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Three-dimensional Josephson-junction arrays: Static magnetic response
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In this work we present a simple three-dimensional Josephson-junction array model: a cube with twelve
junctions, one on each edge. The low-field magnetic response of the system is studied numerically for arbitrary
directions of the applied field. In this model the magnetic energy of the circulating currents is taken into
account by introducing an effective mutual inductance matrix. The lower threshold field for flux penetration is
determined in a closed analytic form for field directions perpendicular to one cube side.
[S0163-182608)05502-1

I. INTRODUCTION Il. THE PHYSICAL SYSTEM

The int tin J h unci has b In the present section we show that the network in Fig. 1
€ interest i Josephson-junction arrays has DEEN €Oy, 14 pe considered to be a model circuit of the physical

stantly growing since the discovery of higR- gystem shown in Fig. 2, consisting of eight superconducting
superconductorsindeed, it was soon clear that the low-field grains in a cubic arrangement. Let us then start by associat-
electromagnetic properties of this class of supercor_1duct_or§Ig a Josephson junctio@) to each contact point between
could b‘:z well described by means of Josephson junctioBgjacent grains in Fig. 2. We immediately see that the result-
networks® _ . _ . ing model network must contain twelve JJ's. To each JJ one
The study of the physical properties of one-dimensionahssociates a gauge invariant superconducting phase differ-
(1D), two-d|men3|on_a[2D_), and three-dimension#8D) ar-  gpce ¢.(r) wherer=(x,y,2) denotes the position of the
rays of Josephson junctions, though, started before the aginction andé is the direction along which the junction lies.
vent of highT, superconductivity. Nakajima and Sawdda, |t is well known that the dynamical equations for the's
for example, had already derived the dynamical equations foga pe derived with the aid of the resistively shunted junc-
flux motion in infinite 2D and 3D arrays of inductively tion model® once the current circulating in the junction is
coupled small Josephson junctions in 1981. In a somewhalnown, In order to understand the connection between the
more restrictive scenario, other authors were at the tim@nysical currents circulating in the system of Fig. 2 and those
studying the dynamical properties of these syste%né for negsirculating in the model system of Fig. 1, let us first consider
ligible magnetic energy of the circulating currettSRe- he simplest case of an external magnetic field of amplitude
cently, a closer link between the low-field static magneticy i the z direction. In this case, the most general current
properties of 2D and 3D arrays of inductively coupled smallgisiripytion is represented in Fig. 3. This current distribution
Josephson junctions and the corresponding phenomenologk e to the axial symmetry of the problem and consists of
cal quantities of highF gralj%ar superconductors has bee”currentsiup and I, flowing in the inner and outer upper
attempted by many authofs'® However, the properties of loops, respectively, and of curreritg, and |y, flowing in

3D Josephson-junction arrays have not been investigated ¥ corresponding lower loops. In the case the external field
depth yet. Indeed, only few recent works on the subject haves aiong an arbitrary direction in space, we may represent the
appeared in the literatufe: , _ whole current distribution in the system by means of the
_ In the present work we study the static magnetic PrOPEIzurrentsi(,,(r) andl,4(r), which are taken to be the inner
ties of the simple 3D network shown in Fig. 1 consisting of ;4 outernloop curren@s flowing in the£ plane at position.
twelve inductively coupled small Josephson junctions. In therpe ¢rrents circulating in a given face are taken to be posi-
following section we start by showing that this system iS¢ \when seen to circulate in the counterclockwise direction
mde_ed an appropriate model for a physical system COHSISF'nQy an external observer placed at infinity on the positive side
of eight grains in a cubic arrangement. In Sec. lll we write ot e axis orthogonal to the face itself. By assuming spatial
the dynamical equations that govern flux transitions in thqﬁomogeneity of the system, we could express the fluxes in
cubic network for an arbitrary direction of the applied field. o ms of the circulating current by introducing the complete

In Sec. IV the flux and current distributions are found by iq,ctance matrix, whose structure could be summarized as
numerically integrating the dynamical equations derived iny);q\s:

the previous section. In Sec. V the lower threshold field for
flux transitions in the system after zero-field cooli@C) is

derived in a closed analytic form for applied fields perpen- ME’,‘,E;(F,F')Z[t?r,wLJF(l—5r,rf)|\/|]5(,w>,<ﬂg>
dicular to one of the cube side. Conclusions are drawn in the
last section. +H[ =110 M[ 1= Sy ] (D
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FIG. 3. Most general current distribution for the physical system
represented in Fig. 2 when a magnetic field in the vertical direction
is applied.

FIG. 1. The circuit model: Each box contains an inductor and <1>( §>(r)=2 2 ICE’”)(r r’)l( )(r/)
7 J my
r’ Rv

a Josephson junction, as shown in the inset. 7¢)

V) ;G ’

NG ) =[8 01+ (1= 8 )M 8 () +2 ; NG )i (1) + soH - Sy (1),
r 14
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where the elements of the matrix! are relative to outer- (5)
outer loop current interactions, those of the matyipertain

to inner-inner loop current interactions, and those of the mawhereS, ;) ands, ;) are the area vectors pertaining to the
trix K pertain to inner-outer loop current interactions. In ad-outer and inner loops orthogonal to theé plane, respec-
dition, the vectors andr’ here represent the position of the tively. By assuming the grains to be in the perfect Meissner
unit cell for the system, consisting of three faces in the thre&tate, we can write:

planar orientations in space, namelyz), (xz), and y),

as shown in Fig. 4. The double greek indices are taken to D (e (N =0 (). (6)
represent in a concise way all these three orientations. Fu
thermore, the coefficientd and | represent the self-
inductance of the outer and inner loops, respectively. The s
of coefficientsM, m, andm’ and the seM,, my, andm;

Einally, by solving Egs(4) and(5) with the conditions given
t{y Egs. (6), one can express the flux linked to either the
Buter or the inner loop in a single planar direction in terms of
are the mutual inductance coefficients between parallel anthe effective currents circulating in the twelve junctions,
B - . ;
orthogonal faces, respectively. Finally, the coefficienit Hamely, the currents (1) =1 (1) +igp(r), and in
’ C 7 o terms of effective self- and mutual-inductance parameters.
represents the mutual Coupllng_between inner and outer CU{ye have thus established that the network in Fig. 1 can be
rents lying on the same cube side. o seen as the circuit equivalent of a system of eight supercon-
The fluxes linked the inner and outer loops lying in theducting grains as shown in Fig. 2. Therefore, in adopting a

7-¢ plane at positiorr, denoted byd . (r) and®,(r),
I(xz @

respectively, could be thus written in the following compact
form:

X

FIG. 2. The physical system: Eight weakly-coupled supercon- FIG. 4. Schematic representation of the current variables for a
ducting grains in a cubic arrangement. single unit of mutually orthogonal faces in the cubic network.
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3D network as a model of a real system, whose electromagsre closer td(r) and which lie in thex, y, andz direction,

netic properties are to be studied, one should bear in mingespectively. The phase variables of the six still unlabeled
that the currents depicted in the circuit of Fig. 1 describgunctions in Fig. 4 can be expressed @gr+a?), where

only the currents that effectively flow into the junctions, sone direction? is different from the directiorz.

that the current distribution of Fig. 1 does not reproduce the cyrrents and fluxes, on the other hand, can be labeled
actual current distribution of the physical system, like, for,rough a standard tensorial notation, as seen in the previous
example, the one depicted in Fig. 3. However, the complet@qction. In this way, the quantitid%y)(r) andl?xy)(r+a“z)

treatment of the physical system is rathgr difficult since thedenote the loop currents seen to flow in the counterclockwise
shielding currents circulating at_the grain surfaggs aré NOfirection by an external observer placed on the positive
easy to calculate and only a portion of the superficial curren

density i th h the iuncti Theref hall onl is. The first current circulates in a cube face placed right
ensity Tlows through he junctions. Theretore, we shail only, , thex-y plane, the second in a face translated by a length
consider the simple case of the network shown in Fig. 1, i

hich the external and the internal current loops have th in the z direction. The corresponding fluxes can thus be
wh X . ! u ( e) ,V Svritten as®d () anddb(xy)(r+a2). By imposing fluxoid
same values of inductances and thuM(’;g)(r,r )

) )y i quantization to each closed loop of the network, one can
=Ne (rr')=Kig(r,r'). The notation to be used hereaf- \yrite the six relations between the normalized flux variables

ter is consistent with the inner loop notation. V=0/P,=0/0, and the superconducting phases
Each face of the cube in Fig. 1 contains a square current .
loop made of thin cylindrical wire of diameter 2the side 27V (5 (1) =27Ny5 (1) = @y(r+az) + @y (r)
length beinga. The self-inductance of the loop is given A
pyidas e e o r+ad) —en), (ay
Lol 2'77'\1,(xz)(r):277'”(xz)(r)_ @z(r+a’5()+ @)
|=——]24+8{ In ———+v2—-2] |. 7 N
ar (11v2) “ Fortad) - N, 12
All the current loops can be divided into perpendicular 27 W () (1) = 27Ny (1) — @y(r +aY) + @y(T)
and parallel components. In the Neuman formtutae per- 4 +aX)— (13
pendicular components vanish and, therefore, it is useful to ey(r+ax)=ey(r).

cut the circulation integrals of the Neuman formula intoIn the same way the fluxoid quantization equations can be
pieces dealing with two parallel current blocks at the time.written for the other loops contained in the remaining three

This leads to partial mutual inductance cube faces by introducing a translation operafg; where
the indexz# gives the direction along which the translation is
_ Mo fafa dl,dl, performed. This operator acts directly upon the position vec-
Mpar="7— —_— : . .
A7 J)o Jo ‘/(|1—|2)2+ d2 tor r. For example, when applied to the phase variables it
acts in the following way:
Mo - ~
=1 [2d—2+a’+d?+2a sinh Y(a/d)], (8) T,0dr)=gdr+an). (14)

whered (=a or v2a) is the distance between the parallel The same is true for the fluxe¥,,(r), the currents
blocks. The directions of the currents in the blocks are takem.»(r) and the flux numbers(,,)(r). The flux variables
into account by setting then,, as positive for equal current are aiso linked to the loop currents and to the externally
directions and negative for opposite directions. The circula@Pplied fieldH according to the following:

tion integrals of the Neuman formula are completed by using

the correspondingng,s. In this way, we obtain mutual in- q)(ng)(r)zz > AE';Q(““)'B(;LV)(V')JFMOH'S?SQ(V),
ductance of the orthogonal loops as T 5

=— +0. . . -
Mo /4 +0.02u03, © wheres‘fgg)(r) is the effective area vector pertaining to the
wherel/4 comes from galvanic connection in the one-loopcube face orthogonal to the-¢ plane andAE’,jg))(r,r’) are
side. Similarly, the mutual inductance of the parallel currenteffective mutual inductance coefficients.

loops is Introducing the nonlinear Josephson oper&gr defined
m=0.08xa. 1o 2

d
-0 = in -
lll. THE MODEL EQUATIONS Oy(-)= 2R dt () +1ysinC-), (16)

One possible way of labeling the phase variables is tavhere the resistive paramet@ris taken to be the same for
refer to the position in spage=(x,y,z) of the corresponding all JJ's and where the quantity is the maximum Josephson
JJ's and to the direction along which the junctions lie, ascurrent of the junctions. The quantity should carry infor-
already specified before. Since the position vectbas been mation on the position of the junction; nevertheless, we omit
taken, in the previous section, to correspond to the positiothese extra indices to keep the notation simpler. The equa-
of the originO(r) of the unit cell shown in Fig. 4, we denote tions of the motion for the twelve phase variables can be thus
by @x(r), ¢,(r), ande,(r) the phase of the junctions which written as follows:
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FIG. 5. Flux linked to the six cubic faces as a function of the normalized applieddflypfor 8=2.0 and for various field orienta-
tions: (a) 6=0; (b) 6=m/6; (c) O=/4; (d) 6==/3. In Fig. 5a) we let ¥, vary in a cicle in the interval0,12]. In Figs. 8b)—5(d) V¢,
is taken to increase from O to 15.

5 5 ~ in space and let the system evolve to a new equilibrium state
O @e(N1=2 €l ey (N =15, (r—ad)], (A7) compatible with the new forcing conditidd=AH. Finally,

* starting from this new state, we apply the same procedure
wheree,,, is the Levi Civita symbol. The above set of non- repeatedly, until a maximum value of the applied field
linear ordinary differential equations applies in general to astrength is reached. The way in which we determine the sta-
3D cubic array of Josephson junctions and must be speciationary magnetic states of the system thus relies upon the
ized to the single cube case by taking care of setting to zeraumerical solution of the dynamical equations, which link a
all the currents that are not present in the system. metastable magnetic state realized at a given value of exter-

In order to solve the above set of equations, it is necessanyally applied fieldH to one atH+ AH.
to express the currents appearing on the right-hand side of Once the phase variables are obtained for increasing ap-
Egs.(17) in terms of the flux number¥, which, in turn, are  pjied field strengths in a fixed direction in space, the flux
to be expresse_d in terms of the phase variables through EQSistribution can be obtained by Eqd.)—(13), and the cur-
(11)—(13). In this way, the dynamical equatiofs7) become ren; gistribution can be derived from Eq45) by inverting
a set of tW_ere coEJpIed nonIme_ar dlff_erentlal_equat_lons in thethe mutual inductance matri&*?(r,r’). In order to carry
phase variableg,'s. By numerically integrating this set of out numerical results, one shc()?fl)d first estimate the values of
equations and by recalling Eg4.1)—(13) and Eqs(15) one ' .
can determine the magnetic properties of the model. the. mode_l parameters. The most mportgnt one for networks
of inductively coupled Josephson junctions is undoubtedly
the generalized superconducting quantum interference device
(SQUID) parametepB=1l ;/®,. By making use of Eqg7)—
Having derived the dynamical equations for the system(10), for a=10um anda/r =10? we find1=3.3x 10"’ H,
we may now determine the stationary magnetic states aften/l =0.03, andmg /I = —0.24. Therefore, for maximum Jo-
ZFC. We integrate the resulting set of nonlinear coupled dif-sephson current values of the order of 108, the adimen-
ferential equationpEqgs.(17)] by giving a null initial value to ~ sional generalized SQUID parameter can be estimated to be
all phase variableg,'s under the forcing condition of zero of the order of unity. In the present paper we take 2
applied magnetic fielH. Subsequently, we give a small throughout. The resulting flux and current distributions in the
enough variatiom\H to the applied field in a fixed direction system are shown in Figs(@—5(d) through Figs. 8)—8(d).

IV. STATIONARY MAGNETIC STATES AFTER ZFC
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FIG. 6. Mesh currents circulating in the six cubic faces as a function of the normalized appliéb fléor 3=2.0 and for various field

orientations: (a) =0; (b) 6= =/6; (c) 0= w/4; (d) 6= /3. In Fig. §a) we let ¥, vary in a cicle in the intervdl0,12]. In Figs. §b)—6(d)
W, is taken to increase from 0O to 15.

In Figs. 5a)-5(d) and in Figs. 6a)—6(d) the normalized The same type of behavior is also present for different field
fluxes ¥, and the normalized currenis,,=1,,/l,, are  directions; for the sake of clarity, however, in the rest of the
plotted, respectively, in terms of the normalized forcing termfigures we have only shown results for increasikig, val-
Vo, = oH Sy, for identical junctions, all with maximum  ues. In particular, in the following section it will be shown
Josephson current equal tg, and taken to be field- that the cubic system, in the case &# 0, acts much like a
independent for simplicity. In Figs. (@-7(d) and Figs. SQUID, so that? (Y can be analytically determined. In gen-
8(a)—(d), the normalized flux and currents are reported ingral, then, for\Ifex>\I/g-() a new magnetic state appears. The

terms of W, for junctions with a distribution of the param- numper of fluxons trapped in the system will be almost un-

eter differencesl(—1;,) peaked about a null mean value. In 5itered until a new flux transition occurs 3  where

. . . . . . . . ex !
Figs. 3a) and Ga) the magnetic field is applied in a direction giscontinuities can be detected in the current distributions.
perpendicular to the base of the cubic network, while in Figsg,ccessive flux transition will show a periodic behavior in

5(b)-5(d) and in Figs. &)-6(d) the field direction is taken  he gpplied flux .. We may notice that, while fof=0 the

at an angleg with respect to the axis[(@) 6=/6, (b) 6 g4 |inked to the side loops is zero, in the case the aigie

= /4, (c) 6=m/3]. The same is true for Figs(@—-7(d) and  iferent from zero this condition is not verified. As a con-
Figs. 8a)—-8(d). Let us first comment the results obtained for gequence, the flux distribution may differ considerably in the
identical junctions. In the graphs in Figgab-(d) we notice 1 cases. Indeed, as the angléncreases, flux penetration
the appearance of lower threshall, values for irreversible mechanisms, which in Fig.(8 and Fig. 6a) pertained only
flux penetration, which we shall here denote S, . In- g thex-y plane are gradually transferred to the plane, in
deed, for normalized applied fluxes lower thar), the  the following way: Ford=0 all fluxons penetrating the sys-
¥, vs ¥, curves are seen to follow a reversible path,tem are aligned to the axis, given the axial field symmetry.
starting from ZFC. At\lfex=\lf,(elx) an irreversible flux transi- For applied field angle# different from zero, one envisions
tion involving four flux quanta occurs. A discontinuity in the a penetration mechanism that is due to the superposition of
current distributions corresponding to tﬂeexz\lf(elx) values the two field components, one alorzg one alongx. The

can be noticed in Figs.(8-6(d). The presence of hysteresis fluxons thus penetrate the faces in theg or x-z plane in

in the system can be readily verified by looking at Fig®)5 such a way that the combination of the number of fluxons
and a), in which we have cycle® ., in the interval 0, 12]. alongz and those along gives an asymptotic field direction
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FIG. 7. Flux linked to the six cubic faces as a function of the normalized appliedflifor nonidentical junctions. The average SQUID
parameter is3=2.0 and the maximum Josephson currents have a peaked distribution about the mean. Four runs have been done for the
following field orientations: (a) #=0; (b) 6= =/6; (c) = /4; (d) #==/3. The external fieldV,, is taken to increase from 0 to 15.

equal to that of the applied field. As an example, whien external field applied in the axial directidirigs. 1a) and

= /4, only two of the four fluxons entering the system dur-8(a)]. We chose the junction strengths to be as follows:
ing a flux transition penetrate through they plane, the i;,(r)=1.05, i;(r+ay)=1.10, iz(r+az)=1.00, i (r
other two penetrate through thez plane. Following the  +ay+a2)=0.95, i,,(r)=0.95, i (r+aX)=1.00, i(r
same type of reasoning, fat=n/2, all penetrated fluxons +a7)=0.90, in(r+a3<+ az)=0.95, i5,(r)=1.00, i/r
must penetrate through thez plane. In these cases, the +3%)=1.05, i),(r+ay)=1.00, i,,(r+aX+ay)=1.05,
asymptotic condition is satisfied at the very beginning of th%hereijg(r) is the normalized value of the maximum Jo-
irreversible penetration process. On the other hand, for NONsephson current of the junction placedraand lying in the
commensurate values of the ratio of the applied flux compogjrection £ The weakest junction in the faces lying in the
nents(¢= /6 and6=/3), the asymptotic condition is met , \ njane. where the highest values of the screening currents

at relatively h|gh-f|e|d_ valu_es._ . . . are present, is the one with maximum Josephson current
In the case of nonidentical junctions, instead, single flux-,

ons penetrate the superconducting network. This, of cours'JV(r+aZ):o'90' This JJ is located on the common edge of

is a clear effect of the presence of inhomogeneity in thghe upper base and the back face inyhe plane and can be

junction parameters, which is a situation closer to what caf€0ted. by extending the notation used before, g& JJ

be observed in physical systems. Indeed, when an externé’l az). Because of inhomogeneity, the flux in the latter face

magnetic field is applied to a superconducting network aftefS N0t Zero, as it is shown, by means of an enlarged scale, in
ZFC, shielding currents,,, circulate in the system. How- the lower part of Fig. @). :I'h_ls extra flux links to the upper
ever, some branch current, given by shielding current differbase face, so thalt,(r +az) is always greater tha,(r),
ences, may exceed the maximum Josephson current of one & shown in the same Fig(aJ. This asymmetry grows larger
the junctions with a weaker coupling energy, so that a singl@nd larger until phase slip of the weakest junction in the
flux transition appears because of & Phase slip in this upper base face, namely the junction(dd-az), and a suc-
junction. The current distribution thus suffers a discontinu-cessive phase slip of the weakest junction in the lower base
ous change to a new configuration where another weakljacg [JJ(r)] do not reduce the difference betwedn(r
coupled junction may allow a fluxon into the network when +az) andW¥,(r). Notice also how the flux jump is of al-
the external field is further increased. In this way, smoothemost one flux quantum. A similar analysis can be done even
but rather more difficult to follow transitions appear, asin the noncommensurate applied field components. However,
shown in Figs. {a)-7(d) and Figs. 8)—8(d). the flux and current distributions are more complex, as it is
Take, as a first example, flux transitions occurring for anevident from Figs. () and 7d) and Figs. &) and &d).
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FIG. 8. Mesh currents circulating in the six cubic faces as a function of the normalized appliébflder nonidentical junctions. The
average SQUID parameter 5=2.0 and the maximum Josephson currents have a peaked distribution about the mean. Four runs have been
done for the following field orientations:(a) §=0; (b) 6= =/6; (c) 6= w/4; (d) 6=/3. In Fig. §a) we letV, increase from 0 to 12. In
Figs. 8§b)—8(d) the external field is taken to increase from 0 to 15.

We may, as a second example, describe flux transitions irange of theB parameter of the model. Then, after having
the case off==/4. As it can be seen from Fig(d), a flux  analytically determined this range, we find a closed analytic
transition involving one fluxon entering thez face located expression for the lower threshold field in terms@f
at positionr and exiting from the upper base face occurs ata Let us consider the external field applied in a direction
lower field than a second transition involving another fluxonorthogonal to the cube base, so thhtHZz. For symmetry
entering from the lower base face and exiting from ¥ag  reasons, the stationary solutions of E{ds) are given by the
face located atr(+ay). This penetration mechanism repeatsfollowing:
with a fixed periodicity at higher fields. In order to recognize

that JJ suffers phase slip during each flux transition, we may 508N @y =1}, (18)
proceed as follows. First notice that the net current circulat-

ing in JJ(r+a2) is given by the adding contributions of )

both i,,(r) and iy,(r+aZ). The same happens for,{d 30 Singy=—1p, (19
+ay), in which the net current is given by the adding con-

tributions of bothi,(r) andi,,(r+ay). When the net cur- I 30 Sin @,=0, (20

rent in one of these two junctions is close to the maximum

Josephson current, a flux transition occur. Given now thaivherel ,>0 is the absolute value of the current circulating in
JJ(r+az) is weaker than J0r +ay), flux transitions in the the base face and in the upper face of the cube. By making
former JJ always appear at a lower field. A similar type ofuse of the current-flux relations, we can write

reasoning can be applied in analyzing the magnetic response

for other field directions.

V. LOWER THRESHOLD FIELD O y— Dy
|,=————— for =(Xy), 22
In the present section we first show that, for field direc- b I+m (mv)=(xy) (22

tions perpendicular to one of the faces of the 3D homoge-
neous network, a first threshold field is present for a certaiwvheretl)b=d>(xy)(r)=<I>(xy)(r+a2).
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In this case we can choose one independent phase vari 10
able ¢, for all junctions lying in the base face, so that, mak- 9=0 +  numerical
ing use of fluxoid quantization, the normalized flt, can I I analytical
be written as

2
Wy="2, (23 ‘
aa (1)
and the nontrivial stationary equatiofggs. (18)—(20)] take 4
the following form:

W+ B sin(mW,/2) =V, (24)

whereB=1,,(I+m)/®,. The B; value is obtained by taking :
the W, derivative of the above expression and by looking at ] 1 2 3 4 5 6 7 8
the minimum value ofg for which this derivative can be B

zero. We therefore fin@.=2/7r. We can now find the value
of the first threshold field value by solving simultaneously
Eqg. (24) and the equation obtained by differentiating both
sides of Eq.(24) and by setting

=

FIG. 9. Lower threshold field in the cubic network of Fig. 1 as
a function of the SQUID paramet@for an axially applied external
magnetic field.

similar to the usual SQUID parameter, may be defined for
this system. We estimate the value of the paramgter be
of the order of unity and tak@=2 throughout. The station-
ary magnetic states of the system are then obtained by nu-
merical analysis, starting from zero-field cooling conditions
and fixing the applied field direction. In general, we find that
a lower threshold field value, which depends on the field
direction, separates a low-field reversible region from an up-
(26) per region in which irreversible flux transitions occur. More-
over, the penetration mechanisms are such to generate a flux
The above equation thus defines the lower threshold fiel@istribution in the system which asymptotically reproduces
value in terms of the paramet@ for the cubic network in  the symmetry of the applied field. We show that, for a com-
the presence of an axial external magnetic field. A numericapletely homogeneous system and for an axial applied field,
evaluation of#{}) is shown in Fig. 9 in terms of the param- the network behaves much like a simple SQUID, so that a
eter B=I1,,/®d,. The comparison between the numerically close analytic expression for the lower threshold field can be
evaluated¥ (Y vs B curve and the analytical expression in found. Moreover, more than one fluxon are involved in a

ex

d 14273 Tw. =0 25
d\I’b_ +EBCOE b| — Y ()

thus obtaining

2
+ —
ko

~ 2

B

m—sin ! 1—(1,“)
Qi

analytic solution of the problem. ered. For the inhomogeneous case, on the other hand, asym-
metric states appear even for axial applied fields, and fluxons
VI. CONCLUSIONS enter the network one at a time, thus producing lower steps

at the points of discontinuity in which flux transitions are
We studied the low-field response of the simplest threeseen to occur in the flux distribution vs applied field curves.
dimensional Josephson junction cubic network in which the Finally, the dynamical equations for the superconducting
magnetic energy of the circulating currents is taken into acphases of the junctions are written in a general fashion, so
count by introducing mutual inductance coefficients betweerthat applications to more complex systems can be developed
closed loops in the networks. A characteristic paramgter in future works.
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