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Superconducting states and depinning transitions of Josephson ladders
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We present analytical and numerical studies of pinned superconducting states of open-ended Josephson
ladder arrays, neglecting inductances but taking edge effects into account. Treating the edge effects perturba-
tively, we find analytical approximations for three of these superconducting states—the no-vortex, fully frus-
trated, and single-vortex states—as functions of the dc bias currentI and the frustrationf . Bifurcation theory
is used to derive formulas for the depinning currents and critical frustrations at which the superconducting
states disappear or lose dynamical stability asI and f are varied. These results are combined to yield a
zero-temperature stability diagram of the system with respect toI and f . To highlight the effects of the edges,
we compare this dynamical stability diagram to the thermodynamic phase diagram for the infinite system
where edges have been neglected. We briefly indicate how to extend our methods to include self-inductances.
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I. INTRODUCTION

Arrays of Josephson junctions are of interest in seve
branches of physics.1 They have many technological appl
cations, including high-frequency emitters and detecto
parametric amplifiers, local oscillators, and volta
standards.1,2 They also shed light on the structural3 and
pinning4 properties of the high-Tc superconducting cuprates
At the same time, they provide model systems for the st
of problems in both spatiotemporal nonlinear dynamics5–8

and nonequilibrium statistical physics.8,9 For instance, the
depinning transitions and nonlinear wave propagation see
Josephson arrays are analogous to those found in incom
surate systems, earthquake models, type-II superconduc
and charge-density waves.

From the standpoint of dynamical systems theory,10 Jo-
sephson arrays can be viewed as large collections of cou
nonlinear oscillators. Unfortunately, because of their non
earity and large number of degrees of freedom, these ar
are inherently difficult to analyze mathematically. A furth
complication is that there is an intrinsic physical coupli
among junctions, due to fluxoid quantization, which is mo
awkward to handle than the nearest-neighbor interaction
ally assumed in idealized models of coupled oscillators. A
when the effects of self-fields and inductances are includ
there is even less hope of making analytical progress.

Despite these obstacles, some encouraging advances
occurred recently in the mathematical analysis of Joseph
arrays, especially for one-dimensional~1D! systems where
the junctions are connected in series5,6 or in parallel.7 The
logical next step is to tackle two-dimensional~2D! arrays.
Much of the previous theoretical work on 2D arrays has
cused on numerical simulation of the current-volta
570163-1829/98/57~2!/1181~19!/$15.00
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characteristics,11 in an effort to link the rich spatiotempora
dynamics of 2D arrays to the averaged quantities that
most readily measured experimentally. On the mathemat
side, there are recent indications that 2D arrays, like their
counterparts, are also going to be tractable in so
regimes.12

An ideal example to explore the crossover between
and 2D behavior is the Josephson ladder array~Fig. 1!. Fol-
lowing Kardar,13,14 several authors have studied various s
tistical properties of the frustrated ladder, including
ground state, the complicated landscape of solutions at
temperature, the low-lying excitations, and the linear
sponse regime.15–17 However, all of these authors restricte
attention to ladders in the absence of a driving current. O
recently has the fully dynamical problem been address
through numerical simulations of the depinning transition18

and vortex propagation.19

In this paper we use the tools of nonlinear dynamics
analyze the superconducting states of ladder arrays.~Other
dynamical regimes will be discussed elsewhere.20,21! Math-

FIG. 1. Schematic diagram of the Josephson ladder array

dc currentI injected in the perpendicular (ŷ) direction. The external
magnetic fieldB is applied transversely to the plane of the devic

in the 2ẑ direction.
1181 © 1998 The American Physical Society
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1182 57BARAHONA, STROGATZ, AND ORLANDO
ematically, the superconducting states correspond to fi
points of the governing circuit equations. We study the
furcations of these fixed points with respect to variations
the applied dc bias currentI and the frustrationf introduced
by an external magnetic field. AsI is increased from 0 a
fixed f , we find that the stable superconducting states
destroyed in saddle-node bifurcations at certain critical v
ues of the current. Then the system depins from its orig
static configuration and evolves toward some other state.
new state might be another fixed point, or it might be
running solution, in which case a nonzero dc voltage appe
across the array. Global depinning of the array occurs w
the last stable fixed point is destroyed. One of the main
sults of our analysis is a set of approximate analytical f
mulas for the critical currents at which the fixed points a
destroyed, as a function off , for the three most importan
types of superconducting states: the no-vortex, fully fr
trated, and single-vortex solutions.

Another important finding is that symmetry plays a cr
cial role in the dynamics of the ladder. As we will sho
below, much of the behavior of the ladder can be underst
by focusing on states that are ‘‘up-down symmetric’’—
other words, states where the phases of the horizontal j
tions on the top and bottom of any given plaquette are eq
in magnitude but opposite in sign at all times. All of th
stable superconducting states possess this symmetry.
when the parameters are chosen so that depinning occur
subsequent transients and long-term running solutions t
cally remain up-down symmetric. But there is at least o
exception: when the single-vortex state is destabilized
lowering the frustrationf below some critical valuef min , the
system depins via a symmetry-breaking bifurcation. Dur
the transient behavior, the up-down symmetry is lost tem
rarily, but is then recovered as the system expels flux fr
the array and evolves toward the no-vortex state.

These symmetry considerations establish an unexpe
link between the study of Josephson arrays and some re
developments in nonlinear dynamics. In mathematical ter
the up-down symmetric states of a ladder array form an
variant manifold of the full state space. A symmetr
breaking bifurcation occurs when this manifold loses sta
ity in a transverse direction. The same issue—the transv
stability of an invariant manifold—arises in the study
riddled basins, synchronized chaos, on-off intermittency,
blowout bifurcations.22 These connections suggest a prom
ing line of future research on Josephson arrays, particul
with regard to their chaotic states.

We will also show that the dynamics of ladder arrays
very strongly influenced by edge effects. One might ha
supposed these effects to be negligible, especially in l
ladders, since their influence on the superconducting s
tions dies off exponentially fast away from the boundari
Yet although the edges do indeed have a small effect on
form of the superconducting solutions, they have a large
fect on thestability of those solutions. Much of this paper
devoted to investigating the effects of the edges, first on
superconducting states themselves, then on their stab
and finally on the entire phase diagram.

This paper is organized as follows. Section II reviews
model equations for the ladder and discusses their symm
properties. In Sec. III we obtain analytical approximatio
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for three numerically observed superconducting solutio
the no-vortex~NV!, single-vortex~SV!, and fully frustrated
~FF! solutions. In all cases, edge effects are taken into
count via perturbation theory. Next, in Sec. IV we descri
the dynamical simulations which reveal the depinning pro
erties of the NV, SV, and FF configurations and relate th
to the global depinning of the ladder. In Sec. V we establ
the rigorous connection of the dynamical depinning with t
stability of these three fixed points. For all of them, we ch
acterize the bifurcations and study their stability diagram
both in the presence and in the absence of edges. W
possible, analytical approximations to the critical curre
are obtained. We show that the depinning transitions co
spond to saddle-node bifurcations that are edge domin
for almost all values of the frustration. Moreover, we fin
that some of the superconducting states can be destabi
via a subcritical pitchfork bifurcation as the frustration
reduced; in physical terms, this is a symmetry-breaking
furcation in which flux is expelledtransversallyfrom the
ladder. In the final section we summarize our conclusions
two phase diagrams~for ladders with and without edges!,
and we relate our results to those found by previous auth
We also add two more technical appendices: Appendix
compares the single-vortex configuration in the ladder w
the corresponding kinklike solution in 1D parallel array
Appendix B briefly indicates how to extend our approach
include self-inductance effects.

II. THE SYSTEM

We study an open-ended Josephson ladder withN square
plaquettes, i.e., an array formed by two rows ofN11 weakly
coupled superconducting islands~Fig. 1!. The array is driven
by a perpendicular uniform dc currentI , and a magnetic field
is applied transverse to the plane of the device. Each w
link between islands constitutes a junction. Its state is
scribed by the gauge-invariant phase differencef j , arising
from the macroscopic character of the quantum wave fu
tion of the superconductors.

Assuming zero temperature, negligible charging~quan-
tum! effects, and identical junctions, the dynamics of ea
junction is given, in the three-channel RCSJ model,1 by the
nonlinear differential equation

I j5f̈ j1bc
21/2ḟ j1sinf j[N~f j !. ~1!

Herebc is the McCumber parameter;1 I j is given in units of
the critical current of each~identical! junction; derivatives
are with respect to time normalized in units ofvJ

21 , the
inverse of the plasma frequency; andN is shorthand for the
nonlinear differential operator defined by Eq.~1!. Thus, each
junction is formally equivalent to a damped drive
pendulum.10

The junctions areintrinsically coupled, even when induc
tances are neglected, through two physical restrictions:
quantization of the magnetic flux through each plaquette,
Kirchhoff’s current conservation law at each node. When
inductances are zero, i.e., self-fields are neglected, the
quantization condition for the array in Fig. 1 becomes

f j
V1f j

h2f j 11
V 2f j

H52p~nj2 f !, j 51, . . . ,N, ~2!
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57 1183SUPERCONDUCTING STATES AND DEPINNING . . .
where f is the external magnetic flux in units of the flux
quantumF0. The set of integers$nj% indicate the presenc
(nj561) or absence (nj50) of topological vortices in each
plaquette when the phases are restricted to the inter
@2p,p).

In addition, Kirchhoff’s current law yields

I j 21
H 1I 5I j

H1I j
V , j 52, . . . ,N, ~3!

I j 21
h 1I j

V5I 1I j
h , j 52, . . . ,N ~4!

at the interior nodes of the ladder. At the left edge,

I 5I 1
H1I 1

V , ~5!

I 1
V5I 1I 1

h , ~6!

while at the right edge,

I N
H1I 5I N11

V , ~7!

I N11
V 1I N

h 5I . ~8!

In summary, Eqs.~1!–~8! define our model for the dynamic
of the ladder array. A useful mechanical analog for the s
tem is a frustrated lattice of coupled, damped, nonlinear p
dula driven by a constant torque applied at the edges.

An important restriction on the currents immediately fo
lows from the presence of the edges. Equations~5! and ~6!
imply that I 1

H52I 1
h . Moving successively from the left edg

to the interior of the ladder, Kirchhoff’s current law yields

I j
H52I j

h , ; j . ~9!

This condition~9! is automatically satisfied by any phas
configuration whose evolution obeys theup-down symmetry

f j
H~ t !52f j

h~ t !, ; j ,;t ~10!

as can be seen from Eq.~1!. Moreover, if the initial condi-
tions satisfyf j

H(0)52f j
h(0) along with similar equalities

on the first time derivatives, the governing equations im
that those equalities will hold forall time. In geometrical
terms, the set of all up-down symmetric states~10! forms an
invariant submanifold of the full phase space.

On the other hand, it is certainly possible to choose ini
conditions that do not have this up-down symmetry. But o
simulations indicate that for a wide range of parameters
initial conditions, arbitrary phase configurations rapid
evolve toward up-down symmetric states. In other words,
invariant manifold is typically attracting in the transver
directions — initial states that are off the manifold are so
drawn onto it. There are also exceptions to this rule: as
will see in Sec. V, the single-vortex and fully frustrate
states can lose transverse stability as the frustrationf de-
creases. Nevertheless, a great deal of insight can be obta
by restricting attention to the submanifold of up-down sy
metric states. Thus, for much of this paper we will assu
that Eq. ~10! holds, and we will replacef j

h with 2f j
H

throughout the governing equations.
There is a simple condition for the transverse stability

an up-down symmetric fixed point. It can be shown20 that
such a fixed point is linearly stable to perturbations that
strictly normal to the manifold if and only if
l
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uf j
Hu,p/2, ; j . ~11!

We have checked numerically that in the instances when
up-down symmetry is broken~and, thus, the system escap
the symmetric manifold!, the subsequent evolution does
fact take place purely along the normal direction. Therefo
any up-down symmetric fixed point that is stable must sati
this inequality~11!. Hence Eq.~11! constitutes anecessary
condition for stability.~It is not sufficient, however, becaus
it only governs the transverse direction; it says nothing ab
the stability with respect to perturbations that preserve
symmetry. Further conditions would be needed to ensure
bility in directions along the invariant manifold as will be
shown below.!

In summary, the governing equations can be written co
pactly as f„x…50, with x5(f1

V , . . . ,fN11
V ,f1

H , . . . ,fN
H ,

f1
h , . . . ,fN

h ), and with the components off„x… defined by

f j~x!5I 1N~f j 21
H !2N~f j

H!2N~f j
V!, j 51, . . . ,N11,

~12!

fN111 j~x!5N~f j
H!1N~f j

h!, j 51, . . . ,N, ~13!

f2N111 j~x!5f j
V1f j

h2f j 11
V 2f j

H22p~nj2 f !,

j 51, . . . ,N. ~14!

The dynamical evolution of the state$x(t),ẋ(t)% of the sys-
tem is obtained by numerically solving this system
coupled differential and algebraic equations. The dynam
also depend implicitly on the parametersI , bc , f , andN.

In experiments, the most convenient way to probe
dynamics of the array is to measure its dc current-volta
(IV) characteristics. From the Josephson relations,1 the time-
dependent voltage across each junction is directly prop
tional toḟ j , the time derivative of its phase. Hence, the to
dc voltageV across the array in the vertical direction is pr
portional to the spatialand temporal average of all the phas
derivatives. Although because of this averaging a great d
of dynamical information is lost about the spatiotempo
state of the system, theIV curve still provides a useful~if
somewhat coarse! indicator of changes in the underlying dy
namics as the drive currentI is varied.

In the case of ladder arrays, theIV curves display three
regions associated with distinct dynamical behaviors.19,20 At
low I , the system issuperconducting(V50) with pinned or
slightly oscillating junctions~in the mechanical analog, th
pendula are at rest or librating slightly!. At a depinning cur-
rent I dep, the array jumps to theflux-flowregion, in which a
finite voltage is produced by vortices of magnetic flux mo
ing across the array. At still higher currents, the dynamics
characterized bywhirling modes7 ~in the mechanical analog
all the pendula rotate over the top at a nearly uniform angu
velocity proportional to the applied torque!. In this state,
there is a linearohmicdependence ofV on I . In the remain-
der of the article we focus on the superconducting states
the critical currentI dep at which depinning occurs.
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III. OBSERVED SUPERCONDUCTING SOLUTIONS
AND ANALYTICAL APPROXIMATIONS

We have performed dynamical simulations of the array
which the current is ramped up from zero with different in
tial conditions. The superconducting solutions observed
those simulations are always static states, i.e., fixed poin
the system.~In principle, time-dependent solutions with hig
cancelling symmetry could also have zero total dc volta
but we never see such states in our simulations.! More spe-
cifically, for any givenbc and N, only three types of con-
figurations appear in the numerics:no-vortexsolutions~Fig.
2! for f smaller than;0.3, and solutions of thesingle-vortex
type~Fig. 3! andfully frustratedtype~Fig. 4! for f→1/2. Far
from the edges, the no-vortex~NV! state is characterized b
identical phases for all junctions. The same applies to
single-vortex~SV! configuration far from both the edges an
the center of the vortex. On the other hand, the fully fru
trated~FF! state has a spatial oscillatory pattern with a wa
length equal to two plaquettes. All of these states are m
fied by noticeable edge effects. Although there are m
other static solutions of the system, our numerical simu
tions indicate that the no-vortex, single-vortex, and fu
frustrated states are the only ones needed to explain the
pinning behavior of the array.

When dealing withfixed pointswith up-down symmetry
~10! the defining equations~12!–~14! become

FIG. 2. No-vortex superconducting solution.~a! Phases of the
horizontal junctions for a 2531 array with I 50.25 and f 50.2:
numerically observed solution~1!, and approximate solution
f j

H‡ (s). ~b! Same as in~a! for the vertical junctions. The pre
dicted phases of the infinite-ladder solution$f j

V†,f j
H†% ~short-

dashed line! are seen to be valid far from the edges in both~a! and
~b!. ~c! Exponential decay of the correction from the edges w
varying magnetic fieldf and currentI . The symbols correspond t
the numerically calculated vertical phases. The solid lines co
from our approximate solutionf j

V‡ and have slopes6 lnr given by
Eq. ~25!.
n

in
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,

e
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-
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I 1sin f j 21
H 5sin f j

H1sin f j
V , j 51, . . . ,N11,

~15!

f j
V2f j 11

V 22f j
H52p~nj2 f !, j 51, . . . ,N, ~16!

where we have defined artificial phasesf0
H5fN11

H 50. Note
that the McCumber parameterbc does not appear in the
equations for the fixed points, and hence does not affect t
existence. This is consistent with the numerically observ
independence of the depinning behavior onbc .

In the rest of this section we obtain analytical approxim
tions for the NV, SV, and FF configurations mention
above. We follow a common scheme for all of them. Fir
we obtain a no-edge approximation~denoted with a dagger!
for the infinite ladder. Second, we introduce the effect of
edges perturbatively to obtain an edge-corrected approxi
tion ~identified by a double dagger!. The calculated configu-
rations have been exhaustively compared with the result
numerical simulations with excellent agreement.

A. No-vortex solution

Figures 2~a! and 2~b! shows a plot of the no-vortex solu
tion, as computed numerically, along with the analytical a

e

FIG. 3. Single-vortex solution.~a! Phases of the horizontal junc
tions for a 2531 ladder forI 50.1 andf 50.2 with a vortex in the
central plaquette: numerical configuration from dynamical simu
tions ~1!, and analytical approximation (s) as given by Eq.~30!.
~b! Same as in~a! for the vertical junctions. The phases are n
reduced to the@2p,p) interval. ~c! Exponential decay of the cor
rectionAj from both the edges and from the center of the vortex
different f and I . Symbols represent numerical simulations and
solid lines are the corresponding analytical predictions given by
~31!. The different graphs have been offset for clarity.
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57 1185SUPERCONDUCTING STATES AND DEPINNING . . .
proximation described below. This state is characterized
the absence of topological vortices (nj5nj 1150, ; j ) and,
far from the edges, by the constancy of the phases.

As a first approximation, let$f j
V†,f j

H†% denote the phase
of the no-vortex solution for theinfinite ladder, i.e., in the
absence of edge effects. To ease the notation, letfH† denote
the common phase of the horizontal junctions~so f j

H†

5fH† for all j ), and definefV† similarly for the phases o
the vertical junctions. The only physically acceptable so
tion of Eqs. ~15! and ~16! that also satisfies the stabilit
condition ~11! is

fV†5arcsinI , fH†5p f , ~17!

where 0< f <1/2 and all the angles are restricted to the fi
quadrant.

This solution exists if and only ifI<1. A linear stability
analysis shows that, for allI ,1, the solution is stable if
fV†5arcsinIP@0,p/2). The other possible solutions wit
fV†5p2arcsinI or fH†5p f 2p are linearly unstable.20 In
summary, when the edges are completely neglected, the
ray behaves similar to a single junction: its only stable n
vortex solution of the observed form~17! disappears atI
51 through a saddle-node bifurcation. This existence cr

FIG. 4. Fully frustrated solution.~a! Phases of the horizonta
junctions for a 2531 with I 50.23 andf 50.5. The numerical so-
lution ~1! and infinite-ladder analytical approximationf j

V† ~–s –!
are seen to coincide except close to the edges. The solid lin~a
guide to the eye! emphasizes the wavelength equal to tw
plaquettes.~b! Same as~a! for the vertical junctions.~c! Exponen-
tial decay of the corrections from the edges in the fully frustra
solution for varyingf andI . Both the odd (Ci

num) and even (Di
num)

site corrections have a characteristic length6(lnr)/2 given by Eq.
~49!. The solid lines are best linear fits with slopes20.805 ~for f
50.4, I 50.2) and 0.502~for f 50.5, I 50.23). They are in excel-
lent agreement with the predicted values (lnr)/2 from Eq. ~49!,
which are 0.806 and 0.488, respectively.
y

-

t

ar-
-

-

rion will be used in Sec. V when discussing the stabil
properties of the NV solution.

Figure 2 shows that this infinite-ladder approximati
works well near the center of the ladder, but breaks do
close to the edges. We now take edge effects into accoun
considering an edge-corrected solution~denoted by a double
dagger!

f j
V‡5fV†1Aj , f j

H‡5fH†2Bj ~18!

where$Aj ,Bj% denote the corrections. From the fixed poi
equations~15!, ~16!, the $Aj ,Bj% must satisfy

I 1sin~p f 2Bj 21!5sin~p f 2Bj !1sin~arcsinI 1Aj !,
~19!

Aj2Aj 1112Bj50. ~20!

The corrections$Aj ,Bj% are expected to be small, except in
region very close to the edges. Thus, Eq.~19! can be ex-
panded to first order inAj and Bj to obtain a second-orde
difference equation forAj :

Aj 1122aAj1Aj 2150 ~21!

with

a511
A12I 2

cosp f
, ~22!

from which the horizontal corrections are

Bj5
Aj 112Aj

2
. ~23!

The general solution of Eq.~21! is

Aj5Pr j 2~N11!1Qr12 j , ~24!

where

r 5a1Aa221[e1/l. ~25!

Hence, the edges produce corrections that decay expo
tially from both ends with a characteristic lengthl(I , f ).
This l51/lnr is a measure of how small perturbations dec
inside of a region with the no-vortex superconducting so
tion. A similar result was recently obtained by Denniston a
Tang17 using the transfer matrix method for the particularI
50 case.

To complete the solution, the constantsP,Q in Eq. ~24!
have to be fixed from the boundary conditions

I 5sin~p f 2B1!1sin~arcsinI 1A1!, ~26!

I 1sin~p f 2BN!5sin~arcsinI 1AN11!, ~27!

which result from current conservation at nodes 1 andN
11, respectively. Since$Aj ,Bj% become largest at the edge
Eqs.~26! and ~27! are solved numericallywithout lineariza-
tion. When the array is long enough, such thatl!N11, the
effect of one edge on the other is negligible and the solut
is further simplified as Eqs.~26! and~27! decouple. ThenQ
andP are obtained independently by solving

d
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I 5sinFp f 1
Q

2 S 12
1

r D G1sin~arcsinI 1Q!, ~28!

I 1sinFp f 2
P

2 S 12
1

r D G5sin~arcsinI 1P!. ~29!

Figures 2~a! and 2~b! show that the above analytical so
lution agrees well with the results of simulations for lon
(N525) arrays. The approximation accounts well for t
effect of the open ends also for short (N57) arrays~not
shown!. The exponential decay of the perturbation from t
edges is also checked satisfactorily in Fig. 2~c!. As expected
on physical grounds, the edge effects become more im
tant as both the field and the current are increased. Thus
approximation is best whenf andI are small, and worsens a
I→1 andf→1/2 @f 51/2 is a singular limit, as seen from th
vanishing denominator in Eq.~22!#. This establishes limits
on the use of this approximation for the prediction of t
depinning current at high values of the frustration.

Our analytical approximation also explains other featu
of the numerics. For instance, the correctionsAj ,Bj are spa-
tially asymmetric with respect to the center of the array wh
I .0— as seen in Figs. 2~a! and 2~b! by comparing the right-
most and leftmost phases. Note also that for 0, f <1/2 the
largest vertical phase occurs at the right end of the ladde
in obvious connection with the preferred direction for flu
propagation in the array (2x̂). Moreover, it can readily be
shown that the change of the frustration fromf to 12 f has
only one effect: the vertical phases for frustration 12 f are a
mirror image, with respect to the center of the array, of
vertical phases with frustrationf . This implies that the de-
pinning current will beidentical for both values of the frus-
tration, as expected, but the direction of propagation
reversed.20

B. Single-vortex solution

An analytical approximation for the single-vortex co
figuration can be obtained in a similar fashion by realizi
that the effect of a vortex located in cella of the array is
similar to the edge effects in the no-vortex state. Note how
the phases in Figs. 3~a! and 3~b! were reduced to@2p,p),
the single-vortex configuration is composed of two halv
each of which is equivalent to a no-vortex superconduct
solution when we move away from the edges and from
vortex centera.

Hence, the zeroth order single-vortex solution$f j
V†,f j

H†%
is identical to the no-edge NV solution given in Eq.~17!.
And the edge and vortex-corrected approximation with
vortex distributionna51 andnj50, ; j Þa is given by

f j
V‡5arcsinI 1Aj , f j

H‡5p f 2Bj , ~30!

where the corrections$Aj ,Bj% result now both from the pres
ence of the edges and of the vortex in plaquettea.

Following the same steps as for the NV configuration,
obtain identical expressions~19!–~25! for the corrections for
eachhalf of the array:

Aj5H Pr j 2a1Qr12 j , j <a

P8r j 2~N11!1Q8r a112 j , j .a,
~31!
r-
he

s

n

e

s

if

,
g
e

a

e

Bj5
Aj 112Aj

2
, j Þa, ~32!

where r is, once more, given by Eq.~25!. Therefore, the
single-vortex solution is obtained bymatching two edge-
corrected no-vortex solutions. In fact, the vortex in cella
effectively introduces two new ‘‘edges,’’ ata and a11,
which also produce similar exponentially decaying corre
tions. The matching condition ata anda11 is given by the
fluxoid quantization condition in the cell containing the t
pological vortex:Aa2Aa1112Ba52p. Thus,

Ba5p1
P8r a2N1Q82P2Qr12a

2
. ~33!

This completes the equations needed to determine the
knownsP,Q,P8,Q8 in our solution~31!. They can be calcu-
lated numerically,20 for given I and f , from Eq.~33! and the
boundary conditions from current conservation at nod
1,a,a11, andN11. The approximation is compared wit
numerical simulations in Fig. 3 with excellent agreeme
especially at smallf .

We also note that although the ladder equations~15! and
~16! can be reduced approximately to a discrete sine-Gor
equation,13,14,19our analytical expression~30! is a better ap-
proximation than the much-used sine-Gordon kink, which
a good description in strictly 1D parallel arrays.23 A detailed
comparison of both approaches is presented in Appendix

C. Fully frustrated solution

The other relevant superconducting state is the fully fr
trated solution, which appears in simulations whenf '1/2
~Fig. 4!. To obtain an analytical approximation, we follo
once more the same scheme as above: first, calculate a
edge basic solution; then, introduce the edges perturbativ

In this case, the basic solution is seen numerically to
cillate in space with a wavelength equal to two plaquett
Thus, when edges are neglected~the infinite-ladder approxi-
mation!, the phases can be approximated in general by

H f j
V†52p @a1~21! jb#,

f j
H†52p @c1~21! jd#,

~34!

wherea,b,c,d are to be determined from Eqs.~15! and~16!
with nj5@17(21) j #/2. First, substitution in Eq.~16! gives
c andd:

c5 f /221/4, ~35!

d5b61/4. ~36!

Second, from Eq.~16! we obtain

sin 2pa cos 2pb5I ,

sin 2pb cos 2pa22 sin p f cos 2pb50,

from which we then solve explicitly fora andb in terms of
the parametersf and I :

a5
1

2p
arcsinAL/2, ~37!
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b5
1

2p
arccosA2I 2/L, ~38!

where

L5~11I 2!6A~12I 2!2216I 2sin2p f . ~39!

Figures 4~a! and 4~b! compares the analytical infinite-ladde
fully frustrated approximation~34!–~39! with numerical
simulations. The agreement is good except near the end
expected.

The approximation above also yields an existence cr
rion for the no-edge fully frustrated solution. In Eq.~39!, the
expression inside the square root must be non-nega
hence the infinite-ladder fully frustrated solution does n
exist if

I .I FF,th5A4 sin2p f 1122 sin p f , ~40!

where the subscript FF denotes fully-frustrated andth de-
notes a theoretical approximation of a bifurcation conditio
We will use this condition~40! later when we discuss th
depinning of the fully frustrated solution.

This predicted form of the infinite-ladder fully frustrate
solution agrees with previous findings obtained for the s
cial case when there is no driving current.15 For I 50, our
solution ~34!–~39! reduces to the stable configuration24

f j
V†5~21! jarctan~2!, f j

H†5~21! j 11arctan~1/2!,

which coincides with the ground state forf 51/2 andI 50
calculated by Benedict.15 @To obtain this result from the ex
pressions above, note that 2I 2/L→(114 sin2pf)21 as I→0,
for the solution corresponding to the minus sign in Eq.~39!.#
We also note that the infinite-ladder fully frustrated soluti
existsfor all f when I 50, i.e., there is no critical magneti
field below which it ceases to exist, although it is energe
cally most favorable whenf '1/2. The physical meaning o
this solution is clear: it contains a topological vortex in eve
other cell, as seen from the alternating sequence of zeros
ones for the plaquette integers$nj% in the Eqs.~15! and~16!.

In fact, although the solutions with$nodd51, neven50%
and $nodd50, neven51% are degenerate in an infinite arra
they are not so if the array is finite. However, we will sho
in Sec. V that the depinning of the fully frustrated state
basically unaffected by the parity of the number of cells
the ladder.

As we did for the no-vortex solution, we now introduc
corrections from the edges. The improved soluti
$f j

V‡,f j
H‡% is given by

H f2i 21
V ‡5fodd

V †1Ci ,

f2i
V ‡5feven

V †1Di ,
, H f2i 21

H ‡5fodd
H †2Ei ,

f2i
H ‡5feven

H †2Fi ,
~41!

where i 51, . . . ,ceil(N/2) and there is an additionalfN11
V ‡

whenN is even andfN11
H ‡50 whenN is odd. The double

cell is used to simplify the calculations, as suggested by
spatial periodicity of the infinite-ladder solution.

Again, far away from the ends the corrections are sm
and we linearize the governing equations~15! and ~16!
around the basic solution~34!. Thus we obtain the following
system of coupled difference equations:
as

-

e;
t

.

-

i-

nd

e

ll

Ci2Di12Ei50, ~42!

Di2Ci 1112Fi50, ~43!

2Eicosfodd
H †52Ficosfeven

H †1Dicosfeven
V †, ~44!

2Ficosfeven
H †52Ei 11cosfodd

H †1Ci 11cosfodd
V †. ~45!

EliminatingEi , Fi , andDi we get a second-order differenc
equation forCi :

Ci 1212gCi 111Ci50, ~46!

with g(I , f ) given by

g5
sin2p f 1cb2cos 2p f 22@~sin2p f 2sa2!sb21ca2#

sin2p f 2cb2
.

~47!

~Heresa, sb, ca, andcb are shorthand for sin 2pa, sin 2pb,
cos 2pa, and cos 2pb, respectively.! This difference equa-
tion has the general solution

Ci5PrFF
i 1QrFF

2 i , ~48!

with

r FF52g1Ag221[e1/lFF. ~49!

And r FF is related again to another characteristic penetra
depth for the perturbations from the edges to die off, t
time inside a region with the fully frustrated solution. Th
coefficientsP andQ have to be calculated numerically usin
the boundary conditions from nodes 1 andN11. The spatial
dependence ofDi is also of the same formDi5RrFF

i

1SrFF
2 i . Note that in both equations,i is the number that

indexes the double cell.
Figure 4~c! illustrates the accuracy of these approxima

formulas. Specifically, we plot the spatial dependence of
predicted deviations

Ci
num5f2i 21

V 2f2i 21
V †, Di

num5f2i
V 2f2i

V †,

wheref j
V is obtained from the numerical solution andf j

V† is
the infinite-ladder approximation. The expected exponen
decay close to the edges with characteristic lengthlFF
52/lnrFF is verified in the figure.

IV. DYNAMICAL DEPINNING TRANSITIONS
OF THE ARRAY

In this section, we describe the depinning transitions
seen in dynamical simulations of the ladder array at z
temperature. In the following section, we will explain the
dynamical results by relating them to the bifurcations of t
no-vortex, single-vortex, and fully frustrated supercondu
ing solutions. The main goal is to give a rigorous mathem
cal explanation of the following observations: Dynamic
simulations show that the array is superconducting at
values of the driving currentI . As I is increased, the array
remains superconducting until a critical currentI dep( f ) is
reached, after which the array depins and develops a non
average voltage. This depinning currentI depdecreases mono
tonically as the frustrationf increases from 0 to 1/2.
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1188 57BARAHONA, STROGATZ, AND ORLANDO
These numerical observations are all at the averaged l
of the IV characteristics. They do not tell us anything abo
the detailed configuration of the individual junctions. In pa
ticular, there are several distinct superconducting states~e.g.,
the NV, SV, and FF states discussed in Sec. III, and st
containing multiple vortices! but these are indistinguishab
on theIV curve. This ambiguity raises the question: what
the state of the ladder just before it depins?

We will show in Sec. V that for most values off , the
depinning of the ladder is caused by the destruction of
no-vortex state. Specifically, the global depinning curr
I dep( f ) can be predicted by calculating the current at wh
the no-vortex state is annihilated in a saddle-node bifur
tion. The only exception occurs for values off close to 1/2,
where the depinning is due to saddle-node bifurcations
states of the fully frustrated type. The noteworthy point h
is that no other superconducting states play a role in
global depinning of the array.

However, the question arises as to how the depinning
havior would change when configurations with vortices
used as initial conditions~rather than the random or zero
phase initial conditions that we ordinarily use in our simu
tions of the IV characteristics!. To address this issue, w
perform dynamical simulations from an initial condition wi
one 2p step in the middle cell of the array:

f j
H~ t50!50, f j

V~ t50!52p QF j 2ceilS N11

2 D G ,
whereQ(x) is the Heaviside step function. This initial con
dition is not a solution of the system and, thus, under t
dynamical equations~12!–~14! it relaxes onto a true solution
for the ladder. For most$ f ,I %, the single-vortex supercon
ducting state~top panel of Fig. 5! is reached, i.e., a stati
configuration with a topological vortex in cella of the array
such thatna51 andnj50, ; j Þa, j 51, . . . ,N. For some
ranges off andI , this configuration is not dynamically stab
and other solutions are found, as discussed in Sec. V.

The numerical observations shown in Fig. 5 depict
dynamical behavior of the single-vortex state for most val
of f , i.e., approximately 0.12, f ,0.37. They can be summa
rized as follows: Forf . f min and small driving currentI , the
system relaxes onto a static single-vortex solution with
vortex in the middle of the array. The solution is slight
distorted as the current is increased, until atI 5I LAT( f ) the
vortex moves from the center cell toward the left.@This cur-
rent is analogous to the well-known Lobb-Abraham
Tinkham ~LAT ! depinning current for two-dimensional Jo
sephson junction arrays.25# For currents very close toI LAT ,
the vortex moves slowly and gets trapped in another
somewhere between the center and the edge. For some
largerI .I LAT , the vortex moves all the way to the left edg
where it becomes pinned until, at a second critical curr
I left , it is expelled from the array and the no-vortex soluti
is recovered again. The no-vortex configuration then rema
stable until, atI dep, global depinning of the array occurs.
instead of placing the vortex in the middle, we locate it clo
est to theright edge, it depins at a currentI right,I LAT , and
moves toward the center.

These observations can be clarified with the us
analogy26 of the vortex as a damped particle moving in
el
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sinusoidal potential under the action of a2x̂ Lorentz-like
force directly proportional toI . The maxima of the potentia
correspond to the vertical junctions and the minima are s
ated in the middle of the cells. Thus, the initial barrier whi
has to be overcome to begin the motion explains the crit
I LAT . Moreover, the open boundaries can be thought to p
duce an exponentially decaying envelope superimposed
the sinusoidal potential. Thus the motion of the vortex
easier when the vortex is close to the right edge and beco
increasingly difficult as the left boundary is approache
WhenI left is reached, the vortex is able to overcome the ed
barrier and is expelled from the array. Then the no-vor
configuration is recovered and no new vortex enters the
der.

We mentioned before that the described behavior is
served for values of the frustration contained between
limiting values. First, there is a minimum frustrationf min
;0.12 below which the single-vortex solution never ensu
from this initial condition; in fact, the system settles on t
no-vortex superconducting solution. Second, forf larger
than;0.37, the vortex isnot expelled from the array at the
left edge before depinning. Depinning occurs in that ca
when vortices enter the array from the right edge. Th
observations will be clarified in Sec. V.

We have also performed dynamical simulations for t
multivortex case and reached similar conclusions for m
values off . In that case, the initial condition consists ofN f

FIG. 5. Snapshots of the time-evolution of the single-vort
solution for a 2531 ladder array withbc510 and f 50.2 and in-
creasingI . Initial (h), intermediate~--!, and final (d) configura-
tions are shown. AtI 50.134,I LAT the initial configuration with a
2p jump relaxes to the stationary single-vortex solution. WhenI
50.136.I LAT the vortex becomes dislodged from the center.
moves slowly to the left and then stops at some intermediate p
tion between the center and the edge. ForI LAT,I 50.2,I left the
vortex moves until it gets pinned near the edge, where the pote
barrier is larger. Finally, atI left,I 50.25,I dep the vortex is ex-
pelled from the array and theno-vortex solutionis recovered.
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equally spaced 2p steps which are then allowed to evolv
dynamically. ForI 50 and large enoughf , the initial condi-
tion relaxes onto the expected solution withN f vortices in
the array. As the current is increased, these move toward
left end where they accumulate until they are expelled
by one at different currents. After this, the no-vortex soluti
is again recovered.

On the other hand, the picture changes whenf is close to
1/2. There, solutions of the fully frustrated type are obtain
from the multi-vortex initial condition and there is no expu
sion of vortices from the ladder. Instead, the array dep
globally at the current where the FF solution ceases to e
i.e., I dep( f→1/2)'I FF,th.

We conclude that in the ladder, the depinning of one v
tex ~or a train of vortices! is not equivalent to the globa
edge-dominated depinning of the device. As we will confi
in Sec. V, the no-vortex and fully frustrated states are
relevant solutions for the depinning of the array; for mod
ate f , even if the initial conditions contain vortices, these a
expelled from the array as the current is increased and, e
tually, the no-vortex solution is recovered. Forf close to 1/2,
the system settles onto fully-frustrated solutions with disti
depinning properties.

On the other hand, we have identified three other criti
currents related to the single-vortex configuration:I right , at
which a vortex at the right edge begins to move;I LAT , at
which dynamical depinning occurs for a single vortex ce
tered in the middle of the ladder; andI left , at which the
vortex is expelled at the edge. All of these dynamical obs
vations are explained in detail in the next section where t
are compared to their exact mathematical descriptions.

V. BIFURCATION ANALYSIS
OF THE DEPINNING TRANSITIONS

In this section, we use bifurcation theory to obtain ex
criteria for all the critical currents of the no-vortex, singl
vortex, and fully frustrated states. We have checked con
tently that these bifurcations explain the dynamical dep
ning behavior of the array as described in Sec.
Furthermore, analytical simplifications to some of those c
teria will be deduced from approximations of the exact d
pinning results.

The depinning of the ladder can be explained in dyna
cal terms as follows: The linear stability of the supercondu
ing states of the ladder as a function ofI can be deduced
from the Jacobian matrixJdyn of the dynamical system~12!–
~14! for a given value off , and for a given fixed point—in
particular, the no-vortex, single-vortex, or fully frustrate
state. If all the eigenvalues have negative real parts, the fi
point is linearly stable. As we increaseI , some of the eigen-
values move to the right in the complex plane, and the fix
point becomes less stable. The critical current for a giv
fixed point is defined by the condition that the maximum
the real parts of the eigenvalues becomes positive. The
predict theglobal depinning current, we compare the critic
currents of the different superconducting states, and take
maximum of those. In other words, we predict that glob
depinning occurs when the ‘‘last’’ stable state bifurcates.

Recall that there are several scenarios10 by which a stable
fixed point can undergo such a bifurcation. First, in a ze
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eigenvalue bifurcation, a single eigenvalue moves along
real axis, and passes from negative to positive at the bi
cation. There are three main subtypes of zero-eigenvalue
furcation: saddle-node, transcritical, and pitchfork. In t
saddle-node bifurcation, a stable fixed point collides with
saddle point, and both are annihilated. In contrast, in
transcritical and pitchfork bifurcations, the stable fixed po
is not destroyed — it continues to exist but goes unstable
second scenario is provided by the Hopf bifurcation wh
involves a pair of complex conjugate eigenvalues pass
through the imaginary axis from the left half plane to t
right half plane – again this bifurcation destabilizes the fix
point, but does not destroy it.

Since it can be shown that Hopf bifurcations are not p
sible in this system,27 we can simplify our calculations by
using thestatic system~15! and~16! to identify the location
of the zero-eigenvalue bifurcations. Those bifurcation poi
are characterized by a change in the number of fixed po
and, thus, from the implicit function theorem,28 the Jacobian
matrix J of the static system has zero determinant the
Hence, we use the superconducting~static! up-down sym-
metric system given byf„x…50,

f i~x!5I 1sinxN1 i2sinxN111 i2sinxi , i 51, . . . ,N11,

~50!

fN111 i~x!5xi2xi 1122xN111 i12p~ f 2ni !,

i 51, . . . ,N, ~51!

with x5(x1 , . . . ,x2N11)[(f1
V , . . . ,fN11

V ,f1
H , . . . ,fN

H).
For a givenf and a given superconducting state, we comp
the bifurcating fixed pointx! and its associated critical cur
rent I !( f ) at which det(J)50. To this end, we define an
augmented algebraic system with the currentI as an extra
variable, and the constraint on the determinant as an e
equation. Thenx! and I ! are obtained by solvingF„X!

…50
whereX5(x,I ) and

Fj~X!5f j , j 51, . . . ,2N11, ~52!

F2N12~X!5det~J!. ~53!

Figure 6 shows that the dynamical depinning of the ladde

FIG. 6. f dependence of the global depinning current of t
array. The numericalI dep (s) is obtained by sweeping the curren
up from zero in dynamical simulations; no assumptions are m
about the state of the system. The static currentI NV

! marks the point
where a particular superconducting state, the no-vortex solutio
destroyed in a saddle-node bifurcation. Similarly,I FF

! corresponds
to the maximum of the saddle-node bifurcation currents for so
tions of the fully frustrated type.
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1190 57BARAHONA, STROGATZ, AND ORLANDO
explained byI ! ~zero-eigenvalue! bifurcations.
The rest of this section is devoted to analyzing the bif

cations of the no-vortex, single-vortex, and fully frustrat
configurations. For the sake of clarity, we follow a paral
scheme for all of them and keep the notation consistent.
each of the states, we first calculate numerically the ze
eigenvalue bifurcations from Eqs.~52! and ~53! ~always de-
noted with a star! and compare them with the depinnin
currents fromdynamicalsimulations~always denoted with
symbols in the figures!. Then, when possible, we deduc
analytical simplifications of these criteria in one of tw
ways: ~a! by deducing that the instability is essential
caused by a bifurcation of the no-edge solution, or~b! by
explaining the instability as edge-originated and, thus, loc
ized at the boundaries. These theoretical analytical appr
mations are always denoted with the subscript th. Moreo
to emphasize the importance of the edges in the depin
transitions, we calculate the depinning of the no-edge s
tions for all three configurations. Finally, note that no ene
arguments are invoked in this discussion. Thermodyna
considerations are studied in detail in Sec. VI where ph
diagrams of these superconducting states for the no-edge
finite ladders are presented.

A. Bifurcation of the no-vortex solution

Figure 6 shows that for most values off , the depinning
currentI dep( f ) ~obtained from dynamical simulations! coin-
cides with the critical currentI NV

! for the no-vortex state—
calculated from the augmented system~52! and~53!. Indeed,
we find that the bifurcating phase configurationxNV

! matches
the depinning configurationxdep observed in dynamica
simulations. Hence, the bifurcation of the no-vortex st
constitutes an exact criterion for the global depinning c
rent, except for values off close to 1/2, where the globa
depinning is caused by the destruction of the fully frustra
solution, as explained below.

To gain intuition about how to derive analytical approx
mations forI dep( f ), it is helpful to characterize the depinnin
bifurcation more precisely. Our numerical computations
dicate that the depinning of the no-vortex state is due t
saddle-node bifurcation. AsI approachesI NV

! from below,
the stable no-vortex state approaches an unstable no-v
state, and coalesces with it whenI 5I NV

! , causing both state
to disappear. Figure 7~a! shows the maximumdynamicalei-
genvalue for both the stable and unstable states—note
both of these eigenvalues are pure real, and they equal
the critical current. As expected, this plot has the stand
shape of a saddle-node bifurcation diagram.10 Figures 7~b!
and 7~c! plot the phase configuration for both states atI 50.
They have similar spatial structure, except near the rig
most cell, where~in the language of the mechanical analo!
the unstable state has an inverted pendulum.

Incidentally, Fig. 7 also shows that both states satisfy
up-down symmetryf j

H52f j
h discussed in Sec. II. Numeri

cal simulations show that this symmetry continues to h
for all values ofI on both the stable and unstable branch
Thus, the global depinning bifurcation takes place entir
within the invariant manifold of up-down symmetri
states—it isnot a symmetry-breaking bifurcation.
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Analytical approximations for INV
! ( f ). The conclusion

that the depinning transition for most values off corresponds
to a saddle-node bifurcation of the no-vortex supercondu
ing state can be simplified further. We now obtain analyti
approximations forI NV

! ( f ) using the approximate solution
calculated in Sec. III.

We recall that the bifurcation of the infinite-ladder n
vortex configuration does not explain the observ
f -dependence of the finite-ladder NV depinning. As d
cussed in Sec. III, if the edges are neglected completely,
no-vortex solution~18!–~24! is predicted to exist and be
stable for allI ,1, independent of the frustrationf , in anal-
ogy with the single junction. Thus, the depinning for th
no-edge NV state occurs through a saddle-node bifurca
at I NV,th

† ( f )51, ; f .
To capture the observedf dependence of the critical cur

rent I NV
! , we need a more careful approximation. We no

present two such approximations toI NV
! that clarify the

physical picture of the transition.
The first strategy is to use the improved approximat

~18! for the no-vortex state~in which the edge effects ar
included perturbatively!, and then write down asimplified
augmented systemF‡

„X‡
…50 for this solution, similar to the

expression~52! and ~53! for the full (2N12)-dimensional
system. We can then calculate the critical currentI NV,red for
this reduced model, defined as the value ofI where theper-
turbativesolution undergoes a saddle-node bifurcation. T

FIG. 7. Saddle-node bifurcation of the no-vortex solution in
1531 ladder.~a! Value of the maximum of the real parts of th
eigenvalues of the dynamic Jacobian matrixJdyn for the stable~S,
solid line! and unstable~U, dashed line! branches withf 50.2 and
bc50.25. They collide and annihilate atI NV

! in a saddle-node bi-
furcation. We remark that, although the eigenvalues change
bc , the bifurcation pointI NV

! is independent ofbc . ~b! Phase con-
figuration of the vertical~left! and horizontal~right! junctions for
the unstable branch~U! at f 50.2 andI 50. ~c! Same as~b! for the
stable branch~S!. Note that both configurations~b!,~c! are up-down
symmetric, and the unstable branch~b! corresponds to an inverte
pendulum at the rightmost cell.
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renders the calculation analytically tractable since, fo
given f , only three variables$P,Q,I % suffice to describe the
perturbative solution~18!—instead ofI and 2N11 phases
for the full solution. The simplified augmented system
constituted by Eqs.~28!, ~29! together with the condition tha
the determinant of the 232 Jacobian matrix equals zero
corresponding to the zero-eigenvalue condition at a sad
node bifurcation.

Furthermore, since Eqs.~28! and~29! are uncoupled when
N is not very small, even this three-dimensional system
be further reduced to a two-dimensional system with
knownsP and I :

F1
‡5I 1sinFp f 2

P

2 S 12
1

r D G2sin~arcsinI 1P!, ~54!

F2
‡5

]F1
‡

]P
, ~55!

wherer 5r ( f ,I ) is given by Eq.~25!. Note that this is a se
of local equations referred to the right-most end of the arr
We numerically solve the 232 reduced system
F‡(Pred,I NV,red)50 to obtain the approximate depinning cu
rent I NV,red( f ) and the value of the right-most phasePred at
the bifurcation.

Figure 8 shows thatI NV,red( f ) predicts the exactI NV
! ( f )

reasonably well. As expected, the prediction gets worsef
nears 1/2 since the perturbative approximation of the
vortex solution is less accurate in that limit.

Both the analyses of the eigenfunctions of the full 2N12
system~52! and~53! and of the reduced system~54! and~55!
indicate that the global depinning of the ladder is caused
a local instability of the right-most junction of the array. Th
is consistent with physical arguments which imply that af
depinning occurs, vortices propagate in the array in the2x̂
direction under the effect of a magnetic Magnus~Lorentz-
like! force.

The key role played by the right-most junction suggest
second simplification, which we call a heuristic criterion f
depinning. This criterion connects the global depinning
the ladder with the much simpler depinning transition in
single junction. Recall that when the phase of a single ju
tion reachesp/2, its superconducting solution is destroyed
a saddle-node bifurcation.10 Therefore, we intuitively pro-
pose that when the phase of the right-most junction reac

FIG. 8. Analytical simplificationsI NV,red and I NV,th provide ap-
proximations to the critical current for the no-vortex solutionI NV

! by
concentrating on the right-most cell of the array.
a
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p/2, the ladder depins. Replacing the no-vortex solution
its perturbative approximation~18!, we solve for the current
I NV,th by imposing

fN11
V ‡5p/2 ~56!

which implies

arcsinI NV,th1P~ I NV,th!5p/2. ~57!

Then, from Eq.~29!, we obtain an implicit transcendenta
equation forI NV,th( f ):

arcsin~12I NV,th!1
r 21

2r
arccosI NV,th5p f ~58!

with r 5r (I NV,th) given by Eq.~25!. This simple analytical
prediction is shown to be in very good agreement with
exact results in Fig. 8.

The techniques described in this section can be exten
to include the effect of self-fields. In Appendix B we illus
trate this approach and show how self-inductance modi
the approximate no-vortex solution and the correspond
depinning current.

B. Bifurcations of the single-vortex solution

We begin the study of the stability of the single-vorte
~SV! configuration by considering the single-vortex far fro
the edges. The results obtained for the vortex in the ce
will be used subsequently to describe the effects of the ed
on the SV state.

1. Saddle-node bifurcation of the SV solution

As described in Sec. IV, a vortex in the center of the ar
moves to the left over the potential barrier when the criti
currentI LAT is reached. We show now that this depinning
the vortex corresponds to a saddle-node bifurcation of
single-vortex solution. To verify this, we restrict our atte
tion to the single-vortex solutions that are centered in
middle of the ladder; then we look for the currentI SV

! at

FIG. 9. Stability diagram for the single vortex in the center
the array.I LAT(d) is calculated dynamically from numerical simu
lations by sweeping the current until a vortex placed in the cente
a 2531 array moves. These dynamical results (d) are well pre-
dicted by the staticI SV

! at which the fixed point corresponding to th
pinned vortex ceases to exist~dashed line!. Another dynamic insta-
bility of the single-vortex configuration atf min ~solid diamonds! is
identified as a symmetry-breaking subcritical pitchfork bifurcati
f SV

! . It can be approximated with an analytical criterionf SV,th given
by Eq. ~59!. This approximation is so accurate that the curves
f SV

! and f SV,th are practically indistinguishable.
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1192 57BARAHONA, STROGATZ, AND ORLANDO
which the determinant of the static Jacobian mat
det(Jux

SV
! )50. As in Eqs.~52! and ~53!, we solve the aug-

mented systemF(xSV
! ,I SV

! )50 to find where the centere
single-vortex state ceases to exist. Figure 9 shows the pe
agreement between theI SV

! ( f ) computed from the static aug
mented system and theI LAT( f ) obtained from simulations
where a vortex is placed in the middle of the array and
current is increased until it moves, i.e.,I LAT5I SV

! .
Moreover, Fig. 10 confirms that this depinning transiti

is indeed caused by a saddle-node bifurcation. An unst
single-vortex state collides with and annihilates the sta
single-vortex state at the transition. Figure 10 shows that
two states have similar spatial structure —the difference
that the stable state has its vortex in the center of a
~where the vortex sits in a potential well!, while the unstable
state has its vortex on a junction~poised on a potential hill!.

Although conceptually similar, ourI LAT for the ladder is
not equivalent to that calculated by Lobb, Abraham, a
Tinkham.25 Their current is estimated by a static calculati
of the energy barrierEb in an infinitely extended two-
dimensional array, while ours is the dynamic current
which the centered single-vortex state undergoes a sad
node bifurcation in the quasi-one-dimensional ladder. Mo
over, their static calculation does not include the effects
the field f or the injected currentI on the solutions while, in

FIG. 10. Saddle-node bifurcation of the single-vortex solution
the center of a 1531 ladder.~a! Value of the maximum of the rea
parts of the eigenvalues ofJdyn for the stable~S, solid line! and
unstable~U, dashed line! branches withf 50.2 andbc50.25.I SV

! is
the point where a saddle-node bifurcation occurs for this partic
configuration. As in Fig. 7, the bifurcation point is independent
bc . ~b! Phases of the vertical~left! and horizontal~right! junctions
for the unstable branch~U! at f 50.2 andI 50. ~c! Same as~b! for
the stable branch~S!. Again, both configurations~b!–~c! are up-
down symmetric. Note that the stable branch~c! is associated with
a vortex located at the center of a plaquette~a minimum of the
potential!, whereas the unstable branch~b! corresponds to a vortex
centered around a junction~a local maximum of the potential en
ergy!.
ect
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our case, they are implicitly taken into account since
configurations—and therefore their stability—depend pa
metrically on$I , f %.

2. Symmetry-breaking bifurcation of the SV solution

We noted above the numerical observation18 that, when
performing dynamical simulations, the static single-vort
solution is unstable below acritical field fmin(I ). We show
now that this is the result of a symmetry-breaking instabil
which is mathematically related to another zero-eigenva
bifurcation. Therefore, once again, the dynamicalf min coin-
cides with a staticf SV

! calculated from the augmented syste
~52! and~53! as the value off where the determinant of th
static Jacobian matrixJ is zero and, thus, a change in th
number of fixed points is likely. Excellent agreement b
tween f min and f SV

! is shown in Fig. 9.
Figure 11 depicts detailed information about this bifurc

tion. Specifically, it shows three single-vortex states that
exist for f slightly greater thanf SV

! . These states appear ve
similar, but on close inspection, one notices that two of

t

r
f

FIG. 11. Subcritical pitchfork bifurcation of the single-vorte
solution atf SV

! . ~a! Value of the up-down asymmetryS5fa
H1fa

h

for the two asymmetric (AS1, AS2) and symmetric (S0) branches
with I 50. The calculation of the dynamical eigenvalues~not
shown! indicates that the stable symmetric branch becomes unst
at f SV

! when it collides with the two unstable asymmetric branch
For f , f SV

! , only the unstable symmetric branch survives.~b!
Phases of the vertical~left! and horizontal~right! junctions for the
asymmetric branch (AS1) at f 50.14 andI 50. ~c! and ~d! are the
same as~b! but for the S0 and the AS2 branches, respectively. Not
that although all three vertical configurations on the left panels lo
very similar, the~b! and ~d! AS horizontal configurations on the
right are up-downasymmetric.
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57 1193SUPERCONDUCTING STATES AND DEPINNING . . .
states are asymmetric:f j
HÞ2f j

h ~this is especially clear for
the central plaquettej 5a.!. As f→ f SV

! from above, these
asymmetric states—which are unstable—simultaneously
lide with the stable symmetric state, rendering it unstable.
visualize this transition in greater detail, Fig. 11 plots t
asymmetry for the central plaquetteS[fa

H1fa
h as a func-

tion of the frustrationf . The symmetric state exists bot
above and below the bifurcation, and satisfiesS50 through-
out. The two unstable branches join the symmetric branc
f 5 f SV

! . The scenario depicted in Fig. 11, common in sy
metric systems, is known as a subcritical pitchfo
bifurcation.10

From this, we conclude that there exists a region of
( f ,I ) plane ~Fig. 9!, where the single-vortex configuratio
exists but is always dynamically unstable. In this region,
vortex ~magnetic flux! is expelledtransversallyfrom the ar-
ray through transient modes which donot preserve the up-
down symmetry of the horizontal phases.

We can also derive an analytical expressionf SV,th for the
critical field f SV

! . As given in Eq.~11!, all up-down symmet-
ric fixed points become unstable when the phase of an
the horizontal junctions is larger thanp/2 in absolute value.
Since this largest phase occurs at the central plaquette~as
seen in Fig. 11!, the following stability criterion ensues from
the conditionfa

H52p/2:

2p f SV,th1@P~ f SV,th!2Q8~ f SV,th!#5p, ~59!

where we have used Eqs.~30! and ~33! and we consider a
long array such that the effect of the edges on the middle
can be neglected. HereP,Q8 have to be calculated from th
boundary conditions~current conservation! at nodesa and
a11:

I 1sin@p f 2P~r 21!/~2r !#5sin~arcsinI 1P!

2sin@p f 2~Q82P!/2#,

I 2sin@p f 2~Q82P!/2#5sin~arcsinI 1Q8!

1sin@p f 1Q8~r 21!/~2r !#

~60!

with r given by Eq.~25!. Numerical solution of the critica
condition ~59! yields the curvef SV,th(I ) which is almost in-
distinguishable from the curve forf SV

! from the full aug-
mented system~Fig. 9!.

It is especially interesting to check the caseI 50. Then
P52Q8 and the critical condition~59! and ~60! simplifies
to

sinFp f SV,th
0 1S f SV,th

0 2
1

2Dp~r 21!

2r G5cos~p f SV,th
0 !21,

~61!

which can be solved numerically to givef SV,th
0 [ f SV,th(I

50)50.1193, in agreement with numerical findings fro
previous dynamical simulations.18

3. Single-vortex configurations at the edges

So far we have concentrated on a particular single-vo
state, namely, one where the vortex occurs in the middle
l-
o

at
-

e

e

of

ll

x
ll

of the array. But there are many other single-vortex sta
each differing from the previous one by displacing the vor
by one cell to the right or to the left. Each of those config
rations becomes unstable through bifurcations similar
those discussed above for the case of the centered sin
vortex state. For most values off , as discussed in Sec. IV
when the driving currentI is increased, a vortex in the ladde
moves to the left~getting pinned in cells closer to the le
edge asI grows! until it is expelled from the array at the lef
boundary. Thus, in explaining the effect of the edges on
SV solution we are most interested in two critical curren
the critical currentI right , at which a vortex at the right edg
begins to move, and the critical currentI left , at which the
vortex is expelled at the left edge of the ladder.

To predict I right , we analyze the SV configuration wit
the vortex placed in the right-most cell~the 000 . . . 01con-
figuration!. The results of the analysis are similar to those
the vortex in the center. As shown in Fig. 12~a!, this state can
cease to exist through a saddle-node bifurcation (I SV,right

! ), or
become unstable through a symmetry-breaking pitchfork
furcation (f SV,right

! ). The agreement with the dynamical sim
lations is excellent.

The rigorous explanation ofI left turns out to be slightly
more complicated. A careful examination of the numer
reveals that, depending on the value off , the vortex can be
expelled from the array in one of two ways: from the le
most cell~cell number 1! as expected, or directly from ce
number 2. Thus, we need to examine the dynamical stab
of two SV states: the one with the vortex in cell
(1000•••00) and in cell 2 (0100•••00).

The dynamic stability of the 0100•••00 configuration
contains no new elements. The two observed bifurcation~a
saddle-nodeI SV,left2

! and a subcritical pitchforkf SV,left2
! ) are

similar to those explained above. The results are presente
Fig. 12~b! where the saddle-node bifurcation is seen to
plain the dynamicalI left for f ,0.29.

However, it is the stability analysis of the 1000•••00
state that explains the expulsion of the vortex at the edge
f .0.29. As shown in Fig. 12~c!, this configuration present
the usual saddle-node (I SV,left1

! ) bifurcation. The pitchfork
( f SV,left1

! ) bifurcation is barely visible in the figure. There
also another saddle-node bifurcation at lowI and high f
which is irrelevant for the depinning considered here.

The results of this section are summarized in Fig. 12~d!,
which indicates the region whereat least onesingle-vortex
configuration in a ladder arraywith edgesis dynamically
stable. Figure 12~d! is, in essence, the union of Fig. 9 wit
Figs. 12~a!–12~c! and shows how the SV solutions eith
cease to exist through a saddle-node bifurcation whenI is
increased for most values of the frustrationf , or become
unstable through a symmetry-breaking pitchfork bifurcati
for small values off .

Within this picture, the dynamical behavior in Fig. 9
where the vortex propagates along the ladder in the inte
I SV,right

! ( f ),I ,I SV,left
! ( f ), is the result of a succession o

saddle-node bifurcations of single-vortex states situated
contiguous cells until the vortex is expelled at the left ed
This is in contrast with the symmetry-breaking exit of th
vortex for f , f SV

! (I ), where the flux is expelled in the trans
versal direction.
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1194 57BARAHONA, STROGATZ, AND ORLANDO
This description is valid forf ,0.37. However, a subtle
variation is observed beyond that point for the SV solutio
The comparison of Fig. 12~c! and Fig. 8 shows that the de
pinning of the SV and NV states is similar for highf , i.e.,
I SV,left

! 'I NV
! , for f .0.37. This is due to the fact that at hig

f the vortex isnot expelled from the array before depinnin
Instead, the SV configuration with the vortex at the left ed
ceases to exist through a saddle-node bifurcation wh
similarly to what happens to the NV state, is localized on
right edge of the ladder. The depinning transition of t
single-vortex state at highf can be described in a simila

FIG. 12. ~a!–~c! Stability diagrams for the SV configuratio
when the vortex is placed close to either edge. The symbols de
critical currents measured through dynamical simulations. The s
lines (I SV

! ) correspond to saddle-node bifurcations and the das
lines (f SV

! ) to subcritical pitchfork bifurcations where the flux
expelled transversally. For instance, from~a! the vortex in the right-
most cell moves to the left forI .I SV,right

! . And I left corresponds to
the expulsion of the vortex at the left edge forf ,0.37. In the region
delimited byI right and I left , there is a cascade of saddle-node bifu
cations which leads to the behavior observed in Fig. 5. For the
three panels:~a! corresponds to the vortex in the rightmost cell;~b!
in the second cell; and~c! in the first~leftmost! cell. ~d! shows the
region where at least one SV configuration~anywhere in the ladder!
is stable. It is the union of panels~a!–~c! and Fig. 9.
.

e
h,
e

fashion as the depinning of the no-vortex configuration:
the nucleation of vortices on the right edge of the ladd
Thus, the single-vortex configuration plays no role in t
global depinning of the array: only the behavior of the N
and FF states has to be considered.

C. Bifurcations of the fully frustrated state

The depinning of the ladder array asf→1/2 is determined
by the stability of the fully frustrated configuration. This ca
be readily seen by inspection of Fig. 6 which shows tha
high f the depinning of the no-vortex state occursbeforethe
global depinning of the array.

To clarify the importance of these transitions we follo
the same scheme as above. We first calculate the z
eigenvalue bifurcations of this state and show that the de
ning of the ladder atf .1/2 is indeed explained by a saddl
node bifurcation of the FF state. Then we obtain analyti
approximations~th! to the exact bifurcations, using stabilit
criteria for the infinite-ladder FF configuration.

In principle, the characterization of the FF bifurcations
more intricate than for the NV and SV configurations abo
since in thefinite ladder several states of the FF type cou
play a role in the depinning. First, there exist different sta
in ladders with odd and even number of cells, as seen w
the •••010101••• alternating vortex pattern is fitted into
finite length. Second, there are many FF states very c
energetically with different dynamic stability structure. How
ever, we will show that the landscape of relevant solution
indeed clear, and depinning can be assigned to instabilitie
oneof those configurations.

Consider first aneven ladder with ten plaquettes as a
example. Of the several states of the FF type, three can
thought as relevant:~1a! 1010101010,~1b! 0101010101, and
~1c! 1101010100. We have analyzed the stability of the
three states and conclude that only configuration~1a! is rel-
evant for depinning of the even ladder. Both~1b! and ~1c!
cease to exist or become unstable at lower critical curre
This is physically reasonable since~1b! will tend to move
one cell to the left under the action of a driving current
produce~1a!, while ~1c! ceases to exist through a low curre
saddle-node bifurcation caused by the expulsion of the v
tex at the left boundary.

The case of theodd ladder with N plaquettes has one
further complication, namely, that we cannot have exac
N/2 vortices in the array. Thus, the ‘‘pure’’ FF state~as
calculated for the infinite case! is not possible under thes
topological constraints. However, states similar to t
‘‘pure’’ FF are those which contain (N21)/2 and (N
11)/2 vortices. Take, for instance, a ladder with elev
plaquettes. We have then two groups of states: those with
vortices, ~2a! 10101010101,~2b! 11010101010, and~2c!
01010101011; and those with five vortices,~3a!
10101010100,~3b! 01010101010, and~3c! 00101010101.
The detailed analysis of these states shows that~3a! has the
highest critical transition and is thus responsible for the
pinning of the odd ladder.

There is a final important observation in our argume
the stability diagrams of the configurations which cause
depinning in odd and even ladders—~3a! and ~1a!,
respectively—areindistinguishable. @This is also true for
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57 1195SUPERCONDUCTING STATES AND DEPINNING . . .
other odd-even related configurations such as~2b! and~1c!.#
The conclusion is then clear: the depinning behavior of o
and even ladders at highf is identical as it can be explaine
by the bifurcation of configurations~1a! and ~3a! which are
of the 101010••• type.

The zero-eigenvalue bifurcations of these configurati
are presented in Fig. 13. The bifurcations are of two ty
~similar to those obtained for the SV state!: saddle-node
(I FF

! ) and pitchfork (f FF
! ). Note also how the saddle-nod

bifurcation corresponds to two distinct dynamical instab
ties: for 0.38, f ,0.5, the instability is spatially extended
while for 0.22, f ,0.38, the instability is localized at th
right edge. Only the former~spatially extended! saddle-node
bifurcation has any relevance for the global depinning of
array—as reflected by the agreement betweenI depandI FF

! for
f .0.45. ~Of course, forf ,0.45, the depinning current an
I FF

! no longer coincide, because the depinning is caused t
by a saddle-node bifurcation of a different state, the
vortex solution, as shown earlier.! The pitchfork bifurcation
f FF

! is also spatially extended and, as observed for the sin
vortex, it implies the breaking of the up-down symmetry
the FF state. Thus, the flux is expelled in the transve
direction. We clarify this in the following by calculating
some analytical approximations to these criteria.

Analytical approximations to the FF bifurcations.The
rigorous analysis above indicates that two of the bifurcat
mechanisms imply spatially extended perturbations wh
are not localized at the edges. Hence, we turn to instabil
of the infinite-ladder fully frustrated solution to obtain an
lytical approximations.

One of the criteria was already established in Sec.
where we showed that the no-edge FF solution cease
exist at a currentI FF,th( f ) given by Eq.~40!. Indeed, we find
excellent numerical agreement between the analyticalI FF,th

and the numericalI FF
! for 0.38, f ,0.5 ~Fig. 13!. For in-

stance, the predictedI FF,th( f 51/2)5A52250.236 is very
close to the dynamically computedI dep( f 51/2)50.238.

To explain the observed pitchfork bifurcation, recall th
the up-down symmetric manifold of solutions becomes
stable to normal perturbations when the absolute value of
horizontal phases is larger thanp/2, as given in Eq.~11!.
Thus, from Eqs.~34!–~39! and the critical conditionufH†u
5p/2 we obtain the following implicit equation for the in
stability boundaryf FF,th(I ):

FIG. 13. Dynamic stability of the fully-frustrated solution. Th
saddle-node bifurcation atI FF

! is responsible for the depinning of th
array for f ;0.5. The FF state also undergoes a pitchfork bifurcat
f FF

! . Both are partially explained through approximate formu
I FF,th and f FF,th deduced from instabilities of the FF solution for th
infinite ladder.
d
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I 5tan~p f FF,th!Acos2~p f FF,th!24sin4~p f FF,th!, ~62!

which is shown in Fig. 13 and compared to the exactf FF
!

with excellent agreement. As an example, it is easy to sh
analytically that the value of this critical field whenI 50 is
given by

f FF,th~ I 50!5
1

p
arcsinFA171/221

8 G50.2148. ~63!

In summary, we can explain in part the stability diagram
the FF state in the presence of edges with two bifurcation
the infinitely extended~no-edge! FF solution: the saddle
node bifurcation I FF,th( f ), and the subcritical pitchfork
f FF,th( f ).

However, for the finite ladder, another saddle-node bif
cation is reached beforeI FF,th for 0.22, f ,0.38 as seen in
Fig. 13. Numerical analysis shows that this bifurcation
local and it corresponds to an instability in theleft-mostcell.
It can be approximated heuristically by a criterion similar
Eq. ~56! for the NV state, i.e., for this interval of the frustra
tion the FF state depins approximately when the leftm
junction becomes unstable.

VI. SUMMARY AND DISCUSSION

The first conclusion of our analysis is that for most valu
of f , the global depinning current of the arrayI dep( f ) coin-
cides with the currentI NV

! where the no-vortex state unde
goes a saddle-node bifurcation~Fig. 6!. This bifurcation
point can be well approximated by an analyticalI NV,th , given
in Eq. ~58!, derived from an instability criterion for the right
most junction of the array. For values off close to 1

2, how-
ever, the global depinning is caused by a saddle-node b
cation of the fully frustrated solution at a currentI FF

! . This
bifurcation itself is well approximated by the global instab
ity of the no-edge FF state atI FF,th, as given analytically in
Eq. ~40!.

We have also shown that the depinning of the single v
tex and its subsequent motion in the2x̂ direction~Fig. 5! is
the result of a cascade of saddle-node bifurcations of
single-vortex solution such that, for most values off , the
fluxoids are expelled from the ladder through its left edg
More surprisingly, for smallerf the SV and FF configura
tions can also undergo another transition: a symme
breaking subcritical pitchfork bifurcation in which the up
down symmetry of the horizontal phases plays a crucial ro
In this case, the fluxoids are expelled in the transversal (2ŷ)
direction through the horizontal junctions.

At a finer level of description, the approximations o
tained in Sec. III for the NV, FF, and SV states all have
common feature: the corrections due to the existence
edges, or of topological vortices in the array, decay expon
tially in space with a characteristic length dependent onI and
f , as seen in Eq.~25!, for instance. Thus, the effect of th
perturbations can usually be captured by a local analy
This explains why, besides their independence from
purely dynamical parameterbc , the depinning observable
are largely independent ofN, the length of the array.

We have summarized our results in a zero-tempera
stability diagram~Fig. 14! where we present the differen

n
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1196 57BARAHONA, STROGATZ, AND ORLANDO
critical currents for the NV, SV, and FF superconducti
solutions for thefinite ladder~with edges!. In short, the array
ceases to be superconducting~depins globally! at I dep when
either the no-vortex, single-vortex or fully frustrated sol
tions ceases to exist through saddle-node bifurcations.

The presence of vortices in the array does not change
observed depinning. Iff , f min(I );0.1, the single-vortex so
lution is always unstable. Forf min, f ,0.37, a vortex in the
array will depin atI LAT,I dep and will be expelled at the lef
edge atI left,I dep. At that point the no-vortex solution is
recovered. This behavior is the same for multivortex so
tions with moderatef . For f .0.37, the single-vortex is no
expelled at the left edge before depinning but its instability
almost identical to that of the no-vortex configuration sin
vortices enter from the right edge.

Note that no energy criteria have been invoked abo
The calculation of energy boundaries for the relevant sta
remains open for further investigation.

To highlight the effect of the edges and to include en
getic considerations we explore in more detail the phase
gram for the infinite ladder~no edges!, which we present in
Fig. 15. ~This should be compared to the phase diagram
the ladder with edges in Fig. 14.! When no edges are presen
the dynamic bifurcation boundaries for the three states
given by I NV,th

† , I FF,th, f FF,th, I SV,center
! , and f SV,center

! . These
dynamic criteria do not contradict previous thermodynam
studies of the infinite ladder13,14 with I 50 where the no-
vortex solution was calculated to be energetically stable o
for frustrations smaller than a thermodynamic critical fie
f c1, above which the flux penetrates the ladder. We h
extended these calculations for thedriven infinite ladder and
the three superconducting solutions addressed in this art
Defining the energy of a given configuration as

E52(
all

cosf j ,

we have calculated the energy boundaries for the appr
mate no-edge no-vortex, fully frustrated, and single-vor
solutions:f NV-SV(I ), f NV-FF(I ), and f SV-FF(I ). The results of
thesethermodynamiccalculations are also presented in F
15. Note, for instance, that our calculatedf c1
5 f NV-SV(I 50).0.282 agrees well with other estimates14

f c1.2A2/p250.287.

FIG. 14. Dynamic stability diagram in the finite ladder~with
edges! of the superconducting states analyzed in this paper:
no-vortex~NV!, fully frustrated~FF!, and single-vortex~SV! con-
figurations. This figure combines Figs. 8, 12~d!, and 13. Labels
indicate the states that aredynamicallystable inside each region. I
regions where two or more stable states coexist, each is atta
from different initial conditions.
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Moreover, our approximate solutions produce some n
analytical results. For example, a closed expression for
energy boundary between the no-vortex and fully frustra
solutionsf NV -FF(I ) can be obtained as

A12I 22IA2/L2112 cos~p f NV -FF!

22sin~p f NV -FF!A122I 2/L50, ~64!

whereL is given by Eq.~39! with the negative sign. For the
special case I 50, and using the limit 2I 2/L→(1
14sin2pf)21, it can be shown analytically that this bounda
crosses theI 50 axis atf NV -FF(I 50)51/3.

We emphasize also that the regions in Fig. 15 pres
distinct dynamical and thermodynamical stabilities. For
stance, in some of them, the single-vortex solution is not
ground state of the system, although it isdynamicallystable
~metastable!.

When comparing our results with those found in earl
work, one should carefully note the direction of injection
the driving currentI . Previous analytical studies14,15 have
focused on theI 50 case and considered the effect of a sm
parallel current in thex̂ direction. In contrast, hereI is in-
jected in theperpendicular( ŷ) direction. The depinning de
pends on the direction of current injection, a factor to
taken into account when explaining recent numerical sim
lations of ladder arrays.18 In those simulations, marked dif
ferences between the depinning current of a circular lad
with perpendicularinjection, and of an open-ended ladd
with parallel injection were reported.

e

ed

FIG. 15. Phase diagram of the infinite ladder~no edges! for the
NV, SV, and FF solutions. It can also be used to describe the
ladder. Solid lines are the dynamical critical currents derived in
previous sections for solutions with no edges and for the vorte
the center of the array. Dashed lines indicate the thermodyna
boundaries where the energies of the approximate solutions
equal. The physical meaning of the different regions can be s
marized as follows: A: Running solution~no superconducting solu
tion exists!; B: Only NV exists, and it is stable; C:ENV,EFF; D:
EFF,ENV ; E: ENV,ESV ; F: ENV,ESV,EFF; G: ESV,ENV

,EFF; H: ESV,EFF,ENV ; K: EFF,ESV,ENV . The dotted lines
f NV-SV , f NV-FF , and f SV-FF are approximate thermodynamical crite
ria. In particular,f NV-SV is analog to thef c1 defined by Kardar~Ref.
14! and f NV-SV(I 50)50.2823 is in good agreement with his es
mate. Moreover, the zero-current energy boundary between the
and FF solutions~64! can be shown analytically to occur a
f NV-FF(I 50)51/3. On the other hand, bothf SV

! and f FF,th ensue
from dynamical instability conditions. ForI 50, f SV

! can be approxi-
mated byf SV,th(I 50)50.1193, as given by Eq.~61!, explaining the
numerical observations of Hwanget al. ~Ref. 18! for f c1'

* . Another
analytical result~63! shows thatf FF,th(I 50)50.2148.
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57 1197SUPERCONDUCTING STATES AND DEPINNING . . .
Although we have not studied the ring ladder in this p
per, it is closely connected to the infinite~no-edge! ladder.
The solutions for the infinite ladder constitute a submanif
of the solutions for the ring ladder~i.e., the topological con-
straints are more strict on the infinite ladder than in the r
ladder!. To understand this, note first that the governi
equations~12!–~14! are the same for both ring and infinit
ladders. On the other hand, following the same reason
given by the sequence of equations~3!–~9!, we conclude that
the topological constraints in the ring ladder imply only th

I j
H1I j

h5C, ; j , ~65!

whereC is a constant. Therefore, from Eq.~9!, the infinite
ladder is mathematically equivalent to the particular case
the ring withC50, in which the concentric currents throug
the horizontal junctions in the outerI H and innerI h circles
are equal and opposite.

Consequently, the results for the infinite ladder summ
rized in Fig. 15 are also valid for the ring ladder if we restr
to the submanifold withC50. In this case, the phase dia
gram has to be reinterpreted in terms of the new topolog
constraints. First, the depinning of the no-vortex solution
unchanged:I NV,th

† is still constant and equal to 1. Howeve
the two bifurcations of the single-vortex configurations ha
new dynamical meaning. If the SV state goes unsta
through the saddle-node bifurcationI SV

! 5I LAT , flux cannot
be expelled through the horizontal junctions and the vor
depins and moves along the ladder circularly. Thus, the
ladder depins effectively atI LAT . However, if f , f SV

! , the
flux can be expelledtransversallyfrom the ladder through
the horizontal junctions and the no-vortex state is recove
Then, the depinning occurs atI NV,th

† 51. This is exactly the
behavior reported from numerical simulations by Hwa
et al.18 First, their isotropicI c' coincides with our calculated
I SV

! 5I LAT . Second, they found a critical fieldf c1'
* .0.12

below which the depinning current isI c'51 with exclusion
of field inside the array. This corresponds tof SV

! , the frus-
tration below which the single-vortex configuration becom
dynamically unstable through a symmetry-breaking pitchf
bifurcation, which can be approximated analytically
f SV,th(I ), as given in Eq.~59!. @In the absence of driving, the
analytical prediction~61! gives f SV,th(I 50)50.1193, in per-
fect agreement with their numerical simulations.18#

We note in passing that the same behavior should be
pected for the fully frustrated state in the ring ladder. T
checkerboard pattern would begin to slide along the ring
I FF,th producing a finite voltage. However, if thef FF,th is
crossed, the flux can be expelled transversally and the
state would appear. These predictions would have to
checked numerically.

As a final remark, we also note that the second dev
considered by Hwanget al.18—an open-ended ladder wit
parallel current injection—cannot be compared directly w
our ladder withperpendicularinjection. However, the depin
ning currentI c( f ) follows a similar trend to ourI dep( f ). In
fact, the dependence of theirI c( f ) seems to be well ex
plained with formulas calculated by Benedict15 for the same
device by invoking a similar criterion: the onset of so
modes.29
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APPENDIX A: COMPARISON OF THE SINGLE-VORTEX
CONFIGURATION IN THE LADDER

WITH THE ONE-DIMENSIONAL KINK

Although analogies between the ladder and strictly o
dimensional parallel arrays can be drawn, we show now h
the single-vortex solution for the quasi-one-dimensional l
der is mathematically different from the kinklike vortex i
1D parallel arrays. Recall that the equations for the o
dimensional parallel array can be reduced to a discrete dr
sine-Gordon equation7,23 if only self-inductances are consid
ered. WhenI 50, the discrete single-vortex solution is we
approximated by the kink solution of the undriven, tim
independent, infinitely extended, one-dimensional continu
sine-Gordon equation30

f i
SG54arctan$exp@~ i 2 i 0!/lSG#%. ~A1!

Thus, the vortex corresponds to a 2p jump centered ati 0
with a characteristic half-widthlSG. ~Incidentally, it has also
been shown23 that by introducing an effectivelSG

eff , this func-
tional form is also valid when mutual inductances are
cluded.!

For our no-inductance ladder array, it is also possible
obtain an approximate sine-Gordon equation for the syst
Although there is no explicit inductance in the problem, t
coupling between the vertical junctions is provided by t
horizontal junctions via the fluxoid quantization.

The approximate sine-Gordon equation has been m
simply obtained14,19 by assuming that the horizontal phas
are small: sinfj

H'fj
H . Then, the zero-current time-

independent equations for the ladder~15! and ~16! can be
reduced tof j 11

V 22f j
V1f j 21

V 52 sinfj
V . This gives, in the

continuum limit, the time-independent sine-Gordon equat
with no forcing andlSG51/A2, where the cell size is take
as length unit. However, a better linearization is sugges
by the numerics if we take the phase change in the vert
junctions (f j

V2f j 11
V )/25f j

H2p f !1 as the small param
eter. In other words, one should linearize aboutf j

H5p f , not
f j

H50. In that case, we obtain the following more accura
sine-Gordon equation:fxx

V 2(2/cospf)sinfV50, with lSG
2

5cos(pf)/2.
We argue now that the numerically observed sing

vortex configuration is not as accurately approximated by
kink ~A1! as it is by our expression~30!–~32!. To compare
them, we particularize Eqs.~30!–~32! for I 50 for a long
array such that 1!a!N11. Then, the vertical phases ne
the center of the vortex become

f j
V5H Pexp$~ j 2a!/l%, j <a,

2p2Pexp$~a112 j !/l%, j .a,
~A2!

with r andl given by Eq.~25! andP by
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1198 57BARAHONA, STROGATZ, AND ORLANDO
sinP5sinS p f 2
r 21

2r
PD1sin~p f 1P!. ~A3!

Note that in Eq.~A2! we have not reduced the phases to
interval @2p,p), to facilitate the comparison with Eq.~A1!.
Our solution resembles the sine-Gordon kink in that it d
scribes a 2p jump with odd symmetry with respect tox0
5a11/2. However, both the functional forms and the ch
acteristic lengths are different. Figure 16 shows that the
merics are better approximated over a wide range off by Eq.
~A2! than by the sine-Gordon kink~A1!.

Given the relative inappropriateness of the sine-Gord
kink as a model of the vortex in the no-inductance lad
array, we conclude that even for the static case it is an o
simplification to reduce the ladder to a one-dimensional p
allel array where the horizontal junctions are approxima
by an effective inductance. Other dynamic phenomena
served in the ladder, e.g, the dynamical mechanism of ret
ping from the whirling mode, reinforce this statement a
will be discussed elsewhere.21

APPENDIX B: NO-VORTEX SOLUTION
AND DEPINNING WITH SELF-INDUCTANCE

Following on the concepts and notation in Secs. III a
IV, we briefly consider the ladder with self-inductance. Th
is a first approximation to explore the effect of self-fields
the no-vortex solution and, consequently, on the global
pinning current of the array.

When self-inductances are included, the time-independ
governing equations~15! and ~16! become

I 1sin f j 21
H 5sin f j

H1sin f j
V , ~B1!

f j
V2f j 11

V 22f j
H52p~nj2 f !2I j

m/L2, ~B2!

whereI j
m is the mesh current in plaquettej andL25LJ /Ls is

the two-dimensional penetration depth and a measure o
discreteness of the array. Due to the geometrical constra
of the ladder, it is readily seen thatI j

m52I j
H in this case.

FIG. 16. Comparison of the errors of our approximation~30!
~black squares! and the sine-Gordon kink~A1! ~white circles! for
varying magnetic field far from the edges in a 2531 array. Graphs
for different f are offset byp for clarity. The approximation~30!
has no adjustable parameters. In contrast, to make the kink app
mation as accurate as possible, its characteristic lengthlSG was
chosen by a linear fit of ln@tan(f j

V/4)# vs j , where thef j
V are the

numerically computed phases of the true single-vortex state. E
with this a posteriori fit to the numerical data, the kink is not a
good an approximation as Eq.~30!.
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For the no-vortex solution we still havef j
V.f j 11

V

5fV* and f j
H.f j 11

H 5fH* far from the edges. From Eq
~B1! we then get

fV* 5arcsinI , ~B3!

as for the case with no inductance (L5`). However, the
horizontal phase is different and has to be calculated fr
the following nonlinear equation:

fH* 1
1

2L2
sinfH* 5p f . ~B4!

This is a particular case of Kepler’s equation, studied in
lestial mechanics,31 which can be solved through the metho
of successive approximations. In our case, a good appr
mation tofH* over the whole range off is given by the first
iteration of that method as

fH* .p f 2
1

2L2
sinS 2L2

112L2
p f D .

The procedure to account for the open boundaries is id
tical to that presented in Sec. III. The results are also simi
the corrections decay exponentially from the edges as in E
~23!–~25!. However, the characteristic lengthls51/lnrs is
now given byr s5as1Aas

221, where

as511
A12I 2

cosfH*
S 11

1

2L2
cosfH* D . ~B5!

To assess how the inductance affects the depinning
rent, we use Eq.~B5! and thefH* obtained from Eq.~B4!
with a heuristic criterion similar to Eq.~58!,

arcsin~12I NV,th!5fH* 2
r s21

2r s
arccosI NV,th , ~B6!

to calculateI NV,th( f ,L2). The results in Fig. 17 show tha
for fixed L, I NV,th( f ) still decreases monotonically withf .
However, for a givenf , the value of the depinning curren
increases asL diminishes. This is expected on physic
grounds since an increase in the inductanceLs implies larger
self-fields which oppose the external applied magnetic fie
thus decreasing the effective magnetic flux through the ar

xi-

en

FIG. 17. Effect of the self-inductance on the depinning curre
We show how the heuristic depinning approximationI NV,th( f ), ob-
tained from Eq.~B6!, varies with the self-inductanceL25LJ /Ls .
Note that the rest of the paper deals with the limiting caseL5`
where all inductances are neglected.
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