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Bunched fluxon states in one-dimensional Josephson-junction arrays
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Dynamics of fluxons in a discrete Josephson transmission line is investigated, combining numerical simu-
lations and an analytical approach. It is found that, in different ranges of the parameters~the driving dc bias
current and dissipative constant!, two fluxons (2p2kinks! may form either a bifluxon (4p2kink!, or various
bound states (2p12p2kinks with a finite separation!, which can stably propagate along the line. The stability
of these states is investigated as a function of the kink velocity. An analytical approach is based on prediction
of formation of a two-kink bound state through the interaction mediated by their oscillating ‘‘tails.’’ At small
velocities, a satisfactory agreement is found between the analysis and the numerical results. At still smaller
velocities, a new phenomenon is predicted analytically and found numerically, viz., transition from an asym-
metric ‘‘tailed’’ kink to a symmetric tailless one. Conditions for experimental observation of the predicted
behavior, as well as its practical consequences for the fluxon propagation in the discrete Josephson transmis-
sion lines, are discussed too.@S0163-1829~98!10417-4#
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I. INTRODUCTION

Parallel-coupled one-dimensional Josephson junction
rays, also known as discrete Josephson transmission
~DJTLs!, have received a considerable interest over the
years.1,2 Such an array is described by the discrete si
Gordon equation~DSGE! and represents an experimental r
alization of the driven underdamped one-dimensional s
Gordon~SG! lattice, which finds applications in many othe
fields of physics.3 A ballistic 2p2kink in the discrete SG
lattice corresponds to a Josephson vortex, or fluxon, wh
can propagate in a DJTL. DSGE is much simpler for nume
cal studies than the continuum SG equation, and its first
merical and experimental investigations have been initia
long ago.4 However, due to the nonintegrability of th
DSGE, very limited progress in analytical approaches
been reported thus far. Recently, an earlier prediction
resonances between moving fluxon and its radiation i
DJTL ~Ref. 1! has been confirmed experimentally.2 A num-
ber of experiments5–7 and theoretical approaches8 were re-
ported lately.

Peyrard and Kruskal9 were first to point out that, even fo
large discreteness, a localized kink in the SG lattice m
exhibit some solitonic features close to those in the c
tinuum SG solitons. In the same work, it had been sho
numerically that, in the absence of losses and at a sufficie
high velocity of the kink, the strongly discrete SG mod
permits stable propagation of strongly localized multi22p
2kinks ~i.e., 4p2kinks, 6p2kinks, etc.!. Until now, the
multi22p2kinks in real physical systems have not be
observed experimentally. It is therefore relevant to search
such higher-order kink solutions numerically in an expe
mentally realistic parameter range of a DJTL, using the p
570163-1829/98/57~18!/11691~7!/$15.00
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turbed DSGE with the friction and driving forces. If the
exist, the multi22p2kinks might be relevant for applica
tions of DJTL to superconducting electronics.

In this work, we investigate dynamics of fluxons
DJTLs numerically and, partly, also analytically. In order
separate new effects from the previously known fluxo
radiation resonances,1,2 we consider a very long system wit
periodic boundary conditions, i.e., a long annular DJTL.
Sec. II we show numerically that, depending on the init
location, a pair of fluxons (2p2kinks! may form either a
bifluxon (4p2kink! with no separation between the co
stituent fluxons, or a hierarchy of their bunched sta
@(2p12p)2kinks# that can propagate along the DJT
keeping a constant separation between the bound flux
Stability of these states is investigated as a function of
driving force and fluxon’s velocity. Conditions for exper
mental observation of the predicted behavior, as well
some practical consequences for the propagation of flu
pulses in discrete Josephson transmission lines, are also
cussed. The analytical approach to the description of
bunched states~presented in Sec. IV! will be based on con-
sideration of interactions between the two 2p-kinks medi-
ated by their ‘‘tails.’’ An essential peculiarity of the prese
problem is that the two tails of a moving kink~the front tail
and the trailing one! are strongly different. The bunched sta
is possible when the trailing tail is oscillating. Analyzing th
tail structure, in Sec. III we will find analytically and wil
then check numerically that there is a critical value of t
velocity below which the oscillating tails disappears, whi
implies existence of a dynamical phase transition in DJT
namely, a transition between the ‘‘dimer’’~or ‘‘polymer’’ !
states and a gas of free fluxons in a sufficiently long DJT

To conclude the introduction, it is relevant to stress th
11 691 © 1998 The American Physical Society
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11 692 57USTINOV, MALOMED, AND SAKAI
the bunched states are also possible in the continuum
Josephson junction, but only if one takes into account,
sides the usual dissipative term, the so-called surface los
that give rise to an extra diffusion term in the correspond
SG equation. Due to the presence of this term, the flux
moving with a sufficiently large velocity can develop an o
cillating tail, that gives rise to a bunched state. This fact w
first discovered in computer simulations many years ago.10 It
has also been demonstrated numerically11 that fluxons mov-
ing at a velocity close to the Swihart velocity indeed pos
a trailing oscillating tail. The first experimental indication
bunching of the fluxons in the long Josephson junct
through this mechanism has been found by measuring
emitted radiation in a linear junction.12 The analytical ap-
proach to the formation of the bunched states in the dri
damped SG model was developed in detail in Ref. 13. In
discrete SG model, in contrast to the continuum one,
bunched states may exist even without any dissipation.

II. SIMULATIONS OF THE BUNCHED STATES
OF THE FLUXONS

The discrete Josephson transmission line is describe
the discrete version of the perturbed SG model

d2fn

dt2
1a

dfn

dt
1sin fn1g2

1

a2
~fn2122fn1fn11!50,

~1!

where the individual junction’s number,n, takes values 0
<n<N, fn is the superconducting phase difference on
nth junction, anda is the normalized spacing of the discre
line which is often also called discreteness parameter.
simplify comparison with the continuum case, all the para
eters in Eq.~1! are written in the standard notation similar
that used in the continuum SG model: the spatial coordin
x is normalized to the effective Josephson penetration de
the time t is normalized to the inverse plasma frequen
v0

215@F0C/Jc#
1/2, C is the mean capacitance per un

length of the array,a is a dissipation coefficient, andg is the
bias current per unit length normalized to the spatially av
aged critical current densityJc5I c /D, I c and D being the
critical current of an isolated junction and the distance
tween the neighboring junctions in physical units. Equat
~1! is written in the simplest approximation neglecting
mutual inductances between different cells in the array
complete model of DJTL, including long-range mutual i
ductances, has been considered in Ref. 14. In relation to
above mentioned surface losses in long continuous juncti
we note that the corresponding term is neglected in Eq.~1!.

In order to study interactions between moving fluxons
the most clear form, we simulated Eqs.~1! with periodic
boundary conditions, identifying the pointsn50 andn5N
in Eqs.~1! and assumingfN5f012pNfl , whereNfl is the
number of the fluxons trapped in the ring array. In the sim
lations presented in this work, we considered the simp
cases with one or two trapped fluxons. The integration w
performed using the fourth-order Runge-Kutta scheme w
the time stepDt50.025.1

The numerically found kink~fluxon! solution to Eq.~1! is
shown in Fig. 1. Displayed is an instantaneous profile of
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magnetic flux per cell as a function of the junction numbern,
that corresponds to a single fluxon propagating from the ri
to the left. Starting from the initial configuration in the form
of the 2p2kink solution to the continuum SG equation
fn54 arctg@exp (an1vt2x0 /A12v2)# ~where the con-
tinuum coordinatex is substituted by the discretely varyin
distancean) with the velocityv50.9 andx0520, Eq. ~1!
has been integrated over 500 time units. The steadily mov
fluxon with a well-established velocityv1F'0.768 has been
obtained. The inset shows evolution of the local volta
dfn(t)/dt at the individual junction with the numbern
525. One clearly sees the oscillating ‘‘tail,’’ i.e., decayin
oscillations in the wake of the passing kink. These osci
tions are due to the discreteness of the transmission line
are discussed in more detail in the next section.

In order to trigger a bifluxon in our numerical experimen
the simulations were started from the initial conditions c
responding to two identical continuum SG 2p2kinks placed
at the same positionx50 and moving initially at the velocity
v50.9. After a transient period, a steady state is reache
the form of a localized single 4p2kink propagating at the
velocity v2F'0.853. The local voltage evolution for thi
state is shown in Fig. 2~a!, with the other parameters bein
the same as for Fig. 1. We note that at the same bias cu
g the established velocityv2F of the two-fluxon 4p2kink is
larger than that of the single-fluxon 2p2kink v1F . Three
plots in Fig. 2 show a change in the local voltage evolution
the individual junction with the numbern525 as the bias
currentg is decreased fromg50.40 ~a! to g50.15 ~c!. We
find that, with decrease of the bias current, the velocity of
fluxons is decreasing and the 4p2kink transforms into a

FIG. 1. Numerically calculated instantaneous profile of the lo
magnetic flux as a function of the cell number corresponding t
single fluxon propagating through a one-dimensional annular
sephson junction array~from the right to the left!. The parameters
used are the normalized array lengthL550, the discreteness param
etera51.0, the dissipation coefficienta50.1, and the bias curren
g50.4. The inset shows the time evolution of the voltage at
junction with the numbern525.
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57 11 693BUNCHED FLUXON STATES IN ONE-DIMENSIONAL . . .
pair of separated but closely bound 2p2kinks, which are
marked by the arrows in Figs. 2~b! and 2~c!. At a fixed bias
currentg, the spacing between the kinks remain constant
arbitrary long integration time~time intervals up to t
510000 have been tested!. One can notice that the bunche
states of two 2p2 kinks in Figs. 2~b! and 2~c! differ from
each other by the number of the oscillations trapped betw
the two bunched kinks passing the observation point.

As a general characteristic of the (2p12p)2kinks
~bunched states!, showing their dependence upon the drivi
force ~bias current!, we have simulated the current-voltag
characteristics (IVC) of the DJTL. The voltage is propor
tional to the mean velocity of the moving kink~s!, that is
determined by the balance between the driving force;g and
the friction force generated by the viscositya and radiation
losses. Figure 3 shows the fullIVC for various (2p12p)
2kink bunched states in the long array withL5100, a
51.0, and a50.1. The voltage axis actually shows th
kink’s velocity v normalized to the maximum propagatio
velocity of the linear electromagnetic waves in the co
tinuum system~the Swihart velocity!. The arrows indicate
branches corresponding to the different bunched states:A)
the 4p2kink @see Fig. 2~a!#; (B) the first (2p12p)2kink
bunched state @see Fig. 2~b!#; (C) the second
(2p12p)2kink bunched state~see Fig. 2c!; (D) the third
(2p12p)2kink bunched state.IVC was calculated starting
from g50.5 with the initial conditions taken as a juxtapos
tion of two continuum sG 2p2kinks moving at the velocity
v50.9. After finding a steady state, the bias currentg was
varied by small steps ofDg50.005, in order to move along
the IVC. With the increasing bias, atg'0.63, the system

FIG. 2. Bifluxon propagating in the one-dimensional annu
Josephson junction array withL550, a51.0, anda50.1. Three
plots show the time evolution of the voltage at the junction w
n525 atg50.40 ~a!, g50.25 ~b!, andg50.15 ~c!, respectively.
r

en

-

switched into a high-voltage state corresponding to a quic
whirling background. With decrease ofg from the initial
point g50.5, we have found a sequence of switchings
tween the different bunched states:A→B→C→D→ . . . .
For any of these states, further increase of the bias revea
hysteresis which is clearly seen in Fig. 3.

Thus, the most salient feature of Fig. 3 is that, with t
decrease of the driving force, the 4p2kink turns into the
first bunched (2p12p)2kink state at a certain velocityv
5vmin

(0) , the latter state then jumps into the next one atv
5vmin

(1) , and so on. A challenging problem for analytical co
sideration is to evaluate the critical velocitiesv5vmin

(k) with
k50,1,2, . . . , at which the transitions between differen
branches ofIVC occur. This will be a subject of the nex
sections.

III. THE ANALYTICAL APPROACH: A SINGLE KINK

The basic part of the analytical approach is considera
of the ‘‘tails’’ of the kink solution described by the linear
ized equation ~1!. Substituting into this equationfn
52sin21g1cn and linearizing it with respect to smallcn ,
we obtain

d2cn

dt2
1a

dcn

dt
2

1

a2
~cn211cn11!1S 2

a2
1A12g2D cn50.

~2!

Assumingg small, we will replace in this equationA12g2

by 1.
A solution to Eq.~2! is looked for in the form

cn5e2p~n2vt !, ~3!

r

FIG. 3. Calculated two-fluxon current-voltage (v vs. g) charac-
teristics for the one-dimensional annular Josephson junction a
with L5100,a51.0, anda50.1. The voltage axis shows the no
malized fluxon velocityv. The arrows indicate branches corr
sponding to different fluxon bunched states: (A) the 4p2kink; (B)
the first (2p12p) bunched state; (C) the second (2p12p)
bunched state; (D) the third (2p12p) bunched state.
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11 694 57USTINOV, MALOMED, AND SAKAI
wherep is a ~generally, complex! wavenumber. Substitution
of Eq. ~3! into Eq. ~2! yields

p2v21apv2
2

a2
coshp1

2

a2
1150. ~4!

Becausep is complex, we substitute into Eq.~3! p5pr
1 i pi , with the intention to split it into two real equation
for pr andpi :

~pr
22pi

2!v21avpr2
2

a2
coshpr cospi1

2

a2
1150,

~5!

prpiv
21

1

2
avpi2

1

a2
sinh pr sin pi50. ~6!

In a sufficiently long system, one has an exponentia
decaying tail with no oscillations in front of the moving kin
~region I!, which corresponds to the solution~3! with pr

I

.0 andpi
I50, the superscript referring to the region I. As

follows from Eq. ~5!, the value ofpr
I is determined by the

simplified equation, in which in the zeroth-order approxim
tion we will also seta50:

~pr
I !2v22

4

a2
sinh2S 1

2
pr

I D1150. ~7!

Behind the kink~region II!, one should have a trailing
oscillating tail corresponding to the solution~3! with pr

II <0
and pi

II Þ0. However, the conditionpr
II <0 is not satisfied

automatically, hence it imposes a nontrivial limitation on
parametric region in which the kink with the oscillatory tra
ing tail, capable to give rise to the bunched states, can e
in the damped discrete system. Because Eqs.~5! and~6! are
quite complicated in the general case, we will consider t
issue in detail in the analytically tractable and experimenta
important limit, when the dissipative constanta is small. In
the zeroth-order approximation, one obtains an equation
pi

II by settingpr
II 50 anda50 in Eq. ~5!:

~pi
II !2v22

4

a2
sin2S 1

2
pi

II D2150. ~8!

Still, this equation cannot be solved analytically. Howev
one can immediately solve it for the kink’s velocity, regar
ing it as a function ofpi

II :

v25~pi
II !22F 4

a2
sin2S 1

2
pi

II D11G . ~9!

Moreover, as the parameterpi
II is large for small velocities,

one may replace the rapidly oscillating expression sin2(1
2pi

II)
by its mean value1

2. Then, one immediately obtains an a
proximate solution

pi
II 'A21a2/av. ~10!
y
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It is relevant to mention that, in order to proceed to t
continuum limit, one should setp[a p̃ andv[a21ṽ , where
p̃ and ṽ will be the wave number and velocity in the con
tinuum limit, and then seta→0. In this limit, Eq.~9! reduces
to ṽ 2511 p̃22 . However, a well-known fact is that no
stable kink with the velocityṽ 2.1 is possible in the con-
tinuum SG equation. Thus, a stable kink with the oscillati
trailing tail may existonly if the system is sufficiently far
from the continuum limit.~In the continuum model, the os
cillating tail can be generated only by the above-mention
surface loss term as discussed in the Introduction.!

To calculate a small real part of the wave number in
next approximation with respect to the small dissipative c
stanta, one should linearize Eq.~6! with respect topr

II and
a, which yields

pr
II 52

av
2 S v22

sinpi
II

a2pi
II D 21

. ~11!

Finally, inserting Eq.~9! into ~11!, we obtain the necessar
condition pr

II <0 for existence of the oscillating tail in th
form

a2.pi
II sin pi

II 24 sin2S 1

2
pi

II D . ~12!

Notice that, at 0,pi
II ,2p, the right-hand side of~12! is

negative, so that this condition is fulfilled automaticall
However, there are intervals of the parameterpi

II where the
right-hand side is positive, so that the condition~12! is not
trivial.

The condition~12! can be resolved explicitly, using th
above approximation~10!:

v.
sin ~A21a2/av !

aA21a2
. ~13!

As an illustration, we can also consider the limit of a lar
spacing, (a/2)2@1, although this case is far from the expe
mentally relevant region. In this limit,withoutemploying the
above approximation~10!, Eq.~9! simplifies topi

II '1/v, and
the condition~12! takes the explicit form

a2.v21 sin v2124 sin2S 1

2
v21D . ~14!

Notice that Eqs.~13! and ~14! concur at largea.
An implication of the above results is the existence o

critical velocity below which the oscillating tail is not pos
sible. Because this prediction is quite interesting, we h
checked it by direct simulations. Figure 4 shows evolution
the kink’s shape ata51 anda50.1 with the change of the
kink’s velocity ~the kink is represented by the instantaneo
voltage vs. time, as measured at an arbitrary chosen i
vidual junction which we took atn525). It is clearly seen
that the transition between the tailed and tailless fluxonsdoes
occur at some value ofv between 0.173 and 0.143, corre
sponding to the panels~c! and ~b! in Fig. 4. One still sees
some small-amplitudesymmetrictails at the small velocities
0.143 and 0.071 in the panels~b! and~a!. By looking at these
cases in a greater detail~not shown here!, we conclude that
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57 11 695BUNCHED FLUXON STATES IN ONE-DIMENSIONAL . . .
the small symmetric tails represent radiation which is em
ted by the kink. The emitted waves have the phase veloc
different from the kink’s velocity, so that theyseparatefrom
the kink. On the contrary to this, the one-sided tail seen
the panels~d! and ~c! is rigidly attached to the kink’s body
moving along with it.

The value ofv at which the tail is expected to disappe
for vanishingly smalla according to Eqs.~8! and~12! can be
easily found to be 0.244@the simplified approximation~10!
yields a close value 0.257#. As one sees, the predicted critic
value ofv turns out to be essentially larger than that revea
by the direct simulations. The reason for this discrepancy
be easily understood: according to Eq.~11!, at the predicted
critical point, the parameterpr

II changes its sign not vanish
ing, but, on the contrary, diverging~i.e., going through infin-
ity rather than through zero!. On the other hand, the deriva
tion of Eq. ~11! assumed linearization with respect to t
small pr

II . Thus, the above-mentioned critical velocity pr
dicted by Eqs.~8! and~ 12! will be correct if it is very small.
For finite v, one can easily estimate that an error in t
predicted value may be;a, which naturally explains the
discrepancy observed ata50.1. For still smallera, numeri-
cal verification implies large computational times.

Lastly, Eqs.~8! and ~12!, as well as the simplified ap
proximation ~10!, imply existence of an infinite set o
smaller critical velocities, so that, for extremely small valu
of the dissipative constant, one would have an alterna

FIG. 4. The detailed structure of the numerically found volta
evolution for the passing fluxon in the one-dimensional annu
Josephson junction array with the spacinga51, lengthL550, and
dissipative constanta50.1 at different values of the driving dc bia
current corresponding to the following values of the steady flux
velocity: ~a! 0.071;~b! 0.143;~c! 0.173;~d! 0.257.
-
es

n

d
n

s
g

system of intervals of existence of the tailed and taille
kinks. We were not able to confirm this prediction nume
cally. The troubles are that evena50.1 is probably too large
for existence of this fine structure, and also that the ta
reappearing at smallerv may have the tail with a midge
amplitude.

IV. ANALYTICAL CONSIDERATION
OF THE BUNCHED STATES

Now, let us consider two kinks moving at a distancem
~measured in units of the array spacing! from each other. The
kink in the forward position is overlapping with the front ta
of the backward kink, and the latter one is overlapping w
the trailing tail of the forward kink. The overlapping give
rise to two interaction forces between the kinks:13 the repul-
sive force generated by the exponentially decaying tail

F rep5F1exp~2pr
I m!, ~15!

and the sign-changing force generated by the decaying o
lating tail:

Fpin5F2exp~pr
II m!sin~pi

II m1d!, ~16!

whered is some phase-shift constant, and we assume tha
definition, m.0. The latter force is actually a pinning on
amenable for existence of the bunched states of the ki
The constantsF1 andF2 in these expressions, as well asd,
are determined by matching the tails to the bodies of
moving kinks, and there is no way to find them analytical
Nevertheless, it will be demonstrated below that some es
tial results concerning the bunched states and transitions
tween them can be obtained, for small velocities, witho
knowing these constants.

As well as in the continuum model, in the discrete one
bunched state exists if the repulsive and pinning forces ar
balance, F rep5Fpin .13 A transition between differen
bunched states happens whenFpin attains its maximum cor-
responding tou sin (pi

IIm1d)u51 in Eq. ~16!, i.e., when

F25F1exp@~2pr
I 1pr

II !m#. ~17!

A quantity of special interest is the number of oscillatio
of the small-amplitude field trapped between the two kin
~this field is nothing else but the trailing tail of the forwar
kink!. According to Eqs.~17! and ~3!, at the moment of the
jump between different bunched states this number is

Dn5
mpi

II

2p
5

pi
II

2p~pr
I 2pr

II !
ln

F1

F2
, ~18!

where the phase constantd is neglected.
Our objective will be to compare the analytical predictio

~18! with numerical results, as the moment of the jump b
tween different states can be easily identified by looking
IVC ~Fig. 3!. However, the comparison is hampered by a
sence of the information about the constantF2 /F1, as well
as by the neglect of the constantd in Eq. ~18!. All these
problems compel us to confine the comparison to the ra
of small velocities. Indeed, the above analysis clearly s
gests that not only the unknown constantsF2 /F1 andd, but
also the known onespr

I and pr
II have no singularities atv

r
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11 696 57USTINOV, MALOMED, AND SAKAI
→0, hence they can be assumed approximately consta
smallv. On the other hand, the parameterpi

II is diverging at
v→0 @see Eq.~10!#, that is why the asymptotic form of th
expression~18! becomes very simple form in this limit,

Dn'C/v, ~19!

with an unknown constantC.
For comparison with this, we solved numerically Eqs.~7!

and ~8! for given v and the discreteness parameter~lattice
spacing! a. Figure 5 shows the comparison of the hyperb
~19! with numerical simulations forL5100 and a51.0.
Circles show the threshold velocities, at which the switch
between consecutive fluxon bunched states occurs when
creasing the bias current fromg50.5 down to much smalle
g, as found from direct numerical simulations. We defin
the number of the trapped oscillationsDn corresponding to
this switching point as the actual number of the oscillatio
between the two kinks at this point plus1

2.
The solid curve in Fig. 5 is the hyperbola~19! with the

unknown constant fitted to the numerical data at smallv.
One can see that, in this range, our simple analytical mo
qualitatively agrees with the simulations. There is a la
discrepancy atv.0.5, where, however, it is very hard t
develop a consistent analytical approach.

V. DISCUSSION

In the previous section we have evaluated the velocitie
which the switching between different bunched states ta
place. Still, the question of the velocity dependence on
driving bias current for various states was left open. T
difference between the equilibrium velocities for the nume
cally simulated single-fluxon and bifluxon cases is summ
rized in Fig. 6. The simulation where performed forL
5100,a51.0, anda50.3. The corresponding single-fluxo
velocity v1F and the bifluxon velocityv2F have been taken a
the same values of the bias current. The arrows show

FIG. 5. Comparison of the analytical approximation with dire
numerical simulations forL5100 anda51.0. Circles show the
numerically found threshold velocities at which switching betwe
consecutive fluxon bunched states occur with decrease of the
current fromg50.5 down tog50. The solid line shows the hyper
bola ~19!.
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hysteresis for different directions of variation of the bias c
rent. The simulations reveal that the largest difference
tween the single-fluxon and bifluxon velocities is attained
the switching points between the different branches. In g
eral, two bound fluxons ‘‘help’’ each other to reduce th
dissipative losses and therefore their velocity is higher th
that of the single fluxon.

All the predictions obtained in this work in terms of th
current-voltage characteristic of the one-dimensional arr
of the pointlike Josephson junctions should be amenable
straightforward experimental check. Note that the abo
analysis did not take into regard fluctuations. In princip
fluctuations can destroy bound states of solitons~while an
individual fluxon is a very robust object even in the presen
of strong fluctuations!. However, at least some of the boun
states predicted in this work are fairly robust too~e.g., those
shown in Fig. 2!. The intensity of the thermal fluctuations i
experiment can be suppressed by cooling down the sam
while the quantum fluctuations are usually extremely we
for the fluxons, that are, effectively, heavy semiclassical q
siparticles. Therefore, the fluctuations should not be a ser
problem in the present context.

It is relevant to mention that other steps onIVC of the
one-dimensional discrete Josephson array, predicted theo
cally in Ref. 1 and observed experimentally in Ref. 2, a
produced by the resonant interaction between a 2p-kink and
quasilinear lattice modes~also called ‘‘plasma waves’’ or
‘‘phonons’’!. In the experiment, the multifluxon steps pr
dicted here can be easily distinguished from the fluxo
phonon ones, because the location and size of the two ty
of the steps are drastically different. Comparison of the
solute values of the voltage should allow one to determ
the actual number of the 2p 2kinks in the bunched state tha
gives rise to the steps. The experimental signature of flu
bunching is that the voltages of fluxon-phonon resonant s
on the current-voltage characteristics should not scale

t

n
ias

FIG. 6. The difference between the steady-state velocities
the numerically found single-fluxon and bifluxon states forL
5100,a51.0, anda50.3.
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actly proportional to the number of fluxons in the array. T
voltage of multifluxon resonances is expected to be high t
that of the single-fluxon resonance multiplied by the num
of fluxons. Another natural question is how to excite a d
sired number of bunched fluxons in the dynamic state. A w
to do this can be by using a strong localized perturbati
generated, e.g., by a current pulse through one of the po
like junctions of the array.

It is interesting to note that attractively interacting S
kinks similar to those forming the (2p12p)2kink bunched
states studied here were considered long time ago by N
jima and co-workers.15 The authors of that work simulated
perturbed continuum SG system, using adiscretenumerical
scheme similar to Eq.~1!. The bound states found in Ref. 1
were not attributed to the discreteness of the system. A
was mentioned above, the bunched states of the kinks
the same polarity do not exist in the continuum SG mod
unless the surface losses are added to it. Therefore, we
jecture that the bunched states reported in Ref. 15 were
tually produced by the discreteness of the numerical sche

Finally, we would like to point out that fluxon dynamic
and the mechanism of interactions between the fluxons
cussed in the present paper appear to be relevant for m
complex systems, such as two-dimensional Josephson j
tion arrays. Since the dynamics of those structures is ra
complicated, it is natural to split the problem into parts a
study first the interaction between fluxons moving in tw
neighboring rows. First experimental results using t
. H
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coupled DJTLs have recently been reported.16,17 In this case,
one is dealing with the interaction between inductive
coupled DJTLs. Using the approach developed in the mo
of the stacked Josephson junctions,18 its generalization for
some of the two-dimensional Josephson junction arrays
been recently proposed.19 Due to the interaction between in
dividual DJTLs in the array, the solitons moving in differe
lines may form new coherent structures that propagate a
the system. For example, with regard to the bunched flu
states discussed in this paper, we can predict that more c
plex bunched states should exist between fluxons simu
neously moving in neighboring rows of the array. In such
case, the small-amplitude waves induced by the mov
fluxon in one row may couple to adjacent lines and induce
effective interaction potential for the fluxons moving in the
rows. In this case the experimentally observable con
quences of fluxon bunching are expected to be similar to
discussed in present paper. The major difference to expe
that the voltage will be smaller proportionally to the couplin
between adjacent junction rows.
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