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Superconducting states and depinning transitions of Josephson ladders
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We present analytical and numerical studies of pinned superconducting states of open-ended Josephson
ladder arrays, neglecting inductances but taking edge effects into account. Treating the edge effects perturba-
tively, we find analytical approximations for three of these superconducting states—the no-vortex, fully frus-
trated, and single-vortex states—as functions of the dc bias curaamd the frustratiorf. Bifurcation theory
is used to derive formulas for the depinning currents and critical frustrations at which the superconducting
states disappear or lose dynamical stabilitylaand f are varied. These results are combined to yield a
zero-temperature stability diagram of the system with respelcata f. To highlight the effects of the edges,
we compare this dynamical stability diagram to the thermodynamic phase diagram for the infinite system
where edges have been neglected. We briefly indicate how to extend our methods to include self-inductances.
[S0163-182¢08)00702-4

I. INTRODUCTION characteristicd! in an effort to link the rich spatiotemporal
dynamics of 2D arrays to the averaged quantities that are
Arrays of Josephson junctions are of interest in severamost readily measured experimentally. On the mathematical
branches of physicsThey have many technological appli- side, there are recent indications that 2D arrays, like their 1D
cations, including high-frequency emitters and detectorscounterparts, are also going to be tractable in some
parametric amplifiers, local oscillators, and voItageregimes‘l-2

standards:® They also shed light on the structutaand An ideal example to explore the crossover between 1D
pinning’ properties of the higf-, superconducting cuprates. nd 2D behavior is the Josephson ladder affag. 1). Fol-

At the same time, they provide model systems for the studyoWing Kardar;™**several authors have studied various sta-
of problems in both spatiotemporal nonlinear dynafiies tistical properties of the frustrated ladder, mclludlng its
and nonequilibrium statistical physi®€.For instance, the 9round state, the complicated landscape of solutions at zero
depinning transitions and nonlinear wave propagation seen itffmperature, theﬂlow-lymg excitations, and the linear re-
Josephson arrays are analogous to those found in incomme#RONSe regime’ " However, all of these authors restricted
surate systems, earthquake models, type-Il superconducto@itention to ladders in the abs_ence of a driving current. Only
and charge-density waves. recently has the ful!y dyn.amlcal problem bgen addr_essed,
From the standpoint of dynamical systems theSryp- through numerical s!mulatlons of the depinning transitfon
sephson arrays can be viewed as large collections of coupléitd vortex propagatioff. _ _
nonlinear oscillators. Unfortunately, because of their nonlin- N this paper we use the tools of nonlinear dynamics to
earity and large number of degrees of freedom, these arraj@alyze the superconducting states of ladder arrgyther
are inherently difficult to analyze mathematically. A further dynamical regimes will be discussed elsewtéré) Math-
complication is that there is an intrinsic physical coupling
among junctions, due to fluxoid quantization, which is more %
awkward to handle than the nearest-neighbor interaction usu- f’r) oH ¢H a1
ally assumed in idealized models of coupled oscillators. And J, 1 J ¢N v
when the effects of self-fields and inductances are included,
there is even less hope of making analytical progress.
Despite these obstacles, some encouraging advances have i J
occurred recently in the mathematical analysis of Josephson vo
arrays, especially for one-dimensiondD) systems where
the junctions are connected in sefifor in parallel’ The FIG. 1. Schematic diagram of the Josephson ladder array with
logical next step is to tackle two-dimension@D) arrays. dc current injected in the perpendiculay) direction. The external
Much of the previous theoretical work on 2D arrays has fo-magnetic fieldB is applied transversely to the plane of the device,
cused on numerical simulation of the current-voltagein the —z direction.
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ematically, the superconducting states correspond to fixetbr three numerically observed superconducting solutions:
points of the governing circuit equations. We study the bi-the no-vortex(NV), single-vortex(SV), and fully frustrated

furcations of these fixed points with respect to variations in(FF) solutions. In all cases, edge effects are taken into ac-
the applied dc bias currehtand the frustratiori introduced — count via perturbation theory. Next, in Sec. IV we describe
by an external magnetic field. Alsis increased from 0 at the dynamical simulations which reveal the depinning prop-
fixed f, we find that the stable superconducting states ar€'ties of the NV, SV, and FF configurations and relate them
destroyed in saddle-node bifurcations at certain critical val{© the global depinning of the ladder. In Sec. V we establish
ues of the current. Then the system depins from its originai® rigorous connection of the dynamical depinning with the

static configuration and evolves toward some other state. Th%tablllty of these three fixed points. For all of them, we char-

new state might be another fixed point, or it might be gacterize the bifurcations and study their stability diagrams,

running solution, in which case a nonzero dc voltage appear2©th in the presence and in the absence of edges. When

across the array. Global depinning of the array occurs WheHOSSiblet analytical approximations to .the criticgl currents
the last stable fixed point is destroyed. One of the main re2'® obtained. We show that the depinning transitions corre-

sults of our analysis is a set of approximate analytical for_spond to saddle-node bifurcations that are edge dominated

mulas for the critical currents at which the fixed points arelor almost all values of the frustration. Moreover, we find

destroyed, as a function df for the three most important that some of the superconducting states can be destabilized

types of superconducting states: the no-vortex, fully frus-Via a subcritical pitchfork bifurcation as the frustration is
trated, and single-vortex solutioné ' reduced; in physical terms, this is a symmetry-breaking bi-

Another important finding is that symmetry plays a cru-rucrjcdat'o? Itnh thldll quxf IS expelledrangversallyfror? the .
cial role in the dynamics of the ladder. As we will show '@dC€T- [N the Tinal SEclion we summarize our conciusions in

below, much of the behavior of the ladder can be understoo}'° phase diagraméfor ladders with and withogt edges

by focusing on states that are “up-down symmetric"—in and we relate our results to thqse found by previous authors.
other words, states where the phases of the horizontal jun(x,/-ve also add tV\_’O more teCth"fll app_endllces: Append|x. A
tions on the top and bottom of any given plaquette are equ ompares the s.|ngIe?vor.tex confligura.\tlon in the ladder with
in magnitude but opposite in sign at all times. All of the the corresponding kinklike solution in 1D parallel arrays;

stable superconducting states possess this symmetry. Evéppendlx B briefly indicates how to extend our approach to

when the parameters are chosen so that depinning occurs, thiude self-inductance effects.
subsequent transients and long-term running solutions typi-
cally remain up-down symmetric. But there is at least one Il. THE SYSTEM

exception: when the single-vortex state is destabilized by ) .
lowering the frustratiorf below some critical valué,,;,, the We study an open-ended Josephson ladder Nisguare

: - : : . . plaguettes, i.e., an array formed by two rows\of 1 weakly
system depins via a symmetry-breaking bifurcation. Durlngp 2 ) T
the transient behavior, the up-down symmetry is lost temp coupled superconducting islandsig. 1. The array is driven

o} : : oo
rarily, but is then recovered as the system expels flux fronPy a pgrpendmular uniform dc currentand a mggneuc field
the array and evolves toward the no-vortex state. IS applied trar}sverse to thg plane O.f the_ device. Each weak

These symmetry considerations establish an unexpecté'@Ir(.bzztvéeet?]ésIzndsefgn;:!gfs hZéingF;?er;élts S;?.tsn's de-
link between the study of Josephson arrays and some rece r((t;rln the ?lnacrogcggic Icr\1/ar<lalcterp of the Iuantiqn? Wellvlegfunc—
developments in nonlinear dynamics. In mathematical term P q

the up-down symmetric states of a ladder array form an in—lor;\Of ﬂr]neinsugerrcor:drl;;ctorrsi re, negligible chargiagian-
variant manifold of the full state space. A symmetry- ssuming zero temperature, negligibie chargiogia

) . . . . . tum) effects, and identical junctions, the dynamics of each
breaking bifurcation occurs when this manifold loses stabil- nction is given, in the three-channel RCSJ mddey, the

ity in a transverse direction. The same issue—the transverga <" - . .
stability of an invariant manifold—arises in the study of honlinear differential equation

riddled basins, synchronized chaos, on-off intermittency, and . 1 )

blowout bifurcation$? These connections suggest a promis- lj= ¢+ B ~“b;+sing;=N¢;). (1)

ing line of future research on Josephson arrays, particularl . L . .
g P ys. p ¥|ere,8C is the McCumber parametérl;j is given in units of

with regard to their chaotic states. th itical t of identi }inction: derivati
We will also show that the dynamics of ladder arrays are e critical current of eacffidentica) junction; derivatives

. . . . . l
very strongly influenced by edge effects. One might havéd™® With respect to time normalized in units of °, the

supposed these effects to be negligible, especially in lon§verse of the plasma frequency; andis shorthand for the
ladders, since their influence on the superconducting solJionlinear differential operator defined by Eg@). Thus, each
tions dies off exponentially fast away from the boundaries)unction is formally equivalent to a damped driven
Yet although the edges do indeed have a small effect on th%e”d“"_‘ml- _ o .

form of the superconducting solutions, they have a large ef- 1he junctions arentrinsically coupled, even when induc-
fect on thestability of those solutions. Much of this paper is f@nces are neglected, through two physical restrictions: the
devoted to investigating the effects of the edges, first on th@uantization of the magnetic flux through each plaquette, and
superconducting states themselves, then on their stability<Irchhoff's current conservation law at each node. When all
and finally on the entire phase diagram. inductances are zero, i.e., self-fields are neglected, the flux

This paper is organized as follows. Section Il reviews theduantization condition for the array in Fig. 1 becomes

model equations for the ladder and discusses their symmetry N H )
properties. In Sec. lll we obtain analytical approximations ¢+ b=~ ¢p =2m(n—1f), j=1,...N, (2
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where f is the external magnetic flux in units of the flux |¢JH|<7T/2, Vj. (1)
quantum®,. The set of integergn;} indicate the presence

E)rl]é ;ui;t%g %ﬁ:ﬁiﬂzergr; gég;ﬁgorlggtﬁgtle\éortttl)cizén ii?g:/aIWe have checked numerically that in the instances when the
= up-down symmetry is broketand, thus, the system escapes
[ Iziggdition Kirchhoff's current law vields the symmetric manifold the subsequent evolution does in
' y fact take place purely along the normal direction. Therefore,

IjH,l+ | =|,H+ |J\_/' i=2,... N, 3) any yp—down symmetric fixed point that i_s stable must satisfy
this inequality(11). Hence Eq.(11) constitutes anecessary
h V_ h o i condition for stability.(It is not sufficient, however, because
o1 =1+ i=2,...N 4
I I o it only governs the transverse direction; it says nothing about
at the interior nodes of the ladder. At the left edge, the stability with respect to perturbations that preserve the

symmetry. Further conditions would be needed to ensure sta-

_Ho Vv

I=17+11, (5) bility in directions along the invariant manifold as will be
shown below).

Y=1+1" (6) . : .

1= 1 In summary, the governing equations can be written com-

while at the right edge, pactly asf(x)=0, with x=(Y, ... .¢N:1.91, - .. IR,
", ... ,4Y), and with the components €x) defined by
IN+1=1Y,,, (7

NMPERIET] ©  fi0=1+MaL)-MeH-Me)), j=1,...N+1,
In summary, Egs(1)—(8) define our model for the dynamics (12)
of the ladder array. A useful mechanical analog for the sys-
tem is a frustrated lattice of coupled, damped, nonlinear pen- fnr1 (=M + M, j=1,...N, (19
dula driven by a constant torque applied at the edges.
An important restriction on the currents immediately fol-

— 4V h_ v _ JH_ L
lows from the presence of the edges. EquatitBsand (6) fon+ 14 (=B + &) — ¢y — @) —2m(n— 1),
imply thatl}'=—1%. Moving successively from the left edge
to the interior of the ladder, Kirchhoff's current law yields i=1,...N. (14)
IH=—17, Vj. 9)

) N ) _ o The dynamical evolution of the staf&(t),x(t)} of the sys-
This condition(9) is automatically satisfied by any phase tem s obtained by numerically solving this system of
configuration whose evolution obeys thp-down symmetry coypled differential and algebraic equations. The dynamics
. also depend implicitly on the parametérsg,., f, andN.
¢1'H(t):_¢?(t)’ vj.vt (10 In efperimenpts, the most I?:onvenientigvcvay to probe the
as can be seen from E(L). Moreover, if the initial condi- ~dynamics of the array is to measure its dc current-voltage
tions Sa’[isfyql)]!"(o): — ¢,h(0) along with similar equalities (IV) characteristics. From the Jos_ephs_on r_elat?_dhs: time-
on the first time derivatives, the governing equations implydependent voltage across each junction is directly propor-
that those equalities will hold foall time. In geometrical tional to ¢;, the time derivative of its phase. Hence, the total
terms, the set of all up-down symmetric staf&g) forms an  dc voltageV across the array in the vertical direction is pro-
invariant submanifold of the full phase space. portional to the spatisdndtemporal average of all the phase
On the other hand, it is certainly possible to choose initialderivatives. Although because of this averaging a great deal
conditions that do not have this up-down symmetry. But ourof dynamical information is lost about the spatiotemporal
simulations indicate that for a wide range of parameters andtate of the system, thid/ curve still provides a usefuif
initial conditions, arbitrary phase configurations rapidly somewhat coargéndicator of changes in the underlying dy-
evolve toward up-down symmetric states. In other words, the@amics as the drive currehtis varied.
invariant manifold is typically attracting in the transverse In the case of ladder arrays, th¥ curves display three
directions — initial states that are off the manifold are soonregions associated with distinct dynamical behavidr8 At
drawn onto it. There are also exceptions to this rule: as wéow |, the system isuperconductindV=0) with pinned or
will see in Sec. V, the single-vortex and fully frustrated slightly oscillating junctions(in the mechanical analog, the
states can lose transverse stability as the frustratiate-  pendula are at rest or librating slightlyAt a depinning cur-
creases. Nevertheless, a great deal of insight can be obtaineght| 4, the array jumps to th8ux-flowregion, in which a
by restricting attention to the submanifold of up-down sym-finite voltage is produced by vortices of magnetic flux mov-
metric states. Thus, for much of this paper we will assumeéng across the array. At still higher currents, the dynamics is
that Eq. (10) holds, and we will replacenybjh with —¢jH characterized byhirling mode$ (in the mechanical analog,
throughout the governing equations. all the pendula rotate over the top at a nearly uniform angular
There is a simple condition for the transverse stability ofvelocity proportional to the applied torqueln this state,
an up-down symmetric fixed point. It can be shéthat  there is a lineaohmicdependence df onl. In the remain-
such a fixed point is linearly stable to perturbations that araler of the article we focus on the superconducting states and
strictly normalto the manifold if and only if the critical current 4, at which depinning occurs.
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FIG. 2. No-vortex superconducting solutiof® Phases of the
horizontal junctions for a 281 array with1=0.25 andf=0.2: m £=0.12, I1=0
numerically observed solutior(+), and approximate solution -18L ¢ £=0.12, 1=0.1 v £=0.3, [=0.1

qu“* (O). (b) Same as ina) for the vertical junctions. The pre- 0 s 1'0 1'5 20 25
dicted phases of the infinite-ladder solutig)",¢!'"} (short-
dashed lingare seen to be valid far from the edges in b@hand
(b). (c) Exponential decay of the correction from the edges with FIG. 3. Single-vortex solutior{a) Phases of the horizontal junc-

varying magnetic field and current. The symbols correspond to tions for a 25<1 ladder forl =0.1 andf = 0.2 with a vortex in the

the numerically calculated vertical phases. The solid lines come - - . : :
Central plaquette: numerical configuration from dynamical simula-

from our approximate solutiory;* and have slopes Inr given by tions (+), and analytical approximatior(Y) as given by Eq(30).

j, junction number

Eq. (25 (b) Same as ina) for the vertical junctions. The phases are not
reduced to th¢ — 7r,7r) interval. (c) Exponential decay of the cor-

IIl. OBSERVED SUPERCONDUCTING SOLUTIONS rectionA; from both the edges and from the center of the vortex for

AND ANALYTICAL APPROXIMATIONS differentf andl. Symbols represent numerical simulations and the

) ) ) _ solid lines are the corresponding analytical predictions given by Eq.
We have performed dynamical simulations of the array in31). The different graphs have been offset for clarity.

which the current is ramped up from zero with different ini-
tial conditions. The superconducting solutions observed in  I+sin ¢! ;=sin¢'+sin ¢/, j=1,... N+1,
those simulations are always static states, i.e., fixed points of (15
the system(lIn principle, time-dependent solutions with high v v H )
cancelling symmetry could also have zero total dc voltage, b= ¢ivi—2¢;=2m(nj—f), j=1,...N, (16
but we never see such states in our simulatiohtore spe-  where we have defined artificial phasgig= ¢, ,=0. Note
cifically, for any giveng. andN, only three types of con- that the McCumber parametg8, does not appear in the
figurations appear in the numeriaso-vortexsolutions(Fig.  equations for the fixed points, and hence does not affect their
2) for f smaller than~0.3, and solutions of theingle-vortex  existence. This is consistent with the numerically observed
type (Fig. 3) andfully frustratedtype (Fig. 4) for f—1/2. Far  independence of the depinning behavior &n
from the edges, the no-vortéklV) state is characterized by In the rest of this section we obtain analytical approxima-
identical phases for all junctions. The same applies to théions for the NV, SV, and FF configurations mentioned
single-vortex(SV) configuration far from both the edges and above. We follow a common scheme for all of them. First,
the center of the vortex. On the other hand, the fully frus-we obtain a no-edge approximati¢tenoted with a dagger
trated(FF) state has a Spatia| osci"atory pattern with a Wave_for the infinite ladder. Second, we introduce the effect of the
length equal to two plaquettes. All of these states are modiedges perturbatively to obtain an edge-corrected approxima-

fied by noticeable edge effects. Although there are manyion (identified by a double daggerThe calculated configu-

other static solutions of the system, our numerical simularations have been exhaustively compared with the results of

tions indicate that the no-vortex, single-vortex, and fully numerical simulations with excellent agreement.
frustrated states are the only ones needed to explain the de-

pinning behavior of the array.
When dealing withfixed pointswith up-down symmetry Figures 2a) and 2b) shows a plot of the no-vortex solu-
(10) the defining equation€l2)—(14) become tion, as computed numerically, along with the analytical ap-

A. No-vortex solution
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0.2 (a) rion will be used in Sec. V when discussing the stability
& 7 f=0.5 1=0.23 properties of the NV solution.
= Qo0 0BOBOBOGRDE®S®D g Figure 2 shows that this infinite-ladder approximation
Y IAVAVAVAVAVAVAVAVAVAVAVAY. works well near the center of the ladder, but breaks down
o4 :
£ | OO0 000006609 close to the edges. We now take edge effects into account by
I_ ++ considering an edge-corrected solutigienoted by a double
02— —T 7T T daggey

(b)

& o4 f=0.5 1=0.23 ¢ F=pVT+A;, @)= B; (18
& 1.0 0990009 o _ . .
0.2 where{A; ,B;} denote the corrections. From the fixed point
'é 0.0 /* equationg(15), (16), the{A;,B;} must satisfy
- 100 Qoo 0006 60 ¢Q
e | +sin(7f—B;_;) =sin(7f —B;) + sin(arcsin +A,),
~ () (29
T ¢ = b A—Aj.+28B;=0. (20
£
s -8 The correctiongA; ,B;} are expected to be small, except in a
2_ f=0.5 1=0.23 region very close to the edges. Thus, Ef9) can be ex-
9:’ -12f=0.4 1=0.2 panded to first order i\; and B; to obtain a second-order

0 ) 5 ’ 1'0 ) 1'5 ' 2'0 ' 2'5 difference equation foA,:
j» junction number Aj1—2aAj+A_1=0 (21)

FIG. 4. Fully frustrated solution(a) Phases of the horizontal with
junctions for a 2% 1 with | =0.23 andf=0.5. The numerical so- 5
lution (+) and infinite-ladder analytical approximati@;f]\”r (-O-) —14 vi-l| 22)
are seen to coincide except close to the edges. The soliddine a= cosmf’
guide to the eye emphasizes the wavelength equal to two
plaquettes(b) Same aga) for the vertical junctions(c) Exponen-  from which the horizontal corrections are
tial decay of the corrections from the edges in the fully frustrated

solution for varyingf andl. Both the odd €™ and even D™ B. A1 A 23)
site corrections have a characteristic lengtfinr)/2 given by Eq. I 2 )
(49). The solid lines are best linear fits with slope$.805 (for f
=0.4,1=0.2) and 0.502for f=0.5,1=0.23). They are in excel- The general solution of Eq21) is
lent agreement with the predicted valuesrjia from Eg. (49),
which are 0.806 and 0.488, respectively. Aj=Pri-(N*D 4 Qrl-i, (24
proximation described below. This state is characterized by'here
the absence of topological vortices;En;, =0, Vj) and,
D i % r=a+o?-1=e (25)

far from the edges, by the constancy of the phases.

As a first approximation, left¢p)"", #/'"} denote the phases Hence, the edges produce corrections that decay exponen-
of the no-vortex solution for thénfinite ladder, i.e., in the tially from both ends with a characteristic leng{l,f).
absence of edge effects. To ease the notatioj'létdenote  This\ = 1/Inr is a measure of how small perturbations decay
the common phase of the horizontal junctiof® ¢{'" inside of a region with the no-vortex superconducting solu-
="' for all j), and definep¥" similarly for the phases of tion. A similar result was recently obtained by Denniston and
the vertical junctions. The only physically acceptable solu-Tang’ using the transfer matrix method for the particular
tion of Egs. (15 and (16) that also satisfies the stability =0 case.
condition(11) is To complete the solution, the constamsQ in Eq. (24)

have to be fixed from the boundary conditions
¢VT=arcsin, ¢"T=nf, 17
. , | =sin(#f—B;)+sin(arcsifd +A,), (26)
where 0<f=<1/2 and all the angles are restricted to the first
guadrant. ; _ i ;

This solution exists if and only if<1. A linear stability +sin(mf—By) =sin(aresift +Ay.a), (29
analysis shows that, for all<l, the solution is stable if which result from current conservation at nodes 1 &hd
¢VT=arcsin €[0,7/2). The other possible solutions with +1, respectively. SincfA, ,B;} become largest at the edges,
¢VT=m—arcsin or ¢"T=7f— 7 are linearly unstablé’ In  Egs.(26) and(27) are solved numericallyithout lineariza-
summary, when the edges are completely neglected, the dion. When the array is long enough, such tha&N+1, the
ray behaves similar to a single junction: its only stable no-effect of one edge on the other is negligible and the solution
vortex solution of the observed foriti7) disappears at is further simplified as Eqg26) and(27) decouple. Ther
=1 through a saddle-node bifurcation. This existence criteand P are obtained independently by solving
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. Q 1 . . A=A
| =sin = f+ > 1- T +sin(arcsid +Q), (28 BJ:T’ j#a, (32
p 1 wherer is, once more, given by Eq25). Therefore, the
| +sin wf——(l——) =sin(arcsir + P). (290  single-vortex solution is obtained bgatchingtwo edge-
2 r corrected no-vortex solutions. In fact, the vortex in cll

effectively introduces two new “edges,” & and a+1,
which also produce similar exponentially decaying correc-
tions. The matching condition atanda+1 is given by the
fluxoid quantization condition in the cell containing the to-
pological vortex:A,—A, 1+ 2B,=2m. Thus,

Figures Za) and Zb) show that the above analytical so-
lution agrees well with the results of simulations for long
(N=25) arrays. The approximation accounts well for the
effect of the open ends also for sholtl€7) arrays(not
shown. The exponential decay of the perturbation from the
edges is also checked satisfactorily in Figc)2As expected Pra-NyQ/—p—Qri-a
on physical grounds, the edge effects become more impor- B,=m+ 5
tant as both the field and the current are increased. Thus, the
approximation is best whefnandl are small, and worsens as
| —1 andf—1/2[f=1/2 is a singular limit, as seen from the KN
vanishing denominator in Eq22)]. This establishes limits
on the use of this approximation for the prediction of the

depinning current at high vaI_ues of the fru_stration. la,a+1, andN+1. The approximation is compared with
Our analytical approximation also explains other feature%umerical simulations in Fig. 3 with excellent agreement,

qf the numerics. qu instance, the correctidgsB; are spa- especially at smaf.
tially asymmetric with respect to the center of the array when We also note that although the ladder equatiti® and

| >0— as seen in Figs.(d) and 2b) by comparing the right- (16) h . .

can be reduced approximately to a discrete sine-Gordon
most and Ie_:ftmost phases. Note alsc_> that ferfG<1/2 the equationt*14°our analytical expressio(80) is a better ap-
largest vertical phase occurs at the right end of the Iadder_proximation than the much-used sine-Gordon kink, which is
in obvious connection with the preferred direction for flux- a good description in strictly 1D parallel arra}fsA detailed

propagation in the array<{x). Moreover, it can readily be comparison of both approaches is presented in Appendix A.
shown that the change of the frustration frénto 1—f has

only one effect: the vertical phases for frustration fLare a
mirror image, with respect to the center of the array, of the ] .
vertical phases with frustratioh. This implies that the de- The other relevant superconducting state is the fully frus-
pinning current will beidentical for both values of the frus- trated solution, which appears in simulations wHen1/2

tration, as expected, but the direction of propagation idFig. 4. To obtain an analytical approximation, we follow
reversed® once more the same scheme as above: first, calculate a no-

edge basic solution; then, introduce the edges perturbatively.

In this case, the basic solution is seen numerically to os-
cillate in space with a wavelength equal to two plaquettes.
An analytical approximation for the single-vortex con- Thus, when edges are neglectéte infinite-ladder approxi-

figuration can be obtained in a similar fashion by I’ea"Zingmatior), the phases can be approximated in general by
that the effect of a vortex located in cell of the array is

similar to the edge effects in the no-vortex state. Note how, if qb}’T: 27 [a+(—1)'b],
the phases in Figs.(8 and 3b) were reduced t¢— 7, 7), M=27 [c+(-1)id] (34
the single-vortex configuration is composed of two halves, J ’
each of which is equivalent to a no-vortex superconductingvherea,b,c,d are to be determined from Eqd5) and(16)
solution when we move away from the edges and from thevith nj=[15 (- 1)1]/2. First, substitution in E(16) gives

(33

This completes the equations needed to determine the un-
ownsP,Q,P’,Q’ in our solution(31). They can be calcu-
lated numerically?® for given! andf, from Eq.(33) and the
boundary conditions from current conservation at nodes

C. Fully frustrated solution

B. Single-vortex solution

vortex center. c andd:
Hence, the zeroth order single-vortex solutia)", ¢!'"}
is identical to the no-edge NV solution given in EG.7). c=f/2—1/4, (35
And the edge and vortex-corrected approximation with a
vortex distributionn,=1 andn;=0, Vj+a is given by d=b*1/4. (36)

Second, from Eqg(16) we obtain
¢*=arcsin +A;, ¢ Ff=wf-Bj, (30) q(16)

where the correction§A; ,B;} result now both from the pres- sin 2ma cos 2rb=l,

ence of the edges and of the vortex in plaguatte

Following the same steps as for the NV configuration, we
obtain identical expressiort49)—(25) for the corrections for  from which we then solve explicitly foa andb in terms of
eachhalf of the array: the parameter$ and:

sin 2@b cos 2ra—2 sinwf cos 27b=0,

Prima+Qri j<a

1 .
iT| prri-N D Qrraticl g (31) a= s—arcsin/L/2, (37)

2
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b= %arccos/ZI 2L, (38) CimDit+2E=0, 42
D;—C,,.;+2F;=0, (43
where
- EicosﬁbgddT: - FiCOS‘f)svenT'l' DiCOS‘f’gvenTv (44)
L=(1+1%)=(1—1%)°—16l%sirPxf. (39

_FE H t—_ H 1, Vot

Figures 4a) and 4b) compares the analytical infinite-ladder FiC0SPeven = ~ Ei+1008P0ad + Ci+1€08poug - (49
fully frustrated approximation(34)—(39) with numerical EliminatingE;, F;, andD; we get a second-order difference
simulations. The agreement is good except near the ends, aguation forC; :
expected.

The approximation above also yields an existence crite- Cit2+2yCi11+Ci=0, (46)
rion for t_he n_o-gdge fully frustrated solution. In E9), the _ with y(1,f) given by
expression inside the square root must be non-negative;

hence the infinite-ladder fully frustrated solution does not sirarf + cb?cos 2rf — 2[ (siraf — sa) sk + ca?]
exist if = _
Y sirarf —cb?
| >1 e = V4 sirfrf +1—2 sin f, (40) (47

(Heresa, sb, ca, andcb are shorthand for sinZa, sin 2mb,
cos 2ra, and cos zZrb, respectively. This difference equa-
tion has the general solution

where the subscript FF denotes fully-frustrated ahdde-
notes a theoretical approximation of a bifurcation condition.
We will use this condition(40) later when we discuss the
depinning of the fully frustrated solution.

Dyl —i
This predicted form of the infinite-ladder fully frustrated Ci=Preet Qree, (48)

solution agrees with previous findings obtained for the spewith

cial case when there is no driving currént=or =0, our

solution (34)—(39) reduces to the stable configuratidn Fee= — y+ Vy2— 1=elrr (49)
¢}/T:(_ 1)iarctarf2), ¢}”=(— 1)i*larctarf1/2), And r ¢ is related again to another characteristic penetration

depth for the perturbations from the edges to die off, this

which coincides with the ground state fbe=1/2 andl=0 time inside a region with the fully frustrated solution. The
calculated by Benedicf. [To obtain this result from the ex- coefficientsP andQ have to be calculated numerically using
pressions above, note thalt?2L — (1+4 sirfwf) "t asl—0, the boundary conditions from nodes 1 add 1. The spatial
for the solution corresponding to the minus sign in B9).]  dependence oD; is also of the same fornD;=Rr;
We also note that the infinite-ladder fully frustrated solution+Srz:. Note that in both equations, is the number that
existsfor all f whenl=0, i.e., there is no critical magnetic indexes the double cell.
field below which it ceases to exist, although it is energeti- Figure 4c) illustrates the accuracy of these approximate
cally most favorable whefi~1/2. The physical meaning of formulas. Specifically, we plot the spatial dependence of the
this solution is clear: it contains a topological vortex in everypredicted deviations
other cell, as seen from the alternating sequence of zeros and
ones for the plaquette integeis;} in the Eqs(15) and(16). CMM=y_1—¢z-1's D=z~ by,

In fact, although the solutions witfinggq= 1, Neyer= 0}
and {nyy=0, Never=1} are degenerate in an infinite array,
they are not so if the array is finite. However, we will show
in Sec. V that the depinning of the fully frustrated state is
basically unaffected by the parity of the number of cells in

whereqSJv is obtained from the numerical solution aab@ﬁ is

the infinite-ladder approximation. The expected exponential
decay close to the edges with characteristic lenyth
=2/Inrg¢ is verified in the figure.

the ladder.
As we did for the no-vortex solution, we now introduce IV. DYNAMICAL DEPINNING TRANSITIONS

corrections from the edges. The improved solution OF THE ARRAY
{¢]*,4]"*} is given by In this section, we describe the depinning transitions as
Vot Vot H 1 LHt seen in dynamical simulations of the ladder array at zero
b2i-1"=boaa TCin | bai—1"=boua —Ei, 47  temperature. In the following section, we will explain these
\Z/iiz ¢XvenT+ D;, ' giiz EvenT_ Fi, 4D dynamical results by relating them to the bifurcations of the
no-vortex, single-vortex, and fully frustrated superconduct-
wherei=1, ... ceil(N/2) and there is an additiongly.,*  ing solutions. The main goal is to give a rigorous mathemati-

whenN is even andpf . ;*=0 whenN is odd. The double cal explanation of the following observations: Dynamical

cell is used to simplify the calculations, as suggested by theimulations show that the array is superconducting at low

spatial periodicity of the infinite-ladder solution. values of the driving current. As | is increased, the array
Again, far away from the ends the corrections are smalfemains superconducting until a critical currdt{f) is

and we linearize the governing equatiofis5) and (16) reached, after which the array depins and develops a nonzero

around the basic solutiof34). Thus we obtain the following average voltage. This depinning currépt, decreases mono-

system of coupled difference equations: tonically as the frustratior increases from 0 to 1/2.
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These numerical observations are all at the averaged level 1.0
of thelV characteristics. They do not tell us anything about
the detailed configuration of the individual junctions. In par- 0.5
ticular, there are several distinct superconducting stetes, 0.0

the NV, SV, and FF states discussed in Sec. lll, and states

containing multiple vorticesbut these are indistinguishable e 1.0 ,/,fofof;onﬁ-[“lﬂﬂl—l'
on thelV curve. This ambiguity raises the question: what is Ql /' /
the state of the ladder just before it depins? ,E\ 0.57 . ‘
We will show in Sec. V that for most values @f the o 0.0 .-.«séﬁém}lab?ﬁf . 1=0.136
depinning of the ladder is caused by the destruction of the o)
no-vortex state. Specifically, the global depinning current g 1.0} >
lqed ) can be predicted by calculating the current at which > I
the no-vortex state is annihilated in a saddle-node bifurca- 50'5 i S /

tion. The only exception occurs for values fotlose to 1/2, 0.0 F aﬂﬂfénnnn?ncﬂj . ||=0_20|0
where the depinning is due to saddle-node bifurcations of ' ' . : :

states of the fully frustrated type. The noteworthy point here 1.0 _WO—&Q?—H—I—I—II—“"’-
is that no other superconducting states play a role in the
global depinning of the array. 05 » = = /

However, the question arises as to how the depinning be- 0.0 _En/nnnnnnnnnﬂp 1=0.250
havior would change when configurations with vortices are 0 ' é ' 1'0 ' 1'5 ' 2'0 ' 2'5

used as initial conditiong¢rather than the random or zero-
phase initial conditions that we ordinarily use in our simula-
tions of thelV characteristics To address this issue, we
perform dynamical simulations from an initial condition with

j, junction number

FIG. 5. Snapshots of the time-evolution of the single-vortex
solution for a 251 ladder array with3.=10 andf=0.2 and in-

one 27 step in the middle cell of the array: creasingl. Initial (), intermediate(--), and final @) configura-
N4 1 tions are shown. At=0.134<I|, 57 the initial configuration with a
. [N+ 27 | I to the stationary single-vortex solution. When
How Ay Ve Ay . 7 jump relaxes to the s y sing
¢J (t=0)=0, ‘75] (t=0)=2m O] Ce”( 2 ”’ =0.136=1 7 the vortex becomes dislodged from the center. It

moves slowly to the left and then stops at some intermediate posi-
where®(x) is the Heaviside step function. This initial con- tion between the center and the edge. Roi<1=0.2<l ¢ the
dition is not a solution of the system and, thus, under thevortex moves until it gets pinned near the edge, where the potential
dynamical equation€l2)—(14) it relaxes onto a true solution barrier is larger. Finally, at,eq<1=0.25<l4, the vortex is ex-
for the ladder. For mos{f,l}, the single-vortex supercon- pelled from the array and thao-vortex solutioris recovered.
ducting state(top panel of Fig. bis reached, i.e., a static
configuration with a topological vortex in cedl of the array  sinusoidal potential under the action of-a Lorentz-like

such thatn,=1 andn;=0, Vj#a, j=1,... N. For some force directly proportional td. The maxima of the potential
ranges off andl, this configuration is not dynamically stable correspond to the vertical junctions and the minima are situ-
and other solutions are found, as discussed in Sec. V. ated in the middle of the cells. Thus, the initial barrier which

The numerical observations shown in Fig. 5 depict thehas to be overcome to begin the motion explains the critical
dynamical behavior of the single-vortex state for most values, ,+ . Moreover, the open boundaries can be thought to pro-
of f, i.e., approximately 0.12f<0.37. They can be summa- duce an exponentially decaying envelope superimposed on
rized as follows: Foff >f,;, and small driving current, the  the sinusoidal potential. Thus the motion of the vortex is
system relaxes onto a static single-vortex solution with aeasier when the vortex is close to the right edge and becomes
vortex in the middle of the array. The solution is slightly increasingly difficult as the left boundary is approached.
distorted as the current is increased, until &t o7(f) the  Whenl . is reached, the vortex is able to overcome the edge
vortex moves from the center cell toward the I¢fthis cur-  barrier and is expelled from the array. Then the no-vortex
rent is analogous to the well-known Lobb-Abraham-configuration is recovered and no new vortex enters the lad-
Tinkham (LAT) depinning current for two-dimensional Jo- der.
sephson junction arrays] For currents very close th ar, We mentioned before that the described behavior is ob-
the vortex moves slowly and gets trapped in another celserved for values of the frustration contained between two
somewhere between the center and the edge. For somewHatiting values. First, there is a minimum frustratidn,;,
largerl >1 57, the vortex moves all the way to the left edge ~0.12 below which the single-vortex solution never ensues
where it becomes pinned until, at a second critical currenfrom this initial condition; in fact, the system settles on the
left, it is expelled from the array and the no-vortex solutionno-vortex superconducting solution. Second, fordarger
is recovered again. The no-vortex configuration then remainthan ~0.37, the vortex isiot expelled from the array at the
stable until, atl 4, global depinning of the array occurs. If left edge before depinning. Depinning occurs in that case
instead of placing the vortex in the middle, we locate it clos-when vortices enter the array from the right edge. These
est to theright edge, it depins at a currehty,<I a1, and  observations will be clarified in Sec. V.
moves toward the center. We have also performed dynamical simulations for the

These observations can be clarified with the usuamultivortex case and reached similar conclusions for most
analogy® of the vortex as a damped particle moving in avalues off. In that case, the initial condition consists f
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[uy

equally spaced 2 steps which are then allowed to evolve
dynamically. Forl =0 and large enough, the initial condi-

tion relaxes onto the expected solution wiif vortices in

the array. As the current is increased, these move towards the
left end where they accumulate until they are expelled one
by one at different currents. After this, the no-vortex solution

o
o
T

Normalized current, 1
=}
2

is again recovered. 0251
On the other hand, the picture changes whés close to 0 01 02 03
1/2. There, solutions of the fully frustrated type are obtained frustration,

from the multi-vortex initial condition and there is no expul-
sion of vortices from the ladder. Instead, the array deping,
,glObaHy at the current where the FF solution ceases to EXIShp from zero in dynamical simulations; no assumptions are made
€., Iderﬁﬁllz)% | FF.th- o about the state of the system. The static curt§ptmarks the point
We conclude that in the ladder, the depinning of one vorsyhere 4 particular superconducting state, the no-vortex solution, is
tex (or a train of vortices is not equivalent to the global gestroyed in a saddle-node bifurcation. Similail§ corresponds

edge-dominated depinning of the device. As we will confirmto the maximum of the saddle-node bifurcation currents for solu-
in Sec. V, the no-vortex and fully frustrated states are thejons of the fully frustrated type.

relevant solutions for the depinning of the array; for moder-

atef, even if the initial conditions contain vortices, these areeigenvalue bifurcation, a single eigenvalue moves along the
expelled from the array as the current is increased and, evereal axis, and passes from negative to positive at the bifur-
tually, the no-vortex solution is recovered. Foclose to 1/2,  cation. There are three main subtypes of zero-eigenvalue bi-
the system settles onto fully-frustrated solutions with distinctfurcation: saddle-node, transcritical, and pitchfork. In the
depinning properties. saddle-node bifurcation, a stable fixed point collides with a

On the other hand, we have identified three other criticakaddle point, and both are annihilated. In contrast, in the
currents related to the single-vortex configuratiofy,, at  transcritical and pitchfork bifurcations, the stable fixed point
which a vortex at the right edge begins to movgsr, at s not destroyed — it continues to exist but goes unstable. A
which dynamical depinning occurs for a single vortex cen-second scenario is provided by the Hopf bifurcation which
tered in the middle of the ladder; argy, at which the involves a pair of complex conjugate eigenvalues passing
vortex is expelled at the edge. All of these dynamical obserthrough the imaginary axis from the left half plane to the
vations are explained in detail in the next section where theyight half plane — again this bifurcation destabilizes the fixed
are compared to their exact mathematical descriptions. point, but does not destroy it.

Since it can be shown that Hopf bifurcations are not pos-
sible in this system’ we can simplify our calculations by
using thestatic system(15) and(16) to identify the location
of the zero-eigenvalue bifurcations. Those bifurcation points

In this section, we use bifurcation theory to obtain exactare characterized by a change in the number of fixed points
criteria for all the critical currents of the no-vortex, single- and, thus, from the implicit function theoreffithe Jacobian
vortex, and fully frustrated states. We have checked consignatrix J of the static system has zero determinant there.
tently that these bifurcations explain the dynamical depinHence, we use the superconductifggatio up-down sym-
ning behavior of the array as described in Sec. IV.metric system given bj(x)=0,

Furthermore, analytical simplifications to some of those cri- ) ) ) )
teria will be deduced from approximations of the exact de- fi(X)=I+Ssinxyj—sinxy.;j—sinx, i=1,... N+1,
pinning results. (50

The depinning of the ladder can be explained in dynami-
cal terms as follows: The linear stability of the superconduct-
ing states of the ladder as a function lotan be deduced )
from the Jacobian matridy,, of the dynamical syster{12)— I=1...N, (52)
(14) for a given value off, and for a given fixed point—in with x=(x,, ... xons1)=(dY, ... bV 1 bt .. h).

particular, the r)o—vortex, single—vorte>.<, or fully frustratgd For a givenf and a given superconducting state, we compute
state. If all the eigenvalues have negative real parts, the f|xeﬂi1e bifurcating fixed poink* and its associated critical cur-

point is linearly stable. As we increaesome of the eigen- o I*(f) at which det0)=0. To this end, we define an
values move to the right in the complex plane, and the f'xe(ilugmented algebraic system with the currerts an extra

p_0|nt bepor_‘nes I?SS stable. The g:rmcal current for- a gIVerQ/ariable, and the constraint on the determinant as an extra
fixed point is defined by the condition that the maximum of

, o equation. Therx* and|* are obtained by solving(X*)=0
the real parts of the eigenvalues becomes positive. Then, hereX=(x,1) and
predict theglobal depinning current, we compare the critical '

FIG. 6. f dependence of the global depinning current of the
rray. The numericdly, (O) is obtained by sweeping the current

V. BIFURCATION ANALYSIS
OF THE DEPINNING TRANSITIONS

fne 111 () =X =X 1= 2Xy 4 14+ 27(F =),

currents of the different superconducting states, and take the F(X)=f;, j=1,...,N+1 (52)
maximum of those. In other words, we predict that global : )
depinning occurs when the “last” stable state bifurcates. Fonso(X)=detJ). (53)

Recall that there are several scendfidsy which a stable
fixed point can undergo such a bifurcation. First, in a zero+igure 6 shows that the dynamical depinning of the ladder is
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explained byl * (zero-eigenvaluebifurcations.

The rest of this section is devoted to analyzing the bifur- " 0.1
. . i M
cations of the no-vortex, single-vortex, and fully frustrated %‘D
configurations. For the sake of clarity, we follow a parallel T 0 -
scheme for all of them and keep the notation consistent. For % -0.1 / v
each of the states, we first calculate numerically the zero- S . : . A
y = 067 068 069 0.7

eigenvalue bifurcations from Eq&2) and(53) (always de-
noted with a stgrand compare them with the depinning
currents fromdynamical simulations(always denoted with

Normalized current, I
b U (¢=02,1=0)

g 04
symbols in the figures Then, when possible, we deduce w 05} " S
analytical simplifications of these criteria in one of two S . ° O.fAAMMMAMA%'
ways: (8) by deducing that the instability is essentially L] F— g Secescscesesr,
caused by a bifurcation of the no-edge solution,(lor by T ey,
_explaining the instal_)ility as edge-origir_1ated and,_thus, Iocal? © 5 (=02,1=00
ized at the boundaries. These theoretical analytical approxi- i 04

. . . 05} ~

mations are always denoted with the subscript th. Moreover, & Zm | irsnnssnnsnnann
to emphasize the importance of the edges in the depinning >;_ g Ul eecceecessesssd
transitions, we calculate the depinning of the no-edge solu- O} nusunssunsnnns® =~
tions for all threg Configurations. F_inally,_note that no energy 0 4 8 12 16 5
arguments are invoked in this discussion. Thermodynamic j, junction number j, junction number

considerations are studied in detail in Sec. VI where phase

diagrams of these superconducting states for the no-edge and FIG. 7. Saddle-node bifurcation_ of the no-vortex solution in a
finite ladders are presented. 15X 1 ladder.(a) Value of the maximum of the real parts of the

eigenvalues of the dynamic Jacobian mathiy, for the stable(S,
solid line) and unstabléU, dashed ling branches withf =0.2 and
B:.=0.25. They collide and annihilate &, in a saddle-node bi-
furcation. We remark that, although the eigenvalues change with
Figure 6 shows that for most values fifthe depinning g, the bifurcation pointy, is independent oB,. (b) Phase con-
currentl go{ f) (obtained from dynamical simulationsoin-  figuration of the verticalleft) and horizontalright) junctions for
cides with the critical currentty,, for the no-vortex state— the unstable brancfU) atf=0.2 andl =0. (c) Same asb) for the
calculated from the augmented systég) and(53). Indeed,  stable branctS). Note that both configuration®),(c) are up-down
we find that the bifurcating phase configuratbcm, matches Symmetric, and th.e unstable bran@h corresponds to an inverted
the depinning configuratiorkge, observed in dynamical pendulum at the rightmost cell.
simulations. Hence, the bifurcation of the no-vortex state
constitutes an exact criterion for the global depinning cur- Analytical approximations for {,(f). The conclusion
rent, except for values of close to 1/2, where the global thatthe depinning transition for most valuesfaforresponds
depinning is caused by the destruction of the fully frustrated0 & saddle-node bifurcation of the no-vortex superconduct-
solution, as explained below. ing state can be simplified further. We now obtain analytical
To gain intuition about how to derive analytical approxi- approximations for §(f) using the approximate solutions
mations forl g ), it is helpful to characterize the depinning calculated in Sec. IlI.
bifurcation more precisely. Our numerical computations in- We recall that the bifurcation of the infinite-ladder no-
dicate that the depinning of the no-vortex state is due to &ortex configuration does not explain the observed
saddle-node bifurcation. Ak approachesy, from below, f-dependence of the finite-ladder NV depinning. As dis-
the stable no-vortex state approaches an unstable no-vorté4ssed in Sec. Il if the edges are neglected completely, the
state, and coalesces with it when |, causing both states No-vortex solution(18)—(24) is predicted to exist and be
to disappear. Figure(@ shows the maximurdynamicalei- stable _for alll <1, md_epen_dent of the frustratl_dn in anal-
genvalue for both the stable and unstable states—note th@gy With the single junction. Thus, the depinning for the
both of these eigenvalues are pure real, and they equal O ap-sdge NV state occurs through a saddle-node bifurcation
the critical current. As expected, this plot has the standardt Invm(f)=1, Vf.
shape of a saddle-node bifurcation diagrénfigures Tb) To capture the observefddependence of the critical cur-
and 7c) plot the phase configuration for both state$a.  rentlg,, we need a more careful approximation. We now
They have similar spatial structure, except near the rightpresent two such approximations tg, that clarify the
most cell, wherdin the language of the mechanical analog physical picture of the transition.
the unstable state has an inverted pendulum. The first strategy is to use the improved approximation
Incidentally, Fig. 7 also shows that both states satisfy thé18) for the no-vortex statéin which the edge effects are
up-down symmetryﬁ}*= - ¢>Jh discussed in Sec. Il. Numeri- included perturbatively and then write down a@implified
cal simulations show that this symmetry continues to holdaugmented systefif(X¥)=0 for this solution, similar to the
for all values ofl on both the stable and unstable branchesexpression(52) and (53) for the full (2N+ 2)-dimensional
Thus, the global depinning bifurcation takes place entirelysystem. We can then calculate the critical currgpt,eq for
within the invariant manifold of up-down symmetric this reduced model, defined as the valud @fhere theper-
states—it isnot a symmetry-breaking bifurcation. turbative solution undergoes a saddle-node bifurcation. This

A. Bifurcation of the no-vortex solution
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FIG. 8. Analytical simplificationd yy req and Iy ¢ provide ap-
proximations to the critical current for the no-vortex solutli@g by
concentrating on the right-most cell of the array.

FIG. 9. Stability diagram for the single vortex in the center of
the arrayl ,7(®) is calculated dynamically from numerical simu-
lations by sweeping the current until a vortex placed in the center of
a 25<1 array moves. These dynamical resul@®)(are well pre-
renders the calculation analytically tractable since, for alicted by the statit, at which the fixed point corresponding to the
givenf, only three variable$P,Q,1} suffice to describe the pinned vortex ceases to exiglashed ling Another dynamic insta-
perturbative solutior(18)—instead ofl and 2N+1 phases bility of the single-vortex configuration dty;, (solid diamondsis
for the full solution. The simplified augmented system isidentified as a symmetry-breaking subcritical pitchfork bifurcation
constituted by Eqg28), (29) together with the condition that fsv- It can be approximated with an analytical criterityy s given
the determinant of the 22 Jacobian matrix equals zero, by Eqg. (59). This appr(_)ximat_ioq is_ so accurate that the curves for
corresponding to the zero-eigenvalue condition at a saddidsv andfsv, are practically indistinguishable.
node bifurcation. . . .

Furthermore, since Eq&28) and(29) are uncoupled when _77/2, the Iadder dep|ns_. Re.placmg the no-vortex solution by
N is not very small, even this three-dimensional system caffS Perturbative approximatiofi8), we solve for the current
be further reduced to a two-dimensional system with undnv.n By imposing
knownsP andl:

¢\N/+ 1i: /2 (56)
p 1 which implies
Fi=1 +sir{ mf— —( 1- —) —sin(arcsii +P), (54)
2\ r arcsin gy ¢+ P(I ) = /2. (57)
. Then, from EQ.(29), we obtain an implicit transcendental
s OF1 equation forl yy ¢(f):
2= 7p (55)
] r-1
arcsinl—lyy ) + 2—arcco$NV,th= of (58
wherer =r(f,l) is given by Eq.(25). Note that this is a set r

of local equations referred to the right-most end of the array it r =y
We numerically solve the 22 reduced system
F*(P,ed,INV,,ed) =0 to obtain the approximate depinning cur-
rent Iy o(f) and the value of the right-most phaBgq at

the bifurcation. _ to include the effect of self-fields. In Appendix B we illus-

Figure 8 shows thalyy ed(f) predicts the exactyy(f)  trate this approach and show how self-inductance modifies
reasonably well. As expected, the prediction gets worske asthe approximate no-vortex solution and the corresponding
nears 1/2 since the perturbative approximation of the nodepinning current.
vortex solution is less accurate in that limit.

Both the analyses of the eigenfunctions of the full-22
system(52) and(53) and of the reduced syste{4) and(55)
indicate that the global depinning of the ladder is caused by We begin the study of the stability of the single-vortex
a local instability of the right-most junction of the array. This (SV) configuration by considering the single-vortex far from
is consistent with physical arguments which imply that afterth'e edges. The results obtained fpr the vortex in the center
depinning occurs, vortices propagate in the array in-the will be used subsequently to describe the effects of the edges
direction under the effect of a magnetic Magnuerentz- 0" the SV state.
like) force. . . .

The key role played by the right-most junction suggests a 1. Saddle-node bifurcation of the SV solution
second simplification, which we call a heuristic criterion for ~ As described in Sec. IV, a vortex in the center of the array
depinning. This criterion connects the global depinning ofmoves to the left over the potential barrier when the critical
the ladder with the much simpler depinning transition in acurrentl 57 is reached. We show now that this depinning of
single junction. Recall that when the phase of a single juncthe vortex corresponds to a saddle-node bifurcation of the
tion reachesr/2, its superconducting solution is destroyed in single-vortex solution. To verify this, we restrict our atten-

a saddle-node bifurcatidfi. Therefore, we intuitively pro- tion to the single-vortex solutions that are centered in the
pose that when the phase of the right-most junction reachesiddle of the ladder; then we look for the curreld, at

(Invn) given by Eq.(25). This simple analytical
prediction is shown to be in very good agreement with the
exact results in Fig. 8.

The techniques described in this section can be extended

B. Bifurcations of the single-vortex solution
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. ~~ 05k -e: O_AAAAAA ANDAAA
the center of a 181 ladder.(a) Value of the maximum of the real ~ IS seccse? %ecccee
parts of the eigenvalues dfy, for the stable(S, solid ling and 0___““.' =~ .
unstablg(U, dashed lingbranches wittf =0.2 andB,=0.25.15,, is e M5 176
the point where a saddle-node bifurcation occurs for this particular j, junction number j, junction number
configuration. As in Fig. 7, the bifurcation point is independent of » ) _ _ _
B.. (b) Phases of the verticgleft) and horizontalright) junctions FIG. 11. Subcritical pitchfork bifurcation of the single-vortex

for the unstable brancfU) at f=0.2 andl =0. (c) Same agb) for  Solution atfg, . () Value of the up-down asymmet§= ba+ o
the stable branchiS). Again, both configurationgb)—(c) are up-  for the two asymmetric (AS, AS™) and symmetric (§ branches

down symmetric. Note that the stable brarichis associated with ~With 1=0. The calculation of the dynamical eigenvalugmt

centered around a junctiofa local maximum of the potential en- For f<fgy, only the unstable symmetric branch surviveb)
ergy). Phases of the verticdleft) and horizontalright) junctions for the

asymmetric branch (A9 at f=0.14 andl =0. (c) and(d) are the

which the determinant of the static Jacobian matrixSaMe asb) butfor the Sand the AS branches, respectively. Note

det(],« )=0. As in Egs.(52) and (53, we solve the aug- that alt_hqugh all three vertical conflguratlons on the Igft panels look
st) ! very similar, the(b) and (d) AS horizontal configurations on the

mented systenf(xg,,l5y) =0 to find where the centered right are up-dowrasymmetric

single-vortex state ceases to exist. Figure 9 shows the perfect

agreement between thg,(f) computed from the static aug- our case, they are implicitly taken into account since the
mented system and thigar(f) obtained from simulations  configurations—and therefore their stability—depend para-
where a vortex is placed in the middle of the array and thenetrically on{l,f}.
current is increased until it moves, i.&,ar=15y -
_ _Moreover, Fig. 10 confirms that this_ depir_ming transition 2. Symmetry-breaking bifurcation of the SV solution
is indeed caused by a saddle-node bifurcation. An unstable )
single-vortex state collides with and annihilates the stable We noted above the numerical observatfothat, when
single-vortex state at the transition. Figure 10 shows that th@erforming dynamical simulations, the static single-vortex
two states have similar spatial structure —the difference i$olution is unstable below eritical field fn,(1). We show
that the stable state has its vortex in the center of a ceffoW that this is the result of a symmetry-breaking instability
(where the vortex sits in a potential welwhile the unstable Which is mathematically related to another zero-eigenvalue
state has its vortex on a junctigpoised on a potential hjll ~ bifurcation. Therefore, once again, the dynamitg}, coin-
Although conceptually similar, our ,r for the ladder is ~ cides with a stati¢ &, calculated from the augmented system
not equivalent to that calculated by Lobb, Abraham, and52) and(53) as the value of where the determinant of the
Tinkham?® Their current is estimated by a static calculationstatic Jacobian matrid is zero and, thus, a change in the
of the energy barrieE, in an infinitely extended two- humber of fixed points is likely. Excellent agreement be-
dimensional array, while ours is the dynamic current attweenf;, andfg, is shown in Fig. 9.
which the centered single-vortex state undergoes a saddle- Figure 11 depicts detailed information about this bifurca-
node bifurcation in the guasi-one-dimensional ladder. Moretion. Specifically, it shows three single-vortex states that co-
over, their static calculation does not include the effects ofxist for f slightly greater tharig,, . These states appear very
the fieldf or the injected currerit on the solutions while, in  similar, but on close inspection, one notices that two of the
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states are asymmetrid;‘}*# - d)? (this is especially clear for of the array. But there are many other single-vortex states,
the central plaquett¢=a.). As f—fg, from above, these each differing from the previous one by displacing the vortex
asymmetric states—which are unstable—simultaneously coby one cell to the right or to the left. Each of those configu-
lide with the stable symmetric state, rendering it unstable. Toations becomes unstable through bifurcations similar to
visualize this transition in greater detail, Fig. 11 plots thethose discussed above for the case of the centered single-
asymmetry for the central plaquetie= ¢>2+ ¢2 as a func- vortex state. For most values 6f as discussed in Sec. 1V,
tion of the frustrationf. The symmetric state exists both when the driving currenitis increased, a vortex in the ladder
above and below the bifurcation, and satisfesO through- moves to the left(getting pinned in cells closer to the left
out. The two unstable branches join the symmetric branch aidge ad grows until it is expelled from the array at the left
f=f5y. The scenario depicted in Fig. 11, common in sym-boundary. Thus, in explaining the effect of the edges on the
metric systems, is known as a subcritical pitchfork SV solution we are most interested in two critical currents:
bifurcation’® the critical current ;4,,, at which a vortex at the right edge
From this, we conclude that there exists a region of thesegins to move, and the critical currehty, at which the
(f.1) plane (Fig. 9, where the single-vortex configuration vortex is expelled at the left edge of the ladder.
exists but is always dynam|ca”y unstable. In this region, the To predicthigm, we ana|yze the SV Configuration with
vortex (magnetic flux is expelledtransversallyfrom the ar-  the vortex placed in the right-most céthe 000 . . . 0lcon-
ray through transient modes which dot preserve the up-  figuration). The results of the analysis are similar to those for
down symmetry of the horizontal phases. the vortex in the center. As shown in Fig.(&2 this state can
We can also derive an analytical expressfan for the  cease to exist through a saddle-node bifurcatidy fgn» OF
critical field 3, . As given in Eq(11), all up-down symmet-  pecome unstable through a symmetry-breaking pitchfork bi-
ric fixed points become unstable when the phase of any of, cation (& ian) - The agreement with the dynamical simu-
the horizontal junctions is larger than'2 in absolute value. |ations is exde?lent.
Since this largest phase occurs at the central plaqé@fie  The rigorous explanation df. turns out to be slightly
seen in Fig. 1}, the following stability criterion ensues from 1,51 complicated. A careful examination of the numerics

the conditiongy = — m/2: reveals that, depending on the valuefothe vortex can be
, _ expelled from the array in one of two ways: from the left-
27tsymt [P(fsvn = Q' (Tsvm 1=, (59 most cell(cell number 1 as expected, or directly from cell

where we have used Eqégo) and (33) and we consider a number 2. ThUS, we need to examine the dynamical Stabl|lty
long array such that the effect of the edges on the middle cePf two SV states: the one with the vortex in cell 1
can be neglected. HeR, Q' have to be calculated from the (1000 --00) and in cell 2 (0100 -00).

boundary conditiongcurrent conservatignat nodesa and The dynamic stability of the 0100-00 configuration
a+1: contains no new elements. The two observed bifurcatians
saddle-nodd gy e, @nd a subcritical pitchfork s, en,) are
| +sin @ f—P(r—1)/(2r)]=sin(arcsid + P) similar to those explained above. The results are presented in
. , Fig. 12b) where the saddle-node bifurcation is seen to ex-
—sinaf—(Q"—P)/2], plain the dynamical o, for f<0.29.

. . . However, it is the stability analysis of the 100000
| =sin(wf—(Q"—P)/2]=sin(arcsiri + Q") state that explains the expuls)i/on of t¥1e vortex at the edge for
+siM#f+Q'(r—1)/(2r)] f>0.29. As shown in Fig. 12), this configuration presents
the usual saddle-nodd &, eqy) bifurcation. The pitchfork
(60 (fSvery) bifurcation is barely visible in the figure. There is
with r given by Eg.(25). Numerical solution of the critical also another saddle-node bifurcation at Idwand high f
condition (59) yields the curvefsy 1) which is almost in- ~ which is irrelevant for the depinning considered here.
distinguishable from the curve fofr,, from the full aug- The results of this section are summarized in Figd}2
mented systentFig. 9). which indicates the region whea least onesingle-vortex
It is especially interesting to check the cdse0. Then configuration in a ladder arrawith edgesis dynamically

P=-Q’ and the critical conditio59) and (60) simplifies  Stable. Figure 1@) is, in essence, the union of Fig. 9 with
to Figs. 1Za)-12c) and shows how the SV solutions either

cease to exist through a saddle-node bifurcation whéxn

) 0 0 1\ 7(r—1) 0 increased for most values of the frustratibnor become
sin migymt| fsvin™ 5]~ |~ C0Smfsym 1, unstable through a symmetry-breaking pitchfork bifurcation
(61)  for small values off.

Within this picture, the dynamical behavior in Fig. 9,
which can be solved numerically to giveSy w="fsvu(l  where the vortex propagates along the ladder in the interval
=0)=0.1193, in agreement with numerical findings from 1av.ignd F) <1 <1&y1en(f), is the result of a succession of
previous dynamical simulatiors. saddle-node bifurcations of single-vortex states situated in

contiguous cells until the vortex is expelled at the left edge.
This is in contrast with the symmetry-breaking exit of the

So far we have concentrated on a particular single-vortexortex for f <f%,(1), where the flux is expelled in the trans-
state, namely, one where the vortex occurs in the middle cellersal direction.

3. Single-vortex configurations at the edges
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(a) fashion as the depinning of the no-vortex configuration: by
the nucleation of vortices on the right edge of the ladder.
~Jo]o][d v Ijg"‘ Thus, the single-vortex configuration plays no role in the
T Lovaign global depinning of the array: only the behavior of the NV
oo and FF states has to be considered.

Unst.able\\
sv (r1ght)\I Stable
!sv (right) .

1 2 ) 4 0. o . .
0 (b)o 0 03 0 05 The depinning of the ladder array &s>1/2 is determined

by the stability of the fully frustrated configuration. This can
= Ifﬂ be readily seen by inspection of Fig. 6 which shows that at
T Loz high f the depinning of the no-vortex state occbeforethe
= e o global depinning of the array.

To clarify the importance of these transitions we follow
Unstable Stable the same scheme as above. We first calculate the zero-
v (6l | sv (eft2) eigenvalue bifurcations of this state and show that the depin-
01 02 03 04 05 ning of the ladder af=1/2 is indeed explained by a saddle-
node bifurcation of the FF state. Then we obtain analytical
01, Gl o - apprqximations_(th_) to the exact bifurc_ations_,, using stability

criteria for the infinite-ladder FF configuration.

In principle, the characterization of the FF bifurcations is
more intricate than for the NV and SV configurations above
since in thefinite ladder several states of the FF type could
play a role in the depinning. First, there exist different states
T 0T s in ladders with odd and even number of ceII;s, as seen when

@ ’ ’ ’ ’ the - --010101% - - alternating vortex pattern is fitted into a
finite length. Second, there are many FF states very close
energetically with different dynamic stability structure. How-
0.5\ Unstable sv ever, we will show that the landscape of relevant solutions is
indeed clear, and depinning can be assigned to instabilities of
025t ¥ oneof those configurations.

\ Consider first arevenladder with ten plaquettes as an
/ IStable Voo example. Of the several states of the FF type, three can be
0 01 02 03 04 05 thought as relevantla 1010101010(1b) 0101010101, and
frustration, f (1o 1101010100. We have analyzed the stability of these
three states and conclude that only configuratiba is rel-
when the vortex is placed close to either edge. The symbols deno%vam for depmnmg of the even ladder. Bc(ttb)' and (10
critical currents measured through dynamical simulations. The soli(§:e€,°‘5(_e to eX|§t or become unSta_ble at '°,W9r critical currents.
lines (1%,) correspond to saddle-node bifurcations and the dashed NiS 18 physically reasonable sin¢gb) will tend to move
lines (f%,) to subcritical pitchfork bifurcations where the flux is ON€ Cell to the left under the action of a driving current to
expelled transversally. For instance, fréah the vortex in the right-  Produce(1a), while (1c) ceases to exist through a low current
most cell moves to the left fdr>|gV,right' And Ileft Corresponds to Sadd|e-l’l0de b|furcat|on Caused by the eXpU|SIOI’I Of the VOr-
the expulsion of the vortex at the left edge for0.37. In the region  t€x at the left boundary.
delimited byl gy andl e, there is a cascade of saddle-node bifur- ~ The case of theodd ladder withN plaquettes has one
cations which leads to the behavior observed in Fig. 5. For the toflurther complication, namely, that we cannot have exactly
three panels(a) corresponds to the vortex in the rightmost cétl; N/2 vortices in the array. Thus, the “pure” FF stafas
in the second cell; antt) in the first(leftmos) cell. (d) shows the  calculated for the infinite cagés not possible under these
region where at least one SV configurati@mywhere in the ladder  topological constraints. However, states similar to the
is stable. It is the union of pane{s)—(c) and Fig. 9. “pure” FF are those which containN—1)/2 and (N
+1)/2 vortices. Take, for instance, a ladder with eleven

This description is valid forf <0.37. However, a subtle plaquettes. We have then two groups of states: those with six
variation is observed beyond that point for the SV solutionsvortices, (2a) 10101010101,(2b) 11010101010, and2c)

The comparison of Fig. 12) and Fig. 8 shows that the de- 01010101011; and those with five vortices(3a)
pinning of the SV and NV states is similar for highi.e., 10101010100,3b) 01010101010, and3c) 00101010101.

I 5v eI Ny for >0.37. This is due to the fact that at high The detailed analysis of these states shows (@thas the

f the vortex isnot expelled from the array before depinning. highest critical transition and is thus responsible for the de-
Instead, the SV configuration with the vortex at the left edgepinning of the odd ladder.

ceases to exist through a saddle-node bifurcation which, There is a final important observation in our argument:
similarly to what happens to the NV state, is localized on thethe stability diagrams of the configurations which cause the
right edge of the ladder. The depinning transition of thedepinning in odd and even ladder$3a and (1a),
single-vortex state at higfi can be described in a similar respectively—areindistinguishable [This is also true for

Normalized current, I

C. Bifurcations of the fully frustrated state
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; ! . ——r —, | =tan( mfee ) VCOS(7f e ) — A4St (7feey), (62
%0'75 [\ o T - f which is shown in Fig. 13 and compared to the exBgt
9 05 N with excellent agreement. As an example, it is easy to show
4 N T analytically that the value of this critical field wher=0 is
E 025 b Unstable ff “ r——— RV | given by
S ;/Sm;ﬂﬂ
001 02 03 04 05 1 [ 721
frustration, f fre(1=0)= —arcsi s =0.2148. (63

FIG. 13. D ic stability of the fully-frustrated solution. Th L S
ynamic stabiiy of fne fuiy-rustated soution. 1he-, summary, we can explain in part the stability diagram of

saddle-node bifurcation &t is responsible for the depinning of the he FE in th fed ith bif . f
array forf~0.5. The FF state also undergoes a pitchfork bifurcationt € state in the presence of edges with two bifurcations o

fre. Both are partially explained through approximate formulasthe infin_itely ?Xtendedno'edge FF SOIUtiO_n_: the _Saddle'
I ¢ ;nandf e i deduced from instabilities of the FF solution for the N0de bifurcation Ieg(f), and the subcritical pitchfork

infinite ladder. fera(f). o .
However, for the finite ladder, another saddle-node bifur-

i ) cation is reached beforlgr ¢, for 0.22<f<0.38 as seen in
other odd-even related configurations suctizs and(10).]  Fig 13, Numerical analysis shows that this bifurcation is

The conclusion is then clear: the depinning behavior of 0ddocg| and it corresponds to an instability in tegt-mostcell.

and even ladders at highis identical as it can be explained |t can be approximated heuristically by a criterion similar to

by the bifurcation of configurationfla) and (3a) which are  Eq. (56) for the NV state, i.e., for this interval of the frustra-

of the 101010- - type. tion the FF state depins approximately when the leftmost
The zero-eigenvalue bifurcations of these configurationgunction becomes unstable.

are presented in Fig. 13. The bifurcations are of two types

(similar to t_hose obtained for the SV statesaddle-node VI. SUMMARY AND DISCUSSION
(1£p and pitchfork €rp). Note also how the saddle-node _ _ o
bifurcation corresponds to two distinct dynamical instabili-  The first conclusion of our analysis is that for most values

ties: for 0.38<f<0.5, the instability is spatially extended, Of f, the global depinning current of the arréy{f) coin-
while for 0.22<f<0.38, the instability is localized at the cides with the currenty, where the no-vortex state under-
right edge. Only the formefspatially extendedsaddle-node goes a saddle-node bifurcatidifrig. 6). This bifurcation
bifurcation has any relevance for the global depinning of thepoint can be well approximated by an analytita) i, given
array—as reflected by the agreement betw%%and| EF for in Eq. (58), derived from an instability criterion for the right-
f>0.45. (Of course, forf<0.45, the depinning current and MOst junction of the array. For values bfclose to3, how-
|- no longer coincide, because the depinning is caused theRVer, the global depinning is caused by a saddle-node bifur-
by a saddle-node bifurcation of a different state, the no<fation of the fully frustrated solution at a currel-. This
vortex solution, as shown earligiThe pitchfork bifurcation ~ bifurcation itself is well approximated by the global instabil-
f£_is also spatially extended and, as observed for the singldy Of the no-edge FF state &, as given analytically in
vortex, it implies the breaking of the up-down symmetry in Eq. (40). o ]
the FF state. Thus, the flux is expelled in the transversal We have also shown that the depinning of the single vor-
direction. We clarify this in the following by calculating tex and its subsequent motion in thex direction(Fig. 5) is
some analytical approximations to these criteria. the result of a cascade of saddle-node bifurcations of the

Analytical approximations to the FF bifurcation§he  single-vortex solution such that, for most values fofthe
rigorous analysis above indicates that two of the bifurcatingluxoids are expelled from the ladder through its left edge.
mechanisms imply spatially extended perturbations whichMore surprisingly, for smallef the SV and FF configura-
are not localized at the edges. Hence, we turn to instabilitie§ons can also undergo another transition: a symmetry-
of the infinite-ladder fully frustrated solution to obtain ana- breaking subcritical pitchfork bifurcation in which the up-
lytical approximations. down symmetry of the horizontal phases plays a crucial role.

One of the criteria was already established in Sec. Illin this case, the fluxoids are expelled in the transversgi) (
where we showed that the no-edge FF solution ceases Hirection through the horizontal junctions.
exist at a currentee ¢ f) given by Eq.(40). Indeed, we find At a finer level of description, the approximations ob-
excellent numerical agreement between the analytiga,  tained in Sec. Il for the NV, FF, and SV states all have a
and the numerical ¢ for 0.38<f<0.5 (Fig. 13. For in-  common feature: the corrections due to the existence of
stance, the predicted:F,ﬁ{f=1/2)=\/§—Z=O.236 is very edges, or of topological vortices in the array, decay exponen-
close to the dynamically computeg,{ f=1/2)=0.238. tially in space with a characteristic length dependent and

To explain the observed pitchfork bifurcation, recall thatf, as seen in Eq(25), for instance. Thus, the effect of the
the up-down symmetric manifold of solutions becomes un-perturbations can usually be captured by a local analysis.
stable to normal perturbations when the absolute value of th&his explains why, besides their independence from the
horizontal phases is larger thar2, as given in Eq(11). purely dynamical parametgs., the depinning observables
Thus, from Eqgs(34)—(39) and the critical condition ¢! are largely independent &, the length of the array.
= /2 we obtain the following implicit equation for the in- We have summarized our results in a zero-temperature
stability boundaryf gg y(1): stability diagram(Fig. 14 where we present the different
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FIG. 14. Dynamic stability diagram in the finite laddewvith ) o
edges of the superconducting states analyzed in this paper: the F!G. 15. Phase diagram of the infinite laddeo edgesfor the
no-vortex(NV), fully frustrated(FF), and single-vorteXSV) con- NV, SV, and FF solutions. It can also be used to describe the ring
figurations. This figure combines Figs. 8,(d2 and 13. Labels ladder. Solid lines are the dynamical critical currents derived in the
indicate the states that adgnamicallystable inside each region. In previous sections for solutions with no edges and for the vortex in

regions where two or more stable states coexist, each is attaindj€ center of the array. Dashed lines indicate the thermodynamic
from different initial conditions. boundaries where the energies of the approximate solutions are

equal. The physical meaning of the different regions can be sum-

critical currents for the NV, SV, and FF superconducting&?{'éﬁigs fBO_"gvr\:IS: Q:\/Reuxr:;'gg;ﬂﬂ?i“;;g,?%éndicélng. SDo.lu-
solutions for thefinite ladder(with edge$. In short, the array » B Ny ’ PNV ERR

. . Err<Env: E: Enw<Esy; F: Env<Egy<Egr; G: Egy<Epny
c_eiﬂsesﬂ:o be sur{(ercon_dutlztlhgapilns glofbfﬁ”yfat Igeptwgen | <Ere; H: Eqy<Epre<Epny; K Egg<Egy<Epy . The dotted lines
either the no-vortex, single-voriex or fully irustrated Solu- fav-sv: fnveee, andfgy e are approximate thermodynamical crite-

tions ceases to exist th'fOUQh saddle-node bifurcations. ria. In particular fyy.sy is analog to thé .; defined by Karda(Ref.
The presence of vortices in the array does not change thg,

e - ) and fy.gy(I =0)=0.2823 is in good agreement with his esti-
observed depinning. if<f (1) ~0.1, the single-vortex so- mate. Moreover, the zero-current energy boundary between the NV

lution is always unstable. Fd,;,<f<0.37, a vortex in the  and FF solutions(64) can be shown analytically to occur at
array will depin atl ot <l 4epand will be expelled at the left £, -(1=0)=1/3. On the other hand, botft,, and fre.m €NSUE
edge atleq<Igep- At that point the no-vortex solution is from dynamical instability conditions. Fér=0, f, can be approxi-
recovered. This behavior is the same for multivortex solu-mated byfs, (1 =0)=0.1193, as given by E¢61), explaining the
tions with moderatd. For f>0.37, the single-vortex is not numerical observations of Hwareg al. (Ref. 18 for %, . Another

expelled at the left edge before depinning but its instability isanalytical resul{63) shows thatf e 41 =0)=0.2148.

almost identical to that of the no-vortex configuration since

vortices enter from the right edge. Moreover, our approximate solutions produce some new
Note that no energy criteria have been invoked aboveanalytical results. For example, a closed expression for the

The calculation of energy boundaries for the relevant statesnergy boundary between the no-vortex and fully frustrated

remains open for further investigation. solutionsfyy .ge(1) can be obtained as
To highlight the effect of the edges and to include ener-
getic considerations we explore in more detail the phase dia- VI=12=1\2IL—1+2 cog 7fyy .rF)
gram for the infinite laddetno edgeys which we present in
Fig. 15. (This should be compared to the phase diagram of —2sin(wfyy pr)V1—21%/L=0, (64

the ladder with edges in Fig. 24/Mhen no edges are present,
the dynamic bifurcation boundaries for the three states ar@hereL is given by Eq.(39) with the negative sign. For the
given byILV,thi IFF,Ih! fFF,thi Igv,centen andfgv,center‘ These spec.lal 0913e 1=0, and using t.he limit E.Z/L_)(l
dynamic criteria do not contradict previous thermodynamic* 4sirfaf) ", it can be shown analytically that this boundary
studies of the infinite ladd&h* with 1=0 where the no- crosses thé=0 axis atfyy pe(1=0)=1/3.
vortex solution was calculated to be energetically stable only W€ emphasize also that the regions in Fig. 15 present
for frustrations smaller than a thermodynamic critical fielddistinct dynamical and thermodynamical stabilities. For in-
f.;, above which the flux penetrates the ladder. We havstance, in some of them, the smgle-vo_rt_ex sol_utlon is not the
extended these calculations for ttiéveninfinite ladder and ~ ground state of the system, although idignamicallystable
the three superconducting solutions addressed in this articlénetastable _ , _ _
Defining the energy of a given configuration as When comparing our results with those found in earlier
work, one should carefully note the direction of injection of
the driving currentl. Previous analytical studits'® have
E=- 2" Ccos ¢;, focused on thé=0 case and considered the effect of a small
B parallel current in thex direction. In contrast, herk is in-
we have calculated the energy boundaries for the approxjected in theperpendicular(y) direction. The depinning de-
mate no-edge no-vortex, fully frustrated, and single-vortexpends on the direction of current injection, a factor to be
solutions:fyy.sv(1), fav-re(1), andfsy.g(1). The results of  taken into account when explaining recent numerical simu-
thesethermodynamicalculations are also presented in Fig. lations of ladder array¥ In those simulations, marked dif-
15. Note, for instance, that our calculated,; ferences between the depinning current of a circular ladder
=fyv.s(l =0)=0.282 agrees well with other estimates with perpendicularinjection, and of an open-ended ladder
fo=22/7%=0.287. with parallel injection were reported.
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ladders. On the other hand, following the same reasoninEMR'9402020(T'P'O)'
given by the sequence of equatids—(9), we conclude that

the topological constraints in the ring ladder imply only that APPENDIX A: COMPARISON OF THE SINGLE-VORTEX
CONFIGURATION IN THE LADDER

H  «h . WITH THE ONE-DIMENSIONAL KINK

I’ +1y=C, Vj, (65) . .
Although analogies between the ladder and strictly one-

dimensional parallel arrays can be drawn, we show now how

whereC is a constant. Therefore, from E(f), the infinite he sinale-vortex solution for the quasi-one-dimensional lad-
ladder is mathematically equivalent to the particular case o? SINGIE-vortex soutior quast -dir : )
der is mathematically different from the kinklike vortex in

the ring withC=0, in which the concentric currents through 1D parallel arrays. Recall that the equations for the one-

the horizontal junctions in the outéf and innerl" circles : . . .
dimensional parallel array can be reduced to a discrete driven

are equal and opposite. . 203 > .
Consequently, the results for the infinite ladder summa>"¢ Gordon equatidii®if only self-inductances are consid

rized in Fig. 15 are also valid for the ring ladder if we restrict ered. V_Vhe{ig%, trtf d:(S.CLete IsTgIe—v?rttﬁx SOI(L;I.'On |styvell
to the submanifold withC=0. In this case, the phase dia- Q%proxwgae . fY. Ie n sdog lon Od' € un r|\|/en, ime-
gram has to be reinterpreted in terms of the new topologica'n ependent, in m't%ﬁ extended, one-dimensional continuum
constraints. First, the depinning of the no-vortex solution iSsme-Gordon equat
unchange_dl’,(jvm is still constant and equal to 1. However, $S%= 4arctardiex (i —io)/Asal}- (A1)
the two bifurcations of the single-vortex configurations have
new dynamical meaning. If the SV state goes unstabldhus, the vortex corresponds to arqump centered at,
through the saddle-node bifurcatid®, =1 A7, flux cannot  with a characteristic half-width . (Incidentally, it has also
be expelled through the horizontal junctions and the vortesbeen showf? that by introducing an effectiveSl., this func-
depins and moves along the ladder circularly. Thus, the ringional form is also valid when mutual inductances are in-
ladder depins effectively dt o7 . However, if f<f%,, the cluded)
flux can be expelledransversallyfrom the ladder through For our no-inductance ladder array, it is also possible to
the horizontal junctions and the no-vortex state is recoverec?btain an approximate sine-Gordon equation for the system.
Then, the depinning occurs &}, ,,=1. This is exactly the Although there is no explicit inductance in the problem, the
behavior reported from numerical simulations by HwangCoupling between the vertical junctions is provided by the
et al*® First, their isotropid ., coincides with our calculated horizontal junctions via the fluxoid quantization.
15,=1.ar. Second, they found a critical field’,, ~0.12 ~The app_roxmiagte sine-Gordon equation has been most
below which the depinning current s, =1 with exclusion ~ SIMPIY obta|nga4'H byHassumlng that the horizontal phases
of field inside the array. This correspondsfty,, the frus- ¢ small: sing’~d;". Then, the zero-current time-
tration below which the single-vortex configuration becomegndependent\/equatlcglns f(\)/r the Ia_dc{é\;/S) and (16) can be
dynamically unstable through a symmetry-breaking pitchfork®duced 10, —2¢/ + ¢, =2 singy. This gives, in the
bifurcation, which can be approximated analytically by continuum limit, the time-independent sine-Gordon equation
fsvu(l), as given in Eq(59). [In the absence of driving, the With no forcing and\sg= 1/y/2, where the cell size is taken
analytical prediction(61) givesfgy (I =0)=0.1193, in per- as length unit. However, a better linearization is suggested
fect agreement with their numerical simulatidfik. by the numerics if we take the phase change in the vertical
We note in passing that the same behavior should be efunctions @'~ ¢/’ ;)/12= ¢]'— wf<1 as the small param-
pected for the fully frustrated state in the ring ladder. Theeter. In other words, one should linearize ab¢§jt= 7f, not
checkerboard pattern would begin to slide along the ring atb}*=0. In that case, we obtain the following more accurate
| ke Producing a finite voltage. However, if thiry, is  sine-Gordon equationgy, — (2/cosf)sin ¢V=0, with A3
crossed, the flux can be expelled transversally and the N\- cosrf)/2.
state would appear. These predictions would have to be We argue now that the numerically observed single-
checked numerically. vortex configuration is not as accurately approximated by the
As a final remark, we also note that the second devic&ink (A1) as it is by our expressio(80)—(32). To compare
considered by Hwangt al*®*—an open-ended ladder with them, we particularize Eq$30)—(32) for 1=0 for a long
parallel current injection—cannot be compared directly with array such that £a<N+ 1. Then, the vertical phases near
our ladder withperpendicularinjection. However, the depin- the center of the vortex become
ning currentl ;(f) follows a similar trend to outg{f). In
fact, the dependence of theig(f) seems to be well ex- v Pexp{(j—a)/\}, j<a,
plained with formulas calculated by Benedtctor the same =5 Pexpl(a+1—] , (A2)
. | O g 2y DN}, j>a,
device by invoking a similar criterion: the onset of soft
modes?® with r and\ given by Eq.(25) andP by
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FIG. 16. Comparison of the errors of our approximati@o) FIG. 17. Effect of the self-inductance on the depinning current.
(black squargsand the sine-Gordon kinkAl) (white circles for We show how the heuristic depinning approximatl@g (f), ob-
varying magnetic field far from the edges in ax25 array. Graphs tained from Eq.(B6), varies with the self-inductanc&?®=L;/L;.
for different f are offset bys for clarity. The approximatior§30) Note that the rest of the paper deals with the limiting cAsec
has no adjustable parameters. In contrast, to make the kink approxivhere all inductances are neglected.
mation as accurate as possible, its characteristic lengthwas
chosen by a linear fit of [tan(¢;'/4)] vs j, where theg, are the For the no-vortex solution we still haves}’: ¢}’+1
numerically computed phases of the true single-vortex state. Ever ¢V* and ¢]Hz quHH: ¢"* far from the edges. From Eq.
with this a posteriorifit to the numerical data, the kink is not as (B1) we then get
good an approximation as E(BO0).

¢V* =arcsin, (B3)
r—-1 i i
sinP=sinl 7f— ——P | +sin(wf+P). A3 as for the case with no inductancé € «). However, the
(Tr 2r n(m ) A3 horizontal phase is different and has to be calculated from

Note that in Eq(A2) we have not reduced the phases to thethe following nonlinear equation:

interval[ — 7, 7), to facilitate the comparison with E¢AL).
Our solution resembles the sine-Gordon kink in that it de- P+ —
scribes a 2r jump with odd symmetry with respect tq, A2
=a+1/2. However, both the functional forms and the char-
acteristic lengths are different. Figure 16 shows that the n

sing™* = 7f. (B4)

This is a particular case of Kepler's equation, studied in ce-
. Dot i ote ] E UYestial mechanic&! which can be solved through the method
merics are hetter approximated over a wide rangelsf Eq. of successive approximations. In our case, a good approxi-

(A2).than by the s_ine—Qordon k!n@Al). . mation tog"* over the whole range dfis given by the first
Given the relative inappropriateness of the sme-Gordorilteration of that method as

kink as a model of the vortex in the no-inductance ladder

array, we conclude that even for the static case it is an over- 1 2A2
simplification to reduce the ladder to a one-dimensional par- pH* =7f— 5 sin 5 o
allel array where the horizontal junctions are approximated 2A 1+2A

by an effective inductance. Other dynamic phenomena ob- Th d for th boundaries is id
served in the ladder, e.g, the dynamical mechanism of retrap- | € p;]roce ure to gxgco;nt ﬁlr tTﬁ openl oun arlles IS |.|en.-
ping from the whirling mode, reinforce this statement andtica! to that presented in Sec. lll. The results are also similar:

will be discussed elsewhefé the corrections decay exponentially from the edges as in Egs.
' (23)—(25). However, the characteristic lengi,= 1/Inr, is
APPENDIX B: NO-VORTEX SOLUTION now given byrs=as+yas—1, where
AND DEPINNING WITH SELF-INDUCTANCE \/W 1
— Hx
Following on the concepts and notation in Secs. Il and as=1+ cosp* (1+ 2A200S¢ ) (BS)

IV, we briefly consider the ladder with self-inductance. This
is a first approximation to explore the effect of self-fields on  To assess how the inductance affects the depinning cur-
the no-vortex solution and, consequently, on the global derent, we use Eq(B5) and the¢"* obtained from Eq(B4)

pinning current of the array. with a heuristic criterion similar to E¢58),
When self-inductances are included, the time-independent

. . r — 1
governing equationgl5) and (16) become afCSifil—le,m)=¢H*— Szr arccosy i, (B6)
S

| +sin ¢, =sin ¢ +sin ¢ B1
Sin -2 =sin - sin gy (B to calculatel yy (f,A?). The results in Fig. 17 show that,
¢JV_ ¢}’+1—2¢}*=2w(nj— f)— IJT”/AZ, (B2)  for fixed A, INV,th.(f) still decreases monotonicglly with
However, for a giverf, the value of the depinning current
wherel " is the mesh current in plagueftandA?=L;/Lsis  increases as\ diminishes. This is expected on physical
the two-dimensional penetration depth and a measure of thgrounds since an increase in the inductangemplies larger
discreteness of the array. Due to the geometrical constraintself-fields which oppose the external applied magnetic field,
of the ladder, it is readily seen thbﬁ‘: —IJH in this case. thus decreasing the effective magnetic flux through the array.
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