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The projector augmented way®AW) method for electronic structure calculations developed byciilo
[Phys. Rev. B50, 17 953(1994] has been very successfully used for density functional studies. It has the
numerical advantages of pseudopotential techniques while retaining the physics of all-electron formalisms. We
describe a method for generating the set of atom-centered projector and basis functions that are needed for the
PAW method. This scheme chooses the shapes of the projector functions from a set of orthogonal polynomials
multiplied by a localizing weight factor. Numerical benefits of the scheme result from having direct control of
the shape of the projector functions and from the use of a simple repulsive local potential term to eliminate
“ghost state” problems, which can plague calculations of this kind. Electronic density of states results are
presented for the mineral powellite (CaMgO[S0163-18208)03416-X]

I. INTRODUCTION ing one-electron energids{}. The task is then to choose the
corresponding projector functionp?(r)} and PS basis

functions {$2(r)}, which must satisfy a number of condi-
tions. First, in order to accurately transform between the cal-
culated PS wave functions and their corresponding AE func-
tions, the projectors should approximately satisfy a
generalized completeness condition within each atomic
Sphere of radiusg :

The projector augmented way®AW) method of elec-
tronic structure calculations, developed by &t and also
used by our groupjis a very powerful method for electronic
structure calculations within the framework of density func-
tional theory® In order to use this method, it is necessary to
find three types of atom-centered functions—"projectors,”
all-electron basis functions, and smooth pseudo basis fun
tions. Schemes for constructing these functions have been
discussed in the literatufe®* Our earlier schenfevas found > 1GNP |~ 8(r—r") for rr'<r®. (1)
to work well for some materials, but failed for others. We i
describe a mathematically well-controlled method for gener
ating the projector and basis functions that promises to Worlﬁ
very well throughout the Periodic Table.

ach projector function must vanish and each PS basis func-
on must become equal to its corresponding AE basis func-
tion outside the atomic sphere:

Il. FORMALISM P3r=0 and $3(r)=¢dr) forr=rd. (2

Following the notation of Refs. 1 and 2, the functions thatThe projector and PS basis functions must satisfy a general-
are needed for each atomic typa are denoted ized orthonormality relatioh:
{3(r),pa(r), ¢3(r)}, representing the all-electrdAE) ba-
sis functions, the projector functions, and the pse(es j d3rgd(r)pa(r) =, 3)
basis functions, respectively. The first step in the process is : ! e
the solution of the all-electron self-consistent Sclinger _
equation for the atom and the selection of the appropriate séh addition, the PS basis functiofig?(r)} satisfy an atomic
of upper core and valence AE basis functiq§(r)} hav- PAW Hamiltonian equation of the forh#
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(eF=Hn[EN=2 [PP(&fI(eF-HED. @ oslk =0 ]
where the pseudo-Hamiltonian functiéf has a kinetic en- s 041 ]
ergy operator and an effective potential contribution: =02 Ly ]
52 0.0Ff P _
HA(r)=— 5 V2+ugq(r). (5) 02f -
The effective potential'z;gﬁ(r) must be determined self- i 11 |
consistently as discussed below. 06r o ]
Since the required functions are constructed from equa- _04r ',:;' ]
tions for a spherical atom, each of them can be written as a < oot Ve i
radial function times a spherical harmonic function, such as 0.0 [ % 1
T e ]
. . b1, (1) . 02t " 1
SR= 3 m (N= Y m (F). ) L
Since we can construct the projector and basis functions for a 06 =2 4
single atom at a time, it will be convenient to suppress the 04r i
index a from some of the expressions below. We will also Z AR ]
suppress the running orbital indethroughout the rest of the 0.2r kS ]
manuscript and focus our attention on the radial functions 0.0 LT 1
{63,(0)}, {F3,(r)}, and{p?(r)}. In general, the index 02t .
denotes a principal quantum number corresponding to upper _04' L ! ! ]
core and valence states, and can also be used to enumerate "0 1 2 3 4
continuum functions needed to augment the bhsis. r (bohr)

In the present work, we approximate the completeness FIG. 1. Plots of the projector basis functions defined in &9.
property(1) by setting the projectors to be equal to a set offor c=1 andN=0 (solid ling), 1 (dashed ling and 2(dotted ling.
weighted orthogonal functions. One convenient set of such
functions can be derived from the eigenstates of the Schrav,=1 or 2. For eactn andn’, the functionsxﬂ{(r) are
dinger equation for the three-dimensional harmonic oscilladefined to be solutions of inhomogeneous differential equa-

tor: tions of the form
2, 2 3 r?
le(r)ENr\ue_r/UrHlF(—N,H‘—,—z)- (7) #2 d®> - ) )
2’0 gh— _%W“vaff(r) Xﬂ|(r)=02|f(n/,n0)|(r),
Here, the parameter is chosen so théfty(r >r2)~0 within (10

a specified toleranceVy, is a normalization constant, and . ) )
F(—N,l+3/2,r2/¢2) denotes a confluent hypergeometric with the boundary conditions that all of the (r) functions

function® which is a finite polynomial of ordeN (N=0,1, ~are continuous at=0. At the atomic sphere radius=r¢,
etc) in the variable of {%/¢?). Figure 1 shows the shape of they satisfy
some of the function$y(r). dy™ (rd)  ded (rd
Our “orthogonal polynomial projector” formalism thus n' .ay_ sa.a Xni(Tc) _ $rre)
. . . . . an(rc) d)nl(rc) and . (11)
starts by assuming that each radial projector function is pro- dr dr
portional to one of the functionfy(r): The differential equatiori10) and boundary condition€L1)
Bﬁ|(f)=«4n|f<nfno)|(f), (8) uniguelydetermine the function;ﬂ;(r) and the amplitudes
" . A Numerov algorithfi for solving these equations is
where the amplituded,,, will be evaluated below and where detailed in the Appendix.
no corresponds to the first of the chosen AE radial basis gpce the solutiong”, (r) are determined, th®l; expan-

: a . . . :
functions ¢“o'(r) for a givenl. The fo_IIowmg r_eC|pe then sion coefficientsB), can be calculated from the following
ensures that the atom-centered radial functi¢aé,(r)},  Jinear relations:

{$3,(r)}, and{p?(r)} satisfy the relations 2, 3, and 4. ¥
For each AE radial basis functio,(r), we define the E By =1,
n!

corresponding PS radial basis functiﬁﬂ,(r) according to

> Bﬂ;[fo erﬂlr(f)menO“(r) =0 for n"#n.
n/
(12

The indicesn andn’ enumerate all the;) basis functions ~ Finally, amplitude factotd, can be calculated in terms of
needed for the given orbital quantum numberTypically,  the expansion coefficients,, :

=2 Blxm(r). ©
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The projector functiong8) and PS basis function&®) 70 | —
found in this way satisfy the PAW Hamiltonian equati@k) 60 — ° _
and also satisfy conditions 2 and 3. The above procedure, “ Modp) s
[ 1 1 1 ]
-4 2 4 6

solving Eqgs.(10), (12), (12), and(13), determines the pro-

jector and basis function for a fixed value of the effective 40~ 7

potential ’Jgﬁ(r). In order to derive the optimal functional
forms, these equations should be solved self-consistently,

1
2 0
30 — Ca3p ]
Mo 4s Ca3s 025
20 — -
sinceEZﬁ(r) depends upon the basis functions through the 10— l Mm M’
0

N(E) (states/eV unit cell)

corresponding valence PS and AE density functions: | l I I

|
%60 -50 -40 30 20 10
~a 2 a 2
'ﬁ'a(r)zz w |¢n|(r)| and na(r)=2 W |¢nl(r)| E (V)
o T gy 2 L T A FIG. 2. Plot of the density of states for CaMgQN(E) (states/

(14) eV/unit cel) calculated using the PAW methdtull line) and the
LAPW method(dashed ling with the zero of energy taken at the
top of the valence band. For both calculatioN§E) was approxi-
mated by a weighted sum of Gaussian functions, of width 0.1 eV,

wherew,,[<2(2l+1)] denotes the orbital occupation. The
smooth effective potential for the atom is given'By

erf(r/ o) ’ﬁa(r 2 centered at each of the energy bands calculated at the 3 sarkpling
78 (r)=e?Qyd 1+ (ry+e?| d3’ points. The inset shows the bands near the band gap on an expanded
U eff 00 Uloc r_ L . .
|" r| scale. The labels indicate the dominant atomic character of each of
+ MXC[ na(r)]_ (15) the bands.

Here Q3, is the compensation charge in terms of the atomic . ~ .
Qoo a P ge! the eigenvalue spectrum &f°" to higher energy values. Of
numberZ?, the core electron charg®g,., and a valence h wibuti f bofhand of S Lout i
density correction tern@2.= — 73+ 02 + [._ ad3r[n(r course, the contributions of bothand ofv ,; cancel out in
. y Qoo Qeore fr\rg [n*(r) the final result of a well-converged and ghostless calculation.
—n?(r)]. The self-consistent scheme to determine the PS

basis functions{}Zﬁl(r)} can be thought of as a constrained Ill. RESULTS FOR EXAMPLE SYSTEMS

minimization of the PS energy function& defined by
Blochl.! For each atom, the shape of the projector and basi&

functions depends on the choice of the matching radiys  ,pained by generating the projector and basis functions cor-
of the Gaussian length parameter and of the form of \oq55n4ing to neutral F atoms withi=1.8 bohr and either
Vioc(r). Typically, we chooser such thate*(rcl_”) <10°°. neutral Ca atoms or doubly charged Caions with rS?
The localized potential term that appears in Etﬁ) van- -2 5 pohr and O values fwg andvga. Using a plane-wave
ishes forr>r¢ . In the current scheme, the formofi(r) is  cutoff of |k+ G| <10 bohf?, we obtained results for the co-
arbitrary and can be used to optimize the PAW calculationhesive energies differing by 0.01 eV/atom, the equilibrium
A convenient form is given by lattice constants differing by 0.002 A, and the bulk moduli
~a L1252 differing by 0.2 GPa compared with each other and with the
Vioc(1) =Voe ; (160 results of our previous workFor the body-centered cubic

whereV, is an adjustable parameter. Preliminary indications™etal Mo, results were obtained usinff°=1.6 bohr with
are that it is possible to get good results for many materialy/o=100 or 500 Ry. Using a plane-wave cutoff #f+G|
(for example, C, O, F, Ca, and)SisingV,=0. However, <13 bohr !, we obtained results for the cohesive energies
since the PAW formulation uses a separable potential ifliffering by 0.04 eV, the equilibrium lattice constants differ-
sometimes suffers from the well-documented phenomenoi!d by 0.002 eV, and the bulk moduli differing by 0.8 GPa
of “ghost” states’ We examined two systen(&e and Mg for the two different choices 0#,.°

that exhibited this ghost state behavior and, for both of them, Calcium molybdate(also known by its mineral name
we were able to eliminate the problem by introducing a re- Powellite” ) has been studied since the early 1900s for its
pulsive local potentiab 2, with a large enough amplitude very interesting Iummescence_ and structural properties. As
(Vo>0). Gonze and co-workérstudied the mathematical part of aslsotudy of the electronic structure of this and related
origin of these unphysical states and found that they argwaterlal .- we have calculated the density of states for the

more likely to occur when there exist eigenstates of the “jp-UPPEr COre, valence band, and conducn_on bands. The
Y iitonian (FPYin th i ¢ Blahl) below th CaMoQ crystal has a.tet.r.agonall structure with two formula
cal” Hamiltonian(H™ in the notation o elowthe  njts (12 atoms per primitive unit cell. The crystal param-

physical eigenstates of the system. In the PAW approach, thgers for the calculation were taken from the experimental
potential due to the “compensation” charge densiy) is  neutron analysi&' The projector and basis function param-

usually attractive and thus can shift the eigenvalue spectrurgters were similar to those used for our calculations of ,CaF
of HPW toward negative values. Therefore, introducing a re-and body-centered cubic Mo, choosing the local potential
pulsive localized potentidlEq. (16) with V,>0] can shift parameters for Ca and O to be zero atfﬁ’:ZOO Ry. (Cal-

We have tested this scheme for a few solid state systems—
ak, Mo, and the mineral CaMof For Cak, results were
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culations performed WithV('\)"°=100 Ry deve|0ped ghost Peter Blahl for helpful discussions about the PAW method,

states after a few iterationsThe results were obtained using R- T. Williams for helpful discussions about CaMgGand

a uniform sampling of the Brillouin zone with three non- Yaochun Zhang for help with LAPW calculations on
equivalentk points with a Gaussian weighting schéhaamd =~ CaMoQ,.

the plane-wave cutoff ofk+ G|<10 bohr . For compari-

son, we also performed a calculation using the linear combi-

nation of atomic orbitalLAPW) method!? using the same  APPENDIX: NUMEROV ALGORITHM FOR SOLVING
k-point sampling; muffin-tin radii of 2.0, 1.65, and 1.65 bohr RADIAL DIFFERENTIAL EQUATIONS

for Ca, Mo, and O, respectively; and using the plane-wave
cutoff of |k+G|<6 bohr .

For both calculationsN(E) was approximated by a
weighted sum of Gaussian functions of width 0.1 eV, cen- d2x(r)
tered at each of the energy bands, calculated at the three P
samplingk points. The results are shown in Fig. 2, with the dr
zero of energy taken at the top of the valence band. What is
remarkable about this figure, is thie two results are vir- : :
tually indistinguishableon both the 66 eV range showing the Wh(_are we havezsuppreszsed all subscripts arf superscr;pts and

: efined F(r)=2m/a°)f(r) and G(r)=I1(1+21)/r
upper core states and on the 12-eV range showing the bangs o =
near the band gap. The fact the two independent calculations (2M/%°) [ver(r)—¢]. The Numerov methdtis most eas-
can achieve such detailed agreement is a testimony to tHY @pplied to a uniform discretization of the functions. Let-
accuracy of both methods. Further analysis with a bettefind A denote the radial step size, we can writg= x(r

k-point sampling and the inclusion of relativistic effects will =KA), with re=nA. Itis convenient to replace the continu-
be considered elsewhet®. ity of the function and its first derivative boundary condition

(11) by requiring thaty(kA)= ¢(kA) for two consecutive
points: xy,= ¢, and x,,.1= ¢,.1- The discretization of Eq.
(A1) then becomes a set aof linear equations fom un-

This project was supported by NSF Grant Nos. DMR-knowns:{y,, for k=1,2,...n—1} andC. These equations
9403009 and DMR-9706575. We would also like to thankcan be written in the following matrix form:

Equation(10) which we must evaluate numerically can be
written as

—G(r)x(r)=CF(r), (A1)
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b, ¢; 0 ... 0 0 —dy X1 0
a, b, ¢, ... 0 0 —d, X2 0
0 ag by ... O 0 —ds X3 0
L . . , _| ' (A2)
0 0 0 ... by, Chp —dyy Xn—2 0
0O 0 0O .. ayq; byq —dy1 Xn-1 —Cp—1®n
0 0 0 .. O a, —d, C —bnén—Cndni1

In these equations, the coefficients are defined accordingutl— (A%/12)Gy_;, b,=—2—(10A%/12)Gy, c=1

— (A%/12)Gy 1, and d,= (A?%/12) (Fy_,+10F,+F,. ;). For =1, some of the coefficients must be corrected for the
behavior of the equation at=0: b;—b;—1/X and d;—d;—U/X, where X=6{1+(2m/%?)[v #0)—]A%10} and U

= (2m/%2) (A%10)lim, _ o[ F(r)/r?].
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