the result by a significant extent com-
scalg, respectively. Primed quantities refer to the renormal-pared to that obtained in the existing RG schémsich is
ized values of the parameters. The lowest-lying states in thg|so shown in Fig. 2. At this point it is important to note that

six-site superblock are, however, although the ground-state energy turns out to be quite satis-
factory in this scheme the energy gap is not so well behaved.
el ="el®(t;,t,,U)+6C, This scheme fails to reproduce the Mott-Hubbard transition

(5  atU/t=0 that was present in the existing R&In fact, in
6)_=(6) the present scheme, a gap, given By (the value ofU
eg = eg (t1,t2,U)+6C, after infinite iterationy opens up at a finite value ofJ(t),
=6.1. Such a critical Y/t).(=10.2) for a metal-insulator
wheree{>) ande{®) refer to the lowest energies correspond-transition in the one-dimensional Hubbard model is obtained
ing to C=0 in the Hamiltonian(2) in a six-site block for five in the Gutzwiller approximation(GA) for a variational
and six particles, respectively. Now we have calculation'?*® The present RG approach also constructs it-
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025 n . » . Since the gap does not turn out to be reliable in this
8 . scheme it is not meaningful to calculate the long-range cor-
0.20 | ¢ 0 - relation functions within this scheme. The basic reason for
%, this is that while renormalizing the parameters we have to-
015 L 2 . ° . ] tally neglected the low-lying states of the superblock Hamil-
OEq e ° tonian in the different subspaces. Only an extension of the
au . ° present scheme that properly takes into consideration the
0.10 - . o - . .
. ° above fact is expected to correctly yield the gap and the
e e O long-range correlation functions. Some more work is re-
0.05 - e e T quired in this direction.
o The present scheme, however, seems to be capable of
0.00 . : : : finding out a very good upper bound to the ground-state
0 2 fop ° 8 10 energy and the derivative of the energyhich gives an ex-

pectation value of local operators such as the double occu-
FIG. 3. Plot of )E4/JU, the derivative of the ground-state en- pancy for interacting fermion models. This could be useful
ergy with respect to the correlation parameltkras a function of  in problems that require a minimization of the energy of a
U/t for the one-dimensional Hubbard chain at half filling. This many-fermion system coupled to some other degrees of free-
gives the average number of double occupangiesy ). The solid ~ dom (e.g., phononswithin a variational approacrm. More-
curve gives the result from our present calculation and the dotte@ver, an estimation of the free energy and its derivatives
curve shows the exact resul gives the result for the existing could be achieved in a finite-temperature verSoof this
real-space RGRef. 1), while O shows the result from Gutzwiller's scheme and such a genralization would lead to a reliable
approximation. study of the thermodynamics of the low-dimensional many-
fermion models such as the Hubbard model. It is straightfor-

eratively a variational wave function and thereby yields anV&rd to generalize the present scheme to the case of the
y vy non-half-filled band’ and to the higher dimensidn® al-

upper bound to the ground-state enetgsherefore, a com- houah the latt i tensi .

parison of the present result with that obtained in the GA id ogg € latter requr;res somi eé( enflve numcilrlcs. d

interesting at this point. Such a comparison shdkig. 2) o dﬁgﬂ'}z'gg'tﬁf reixesp\),\g::re eR gusc?]éﬁchr}g Ft’;zp%iz

that the energy is much improved in the present RG scheme. ; A : .
9y P b imensional Hubbard model for a half-filled band. The re-

compared to the GA especially from the intermediate- to th it © b kedly i 4 for th dostat

strong-coupling regime. Therefore, it is clear that aIthoughSu S seem 1o be markedly improved for the ground-state

the present scheme generates a fictitious metal-insyleior energy and its def“’a“"e’ Wh'Ch gives thg average number of
double occupancies per site. A comparison with the exact

transition (the so-called Brinkmann-Rice transitiorn®in a it shows that th lculated in th ¢ mothod
GA), it takes into account the correlation effects neglected i esult snows that the energy caiculated in the present metno
the GA13 gives a very good upper bound over the whole range of the

It seems that the present scheme yields an upper bound &9upling constant. However, this approach generates a ficti-
tious Ml transition at a finitdJ/t as in the GA calculation. It

the exact energy with uniform accuracy over the whole cou- i .
pling range. To investigate this further we calculate the slopéurns out that here th? correlation effects are taken mto_ ac-
of the energy with respect 1. The plot ofdEy/dU (t=1) count more satisfactorily compared to the GA. Howevgr, itis
vs U/t is compared with the exact resdlin Fig. 3. It turns indicated that t_he present scheme requires further refinement
out to be fairly reliable from the intermediate- to the strong—for the calcul_atlon of thg energy gap and the Io.ng-range cor-
coupling regime; an improvement over that obtained fromrelatlon functions. A finite-temperature gene_rallzatlon of the
the existing scheme is noticeable in this region. The resulPTeSent scheme also seems to be of great interest.

from the GA is also shown for comparisofEy/JU gives The authors would like to acknowledge the computational
the number of double occupancig®;n;|)) in the system. and other facilities they enjoyed at the Saha Institute of
Therefore, we see that such quantities could be obtained witNuclear Physics, Calcutta. B.B. is thankful to A. Misra for

reasonable accuracy within the present scheme. technical help in preparing the figures.
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