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The projector augmented wave~PAW! method for electronic structure calculations developed by Blo¨chl
@Phys. Rev. B50, 17 953~1994!# has been very successfully used for density functional studies. It has the
numerical advantages of pseudopotential techniques while retaining the physics of all-electron formalisms. We
describe a method for generating the set of atom-centered projector and basis functions that are needed for the
PAW method. This scheme chooses the shapes of the projector functions from a set of orthogonal polynomials
multiplied by a localizing weight factor. Numerical benefits of the scheme result from having direct control of
the shape of the projector functions and from the use of a simple repulsive local potential term to eliminate
‘‘ghost state’’ problems, which can plague calculations of this kind. Electronic density of states results are
presented for the mineral powellite (CaMoO4). @S0163-1829~98!03416-X#

BRIEF REPORTS

Brief Reports are accounts of completed research which, while meeting the usualPhysical Review Bstandards of scientific quality, do
not warrant regular articles. A Brief Report may be no longer than four printed pages and must be accompanied by an abstrac
same publication schedule as for regular articles is followed, and page proofs are sent to authors.
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I. INTRODUCTION

The projector augmented wave~PAW! method of elec-
tronic structure calculations, developed by Blo¨chl1 and also
used by our group,2 is a very powerful method for electroni
structure calculations within the framework of density fun
tional theory.3 In order to use this method, it is necessary
find three types of atom-centered functions—‘‘projectors
all-electron basis functions, and smooth pseudo basis fu
tions. Schemes for constructing these functions have b
discussed in the literature.1,2,4Our earlier scheme2 was found
to work well for some materials, but failed for others. W
describe a mathematically well-controlled method for gen
ating the projector and basis functions that promises to w
very well throughout the Periodic Table.

II. FORMALISM

Following the notation of Refs. 1 and 2, the functions th
are needed for each atomic typea are denoted

$f i
a(r ), p̃ i

a(r ),f̃ i
a(r )%, representing the all-electron~AE! ba-

sis functions, the projector functions, and the pseudo~PS!
basis functions, respectively. The first step in the proces
the solution of the all-electron self-consistent Schro¨dinger
equation for the atom and the selection of the appropriate
of upper core and valence AE basis functions$f i

a(r )% hav-
570163-1829/98/57~19!/11827~4!/$15.00
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ing one-electron energies$« i
a%. The task is then to choose th

corresponding projector functions$ p̃ i
a(r )% and PS basis

functions $f̃ i
a(r )%, which must satisfy a number of cond

tions. First, in order to accurately transform between the c
culated PS wave functions and their corresponding AE fu
tions, the projectors should approximately satisfy
generalized completeness condition within each ato
sphere of radiusr c

a :

(
i

uf̃ i
a~r !&^ p̃ i

a~r 8!u'd~r2r 8! for r ,r 8<r c
a . ~1!

Each projector function must vanish and each PS basis fu
tion must become equal to its corresponding AE basis fu
tion outside the atomic sphere:

p̃ i
a~r !50 and f̃ i

a~r !5f i
a~r ! for r>r c

a . ~2!

The projector and PS basis functions must satisfy a gene
ized orthonormality relation:1

E d3r f̃ i
a~r ! p̃ j

a~r !5d i j . ~3!

In addition, the PS basis functions$f̃ i
a(r )% satisfy an atomic

PAW Hamiltonian equation of the form1,2
11 827 © 1998 The American Physical Society
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~« i
a2H̃a!uf̃ i

a&5(
j

u p̃ j
a&^f̃ j

au~« i
a2H̃a!uf̃ i

a&, ~4!

where the pseudo-Hamiltonian functionH̃a has a kinetic en-
ergy operator and an effective potential contribution:

H̃a~r ![2
\2

2m
¹21 ṽ eff

a ~r !. ~5!

The effective potentialṽ eff
a (r) must be determined self

consistently as discussed below.
Since the required functions are constructed from eq

tions for a spherical atom, each of them can be written a
radial function times a spherical harmonic function, such

f i
a~r ![fni l imi

a ~r ![
fni l i

a ~r !

r
Yl imi

~ r̂ !. ~6!

Since we can construct the projector and basis functions f
single atom at a time, it will be convenient to suppress
index a from some of the expressions below. We will al
suppress the running orbital indexi throughout the rest of the
manuscript and focus our attention on the radial functio

$fnl
a (r )%, $f̃nl

a (r )%, and $ p̃nl
a (r )%. In general, the indexn

denotes a principal quantum number corresponding to up
core and valence states, and can also be used to enum
continuum functions needed to augment the basis.1,2

In the present work, we approximate the completen
property~1! by setting the projectors to be equal to a set
weighted orthogonal functions. One convenient set of s
functions can be derived from the eigenstates of the Sc¨-
dinger equation for the three-dimensional harmonic osci
tor:

f Nl~r ![NNle
2r 2/s2

r l 11FS 2N,l 1
3

2
,

r 2

s2D . ~7!

Here, the parameters is chosen so thatf Nl(r .r c
a)'0 within

a specified tolerance,NNl is a normalization constant, an
F(2N,l 13/2,r 2/s2) denotes a confluent hypergeomet
function,5 which is a finite polynomial of orderN ~N50,1,
etc.! in the variable of (r 2/s2). Figure 1 shows the shape o
some of the functionsf Nl(r ).

Our ‘‘orthogonal polynomial projector’’ formalism thu
starts by assuming that each radial projector function is p
portional to one of the functionsf Nl(r ):

p̃nl
a ~r !5Anl f ~n2n0!l~r !, ~8!

where the amplitudeAnl will be evaluated below and wher
n0 corresponds to the first of the chosen AE radial ba
functionsfn0l

a (r ) for a given l . The following recipe then

ensures that the atom-centered radial functions$fnl
a (r )%,

$f̃nl
a (r )%, and$ p̃nl

a (r )% satisfy the relations 2, 3, and 4.
For each AE radial basis functionfnl

a (r ), we define the

corresponding PS radial basis functionf̃nl
a (r ) according to

f̃nl
a ~r !5(

n8
Bnl

n8xnl
n8~r !. ~9!

The indicesn andn8 enumerate all the (Ml) basis functions
needed for the given orbital quantum numberl . Typically,
a-
a
s

a
e
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rate
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is

Ml51 or 2. For eachn and n8, the functionsxnl
n8(r ) are

defined to be solutions of inhomogeneous differential eq
tions of the form

S «nl
a 2F2

\2

2m

d2

dr2 1 ṽ eff
a ~r !G Dxnl

n8~r !5Cnl
n8 f ~n82n0!l~r !,

~10!

with the boundary conditions that all of thexnl
n8(r ) functions

are continuous atr 50. At the atomic sphere radiusr 5r c
a ,

they satisfy

xnl
n8~r c

a!5fnl
a ~r c

a! and
dxnl

n8~r c
a!

dr
5

dfnl
a ~r c

a!

dr
. ~11!

The differential equation~10! and boundary conditions~11!

uniquelydetermine the functionsxnl
n8(r ) and the amplitudes

Cnl
n8 . A Numerov algorithm6 for solving these equations i

detailed in the Appendix.

Once the solutionsxnl
n8(r ) are determined, theMl expan-

sion coefficientsBnl
n8 can be calculated from the following

linear relations:

(
n8
Bnl

n851,

(
n8
Bnl

n8F E
0

`

drxnl
n8~r ! f ~n92n0!l~r !G50 for n9Þn.

~12!

Finally, amplitude factorAnl can be calculated in terms o

the expansion coefficientsBnl
n8 :

FIG. 1. Plots of the projector basis functions defined in Eq.~7!
for s51 andN50 ~solid line!, 1 ~dashed line!, and 2~dotted line!.
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Anl5
1

(n8Bnl
n8@*0

`drxnl
n8~r ! f ~n2n0!l~r !#

. ~13!

The projector functions~8! and PS basis functions~9!
found in this way satisfy the PAW Hamiltonian equation~4!
and also satisfy conditions 2 and 3. The above proced
solving Eqs.~10!, ~11!, ~12!, and ~13!, determines the pro
jector and basis function for a fixed value of the effecti
potential ṽ eff

a (r). In order to derive the optimal functiona
forms, these equations should be solved self-consiste
since ṽ eff

a (r) depends upon the basis functions through
corresponding valence PS and AE density functions:

ña~r !5(
nl

wnl

uf̃nl
a ~r !u2

4pr 2 and na~r !5(
nl

wnl

ufnl
a ~r !u2

4pr 2 ,

~14!

wherewnl@<2(2l 11)# denotes the orbital occupation. Th
smooth effective potential for the atom is given by1,2

ṽ eff
a ~r !5e2Q00

a erf~r /s!

r
1 ṽ loc

a ~r !1e2E d3r 8
ña~r 8!

ur 82r u

1mxc@ ña~r !#. ~15!

HereQ00
a is the compensation charge in terms of the atom

numberZa, the core electron chargeQcore
a , and a valence

density correction termQ00
a 52Za1Qcore

a 1* r<r
c
ad3r @na(r )

2 ña(r )#. The self-consistent scheme to determine the
basis functions$f̃nl

a (r )% can be thought of as a constraine

minimization of the PS energy functionalẼ defined by
Blöchl.1 For each atom, the shape of the projector and b
functions depends on the choice of the matching radiusr c

a ,
of the Gaussian length parameters, and of the form of

ṽ loc
a (r ). Typically, we chooses such thate2(r c

a/s)2
<1026.

The localized potential term that appears in Eq.~16! van-
ishes forr .r c

a . In the current scheme, the form ofṽ loc
a (r ) is

arbitrary and can be used to optimize the PAW calculati
A convenient form is given by

ṽ loc
a ~r !5V0e2r 2/s2

, ~16!

whereV0 is an adjustable parameter. Preliminary indicatio
are that it is possible to get good results for many mater
~for example, C, O, F, Ca, and Si! using V0[0. However,
since the PAW formulation uses a separable potentia
sometimes suffers from the well-documented phenome
of ‘‘ghost’’ states.7 We examined two systems~Fe and Mo!
that exhibited this ghost state behavior and, for both of th
we were able to eliminate the problem by introducing a
pulsive local potentialṽ loc

a with a large enough amplitud
(V0.0). Gonze and co-workers7 studied the mathematica
origin of these unphysical states and found that they
more likely to occur when there exist eigenstates of the ‘‘
cal’’ Hamiltonian ~H̃PW in the notation of Blo¨chl1! below the
physical eigenstates of the system. In the PAW approach
potential due to the ‘‘compensation’’ charge densityn̂(r ) is
usually attractive and thus can shift the eigenvalue spect
of H̃PW toward negative values. Therefore, introducing a
pulsive localized potential@Eq. ~16! with V0.0# can shift
e,

ly,
e

c

S
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-
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the eigenvalue spectrum ofH̃PW to higher energy values. O
course, the contributions of bothn̂ and of ṽ loc cancel out in
the final result of a well-converged and ghostless calculat

III. RESULTS FOR EXAMPLE SYSTEMS

We have tested this scheme for a few solid state syste
CaF2, Mo, and the mineral CaMoO4. For CaF2, results were
obtained by generating the projector and basis functions
responding to neutral F atoms withr c

F51.8 bohr and either
neutral Ca atoms or doubly charged Ca11 ions with r c

Ca

52.5 bohr and 0 values forV0
F andV0

Ca. Using a plane-wave
cutoff of uk1Gu<10 bohr21, we obtained results for the co
hesive energies differing by 0.01 eV/atom, the equilibriu
lattice constants differing by 0.002 Å, and the bulk mod
differing by 0.2 GPa compared with each other and with
results of our previous work.2 For the body-centered cubi
metal Mo, results were obtained usingr c

Mo51.6 bohr with
V05100 or 500 Ry. Using a plane-wave cutoff ofuk1Gu
<13 bohr21, we obtained results for the cohesive energ
differing by 0.04 eV, the equilibrium lattice constants diffe
ing by 0.002 eV, and the bulk moduli differing by 0.8 GP
for the two different choices ofV0 .9

Calcium molybdate~also known by its mineral name
‘‘powellite’’ ! has been studied since the early 1900s for
very interesting luminescence and structural properties.
part of a study of the electronic structure of this and rela
materials,10 we have calculated the density of states for t
upper core, valence band, and conduction bands.
CaMoO4 crystal has a tetragonal structure with two formu
units ~12 atoms! per primitive unit cell. The crystal param
eters for the calculation were taken from the experimen
neutron analysis.11 The projector and basis function param
eters were similar to those used for our calculations of C2
and body-centered cubic Mo, choosing the local poten
parameters for Ca and O to be zero andV0

Mo5200 Ry. ~Cal-

FIG. 2. Plot of the density of states for CaMoO4, N(E) ~states/
eV/unit cell! calculated using the PAW method~full line! and the
LAPW method~dashed line!, with the zero of energy taken at th
top of the valence band. For both calculations,N(E) was approxi-
mated by a weighted sum of Gaussian functions, of width 0.1
centered at each of the energy bands calculated at the 3 samplk
points. The inset shows the bands near the band gap on an expa
scale. The labels indicate the dominant atomic character of eac
the bands.
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culations performed withV0
Mo5100 Ry developed ghos

states after a few iterations.! The results were obtained usin
a uniform sampling of the Brillouin zone with three no
equivalentk points with a Gaussian weighting scheme8 and
the plane-wave cutoff ofuk1Gu<10 bohr21. For compari-
son, we also performed a calculation using the linear com
nation of atomic orbital~LAPW! method,12 using the same
k-point sampling; muffin-tin radii of 2.0, 1.65, and 1.65 bo
for Ca, Mo, and O, respectively; and using the plane-wa
cutoff of uk1Gu<6 bohr21.

For both calculations,N(E) was approximated by a
weighted sum of Gaussian functions of width 0.1 eV, ce
tered at each of the energy bands, calculated at the t
samplingk points. The results are shown in Fig. 2, with th
zero of energy taken at the top of the valence band. Wha
remarkable about this figure, is thatthe two results are vir-
tually indistinguishableon both the 66 eV range showing th
upper core states and on the 12-eV range showing the b
near the band gap. The fact the two independent calculat
can achieve such detailed agreement is a testimony to
accuracy of both methods. Further analysis with a be
k-point sampling and the inclusion of relativistic effects w
be considered elsewhere.10

ACKNOWLEDGMENTS

This project was supported by NSF Grant Nos. DM
9403009 and DMR-9706575. We would also like to tha
.

ys
i-

e

-
ee

is

ds
ns
he
r

-
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APPENDIX: NUMEROV ALGORITHM FOR SOLVING
RADIAL DIFFERENTIAL EQUATIONS

Equation~10! which we must evaluate numerically can b
written as

d2x~r !

dr2 2G~r !x~r !5CF~r !, ~A1!

where we have suppressed all subscripts and superscript
defined F(r )[ (2m/\2) f (r ) and G(r )[ l ( l 11)/r 2

1 (2m/\2) @ ṽ eff(r)2«#. The Numerov method6 is most eas-
ily applied to a uniform discretization of the functions. Le
ting D denote the radial step size, we can writexk[x(r
5kD), with r c[nD. It is convenient to replace the continu
ity of the function and its first derivative boundary conditio
~11! by requiring thatx(kD)5f(kD) for two consecutive
points: xn5fn and xn115fn11 . The discretization of Eq.
~A1! then becomes a set ofn linear equations forn un-
knowns:$xk , for k51,2, . . . ,n21% andC. These equations
can be written in the following matrix form:
the
S b1 c1 0 ... 0 0 2d1

a2 b2 c2 ... 0 0 2d2

0 a3 b3 ... 0 0 2d3

A A A A A A A

0 0 0 ... bn22 cn22 2dn22

0 0 0 ... an21 bn21 2dn21

0 0 0 ... 0 an 2dn

D S x1

x2

x3

A

xn22

xn21

C

D 5S 0

0

0

A

0

2cn21fn

2bnfn2cnfn11

D . ~A2!

In these equations, the coefficients are defined according toak[12 (D2/12)Gk21 , bk[222(10D2/12)Gk , ck[1
2 (D2/12)Gk11 , and dk[ (D2/12) (Fk21110Fk1Fk11). For l 51, some of the coefficients must be corrected for
behavior of the equation atr 50: b1→b121/X and d1→d12U/X, where X[6$11(2m/\2)@ ṽ eff(0)2«#D2/10% and U
[ (2m/\2)(D4/10)limr→0@ f (r )/r 2#.
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