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Three-dimensional Josephson-junction arrays: Static magnetic response
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In this work we present a simple three-dimensional Josephson-junction array model: a cube with twelve
junctions, one on each edge. The low-field magnetic response of the system is studied numerically for arbitrary
directions of the applied field. In this model the magnetic energy of the circulating currents is taken into
account by introducing an effective mutual inductance matrix. The lower threshold field for flux penetration is
determined in a closed analytic form for field directions perpendicular to one cube side.
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I. INTRODUCTION

The interest in Josephson-junction arrays has been
stantly growing since the discovery of high-Tc

superconductors.1 Indeed, it was soon clear that the low-fie
electromagnetic properties of this class of superconduc
could be well described by means of Josephson junc
networks.2,3

The study of the physical properties of one-dimensio
~1D!, two-dimensional~2D!, and three-dimensional~3D! ar-
rays of Josephson junctions, though, started before the
vent of high-Tc superconductivity. Nakajima and Sawada4

for example, had already derived the dynamical equations
flux motion in infinite 2D and 3D arrays of inductivel
coupled small Josephson junctions in 1981. In a somew
more restrictive scenario, other authors were at the t
studying the dynamical properties of these systems for n
ligible magnetic energy of the circulating currents.5,6 Re-
cently, a closer link between the low-field static magne
properties of 2D and 3D arrays of inductively coupled sm
Josephson junctions and the corresponding phenomeno
cal quantities of high-Tc granular superconductors has be
attempted by many authors.7–10 However, the properties o
3D Josephson-junction arrays have not been investigate
depth yet. Indeed, only few recent works on the subject h
appeared in the literature.11,12

In the present work we study the static magnetic prop
ties of the simple 3D network shown in Fig. 1 consisting
twelve inductively coupled small Josephson junctions. In
following section we start by showing that this system
indeed an appropriate model for a physical system consis
of eight grains in a cubic arrangement. In Sec. III we wr
the dynamical equations that govern flux transitions in
cubic network for an arbitrary direction of the applied fiel
In Sec. IV the flux and current distributions are found
numerically integrating the dynamical equations derived
the previous section. In Sec. V the lower threshold field
flux transitions in the system after zero-field cooling~ZFC! is
derived in a closed analytic form for applied fields perpe
dicular to one of the cube side. Conclusions are drawn in
last section.
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II. THE PHYSICAL SYSTEM

In the present section we show that the network in Fig
could be considered to be a model circuit of the physi
system shown in Fig. 2, consisting of eight superconduct
grains in a cubic arrangement. Let us then start by asso
ing a Josephson junction~JJ! to each contact point betwee
adjacent grains in Fig. 2. We immediately see that the res
ing model network must contain twelve JJ’s. To each JJ
associates a gauge invariant superconducting phase d
ence wj(r ) where r5(x,y,z) denotes the position of the
junction andj is the direction along which the junction lies
It is well known that the dynamical equations for thewj’s
can be derived with the aid of the resistively shunted ju
tion model13 once the current circulating in the junction
known. In order to understand the connection between
physical currents circulating in the system of Fig. 2 and tho
circulating in the model system of Fig. 1, let us first consid
the simplest case of an external magnetic field of amplitu
H in the z direction. In this case, the most general curre
distribution is represented in Fig. 3. This current distributi
is due to the axial symmetry of the problem and consists
currents i up and I up flowing in the inner and outer uppe
loops, respectively, and of currentsi low and I low flowing in
the corresponding lower loops. In the case the external fi
is along an arbitrary direction in space, we may represent
whole current distribution in the system by means of t
currentsi (hj)(r ) andI (hj)(r ), which are taken to be the inne
and outer loop currents flowing in theh-j plane at positionr .
The currents circulating in a given face are taken to be p
tive when seen to circulate in the counterclockwise direct
by an external observer placed at infinity on the positive s
of the axis orthogonal to the face itself. By assuming spa
homogeneity of the system, we could express the fluxe
terms of the circulating current by introducing the comple
inductance matrix, whose structure could be summarized
follows:

M~hj!
~mn!~r ,r 8!5@d r ,r8L1~12d r ,r8!M #d~mn!,~hj!

1@21#~dr ,r8!M0@12d~mn!,~hj!#, ~1!
1173 © 1998 The American Physical Society
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N~hj!
~mn!~r ,r 8!5@d r ,r8l 1~12d r ,r8!m#d~mn!,~hj!

1@21#~dr ,r8!m0@12d~mn!,~hj!#, ~2!

K~hj!
~mn!~r ,r 8!5@d r ,r8m* 1~12d r ,r8!m8#d~mn!,~hj!

1@21#~dr ,r8!m08@12d~mn!,~hj!#, ~3!

where the elements of the matrixM are relative to outer-
outer loop current interactions, those of the matrixN pertain
to inner-inner loop current interactions, and those of the m
trix K pertain to inner-outer loop current interactions. In a
dition, the vectorsr andr 8 here represent the position of th
unit cell for the system, consisting of three faces in the th
planar orientations in space, namely, (yz), (xz), and (xy),
as shown in Fig. 4. The double greek indices are taken
represent in a concise way all these three orientations.
thermore, the coefficientsL and l represent the self
inductance of the outer and inner loops, respectively. The
of coefficientsM , m, andm8 and the setM0 , m0 , andm08
are the mutual inductance coefficients between parallel
orthogonal faces, respectively. Finally, the coefficientm*
represents the mutual coupling between inner and outer
rents lying on the same cube side.

The fluxes linked the inner and outer loops lying in t
h-j plane at positionr , denoted byF (hj)(r ) and Q (hj)(r ),
respectively, could be thus written in the following compa
form:

FIG. 1. The circuit model: Each box contains an inductor a
a Josephson junction, as shown in the inset.

FIG. 2. The physical system: Eight weakly-coupled superc
ducting grains in a cubic arrangement.
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F~hj!~r !5(
r8

(
mn
K~hj!

~mn!~r ,r 8!I ~mn!~r 8!

1(
r8

(
mn
N~hj!

~mn!~r ,r 8!i ~mn!~r 8!1m0H•s~hj!~r !,

~4!

Q~hj!~r !5(
r8

(
mn
M~hj!

~mn!~r ,r 8!I ~mn!~r 8!

1(
r8

(
mn
K~hj!

~mn!~r ,r 8!i ~mn!~r 8!1m0H•S~hj!~r !,

~5!

whereS(hj) and s(hj) are the area vectors pertaining to th
outer and inner loops orthogonal to theh-j plane, respec-
tively. By assuming the grains to be in the perfect Meiss
state, we can write:

F~hj!~r !5Q~hj!~r !. ~6!

Finally, by solving Eqs.~4! and~5! with the conditions given
by Eqs. ~6!, one can express the flux linked to either t
outer or the inner loop in a single planar direction in terms
the effective currents circulating in the twelve junction
namely, the currentsI (B)

(hj)(r )5I (hj)(r )1 i (hj)(r ), and in
terms of effective self- and mutual-inductance paramet
We have thus established that the network in Fig. 1 can
seen as the circuit equivalent of a system of eight superc
ducting grains as shown in Fig. 2. Therefore, in adoptin

d

-

FIG. 3. Most general current distribution for the physical syst
represented in Fig. 2 when a magnetic field in the vertical direct
is applied.

FIG. 4. Schematic representation of the current variables fo
single unit of mutually orthogonal faces in the cubic network.
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57 1175THREE-DIMENSIONAL JOSEPHSON-JUNCTION . . .
3D network as a model of a real system, whose electrom
netic properties are to be studied, one should bear in m
that the currents depicted in the circuit of Fig. 1 descr
only the currents that effectively flow into the junctions,
that the current distribution of Fig. 1 does not reproduce
actual current distribution of the physical system, like,
example, the one depicted in Fig. 3. However, the comp
treatment of the physical system is rather difficult since
shielding currents circulating at the grain surfaces are
easy to calculate and only a portion of the superficial curr
density flows through the junctions. Therefore, we shall o
consider the simple case of the network shown in Fig. 1
which the external and the internal current loops have
same values of inductances and thusM(hj)

(mn)(r ,r 8)
5N(hj)

(mn)(r ,r 8)5K(hj)
(mn)(r ,r 8). The notation to be used herea

ter is consistent with the inner loop notation.
Each face of the cube in Fig. 1 contains a square cur

loop made of thin cylindrical wire of diameter 2r , the side
length beinga. The self-inductance of the loop is give
by14,15

l 5
m0a

4p F218S ln
2a

r ~11& !
1&22D G . ~7!

All the current loops can be divided into perpendicu
and parallel components. In the Neuman formula15 the per-
pendicular components vanish and, therefore, it is usefu
cut the circulation integrals of the Neuman formula in
pieces dealing with two parallel current blocks at the tim
This leads to partial mutual inductance

mpar5
m0

4p E
0

aE
0

a dl1dl2

A~ l 12 l 2!21d2

5
m0

4p
@2d22Aa21d212a sinh21~a/d!#, ~8!

where d ~5a or &a! is the distance between the paral
blocks. The directions of the currents in the blocks are ta
into account by setting thempar as positive for equal curren
directions and negative for opposite directions. The circu
tion integrals of the Neuman formula are completed by us
the correspondingmpar’s. In this way, we obtain mutual in
ductance of the orthogonal loops as

m052 l /4 10.02m0a, ~9!

where l/4 comes from galvanic connection in the one-lo
side. Similarly, the mutual inductance of the parallel curr
loops is

m50.08m0a. ~10!

III. THE MODEL EQUATIONS

One possible way of labeling the phase variables is
refer to the position in spacer5(x,y,z) of the corresponding
JJ’s and to the direction along which the junctions lie,
already specified before. Since the position vectorr has been
taken, in the previous section, to correspond to the posi
of the originO(r ) of the unit cell shown in Fig. 4, we denot
by wx(r ), wy(r ), andwz(r ) the phase of the junctions whic
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are closer toO(r ) and which lie in thex, y, andz direction,
respectively. The phase variables of the six still unlabe
junctions in Fig. 4 can be expressed aswj(r1aĥ), where
the directionĥ is different from the directionĵ.

Currents and fluxes, on the other hand, can be labe
through a standard tensorial notation, as seen in the prev
section. In this way, the quantitiesI (xy)

B (r ) and I (xy)
B (r1aẑ)

denote the loop currents seen to flow in the counterclockw
direction by an external observer placed on the positivz
axis. The first current circulates in a cube face placed ri
on thex-y plane, the second in a face translated by a len
a in the z direction. The corresponding fluxes can thus
written asF (xy)(r ) and F (xy)(r1aẑ). By imposing fluxoid
quantization to each closed loop of the network, one c
write the six relations between the normalized flux variab
C5F/F05Q/Q0 and the superconducting phases

2pC~yz!~r !52pn~yz!~r !2wy~r1aẑ!1wy~r !

1wz~r1aŷ!2wz~r !, ~11!

2pC~xz!~r !52pn~xz!~r !2wz~r1ax̂!1wz~r !

1wx~r1aẑ!2wx~r !, ~12!

2pC~xy!~r !52pn~xy!~r !2wx~r1aŷ!1wx~r !

1wy~r1ax̂!2wy~r !. ~13!

In the same way the fluxoid quantization equations can
written for the other loops contained in the remaining thr
cube faces by introducing a translation operatorT̂h , where
the indexh gives the direction along which the translation
performed. This operator acts directly upon the position v
tor r . For example, when applied to the phase variable
acts in the following way:

T̂hwj~r !5wj~r1aĥ !. ~14!

The same is true for the fluxesC (mn)(r ), the currents
I (mn)(r ) and the flux numbersn(mn)(r ). The flux variables
are also linked to the loop currents and to the externa
applied fieldH according to the following:

F~hj!~r !5(
r8

(
mn

A~hj!
~mn!~r ,r 8!I B

~mn!~r 8!1m0H•S~hj!
eff ~r !,

~15!

whereS(hj)
eff (r ) is the effective area vector pertaining to th

cube face orthogonal to theh-j plane andA(hj)
(mn)(r ,r 8) are

effective mutual inductance coefficients.
Introducing the nonlinear Josephson operatorOJ , defined

as

OJ~• !5
F0

2pR

d

dt
~• !1I J sin~• !, ~16!

where the resistive parameterR is taken to be the same fo
all JJ’s and where the quantityI J is the maximum Josephso
current of the junctions. The quantityI J should carry infor-
mation on the position of the junction; nevertheless, we o
these extra indices to keep the notation simpler. The eq
tions of the motion for the twelve phase variables can be t
written as follows:
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FIG. 5. Flux linked to the six cubic faces as a function of the normalized applied fluxCex for b52.0 and for various field orienta
tions: ~a! u50; ~b! u5p/6; ~c! u5p/4; ~d! u5p/3. In Fig. 5~a! we let Cex vary in a cicle in the interval@0,12#. In Figs. 5~b!–5~d! Cex

is taken to increase from 0 to 15.
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OJ@wj~r !#5(
mn

ejmn@ I ~jn!
B ~r !2I ~jn!

B ~r2an̂ !#, ~17!

whereejmn is the Levi Civita symbol. The above set of no
linear ordinary differential equations applies in general to
3D cubic array of Josephson junctions and must be spe
ized to the single cube case by taking care of setting to z
all the currents that are not present in the system.

In order to solve the above set of equations, it is neces
to express the currents appearing on the right-hand sid
Eqs.~17! in terms of the flux numbersC, which, in turn, are
to be expressed in terms of the phase variables through
~11!–~13!. In this way, the dynamical equations~17! become
a set of twelve coupled nonlinear differential equations in
phase variableswj’s. By numerically integrating this set o
equations and by recalling Eqs.~11!–~13! and Eqs.~15! one
can determine the magnetic properties of the model.

IV. STATIONARY MAGNETIC STATES AFTER ZFC

Having derived the dynamical equations for the syste
we may now determine the stationary magnetic states a
ZFC. We integrate the resulting set of nonlinear coupled
ferential equations@Eqs.~17!# by giving a null initial value to
all phase variableswj’s under the forcing condition of zero
applied magnetic fieldH. Subsequently, we give a sma
enough variationDH to the applied field in a fixed direction
a
l-

ro

ry
of

qs.

e

,
er
f-

in space and let the system evolve to a new equilibrium s
compatible with the new forcing conditionH5DH. Finally,
starting from this new state, we apply the same proced
repeatedly, until a maximum value of the applied fie
strength is reached. The way in which we determine the
tionary magnetic states of the system thus relies upon
numerical solution of the dynamical equations, which link
metastable magnetic state realized at a given value of ex
nally applied fieldH to one atH1DH.

Once the phase variables are obtained for increasing
plied field strengths in a fixed direction in space, the fl
distribution can be obtained by Eqs.~11!–~13!, and the cur-
rent distribution can be derived from Eqs.~15! by inverting
the mutual inductance matrixA(hj)

(mn)(r ,r 8). In order to carry
out numerical results, one should first estimate the value
the model parameters. The most important one for netwo
of inductively coupled Josephson junctions is undoubte
the generalized superconducting quantum interference de
~SQUID! parameterb5 l I J /F0 . By making use of Eqs.~7!–
~10!, for a510mm anda/r 5102 we find l 53.331027 H,
m/ l 50.03, andm0 / l 520.24. Therefore, for maximum Jo
sephson current values of the order of 100mA, the adimen-
sional generalized SQUID parameter can be estimated t
of the order of unity. In the present paper we takeb52
throughout. The resulting flux and current distributions in t
system are shown in Figs. 5~a!–5~d! through Figs. 8~a!–8~d!.
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FIG. 6. Mesh currents circulating in the six cubic faces as a function of the normalized applied fluxCex for b52.0 and for various field
orientations: ~a! u50; ~b! u5p/6; ~c! u5p/4; ~d! u5p/3. In Fig. 6~a! we letCex vary in a cicle in the interval@0,12#. In Figs. 6~b!–6~d!
Cex is taken to increase from 0 to 15.
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In Figs. 5~a!–5~d! and in Figs. 6~a!–6~d! the normalized
fluxes Cmn and the normalized currentsi mn5I mn /I J0 are
plotted, respectively, in terms of the normalized forcing te
Cex5m0HS0

eff/F0, for identical junctions, all with maximum
Josephson current equal toI J0 and taken to be field-
independent for simplicity. In Figs. 7~a!–7~d! and Figs.
8~a!–~d!, the normalized flux and currents are reported
terms ofCex for junctions with a distribution of the param
eter differences (I J2I J0) peaked about a null mean value.
Figs. 5~a! and 6~a! the magnetic field is applied in a directio
perpendicular to the base of the cubic network, while in Fi
5~b!–5~d! and in Figs. 6~b!–6~d! the field direction is taken
at an angleu with respect to thez axis @~a! u5p/6, ~b! u
5p/4, ~c! u5p/3#. The same is true for Figs. 7~a!–7~d! and
Figs. 8~a!–8~d!. Let us first comment the results obtained f
identical junctions. In the graphs in Figs. 5~a!–~d! we notice
the appearance of lower thresholdCex values for irreversible
flux penetration, which we shall here denote asCex

(1) . In-
deed, for normalized applied fluxes lower thanCex

(1) , the
Cmn vs Cex curves are seen to follow a reversible pa
starting from ZFC. AtCex5Cex

~1! an irreversible flux transi-
tion involving four flux quanta occurs. A discontinuity in th
current distributions corresponding to theCex5Cex

~1! values
can be noticed in Figs. 6~a!–6~d!. The presence of hysteres
in the system can be readily verified by looking at Figs. 5~a!
and 6~a!, in which we have cycledCex in the interval@0, 12#.
.

,

The same type of behavior is also present for different fi
directions; for the sake of clarity, however, in the rest of t
figures we have only shown results for increasingCex val-
ues. In particular, in the following section it will be show
that the cubic system, in the case ofu50, acts much like a
SQUID, so thatCex

(1) can be analytically determined. In gen
eral, then, forCex.Cex

~1! a new magnetic state appears. T
number of fluxons trapped in the system will be almost u
altered until a new flux transition occurs atCex

(2) , where
discontinuities can be detected in the current distributio
Successive flux transition will show a periodic behavior
the applied fluxCex. We may notice that, while foru50 the
flux linked to the side loops is zero, in the case the angleu is
different from zero this condition is not verified. As a co
sequence, the flux distribution may differ considerably in t
two cases. Indeed, as the angleu increases, flux penetratio
mechanisms, which in Fig. 5~a! and Fig. 6~a! pertained only
to thex-y plane are gradually transferred to thex-z plane, in
the following way: Foru50 all fluxons penetrating the sys
tem are aligned to thez axis, given the axial field symmetry
For applied field anglesu different from zero, one envision
a penetration mechanism that is due to the superpositio
the two field components, one alongz, one alongx. The
fluxons thus penetrate the faces in thex-y or x-z plane in
such a way that the combination of the number of fluxo
alongz and those alongx gives an asymptotic field direction
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FIG. 7. Flux linked to the six cubic faces as a function of the normalized applied fluxCex for nonidentical junctions. The average SQUI
parameter isb52.0 and the maximum Josephson currents have a peaked distribution about the mean. Four runs have been do
following field orientations: ~a! u50; ~b! u5p/6; ~c! u5p/4; ~d! u5p/3. The external fieldCex is taken to increase from 0 to 15.
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equal to that of the applied field. As an example, whenu
5p/4, only two of the four fluxons entering the system du
ing a flux transition penetrate through thex-y plane, the
other two penetrate through thex-z plane. Following the
same type of reasoning, foru5p/2, all penetrated fluxons
must penetrate through thex-z plane. In these cases, th
asymptotic condition is satisfied at the very beginning of
irreversible penetration process. On the other hand, for n
commensurate values of the ratio of the applied flux com
nents~u5p/6 andu5p/3!, the asymptotic condition is me
at relatively high-field values.

In the case of nonidentical junctions, instead, single fl
ons penetrate the superconducting network. This, of cou
is a clear effect of the presence of inhomogeneity in
junction parameters, which is a situation closer to what
be observed in physical systems. Indeed, when an exte
magnetic field is applied to a superconducting network a
ZFC, shielding currentsI mn circulate in the system. How
ever, some branch current, given by shielding current dif
ences, may exceed the maximum Josephson current of o
the junctions with a weaker coupling energy, so that a sin
flux transition appears because of a 2p phase slip in this
junction. The current distribution thus suffers a discontin
ous change to a new configuration where another wea
coupled junction may allow a fluxon into the network wh
the external field is further increased. In this way, smoot
but rather more difficult to follow transitions appear,
shown in Figs. 7~a!–7~d! and Figs. 8~a!–8~d!.

Take, as a first example, flux transitions occurring for
-
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external field applied in the axial direction@Figs. 7~a! and
8~a!#. We chose the junction strengths to be as follow
i Jx(r )51.05, i Jx(r1aŷ)51.10, i Jx(r1aẑ)51.00, i Jx(r
1aŷ1aẑ)50.95, i Jy(r )50.95, i Jy(r1ax̂)51.00, i Jy(r
1aẑ)50.90, i Jy(r1ax̂1aẑ)50.95, i Jz(r )51.00, i Jz(r
1ax̂)51.05, i Jz(r1aŷ)51.00, i Jz(r1ax̂1aŷ)51.05,
where i Jj(r ) is the normalized value of the maximum J
sephson current of the junction placed atr and lying in the
direction j. The weakest junction in the faces lying in th
x-y plane, where the highest values of the screening curr
are present, is the one with maximum Josephson cur
i Jy(r1aẑ)50.90. This JJ is located on the common edge
the upper base and the back face in they-z plane and can be
denoted, by extending the notation used before, as Jy(r
1aẑ). Because of inhomogeneity, the flux in the latter fa
is not zero, as it is shown, by means of an enlarged scale
the lower part of Fig. 7~a!. This extra flux links to the uppe
base face, so thatCxy(r1aẑ) is always greater thanCxy(r ),
as shown in the same Fig. 7~a!. This asymmetry grows large
and larger until phase slip of the weakest junction in t
upper base face, namely the junction JJy(r1aẑ), and a suc-
cessive phase slip of the weakest junction in the lower b
face @JJy(r )# do not reduce the difference betweenCxy(r
1aẑ) and Cxy(r ). Notice also how the flux jump is of al
most one flux quantum. A similar analysis can be done e
in the noncommensurate applied field components. Howe
the flux and current distributions are more complex, as i
evident from Figs. 7~b! and 7~d! and Figs. 8~b! and 8~d!.
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FIG. 8. Mesh currents circulating in the six cubic faces as a function of the normalized applied fluxCex for nonidentical junctions. The
average SQUID parameter isb52.0 and the maximum Josephson currents have a peaked distribution about the mean. Four runs h
done for the following field orientations:~a! u50; ~b! u5p/6; ~c! u5p/4; ~d! u5p/3. In Fig. 8~a! we letCex increase from 0 to 12. In
Figs. 8~b!–8~d! the external field is taken to increase from 0 to 15.
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We may, as a second example, describe flux transition
the case ofu5p/4. As it can be seen from Fig. 7~c!, a flux
transition involving one fluxon entering thex-z face located
at positionr and exiting from the upper base face occurs a
lower field than a second transition involving another flux
entering from the lower base face and exiting from thex-z
face located at (r1aŷ). This penetration mechanism repea
with a fixed periodicity at higher fields. In order to recogni
that JJ suffers phase slip during each flux transition, we m
proceed as follows. First notice that the net current circu
ing in JJx(r1aẑ) is given by the adding contributions o
both i xz(r ) and i xy(r1aẑ). The same happens for JJx(r
1aŷ), in which the net current is given by the adding co
tributions of bothi xy(r ) and i xz(r1aŷ). When the net cur-
rent in one of these two junctions is close to the maxim
Josephson current, a flux transition occur. Given now t
JJx(r1aẑ) is weaker than JJx(r1aŷ), flux transitions in the
former JJ always appear at a lower field. A similar type
reasoning can be applied in analyzing the magnetic resp
for other field directions.

V. LOWER THRESHOLD FIELD

In the present section we first show that, for field dire
tions perpendicular to one of the faces of the 3D homo
neous network, a first threshold field is present for a cer
in
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range of theb parameter of the model. Then, after havin
analytically determined this range, we find a closed analy
expression for the lower threshold field in terms ofb.

Let us consider the external field applied in a directi
orthogonal to the cube base, so thatH5Hẑ. For symmetry
reasons, the stationary solutions of Eqs.~17! are given by the
following:

I J0sin wx5I b , ~18!

I J0 sin wy52I b , ~19!

I J0 sin wz50, ~20!

whereI b.0 is the absolute value of the current circulating
the base face and in the upper face of the cube. By mak
use of the current-flux relations, we can write

I ~mn!5F~mn!50 if ~mn!Þ~xy!, ~21!

I b5
Fex2Fb

l 1m
for ~mn!5~xy!, ~22!

whereFb5F (xy)(r )5F (xy)(r1aẑ).
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In this case we can choose one independent phase
ablewb for all junctions lying in the base face, so that, ma
ing use of fluxoid quantization, the normalized fluxCb can
be written as

Cb5
2wb

p
, ~23!

and the nontrivial stationary equations@Eqs.~18!–~20!# take
the following form:

Cb1b̃ sin~pCb/2!5Cex, ~24!

whereb̃5I J0( l 1m)/F0 . Thebc value is obtained by taking
the Cb derivative of the above expression and by looking
the minimum value ofb̃ for which this derivative can be
zero. We therefore findb̃c52/p. We can now find the value
of the first threshold field value by solving simultaneous
Eq. ~24! and the equation obtained by differentiating bo
sides of Eq.~24! and by setting

dCex

dCb
511

p

2
b̃ cosS p

2
CbD50, ~25!

thus obtaining

Cex
~1!5b̃A12S 2

pb̃
D 2

1
2

p
Fp2sin21A12S 2

pb̃
D 2G .

~26!

The above equation thus defines the lower threshold fi
value in terms of the parameterb̃ for the cubic network in
the presence of an axial external magnetic field. A numer
evaluation ofCex

(1) is shown in Fig. 9 in terms of the param
eter b5 l I J0 /F0 . The comparison between the numerica
evaluatedCex

(1) vs b curve and the analytical expression
Eq. ~26! shows a good agreement between the numerical
analytic solution of the problem.

VI. CONCLUSIONS

We studied the low-field response of the simplest thr
dimensional Josephson junction cubic network in which
magnetic energy of the circulating currents is taken into
count by introducing mutual inductance coefficients betwe
closed loops in the networks. A characteristic parameteb,
do
ri-

t

ld

al

nd

-
e
-
n

similar to the usual SQUID parameter, may be defined
this system. We estimate the value of the parameterb to be
of the order of unity and takeb52 throughout. The station
ary magnetic states of the system are then obtained by
merical analysis, starting from zero-field cooling conditio
and fixing the applied field direction. In general, we find th
a lower threshold field value, which depends on the fi
direction, separates a low-field reversible region from an
per region in which irreversible flux transitions occur. Mor
over, the penetration mechanisms are such to generate a
distribution in the system which asymptotically reproduc
the symmetry of the applied field. We show that, for a co
pletely homogeneous system and for an axial applied fi
the network behaves much like a simple SQUID, so tha
close analytic expression for the lower threshold field can
found. Moreover, more than one fluxon are involved in
single flux transition when a homogeneous system is con
ered. For the inhomogeneous case, on the other hand, a
metric states appear even for axial applied fields, and flux
enter the network one at a time, thus producing lower st
at the points of discontinuity in which flux transitions a
seen to occur in the flux distribution vs applied field curve

Finally, the dynamical equations for the superconduct
phases of the junctions are written in a general fashion
that applications to more complex systems can be develo
in future works.

FIG. 9. Lower threshold field in the cubic network of Fig. 1 a
a function of the SQUID parameterb for an axially applied externa
magnetic field.
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