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Dynamics of fluxons in a discrete Josephson transmission line is investigated, combining numerical simu-
lations and an analytical approach. It is found that, in different ranges of the paraifteéedsiving dc bias
current and dissipative constarttvo fluxons (27— kinks) may form either a bifluxon (#—kink), or various
bound states (2+ 27— kinks with a finite separationwhich can stably propagate along the line. The stability
of these states is investigated as a function of the kink velocity. An analytical approach is based on prediction
of formation of a two-kink bound state through the interaction mediated by their oscillating “tails.” At small
velocities, a satisfactory agreement is found between the analysis and the numerical results. At still smaller
velocities, a new phenomenon is predicted analytically and found numerically, viz., transition from an asym-
metric “tailed” kink to a symmetric tailless one. Conditions for experimental observation of the predicted
behavior, as well as its practical consequences for the fluxon propagation in the discrete Josephson transmis-
sion lines, are discussed td&0163-182808)10417-4

[. INTRODUCTION turbed DSGE with the friction and driving forces. If they
exist, the multi- 277—kinks might be relevant for applica-
Parallel-coupled one-dimensional Josephson junction ations of DJTL to superconducting electronics.
rays, also known as discrete Josephson transmission lines In this work, we investigate dynamics of fluxons in
(DJTL9), have received a considerable interest over the laddJTLs numerically and, partly, also analytically. In order to
yearst? Such an array is described by the discrete sineseparate new effects from the previously known fluxon-
Gordon equatioflDSGE) and represents an experimental re-radiation resonancés.we consider a very long system with
alization of the driven underdamped one-dimensional sineperiodic boundary conditions, i.e., a long annular DJTL. In
Gordon(SG@ ) lattice, which finds applications in many other Sec. Il we show numerically that, depending on the initial
fields of physics. A ballistic 27r—kink in the discrete SG location, a pair of fluxons (2—kinks) may form either a
lattice corresponds to a Josephson vortex, or fluxon, whichifluxon (47 —kink) with no separation between the con-
can propagate in a DJTL. DSGE is much simpler for numeristituent fluxons, or a hierarchy of their bunched states
cal studies than the continuum SG equation, and its first ny-(27+2m) —kinks] that can propagate along the DJTL,
merical and experimental investigations have been initiateteeping a constant separation between the bound fluxons.
long ago? However, due to the nonintegrability of the Stability of these states is investigated as a function of the
DSGE, very limited progress in analytical approaches hasriving force and fluxon's velocity. Conditions for experi-
been reported thus far. Recently, an earlier prediction ofmental observation of the predicted behavior, as well as
resonances between moving fluxon and its radiation in @ome practical consequences for the propagation of fluxon
DJTL (Ref. 1) has been confirmed experimentaddlA num-  pulses in discrete Josephson transmission lines, are also dis-
ber of experimenfs’ and theoretical approacifewere re- cussed. The analytical approach to the description of the
ported lately. bunched stategresented in Sec. IMwill be based on con-
Peyrard and Krusk&Wwere first to point out that, even for sideration of interactions between the twer-Rinks medi-
large discreteness, a localized kink in the SG lattice mayted by their “tails.” An essential peculiarity of the present
exhibit some solitonic features close to those in the conproblem is that the two tails of a moving kir(khe front tail
tinuum SG solitons. In the same work, it had been showrand the trailing ongare strongly different. The bunched state
numerically that, in the absence of losses and at a sufficientlis possible when the trailing tail is oscillating. Analyzing the
high velocity of the kink, the strongly discrete SG modeltail structure, in Sec. lll we will find analytically and will
permits stable propagation of strongly localized mulim  then check numerically that there is a critical value of the
—kinks (i.e., 47 —kinks, 67 —kinks, etc). Until now, the velocity below which the oscillating tails disappears, which
multi— 27 —kinks in real physical systems have not beenimplies existence of a dynamical phase transition in DJTL,
observed experimentally. It is therefore relevant to search fonamely, a transition between the “dimeifor “polymer”)
such higher-order kink solutions numerically in an experi-states and a gas of free fluxons in a sufficiently long DJTL.
mentally realistic parameter range of a DJTL, using the per- To conclude the introduction, it is relevant to stress that
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the bunched states are also possible in the continuum long

Josephson junction, but only if one takes into account, be-

sides the usual dissipative term, the so-called surface losses, 3

that give rise to an extra diffusion term in the corresponding &

SG equation. Due to the presence of this term, the fluxons & '3

moving with a sufficiently large velocity can develop an os-

cillating tail, that gives rise to a bunched state. This fact was

first discovered in computer simulations many years ‘2dp.

has also been demonstrated numericaltigat fluxons mov-

ing at a velocity close to the Swihart velocity indeed posses

a trailing oscillating tail. The first experimental indication to

bunching of the fluxons in the long Josephson junction

through this mechanism has been found by measuring the

emitted radiation in a linear junctid. The analytical ap- :

proach to the formation of the bunched states in the driven X o ®

damped SG model was developed in detail in Ref. 13. In the o_.m." ’“’\ N ,*....R.P.p....“om
I

b

voltage do 25/dt

magnetic flux (<|>n+1-<|>n_1) /

discrete SG model, in contrast to the continuum one, the
bunched states may exist even without any dissipation.

0 10 20 30 40 50
Il. SIMULATIONS OF THE BUNCHED STATES junction number n
OF THE FLUXONS

FIG. 1. Numerically calculated instantaneous profile of the local
gnetic flux as a function of the cell number corresponding to a
single fluxon propagating through a one-dimensional annular Jo-
d2¢ sephson junction arragfrom the right to the left The parameters

n n . used are the normalized array lengitk 50, the discreteness param-
dt2 + T +sin ¢+ 7‘;(¢n71_ 2¢nt ¢n+1)=0, etera= 1.0, the dissipation coefficiert=0.1, and the bias current

(1) v=0.4. The inset shows the time evolution of the voltage at the
junction with the numben=25.

The discrete Josephson transmission line is described brxa
the discrete version of the perturbed SG model

where the individual junction’s numben, takes values 0
<n=<N, ¢, is the superconducting phase difference on themagnetic flux per cell as a function of the junction number
nth junction, anda is the normalized spacing of the discrete that corresponds to a single fluxon propagating from the right
line which is often also called discreteness parameter. T¢0 the left. Starting from the initial configuration in the form
simplify comparison with the continuum case, all the param-of the 27 —kink solution to the continuum SG equation,
eters in Eq(1) are written in the standard notation similar to ¢,=4 arctgexp (an+ vt—XO/\/l—vz)] (where the con-
that used in the continuum SG model: the spatial coordinaténuum coordinate is substituted by the discretely varying
X is normalized to the effective Josephson penetration depthistancean) with the velocityv =0.9 andx,=20, Eq. (1)
the timet is normalized to the inverse plasma frequencyhas been integrated over 500 time units. The steadily moving
wal:[(DOC/JC]UZ, C is the mean capacitance per unit fluxon with a well-established velocity,-~0.768 has been
length of the array is a dissipation coefficient, angis the ~ obtained. The inset shows evolution of the local voltage
bias current per unit length normalized to the spatially averd¢n(t)/dt at the individual junction with the numben
aged critical current density,=1./D, |, andD being the = =25. One clearly sees the oscillating “tail,” i.e., decaying
critical current of an isolated junction and the distance beoscillations in the wake of the passing kink. These oscilla-
tween the neighboring junctions in physical units. Equatiortions are due to the discreteness of the transmission line and
(1) is written in the simplest approximation neglecting all are discussed in more detail in the next section.
mutual inductances between different cells in the array. A In order to trigger a bifluxon in our numerical experiment,
complete model of DJTL, including long-range mutual in- the simulations were started from the initial conditions cor-
ductances, has been considered in Ref. 14. In relation to th@sponding to two identical continuum SGr2 kinks placed
above mentioned surface losses in long continuous junctiongt the same position=0 and moving initially at the velocity
we note that the corresponding term is neglected in(Bg. v =0.9. After a transient period, a steady state is reached in

In order to study interactions between moving fluxons inthe form of a localized single #—kink propagating at the
the most clear form, we simulated Eq4) with periodic  velocity v,-~0.853. The local voltage evolution for this
boundary conditions, identifying the points=0 andn=N state is shown in Fig.(3), with the other parameters being
in Egs. (1) and assumingpy= ¢o+ 27Ny, whereN; is the  the same as for Fig. 1. We note that at the same bias current
number of the fluxons trapped in the ring array. In the simu-y the established velocity,r of the two-fluxon 4r—kink is
lations presented in this work, we considered the simplediarger than that of the single-fluxon2—kink v,r. Three
cases with one or two trapped fluxons. The integration waslots in Fig. 2 show a change in the local voltage evolution at
performed using the fourth-order Runge-Kutta scheme withihe individual junction with the numben=25 as the bias
the time stepAt=0.0251 currenty is decreased fromy=0.40(a) to y=0.15(c). We

The numerically found kinkfluxon) solution to Eq(1) is  find that, with decrease of the bias current, the velocity of the
shown in Fig. 1. Displayed is an instantaneous profile of thdluxons is decreasing and ther4 kink transforms into a
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with L=100,a=1.0, anda=0.1. The voltage axis shows the nor-
time t malized fluxon velocityv. The arrows indicate branches corre-
] o ] ) sponding to different fluxon bunched state&) the 4« —kink; (B)
FIG. 2. Bifluxon propagating in the one-dimensional annularyhe first (27+27) bunched state; @) the second (2+2)
Josephson junction array with=>50, a=1.0, anda=0.1. Three  pnched state;[¥) the third (27+2) bunched state.
plots show the time evolution of the voltage at the junction with
n=25 aty=0.40(a), y=0.25(b), andy=0.15(c), respectively.  gyjitched into a high-voltage state corresponding to a quickly
whirling background. With decrease of from the initial
pair of separated but closely boundr2 kinks, which are  point y=0.5, we have found a sequence of switchings be-
marked by the arrows in Figs(l® and Zc). At a fixed bias tween the different bunched state:~B—C—D— .. ..
currenty, the spacing between the kinks remain constant foFor any of these states, further increase of the bias revealed a
arbitrary long integration time(time intervals up tot hysteresis which is clearly seen in Fig. 3.
=10000 have been tested®ne can notice that the bunched  Thus, the most salient feature of Fig. 3 is that, with the
states of two zr— kinks in Figs. Zb) and Zc) differ from decrease of the driving force, ther4-kink turns into the
each other by the number of the oscillations trapped betweefirst bunched (2r+27)—kink state at a certain velocity
the two bunched kinks passing the observation point. =09, the latter state then jumps into the next onevat
As a general characteristic of the 42 2m)—kinks =41 "and so on. A challenging problem for analytical con-
(bunched statgsshowing their dependence upon the driving sigeration is to evaluate the critical velocities-v®) with
force (bias current we have simulated the current-voltage k=0,1,2 ..., at which the transitions between different

characteristics IVC) of the DJTL. The voltage is propor- ranches of VC occur. This will be a subject of the next
tional to the mean velocity of the moving ki, that is  gactions.

determined by the balance between the driving forceand
the friction force generated by the viscosityand radiation
losses. Figure 3 shows the fuNC for various (27 +2)
—kink bunched states in the long array with=100, a The basic part of the analytical approach is consideration
=1.0, and «=0.1. The voltage axis actually shows the of the “tails” of the kink solution described by the linear-
kink's velocity v normalized to the maximum propagation ized equation (1). Substituting into this equationg,
velocity of the linear electromagnetic waves in the con-=—sin 1y+y, and linearizing it with respect to smaf,
tinuum system(the Swihart velocity. The arrows indicate we obtain

branches corresponding to the different bunched stafés: (

the 4w —kink [see Fig. 23)]; (B) the first (27+ 27) —kink d2y, dy, 1 2 .
bunched state [see Fig. 2b)]; (C) the second ae Yt ;(lﬂn—ﬁ ne1)t ;JF 1=y n=0.
(27 + 27) —kink bunched statésee Fig. 2§ (D) the third @
(27+ 27) —kink bunched statdV C was calculated starting

from y=0.5 with the initial conditions taken as a juxtaposi- Assumingy small, we will replace in this equatiogl — y?
tion of two continuum sG z —kinks moving at the velocity by 1.

v=0.9. After finding a steady state, the bias currgnivas A solution to Eq.(2) is looked for in the form

varied by small steps ok y=0.005, in order to move along

the IVC. With the increasing bias, ag~0.63, the system Yp=e PN—vh, 3)

Ill. THE ANALYTICAL APPROACH: A SINGLE KINK
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wherep is a(generally, complexwavenumber. Substitution It is relevant to mention that, in order to proceed to the
of Eqg. (3) into Eq. (2) yields continuum limit, one should set=ap andv=a"'v, where
p andv will be the wave number and velocity in the con-
tinuum limit, and then sed— 0. In this limit, Eq.(9) reduces
to v2=1+p 2 . However, a well-known fact is that no
stable kink with the velocityy>>1 is possible in the con-
tinuum SG equation. Thus, a stable kink with the oscillating
trailing tail may existonly if the system is sufficiently far
from the continuum limit(In the continuum model, the os-
cillating tail can be generated only by the above-mentioned
surface loss term as discussed in the Introduction.

To calculate a small real part of the wave number in the
(5) next approximation with respect to the small dissipative con-

stanta, one should linearize E@6) with respect top!' and

2 2
p®v?+apv— — coshp+ — +1=0. (4)
a a

Becausep is complex, we substitute into Eq3) p=p,
+i pi, with the intention to split it into two real equations
for p, andp;:

2_ 2 2 _2 22
(pr—pvetavp, 2coshpr cosp;+— +1=0,
a a

1 1 a, which yields
p,piv2+ = avp;— — sinhp, sin p;=0. (6) -
2 a2 .l 1
n_ooavl o, SINp;
Pr=- 7 v 2 11 ' (11)
In a sufficiently long system, one has an exponentially ap

decaying tail with no oscillations in front of the moving kink Eipally, inserting Eq(9) into (11), we obtain the necessary
(region ), which corresponds to the solutid®) with p;  condition p!'<0 for existence of the oscillating tail in the
>0 andp| =0, the superscript referring to the region I. As it form
follows from Eg. (5), the value ofp'r is determined by the
simplified equation, in which in the zeroth-order approxima-

a2>pl'sin p! 4 sir?| =p! (12
tion we will also seta=0: Pi Pi SPi |

Notice that, at 8<p|'<2, the right-hand side of12) is
+1=0. (7)  negative, so that this condition is fulfilled automatically.
However, there are intervals of the paramqﬂérwhere the
right-hand side is positive, so that the conditid®) is not
Behind the kink(region Il), one should have a trailing trivial.
oscillating tail corresponding to the soluti¢d) with p'<0 The condition(12) can be resolved explicitly, using the
and p!' #0. However, the conditiom,'<0 is not satisfied above approximatiofi10):
automatically, hence it imposes a nontrivial limitation on a

4 1
(pl)zvz—;smr?(gp'r

parametric region in which the kink with the oscillatory trail- sin (V2+a?/av)
ing tail, capable to give rise to the bunched states, can exist v=> am ' (13

in the damped discrete system. Because Eg)sand(6) are

quite complicated in the general case, we will consider thigAs an illustration, we can also consider the limit of a large
issue in detail in the analytically tractable and experimentallyspacing, &/2)?>1, although this case is far from the experi-
important limit, when the dissipative constamtis small. In  mentally relevant region. In this limityithoutemploying the
the zeroth-order approximation, one obtains an equation foabove approximatiofiL0), Eq. (9) simplifies top}' ~1/v, and

p!' by settingp!' =0 anda=0 in Eq. (5): the condition(12) takes the explicit form

1
(pi"? Z—izsinz(%pi”)—1=o_ ) a’>yp ! sinv‘1—4sin?(§v‘1). (14)
a
Notice that Eqs(13) and(14) concur at largea.
Still, this equation cannot be solved analytically. However, An implication of the above results is the existence of a
one can immediately solve it for the kink’s velocity, regard- critical velocity below which the oscillating tail is not pos-
ing it as a function ofpi” : sible. Because this prediction is quite interesting, we have
checked it by direct simulations. Figure 4 shows evolution of
the kink's shape aa=1 andae=0.1 with the change of the
C) kink’s velocity (the kink is represented by the instantaneous
voltage vs. time, as measured at an arbitrary chosen indi-
I o vidual junction which we took ah=25). It is clearly seen
Moreover, as the param(-?-tpf 1S I.arg(.a for small Yeloc!tlltas, that the transition between the tailed and tailless fluxdoes
one may replace the rapidly oscillating expressiod($i)  occur at some value of between 0.173 and 0.143, corre-
by it; mean val.ué. Then, one immediately obtains an ap- sponding to the panek) and (b) in Fig. 4. One still sees
proximate solution some small-amplitudeymmetrictails at the small velocities
| 5 0.143 and 0.071 in the pandly and(a). By looking at these
pi ~V2+a‘av. (100 cases in a greater detaitot shown here we conclude that

v2=(p") 2 +1].

4 1
;smz(zp!'
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. - T T system of intervals of existence of the tailed and tailless
0.4 kinks. We were not able to confirm this prediction numeri-
0z L cally. The troubles are that even=0.1 is probably too large

W for existence of this fine structure, and also that the tails
0.0 reappearing at smaller may have the tail with a midget
amplitude.

T
£

T T T T T T T
0 50 100 150 200 250

IV. ANALYTICAL CONSIDERATION
OF THE BUNCHED STATES

Now, let us consider two kinks moving at a distanoe
(measured in units of the array spagifigm each other. The
kink in the forward position is overlapping with the front tail
of the backward kink, and the latter one is overlapping with
the trailing tail of the forward kink. The overlapping gives
rise to two interaction forces between the kirtRshe repul-
sive force generated by the exponentially decaying tail

voltage d¢ 25/dt

Frep= F1€Xp(— p;m), (15)
and the sign-changing force generated by the decaying oscil-
lating tail:
Fpin=F2exp(p;' m)sin(p;' m+ 6), (16)

T PRV whereé is some phase-shift constant, and we assume that, by
0 50 100 150 200 250 definition, m>0. The latter force is actually a pinning one,
amenable for existence of the bunched states of the kinks.
The constant§, andF, in these expressions, as well as

FIG. 4. The detailed structure of the numerically found voltageare determined by matching the tails to the bodies of the
evolution for the passing fluxon in the one-dimensional annularmoving kinks, and there is no way to find them analytically.
Josephson junction array with the spacarg1, lengthL=50, and  Nevertheless, it will be demonstrated below that some essen-
dissipative constant= 0.1 at different values of the driving dc bias tial results concerning the bunched states and transitions be-
current corresponding to the following values of the steady fluxontween them can be obtained, for small velocities, without
velocity: (a) 0.071;(b) 0.143;(c) 0.173;(d) 0.257. knowing these constants.

L L o .. As well as in the continuum model, in the discrete one a

the small symmetric tails represent radiation which is emity, \nched state exists if the repulsive and pinning forces are in
ted by the kink. The emitted waves have the phase Veloc't'eﬁalance, Frep= Fpin_la A transition between different

driﬁelienkt from Lhe kink’s veloci';]y, sohthat the;%p?jratel‘rom bunched states happens wheg, attains its maximum cor-
the kink. On the contrary to this, the one-sided tail seen i ; il _1i ;
the panelsd) and (c) is rigidly attached to the kink’s body, 'tesponding td sin (p/m+9)|=1 in Eq. (16), i.e., when

time t

moving along with it. F,=F.exd(—pl+p"m]. (17)
The value ofv at which the tail is expected to disappear 2= Faexil (= e pr)m]
for vanishingly smallkx according to Eqs(8) and(12) can be A guantity of special interest is the number of oscillations

easily found to be 0.24fthe simplified approximatiofl0)  of the small-amplitude field trapped between the two kinks
yields a close value 0.253.7As one sees, the predicted critical (this field is nothing else but the trailing tail of the forward
value ofv turns out to be essentially larger than that revealedink). According to Eqs(17) and(3), at the moment of the
by the direct simulations. The reason for this discrepancy cajump between different bunched states this number is
be easily understood: according to Efj1), at the predicted
critical point, the parametep'r' changes its sign not vanish-
ing, but, on the contrary, divergin@e., going through infin-
ity rather than through zeyoOn the other hand, the deriva-
tion of Eqg. (11) assumed linearization with respect to the where the phase constafitis neglected.
small p}' . Thus, the above-mentioned critical velocity pre-  Our objective will be to compare the analytical prediction
dicted by Eqs(8) and( 12) will be correct if it is very small. ~ (18) with numerical results, as the moment of the jump be-
For finite v, one can easily estimate that an error in thetween different states can be easily identified by looking at
predicted value may be-«, which naturally explains the [VC (Fig. 3). However, the comparison is hampered by ab-
discrepancy observed at=0.1. For still smallera, numeri- ~ sence of the information about the const&nt'F,, as well
cal verification implies large computational times. as by the neglect of the constaétin Eq. (18). All these
Lastly, Egs.(8) and (12), as well as the simplified ap- problems compel us to confine the comparison to the range
proximation (10), imply existence of an infinite set of of small velocities. Indeed, the above analysis clearly sug-
smaller critical velocities, so that, for extremely small valuesgests that not only the unknown constafRts'F, and , but
of the dissipative constant, one would have an alternatinglso the known one;a'r and p'r' have no singularities at

mo'! I =
MR i In—=, (18)

An =
2 2m(p—p)  Fo
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FIG. 5. Comparison of the analytical approximation with direct 0.2 ' 0.4 ' 0.6 ' 0.8 ' 1.0
numerical simulations fot. =100 anda=1.0. Circles show the ' i o ' '
numerically found threshold velocities at which switching between fluxon velocity V1F
consecutive fluxon bunched states occur with decrease of the bias
current fromy= 0.5 down toy=0. The solid line shows the hyper- FIG. 6. The difference between the steady-state velocities for
bola (19). the numerically found single-fluxon and bifluxon states for

=100,a=1.0, anda=0.3.
—0, hence they can be assumed approximately constant at
smallv. On the other hand, the parameggt is diverging at
v—0 [see Eq(10)], that is why the asymptotic form of the
expression(18) becomes very simple form in this limit,

hysteresis for different directions of variation of the bias cur-
rent. The simulations reveal that the largest difference be-
tween the single-fluxon and bifluxon velocities is attained at
the switching points between the different branches. In gen-

An~Clu, (19 eral, two bound fluxons “help” each other to reduce the
with an unknown constar€. dissipative losses and therefore their velocity is higher than
For comparison with this, we solved numerically EGJ.  that of the single fluxon.
and (8) for givenv and the discreteness parametiattice All the predictions obtained in this work in terms of the

spacing a. Figure 5 shows the comparison of the hyperbolacurrent-voltage characteristic of the one-dimensional arrays
(19) with numerical simulations fol.=100 anda=1.0.  of the pointlike Josephson junctions should be amenable to a
Circles show the threshold velocities, at which the switchingstraightforward experimental check. Note that the above
between consecutive fluxon bunched states occurs when danalysis did not take into regard fluctuations. In principle,
creasing the bias current frop=0.5 down to much smaller fluctuations can destroy bound states of solitonkile an
v, as found from direct numerical simulations. We definedindividual fluxon is a very robust object even in the presence
the number of the trapped oscillations corresponding to  Of strong fluctuations However, at least some of the bound
this switching point as the actual number of the oscillationsstates predicted in this work are fairly robust t@og., those
between the two kinks at this point plgs shown in Fig. 2. The intensity of the thermal fluctuations in
The solid curve in Fig. 5 is the hyperbofa9) with the  experiment can be suppressed by cooling down the sample,
unknown constant fitted to the numerical data at small While the quantum fluctuations are usually extremely weak
One can see that, in this range, our simple analytical moddpr the fluxons, that are, effectively, heavy semiclassical qua-
qualitatively agrees with the simulations. There is a largesiparticles. Therefore, the fluctuations should not be a serious

discrepancy av>0.5, where, however, it is very hard to Problem in the present context.
develop a consistent analytical approach. It is relevant to mention that other steps BAC of the

one-dimensional discrete Josephson array, predicted theoreti-
cally in Ref. 1 and observed experimentally in Ref. 2, are
produced by the resonant interaction betweenrakihk and

In the previous section we have evaluated the velocities ajuasilinear lattice modelso called “plasma waves” or
which the switching between different bunched states take$phonons™). In the experiment, the multifluxon steps pre-
place. Still, the question of the velocity dependence on thelicted here can be easily distinguished from the fluxon-
driving bias current for various states was left open. Thephonon ones, because the location and size of the two types
difference between the equilibrium velocities for the numeri-of the steps are drastically different. Comparison of the ab-
cally simulated single-fluxon and bifluxon cases is summasolute values of the voltage should allow one to determine
rized in Fig. 6. The simulation where performed far the actual number of thes2 —kinks in the bunched state that
=100,a=1.0, anda=0.3. The corresponding single-fluxon gives rise to the steps. The experimental signature of fluxon
velocity v ;¢ and the bifluxon velocity ;¢ have been taken at bunching is that the voltages of fluxon-phonon resonant steps
the same values of the bias current. The arrows show then the current-voltage characteristics should not scale ex-

V. DISCUSSION
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actly proportional to the number of fluxons in the array. Thecoupled DJTLs have recently been reportetf.in this case,
voltage of multifluxon resonances is expected to be high thanne is dealing with the interaction between inductively
that of the single-fluxon resonance multiplied by the numbercoupled DJTLs. Using the approach developed in the model
of fluxons. Another natural question is how to excite a de-of the stacked Josephson junctidfists generalization for
sired number of bunched fluxons in the dynamic state. A waysome of the two-dimensional Josephson junction arrays has
to do this can be by using a strong localized perturbationbeen recently proposédDue to the interaction between in-
generated, e.g., by a current pulse through one of the pointlividual DJTLs in the array, the solitons moving in different
like junctions of the array. lines may form new coherent structures that propagate along

It is interesting to note that attractively interacting SG the system. For example, with regard to the bunched fluxon
kinks similar to those forming the 2+ 2#) —kink bunched states discussed in this paper, we can predict that more com-
states studied here were considered long time ago by Nak@lex bunched states should exist between fluxons simulta-
jima and co-worker$® The authors of that work simulated a neously moving in neighboring rows of the array. In such a
perturbed continuum SG system, usingiacretenumerical case, the small-amplitude waves induced by the moving
scheme similar to Eq1). The bound states found in Ref. 15 fluxon in one row may couple to adjacent lines and induce an
were not attributed to the discreteness of the system. As effective interaction potential for the fluxons moving in these
was mentioned above, the bunched states of the kinks wittows. In this case the experimentally observable conse-
the same polarity do not exist in the continuum SG modelguences of fluxon bunching are expected to be similar to that
unless the surface losses are added to it. Therefore, we codiscussed in present paper. The major difference to expect is
jecture that the bunched states reported in Ref. 15 were athat the voltage will be smaller proportionally to the coupling
tually produced by the discreteness of the numerical scheméetween adjacent junction rows.

Finally, we would like to point out that fluxon dynamics
and the_mechanism of interactions between the fluxons dis- ACKNOWLEDGMENTS
cussed in the present paper appear to be relevant for more
complex systems, such as two-dimensional Josephson junc- A.V.U. is grateful to the members of the Electron Devices
tion arrays. Since the dynamics of those structures is rathe3ection of ETL(Tsukuba, Japarfor their hospitality during
complicated, it is natural to split the problem into parts andhis stay at ETL and also to the AIST for financial support.
study first the interaction between fluxons moving in two This work was partly supported by a Grant G0464-247.07/95
neighboring rows. First experimental results using twofrom the Germany-Israel Foundation.
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