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Dimer-hole-RVB state of the two-legt-J ladder: A recurrent variational ansatz

German Sierrd
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

Miguel Angel Martn-Delgadd
Departamento de Bica Teaica |, Universidad Complutense, 28040 Madrid, Spain

Jorge Dukelsky
Instituto de Estructura de la Materia, C.S.I.C., 28006 Madrid, Spain

Steven R. Whité
Department of Physics and Astronomy, University of California, Irvine, California 92697

D. J. Scalapinb
Department of Physics, University of California, Santa Barbara, California 93106
(Received 31 July 1997; revised manuscript received 14 October 1997

We present a variational treatment of the ground state of the twb-leljadder, which combines the dimer
and the hard-core boson models into one effective model. This model allows us to study the local structure of
the hole pairs as a function of doping. A second-order recursion relation is used to generate the variational
wave function, which substantially simplifies the computations. We obtain good agreement with numerical
density matrix renormalization group results for the ground state energy in the strong-coupling regime. We find
that the local structure of the pairs depends upon whether the ladder is slightly or strongly dopped.
[S0163-18298)06817-9

INTRODUCTION of these singlets, in which case the hole gets effectively
bound to the unpaired spin, becoming a quasiparticle with
The two-leg,t-J ladder represents one of the simplestspin 1/2 and chargke|. The addition of another hole leads to
systems which exhibits some of the phenomena associatdie binding of two holes in the same rung in order to mini-
with high-T, cuprate superconductivify’® The ground state Mize the cost in energy. In this picture there is no spin-
of the undoped system, a two-leg Heisenberg ladder, is gharge separation, a fact that remains valid down to interme-
spin liquid with a finite spin gap and exponentially decayingdiate and weak couplings, as confirmed by various numerical
antiferromagnetic spin-spin correlations. Upon doping, theand analytical studies. Based on this picture it is possible to
spin gap remains and there appear power law charge densig@nstruct an effective theory describing the motion and in-
wave (CDW) and singlet superconductin@C) pairing cor-  teractions of the hole pgi?slt is given by a hard-core boson
relations. In addition, the pairing correlations have an inter{HCB) model characterized by an effective hopping param-
nal d,2_z-like symmetry with a relative sign difference be- tert” and interactionv* of the hole pairs. The HCB model
tween the leg and rung singlets which make up a pairQescrlbes the doped ladder as a Luther-Emery liquid, with
Despite all of the numerical and analytical work which hasdapped spin excitations and gapless charge collective modes,
been done on this system, we still lack a picture of thewhich are responsible for the CDW and SC power law cor-
ground state which accommodates all of these physical progélations. We summarize the zeroth-order picture in Fig. 1,
erties. There are, however, many hints of what that picturévhich shows a typical state of HCB's, as well as the two

may look like. It is the purpose of this paper to take one stepuilding blocks that are used its construction. _
further in that direction. In order to go beyond this picture, we need to consider the

Short_range resonating valence bomas/B’S) provide a fluctuations of the states of the HCB model. To lowest order
useful basis for representing the ground state of spif Perturbation theory they are shown in Fig. 2. The admix-
liquids.”® For thet-J ladder, a zeroth-order picture has beenture of the state shown in Fig.(@ is of orderJ/J" and
provided by the Study Of the Strong_coupiing ||m|t Where therepresents aresonance Of two nearest'ne|ghb0r rung Slng|etS.
exchange coupling constant along the runds, is much
larger than any other scale in the problem. The other cou-i ° i i e e i ° I i ° i
pling constants of the model arte the exchange coupling , o
constant along the legs, ah@ndt’, the hopping parameters
along the legs and the rungs, respectively. In the liddit
>J,t,t’, the ground state of the undoped ladder is simply FIG. 1. The zeroth-order picture of the hard-core boson model:
given by the coherent superposition of singlets across they) the vertical bond(b) the vertical hole-pair singlet, an@) a
rungs. The addition of one hole requires the breaking of oneypical state of the HCB model.
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FIG. 2. The two lowest-order states in the strong-coupling limit
J'>J,t,t' of the HCB model; they represent the first-order contri-
bution to the DHCB model(a) the resonance of two vertical bonds
and(b) bound state of two quasiparticles.

FIG. 4. The exact ground state for a single plaquette with two
holes(Ref. 9 (caseN=2 andP=1).

1;;1uasiparticles, while Figs.(8 and 3d) are higher-order cor-
rections to the diagonal state shown in Figh)2 For these
reasons it seems consistent to keep the state of Hiy.o®
S&n equal footing with the states of FiggaRand 2Zb). To
Sgive further support to this choice, we notice that the exact
Solution for two holes on the 22 cluster requires a super-
osition of the states shown in Figgb2and 3b) along with

According to the standard RVB scenario, this resonance e
fect leads to a substantial lowering of the ground state en
ergy. The state in Fig.(®) is of ordert/J’, and it can be
thought of as a bound state of two quasiparticles, who
characteristic feature is the diagonal frustrating bond acro
the holes. From the RVB point of view, Fig(2 is a reso-
nance of a singlet and a hole pair. The importance of thig. : 9
state, even for intermediate couplings suchlas)’=0.5, igs. X&) and Xb) (see F_|g. 3 . .

was emphasized in the density matrix renormalization group In summary, we conjecture that in order to discuss the
(DMRG) study of Ref. 9, where it was shown to be the mostnature of the superconducting order parameter of the doped

probable configuration of two dynamical holes in a two—leg;EW.O'letgt’t"J Iad_((aljer, Irtl tthe sk;[rql?g-co#phn%_ regime, 'Ikt)lls lsuf-l
ladder. In the HCB model of Ref. 6, the states of the form of icient o consider stales Dullt up trom Tive possible loca

Fig. 2b) are taken into account as intermediate or Virtualconfigurations, given by rung-singlet boridsg. 1(@)], rung-

) , ) . ) hole pairs[Fig. 1(b)], two-leg bondgFig. 2@)], hole pairs
states, which lead to the effective hoppirfgand interaction - . . . ! .
V* between the hole pairs. It is cleaprp hgwever that “inte-wIth a singlet dlagonal boniFig. 2b)] and hole pairs W'th.a

grating out” the diagonal states through perturbation theoryS

erases the internal structure of the hole pairs. Here we Waﬁ?ese building blocks is shown in Fig. 5. We shall call these

to extend the HCB description to include the internal struc—%gﬁs c?\];esr;asfetﬁ:ari]:egZﬂgiizl\?vsiﬁts:c;ng detf:;(ﬁ;ehg]sfel
ture of the hole pairs. Y Y

In order to define an effective model which would retain °'® boson modeDHCB) and its Hamiltonian can be deter-

the degrees of freedom associated with the internal structurmmed by considering the fluctuations of the dimer-hole

of the hole pairs, we need to consider the states that appear? ates, in a manner similar to the one considered above for

second order in the strong-coupling expansion. They aréee ggsB;‘t?rfst.jggetgHe?ri qua?f Ithcgi?fc')zs "Snp”; E:]nddcig?;%?
given in Fig. 3. Let us comment on them. The state of Fig. 9 ; 109 pings,

3(a) is of order (/)2 and it is a higher-order RVB state, fﬁg?@clstanelsmoefr?jsetlr:gersczgeflré(;dsc?rjr?yaﬁ?ﬁowtirﬂ:ébv(\?(tawv(\e/i(leln
whose contribution to the ground state of the undoped ladd L ous on){cﬁe variatic?nal round state’of the r?mdel
was studied in Ref. 10. In this reference it was shown that its 9 '

. O o ) . The mathematical formulation of the DHCB model in-
inclusion in a variational ansatz improves the numerical re-

o . . &olves an interesting but complicated combination of vertex
sults, but does not change the qualitative picture obtalneand interaction round a fagéRF) models. The latter termi-
using the dimer ansafz! The state of Fig. ®), which is in '

' L nology is borrowed from statistical mechantésThe vertex
fact first order int’, can be seen as a bound state of two__ . ) i
variables describe the number of electrons per rung,n;e.,
=0,1,2, while the IRF variables describe the number and

/ ~ ) ~ /T2 type of bonds connecting two rungs, i.g,;,+1=0, 14, 1,
o o 2, where the subindiced and h indicate the diagonal or
horizontal nature of the bond. The only allowed configura-
@ (b) tions for two consecutive IRF variables (11,1414 2) are

(0,0), (14,0), (14,0), and (2,0) together with their permuta-
tions. Moreover, the vertex variables are subject to certain
constraints imposed by the IRF ones. Namedy) if |; ;.

< o Y =14 or 1, thenn;=n;;;=1, and(B) if |; ;;,=2, thenn,

2 ° "2 =n;,1=2.Onlyifl; ;,,=0 cann; andn;, ; take any value,
~ JtJ JURN(7A0) ; ,
° ° i.e., 0,1, or2.

It is beyond the scope of this work to present a full ac-

© ) count of the DHCB model. Instead, we shall try to uncover

FIG. 3. Higher-order strong-coupling states contributing to the [ ° ° M e °© o
DHCB model: (a) a higher-order RVB statgb) a bound state of o o o o o [

two quasiparticles, an¢kt) and (d) higher-order corrections to the
diagonal statéb). FIG. 5. A typical dimer-hole-RVB state.
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where|0), is the Fock vacuum associated with the rung la-
) beled by the coordinate (|0)yy+1=[0)x®|0)x+1). The
stateg ¢n,p) iNVolve n=1,2 rungs angh=0,1 pairs of holes.
FIG. 6. Elementary building block states of the RRM used in the The variational parameter gives the amplitude of the reso-
construction of the dimer-hole states. nance of a pair of bonds between vertical and horizontal
positionst® while b andc are the variational parameters as-
some of its physics, by means of a combination of two ap-sociated with the diagonal and horizontal configurations of
proaches, namely, the density matrix renormalization groupwo holes, respectively. In the strong-coupling limit
method® and the recurrence relation methd®RM).1° J'>Jtt’, we expect to findu~J/J’, b~t/J’", and
While the DMRG method is a powerful numerical technique,c~tt'/J'2.
which in many cases yields the exact answer, the RRM is Let us call|N,P) the ground state of a ladder witK
essentially analytic, lacking the numerical precision of therungs andP pairs of holes. Of course we should be in a
DMRG method, but sharing with it some features, such astegime of the coupling constants where there is binding of
for example, the Wilsonian way of growing the system bytwo holes. The statfN,P) will be in general a linear super-
the addition of sites at the boundary. In the RRM one begingosition of the dimer-hole states of Fig. 5, which suggests
with an assumption about the local configurations througtihat working with this sort of states could be a formidable
which the system grows. Then one may test whether the statask. Fortunately, we can apply the method developed in Ref.
that is generated gives results in agreement with the essef© to generatéN,P) in a recursive manner, in terms of the

+C( +

[e] o -

tially exact DMRG results. states of the ladders with—1 andN—2 rungs, and® and
P—1 pairs of holes. In Ref. 10 it was shown thak,P=0),
VARIATIONAL WAVE FUNCTION which is in fact a dimer-RVB staté!! can be generated by a

o o second-order recursion relation. Then by a simple procedure
The Hamiltonian of the two-leg-J ladder is given by  one can compute overlaps and expectation values of different
operators using recursion formulas, whose thermodynamic
_ _ limit can be studied analytically.
H=Hg+Hx=2, Jij(S-S— inin; ) S
stk <.El> 0S-S5 aming) Following the strategy of considering first the HCB states
and then the DHCB ones, we shall give the rule that gener-
- 2 t PG(CiT,st,sJF CjT,sCi,s)PGv (1)  ates the former type of states. It is given by the first-order
(i.i)s recursion relation

where J;; ,t;;=J,t or J',t’, depending on whether the link
(ij) is along the legs or the rungs, respectiveély is the
Gutzwiller projection operator which forbids double occu-
pancy. The rest of the operators appearing in @&g.are  supplemented with the initial conditions
standard(we use the conventions of Ref). Each sitei is
labeled by the coordinatesc,y) with x=1,... N andy 11,00=[10),
=1,2. We choose open boundary conditions along the legs of
the ladder. 11, =[¢1,2),

The pair field operator which creates a pair of electrons, at
the sites andj, out of the vacuum is given by IN,P)=0 for N<P. (5)

IN+1P+1)=[N,P+1)[ b1 on+11IN.P)| b1 Dn+1. @

Calling FR% the number of linearly independent states

contained in|N,P), we deduce from Eq(4) the recursion
relation

As explained in the Introduction, we want to build up an
ansatz for the ground state based on the five local configu-
rations of the DHCB model. The explicit realization of these h lution is i by th binatorial b
configurations in terms of pair field operators are given byW ose solution 1s given by the combinatorial numboer
(see Fig. 6,

Alj=—=(clcf +cf el ). 2

HCB  _ pHCB HCB
Fniipr1=FnpeitFne s (6)

N
FHCB:< ) 7
| $10x=10)x. | p @
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Equation (7) is the dimension of the Hilbert space of the r ]
HCB model withN sites andP pair of holes. We have not T T I A I B o I
introduced variational parameters in E¢S), but if we did, "0.0 01 0.2 03 04 05 06 0.7 0.8 0.9 1.0
then all states of the Hilbert space of the HCB model would X

be generated by the first-order recursion relation. It may be
worthwhile to recall that the HCB model is essentially
equivalent to the spinless fermion model or %X Z model,
which is exactly solvable by Bethe ansatz methdds.

Turning now to the DHCB model, the key point is 10 he polynomialz2—z—1, the largest of which is precisely

realize that the dimer-hole states can be generated by thge golden ratiod,. In this way one gets Eq11). For a

foIIowing secqnd—orgier recursion relation, involving the 10- fhite number of holes the residue formula applied to @4)
cal configurations given by E@3): yields, to leading order i,

FIG. 8. The functionf(x) appearing in Eq(15). The maximum
appears ak=0.44.

IN+2P+1)=[N+1P+1)|b1n+a+ [N+ L1P) b1 1)n+2 Fnp~NPOY, N>1, P:finite, (13)
+IN,P+1)| o0+ ane2 where the proportionality constant depends onlyPor.et us
+IN,PY| ho It 1N+ 25 gy  finally consider the limit where botN andP go to infinity,

. L . ) . while keeping their ratio fixed,
with the initial conditions(5). See Fig. 7 for a graphical

representation of E(8). number of holes P

== =x=<1.
number of sites N’ O=x=<1 (14)

Counting dimer-hole states ) . ] )

Let Fy p denote the number of dimer-hole states of gHerex can be identified with the hole doping factor of the
two-leg ladder withN rungs containingP pairs of holes. state|N,P). The saddle point method applied to H42)
According to Eq.(8) they satisfy the recursion relation gives the asymptotic behavior of the number of dimer-hole

states for a finite density of holes,

Fni2p+s1=Fnt1pr1tFnpritFnsipt4Fne, (9

X
with the initial conditions FuofOON,  f(x)= P(P+4)

(P2—d—1)*" 19

FN N:]" FN p:0 for N<P. (10) i ) A
' ’ where ®=®(x) is the highest root of the following equa-
From Egs.(9) and (10) we deduce thaF o satisfies the tion:
well-known Fibonacci recursion formuf8,and that in the 5
limit of very largeN it grows exponentially, e (P°=P—-1)(P+4) 16
O(P2+8D—-3)

Fno~®5  (N>1), (11

where®,=1(1+ 5) is the golden ratio. Using generating __1he functionf(x) is depicted in Fig. 8. Observe that
function method® one can easily solve the recursion rela- ?(0)=®o. The effect of a finite density of holes is that of
tion (9), together with the initial conditio0). The resultis Moving a singularity. This phenomenon also occurs in the

given by the contour integral computation of the energy and other observables.
dz ZN*Y(z+4)P Ground state energy
Fnp= om (22_2_1)p+1’ 12 The parameters,b,c are found by the standard minimi-

zation of the mean value of the energy,
where the contour encircles the singularities of the integrand.N, P|Hy|N,P)/{N,P|N,P), whereHy denotes the Hamil-
For P=0 the integrand has two simple poles at the zeros ofonian of the ladder wittN rungs. The usefulness of E()
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is that it implies that the wave function and energy overlaps
also satisfy recursion relations. Let us define the following
guantities:

ZN’p:<N,P|N,P>,

YN,P:N<¢1,0|<N_11P|N1P>1

En,p=(N,P[H\IN,P), 7

Dn,p=n{#1,d(N—1,P[H\IN,P),
Wy,p=(N,P[ny[N,P),

whereny is the number operator acting on the rudgThe
off-diagonal overlaps arise from the cross terms when apply-
ing Eq. (8) to the ket and the bras iN+2,P+1|N+2,P

+1) and(N+2,P+1|Hy,,/N+2,P+1). The recursion re-
lations satisfied by Eq17) are given by

_ 2
Znvop+1=Inr1p+1t U ZNpr1 T UY NG pr1T 2Nt 1P
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FIG. 9. Ground state energy per site of the3 ladder with
J=0.5,t=t'=1, andJ'=0.5,1,2,3,4,5. The remaining data given
below in Figs. 10—13 also correspond to these choices of couplings.
The continuum curves are obtained with the RRM. The dotted
curves correspond to the variational computation withc=0 and
b+#0, which we argue gives a variational estimate of the HCB
ground state energy. The special symbols are the DMRG data cor-
responding tok=1/8, 1/2, and 7/8, respectively.

tonian contains the effects of virtual states of holes in diag-
onal positions. The other approach consists in takirgc

=0 andb+#0 and the full ladder Hamiltonian. We believe
that both approaches give essentially the same results. We
shall follow below the second one.

Dn+2p+1=En+1pr1= 3 Znt1pr1TUW2D N1 1prg

_U(J+J,/2)YN+1,P+1_2thN,P

1
4 JWN+1,P+11

Wit 2p+1=2Zn+1p+11 2UPZN pr1+2(D*+C?) Zy p

T2uYN41p1-

The initial conditions read

Zo,o= 1, Yo,o= Eo,o= Do,o= Wo,o= 0,
Xn,p=0, for N<P and X=27,Y,E,D,W.

For finite values oN andP, and given choices af,b,c,
one can iterate numerically the recursion relatit® using
the initial conditions(19) and look for the minimum of the
ground state energiy p/Zy p. We give below the results
obtained using this variational method for a<32 ladder

RRM WAVE FUNCTION VERSUS THE DMRG METHOD:
NUMERICAL RESULTS

As explained in the Introduction the DHCB model is the
appropriate framework to study the strong-coupling limit of
the two-leg ladder, if one wishes to take into account the
local structure of the hole pairs. To check the validity of this
assumption we have studied the cases where the coupling
constants take the following values=t'=1, J=0.5, and
J'=0.5, 1, 2, 3, 4, and 5. In this manner we go from the
intermediate-coupling regime, i.el’'~1, to the strong-
coupling regimel’ =3.5. We are always working in a non-
phase-separated region.

In Fig. 9 we show the ground state energy of the32
ladder, for the previous choices of parameters, computed
with the RRM for all dopings and the DMRG method for
x=1/8, 1/2, and 7/8. One sees that the results obtained with
the DHCB method wave function agree reasonably well with
those of the DMRG and their accuracy improvesJasn-

and compare them with the corresponding results obtainedreases. The curve denoted as HCB corresponds to a mini-

with the DMRG method.

mization withu=c=0 andb+#0, and describes essentially

We also present numerical results which correspond to ¢he results of the variationally HCB state, as was explained
variational approach to the HCB model. There are two waysbove. We observe that the DHCB and the HCB agree very
to perform a variational study of the HCB model. The first well in the strong-coupling regim& >>J and low and high
one can be done in terms of the state generated by4tq. dopings.

and the effective HCB Hamiltonian of Ref. 6. This Hamil-

The kinetic energy of the ladder is shown in Fig. 10. It has
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FIG. 10. Kinetic energy per site. The continuum curves corre- FIG. 12. The variational parametdr as a function of the
spond to the RRM, and the dotted curves correspond to the variadoping.
tional caseu=c=0, b#0.

u becomes negative. For the undoped ladder the parameter
the pattern expected for a collective charge mode, as de&an be interpreted as the square of the RVB amplituglg
scribed by the HCB and the DHCB models. For a doping for having a bond along the leg8The analog amplitude for
~1/2, the kinetic energy reaches an absolute minimun® bond along the rungs has been implicitly normalized to 1.
which is independent of the values of the coupling constantd-or low doping, i.e.x<X., sinceu(x)>0, we can similarly
This optimal doping corresponds essentially to the maximunslefine a doping-dependent amplitude for a leg bond as
of the curve in Fig. 8, which gives the exponent of the ex- 5
ponential law governing the number of dimer-hole states. u(X)=hgyg(x)=>0  (X<Xc). (20

The nature of the variational many-body state we haven order to fulfill the Marshall theorem for the undoped lad-

constructed is clarified by Figs. 11, 12, and 13 where Wejer one requires the RVB amplitutig,s(0) to be positivé
show the values of the variational parameter$, andc as  \yhich explains whyu(0) is also positive. Actually for the

functions of the doping for different coupling constants. positivity of u(0) one just needbgyg(0) to be a real num-
The parameteu starts from a positive value corresponding gy Atx=0, hgyg(0) increases witl/J’ due to the reso-
to the undoped laddeP,and it decreases upon doping until a nance between rung and leg singlets, according to the RVB
critical valuex.(J/J"), where it vanishes. For higher dopings gcenario. Upon doping, however, the holes give rise to de-
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FIG. 11. The variational parameter as a function of the FIG. 13. The variational parametar as a function of the

doping. doping.
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structive interference which degrades progressively the 1.0
aforementioned resonance mechanism. This explains why

u(x) and hgyg(x) decrease withx. For x<x. the ground 0.9
state is dominated by the resonating valence bonds and the g g
RVB picture remains qualitatively correct.

For x>x. the interference due to the holes has driven 0.7
negative and it is no longer appropriate to interprét) as 0.6
the square ohgyg. Rather, the physical interpretation of the '
overdoped region comes from the solution of the Cooper <« g¢.5
problem in thet-J, two-leg ladder and its BCS extension. It
can be shown analytically that two electrons in the latter 0.4
system form a bound state only under certain conditides

tails will be given elsewhepeForJ=0.5,t=t"=1 one must 0.3

have J’'>3.3048[note that the binding of two electrons in 0.2

thet-J chain requiresl)/2t>1 (Ref. 14]. The exact solution

for four or more electrons is difficult to construct, but we 0.1

expect it to be given essentially by a Gutzwiller-projected 0.0

BCS-like wave function. A short-range version of the latter 2.0

type of wave function can be generated from the recursion Jit

relation(8), with u a negative parameter, which can be writ-

ten as FIG. 14. Boundary of the phase separation region in the case

where J=J', t=t’, computed with the DMRG method and the

u(x)=—h3cdx)<0  (X>xc), (21 RRM.

wherehgcsis the BCS amplitude for finding two electrons at iS €asily observed—the holes form either a single hole-rich
distance 1 along the legs. Of course this interpretatiana ~ '€gion in the center or two hole-rich regions on the ends,
minus the square of a BCS amplitude requires it to be nega/ith the rest of the system hole free. The density of holes in
tive. As we put more electrons into the ladder the value o€ hole-rich region gives a point on the phase separation
hgcs decreases, and for electron densities larger than Poundary. For most values dlft relatively short ladders
—X., we switch into the RVB regime. (32x2) could be used, since the hole density decayed
The difference between the underdoped and overdope@Uickly with distance to a single value near the “surface” of
regimes can be attributed to two different internal structuredhe hole-rich region. Nea#/t~2.15, the surface was much
of the pairs. In the low-doping regime<x., holes doped Ie;s sharp and systems as large asx2b6vere needed. In N
into the spin-liquid RVB state form pairs with an internal this case many DMRG sweeps were also needed to equili-
dy2_,e-like structure relative to the undoped system. How-brate the hole density. _
ever, forx>x, one moves into the low density limit charac- ~ Within the RRM, the phase-separated state is constructed
terized by electrons doped into an intersakave-like sym- @S the composition of two phases: one is a hole-rich phase
metry. This issue will be discussed in detail in a separat@nd the other phase is a hole-free phase with only spins.

publication. The energy of this state can be written as

Let us now comment on Figs. 12 and 13. Both are very E
similar and show that fok~1/2, b andc reach their maxi- e —ey_p_| ot Epsip, (eN P:ﬂ>, (22)
mum. Atx=1/2 there are as many electrons as holes, and in ’ ' ' T Zye

a certain sense the ground state of the ladder is a large-scalfherel counts the number of fermion pairs in the hole-rich
reproduction of the microscopic ground state of the22 phase. We have used the RRM to calculate the energy in
cluster given in Fig. 4. Indeed fal=J"=0.5,t=t'=1 the  poth phases looking for a minimum e in 1. Once the
ratio b/a of the parameters appearing in Fig. 4 is given byminimum is achieved, the phase-separated energy is com-
1.30, which is very close to the value bfat its maximum.  pared with the uniform phase energy to determine which of
Forx<0.7 andJ' =0.5 the parametdy is larger than 1 and the two phases is more stabfe.
it is always larger thaw for all dopings and couplings. This e obtain an overall agreement between the results ob-
is in agreement with the DMRG results of Ref. 9, which tgined with the DMRG method and the RR(dee Refs. 6,
show the importance of the diagonal frustrating bonds aboveg and 17 for comparisons with other numerical reults
the horizontal or vertical ones falf't=J'/t=0.5. the two-legt-J model, phase separation is controlled By
Finally Fig. 14 is aJ/t-n diagram which shows the rather thand’, and so the strongest coupling we have con-

boundary of phase separation obtained by means of thgdered above)'/t=5, J/t=0.5, t'/t=1, does not phase
DMRG method and the RRM in the case whe¥eJ’, t  separate.

=t"=1. Observe that this is not the strong-coupling case we
have been discussing so far, and hence the validity of the
RRM is more questionable.

The DMRG phase separation boundary was calculated us- In this paper we have proposed an extension of the effec-
ing many different simulations on large ladders with opentive hard-core boson model of the two-leg ladder of Ref. 6,
boundary conditions. Phase separation on a large open ladderorder to include the local structure of the hole pairs. The

CONCLUSIONS
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extended effective model, called the DHCB model, containghysical interpretation of the behavior of the variational pa-
dimer bonds, hard-core bosons, and various combination@meters with doping.

between bonds and holes, whose relevance have been studied
previously with the DMRG methotiGeneralizing the meth-

ods of Ref. 10 to the case with holes, we study a variational G.S. would like to thank the organizers of the ITP
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