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Fundamental inversion problem for the magnetic-force microscopy of superconductors
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A fundamental inversion problem for the magnetic-force microscdplfM) of a semi-infinite supercon-
ductor in the Meissner state is formulated. Under certain assumptions on the MFM tip and superconductor
geometry, a unique layer-dependent penetration dep#f) can be recovered from one-dimensional force
measurements. This development opens new possibilities for the nondestructive evaluation of superconducting
crystals and films. Some of the implications of the detailed knowledge of the temperature dependence of the
penetration depth at low temperature on the superconducting pairing state ard 3016iR-182608)04818-9

INTRODUCTION the wave number-dependent kernel function. Alternatives to
this approach exist, which are secondary to the current the-

In magnetic-force microscopy® a magnetized tip senses oretical aim.
the stray field of a sample. A flexible cantilever, often with ~ The results of this research have many potential techno-
an optical sensor of displacemént,is used to measure the logical applications. This new approach to the analysis of
force. In particular, magnetic-force microscofgbtMs) op- ~ MFM data opens the way to a new method of characterizing
erating at cryogenic temperatures provide a tool for measusuperconducting crystals and films. The functioe) re-
ing the electromagnetic fields of superconductot$his pa-  flects the quality of the sample, withdiverging for normal
per is concerned with the inversion of MFM force data for material. The inversion procedure provides a contactless
superconductors, where the measured stray field is inducetiethod to access a property throughout the thickness of the
by the tip. sample.

In the direct MFM modeling problem for superconduct-  In particular, multilayer superconducting structures are
ors, material properties such as the penetration depth arftbw routinely made by processes including laser ablation/
magnetic permeability are assumed given. On the other handeposition and sputtering techniqfe3he data from such
in the inverse problem the material characteristics are to bgtructures with alternating superconductor and substrate
extracted from the measurements. In the direct problem, cakould provide input to the algorithm. In any case, in first
culated fields give the expected force, while in the inversdesting the algorithm, synthetic data can and should be gen-
problem the force is to be used to recover the material properated for analytically solvable models. The discussion sec-
erties. tion of this paper touches on this point. Experimental data

It may be useful to recall some broad characteristics ofvith the concomitant noise bring another set of issues.
inverse problems, as these lie at the core of the observational The inverse MFM problem also has many implications for
problem in physics. These problems are among the moghe basic physics of superconductivity. The detailed tempera-
challenging in all of mathematical physics. General proceture dependence of the penetration depth, especially at tem-
dures for solution are limited to very special classes of probperatures close to absolute zero, can shed light on the basic
lems and in practice each procedure must be fashioned to teechanism. In particular, the deviation 0fT) from a con-
specifics of the application. The traditional theoreti¢dir  stant at low temperature, of exponential vs power-law form,
rech approach is to make an informed guess about the progs of interest. Fors-wave superconductivity, AN/\(0)
erties of a system and then see what consequences followe [\ (T) —\(0)]/\(0)~3.33(T./T)Y2exp(—1.76T./T) for
However, the more fundamental, and generally more difficufow temperature, wherd; is the transition temperature.
approach, as taken in this paper, is to recover the systefdowever, other pairing states can lead to an algebraic tem-
properties from the observables. perature dependence at low temperature; powWers?, T2,

In general, the MFM inversion problem is ill posed, with andT# are possible depending upon the type of nodes in the
difficulties of nonuniqueness and instability, a feature of thisenergy gap. Furthermore, the specific power, if this case
class of problem8.This paper focuses on a semi-infinite su- holds, can give insight into the role of disorder in the mate-
perconductor, probed by a point tip of specific magnetiza+tial. A study of YBgCu,O;_ s data interpreted a crossover in
tion, where force data at all heights above the surface arA\ from T2 to T at approximately 0.2V, as a result of
assumed known. The result of inversion is a unique layerdisorder-induced modifications in the superconducting State.
dependent penetration depth functiofe). A calculation for a disordered, two-dimensiortzwave su-

The purpose of this paper is to demonstrate in detail thaperconductor may support this vie\.
in principle A =\(z) can be recovered. However, the stabil- Therefore information oA\ (T) can be used to discrimi-
ity of the algorithm needs to be further explored and im-nate the angular momentum of the pairing state of supercon-
proved. In particular, the question of numerical inverseducting holes or electrons. The reproducibility of MFM mea-
Laplace transformation needs to be addressedaddition, surements and the ability of the MFM to scan through a
curve-fitting procedures need to be considered in expandingange of temperatures makes it a very appropriate tool for

0163-1829/98/5(1.8)/116486)/$15.00 57 11 648 © 1998 The American Physical Society



57 FUNDAMENTAL INVERSION PROBLEM FOR THE . .. 11 649

such a test. Furthermore, the local, or microscopic, nature gfortant point for us here is that the vertical component of Eq.
magnetic force measurement makes it possible to avoid th@) reduces to the usual London equation, with variable co-
effects of grain boundaries and related sample imperfectionsfficient,
on \(T) in high-T. materials. Other methods, such as micro-
wave techniques, effectively give an averaged penetration
depth. It is recalled that the short coherence length of high-
T. superconductors makes them unusually sensitive to stru
tural imperfections.

For the inverse problem it is especially important to re-
view the necessary changes to the governing partial differen-
tial equations when a position-dependent penetration depth is INVERSE BOUNDARY VALUE PROBLEM

present. After a condensed consideration of this topic, the \we now wish to develop the inverse boundary value
inversion procedure is developed. In considering the magproplem for a semi-infinite superconductor, with surface the
netic boundary value problem for stratified superconductorsmanezz 0, in the Meissner state, in the presence of a vertical
the solution technique builds on earlier work of the point magnetic dipole of momemt at heighta. The case of
author.™ _ . a point magnetic charge tigmonopole tip is considered in

In this paper the solution of a MFM inverse problem Ref 14, Most practical tips are found to lie somewhere be-

whose associated forward problem is also nonlinear igyeen the dipole and monopole cases. The latter situation
avoided. This especially applies to a consideration of usingends to hold for longer vertical tipé.

the coupled Ginzburg-LandaGL) equations. It is recalled  The governing partial differential equations in conjoined
that these equations are nonlinear in both the complex ordgfyif spaces become

parameter and vector potenti@r magnetic fieldl It seems

that not even a partial mathematical solution of the inverse V2B,(p,z)=V,(p,z)=puomdé(z—a)Vipdsp(p), z=0,

1
V?B,(p,2)= N2 B.(p,2). (2

SinceB is divergenceless3, can be employed as a scalar
potential*®

problem for the GL equations is available. Given the signifi- (3a)
cant mathematical difficulties of the inverse GL problem,
these equations still lack physically: they strictly hold only [V2—\"%(2)]B,=0, z=<0. (3b)

near the transition temperatufe. Additionally, in the high- Two-dimensional Fourier transformatirof Egs. (3) gives
T. materials, with their short coherence lengths, fluctuations

play a major role neaf.. Therefore a GL approach appears ((93_ k?)B,(k,z)=V,(k,z), z=0, (4a)
to be fraught with many difficulties, whose mathematical in-

tricacies may not be easily physically justifiable. In this pa- [35_ v4(2)1B,(k,2)=0, z<0, (4b)
per the starting point for the forward problem is linear Lon- o )

don theory. where the (unknown coefficient function y?(z)=k?

+X\"?(2). The transform of the source is

BASIC SUPERCONDUCTOR EQUATIONS om

. . . Vz(k,2)=f pIo(kp)Vy(p.2)dp=— 5= s(z-a)k?.

The following treatment will assume axisymmetry for the 0 2m
superconducting half space problem. The important simplifi- (40)
cations that arise for this geometry are emphasized here. lgre and throughout, denotes the Bessel function of order
particular, the modification of the London equation for an, of the first kind'’?
layer-dependent penetration dept{e) is considered. From A particular solution of Eq(3a) is
the London relatiorji(x)=—A(X)/[ uoA2(x)], wherejq is
the supercurrent density adthe vector potential, the rela- oM [2(z—a)?—p?]
tion for the magnetic inductioB=V XA, and Ampere’s Biip,2)= An [p2F (2= )2 )
law, it follows that

In the upper half spacB=B,+ B, where the vertical com-
1 ponent of the induced field is taken to have the form
ol

1
VX(VXB)=—FB+A><V (1)

B.:(p.220)= | Fike gkpikak @
In obtaining this equation the total current density has been 0
taken to be the s_upe.rclurrent density 631d1as been taken The function B,,(p,2) is a homogeneous solution of Eq.

equal tougH for simplicity. Of note here in the vector equa- (3a); it is a harmonic function in the upper half space. In the

tion for the magnetic induction is the last term of E@).  |ower half space the vertical component is taken to have the
This term complicates the solution for this field, especially inggrm

non-Cartesian coordinate systems.

SinceB is the principal field for MFM force calculation o
and we desire to solve boundary value problems for it, the B.(p,z<0)= fo Fa(K)Zo(z,k)Jo(kp)k dk. @)
axisymmetry assumption is introduced. Here we assume, in
terms of cylindrical coordinates, that the penetration deptiThe functionZ, solves Eq.(4b) and satisfies the boundary
depends oz alone, thaB has only radial and vertical com- conditionZ,—0 asz— —. The solution space of E¢4b)
ponents, and tha can be taken to be azimuthal. The im- has as a basis two linearly independent solutions, a growing



11 650

one and a decaying on@y Abel’s identity, their Wronskian
is a constan}.The functionZ, vanishing az— —oo will be

the unique monotonically decreasing solution when two con-

ditions are met. First, assuming thaf(z) is a continuous
function, the functiorzy?(z) should not be if_(0,<). Sec-
ond, fixing the value o, at a point, say at=0, makesZ,
unique®®

The expansion coefficients; andF, are fixed by conti-
nuity boundary conditions at=0.2® Using Eqs.(5), (6), and
(7) and the continuity oB, and 4,B, yields'"*®

Mom

2. ke e Fu(l=Fa(k) Z5(0k),

(8a)

Mom -
2 k2e kA Kk, (K)=F5(k)Z,(0k),

i¥ry (8b)

where the notatiofi(O,k)E[&ZZ(z,k)]Z:() is used. The so-
lution of Egs.(8) is

Fi(k)= MM | oka [kZ5(0k) —Z5(0K)]

- , 9
i kz00 mok]
2,—ka
Fallg= 02 (60

27 [KZy(0K)+Z,(0K)]

Then follows the components of the magnetic induction

Mom

B,(p,z=0)=By,(p,2)+ —— | k2dk Jy(kp)e Kz*+a)
4’77' 0

[1-K(k)]
K] ioa
. —ka
Bz(p,Z$O)ZMJ dk Jo(kP)Zz(_Z,k)e |
27 Jo  [Z,(0K)+Z,(0K)/K]
(10b
_ Mom [ 5 —Kk(z+a)
B,(p.220) =By, (p.2) + 5 | Kdkdkp)e
[1-K(k)]

EETOR (109

m (= J1(kp)Zy(z,k)e k2
Bp(p,z<0):_’uLf K2dk 1(kp)Z5(z,k)
0

2m [KZo(0K)+Z,(0K)]
(109
where the kernel function
Z,(0K)
K(k)= m (11)

has been introduced. The azimuthal supercurrent density camhere ag=1.

be computed from Ampere’s law and Eq&0b) and (10d):
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m o0
jse(p,z<0)=—— f k?dk J;(kp)e k2
27 Jo

><[22<z,k>—k222<z,k>]
[KZ,(0K)+Z,(0K)]

(12

It will be seen that the wave-number-dependent function
K(k) is central to the inversion algorithm. From Eq&0b)
and(10d) and Hankel inversion the equivalence of the kernel
function and interface quantities is known:

k(== | "B,(0.03.(kn)p dp /

0

Xfo B.(p,0)Jo(kp)pdp. (13
Even more important here is the connection betwi€esnd
the measured MFM forceF. The magnetostatic self-
interaction energy for the vertical dipole idJ(a)

=—(3)mB,,(p=0,z=a). Using Eq.(109 this becomes

Cmem? (= [1-K(K)]
U(a)= g fo k-dk e m (14)
Then the lifting forceF,= —dU/Jda is
__/—Lomz * 3 —2ka[1_K(k)]
F,(a)= yp= fo k*dk e FETCE (15

The above results can be checked in the special case of
the direct problem withh =const. ThenZ,(z,k) =exp(y2),
kZ,(0k)+Z,(0k)=k+ vy, andK (k)= y/k.

Recognizing Eq(15) as a Laplace transform, the kernel
function can be obtained in terms of the inverse Laplace
transform of the force

( k) B 1+(cn/k3) L7 FL(a)]

2= T (cnlk® £ R @)]" (18

where c,=64x/uom?. Alternatively, the kernel function
could be found from the potential energy function, Ety).

It remains to show howk ~?(z) can be recovered from the
kernel function.

RECOVERY OF THE PENETRATION DEPTH PROFILE

The penetration depth function can be recovered from the
kernel function by using the form of the Schlinger-like
equation(4b), Z,/Z,—k?=\"?(z), and an infinite series so-
lution. For large wave numberg, approaches exgg), in
which caseK(k)—1. Therefore the kernel function has the
expansion

o0

K(k)=2,

n=0

an
K (17)
If we introduce the logarithmic derivative
function v(z,k)=4, InZy(zk), then it is seen thak(k)
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=p(0k)/k. In a sense the function serves to extend the
kernel away fronz=0. Since for largek, v—Kk, this func-

tion has an expansion

oz =k @

where ag=1 and each coefficient has the boundary condi

tion a;(z)—a; asz—0. Based upon thédirect problem
special case that=const, where

K(k 1+—1/2—1+ . 11 +1 -
W=11*t372] =1 5522 82Kk T 16 h5k8
5 1
EEPTIC RN (19

we anticipate that ~"?(z) can be found as @,(z). If we
integratev (z,k) from z to zero, we have

[}

1 (o
In[Zz(O,k)/ZZ(z,k)]zknEO @

an(z2')dz'. (20

z

Whenv is substituted into Eq(4b), a Ricatti equation

results:

v2+u=K*+\"?(2). (21

11651

DISCUSSION

A brief examination of some very simple but important
special cases may help to illuminate the above procedure.
When the lower half space is no longer superconducting,
—oo, the measured MFM force is zero, its inverse Laplace
transform is null, and by Eq16) K(k)=1, as expected. On

the other hand, consider the case of perfect diamagnetism,

N—0. Then the force as a function of height I5,(a)
=3um?/32a*, which has the inverse Laplace transform
k3/c,. Then by Eq.(16) the kernel function diverges, as
expected sincey diverges.

A nontrivial example is to use the MFM force data when
\ is known to be a nonzero constant and to verify consis-
tency. In this case the magnetostatic interaction energy and
force are expressible in terms of differences of Struve and
Neumann functionsd,—N,.** Then

16
L7YF(al2)]= - k3(1+2\%k2—2kn2\k2+ N 7P),
m
(27)

which, together with some algebra, givié¢k) = v/k.

Several extensions of the research reported here can be
made, including the consideration of a superconductor with
finite thickness, and will be discussed elsewh&fgnder the
assumptions that the coefficient functigf(z) in Eq. (4b) is
always positive and continuous, a positive monotonically de-

Equation(21) manifests the well-known connection between creasing solution is guaranteed to exist. This justifies the

order, nonlinear Ricatti equatidnWhen the expansiofi8)

is substituted into Eq(21), we find thata;=0, that indeed

2a,(2)=\"%(2), (22

and the recursion relation

|
ZO aney_n=—a_1(2), 1>2. (23

Equation(23) expresses the derivatives(z) in terms of

vanishing az— — «.1518t also makes the definition of the
functionv(z,k) meaningful.

It is worth describing the nonrelativistic quantum me-
chanics analogy with the present work. The left-hand side of
Eq. (4b), written with terms 65— \"?)B,, corresponds to a
scaled Hamiltonian operating on a wave function. If we com-
pare this equation in detail with the Schinger equation
then we can make the correspondenté&) —#2/2uV(2)
andk®— —2uE/#2, whereu is the particle massy is the
potential energy, anft the energy eigenvalue. Therefore, as

the functionsa;(z) themselves. From this recursion relation we expect, a weak potential corresponds to a large penetra-

one extracts the function

a3"(0)
|

- z". (24

az(Z):nz::O

The higher derivatives ofr, at z=0 are also computable

from Eq. (23). In fact, we have
ay(0)=a,, —ay(0)=2a3,

ay(0)/21=2a,+a35, —a’¥(0)/3!=4a5/3+8a,ay/3,
asV(0)/41=2a4/3+ 2a,a,+5a%/3+2a3/3, (25
so that the beginning of the series for?(z) is

N"%(z)~2a,—dazz+2(2a,+a3)z>— (%) (as+2a,a5)Z°

T (26)

The correctness of the relatio®5) can be checked in the

special casa =const, from Eq(19), wherea,,, ;=0.

tion depth, and vice versa. The negative signEgfwhich
indicates a bound state in quantum mechanics, is connected
to the fact that the superconductor problem corresponds to an
attenuation, rather than a propagation, problem. In the for-
mulation of this paperB,,(k,z) acts like an incident field,
B,,(k,z) like a reflected field, an®,(k,z<0) like a trans-
mitted field. The functionz,(z,k), with the defining prop-
erty

lim e %Z,(z,k)=1, (28)
Z——®
might be called a Jost function. By using the Hankel repre-

sentation ofB,(p,z) and Eqgs.(10a and (10b), it is then
possible to write

R = Ko —1 29
()_K(k)+1’ (29
T(k)zlJr—K(k)’ (30)
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FIG. 1. Numerical inverse Laplace transform of the function  FIG. 3. Numerical inverse Laplace transform of the function
F(p)=1/p*, obtained with the Gaver-Stehfest method with F(p)=1[p+(p?+1)*?]* obtained with the Gaver-Stehfest
=18. method withn=18.

as reflection and transmission coefficients, wWiRH-T=1.
(Here the exponential factor expRka) coming from the
nonzero height of the MFM tip is omittedFor the direct

Two methods known to give fairly accurate and reliable re-
sults for real valued functioh$are those of Piessens based

et . upon the use of Chebyshev polynomfiland of Gaver and
problem with\ = const, these expressions reduceRte (y Stehfest using an extrapolated sanfdlBoth of these meth-

_.k)/(7+ k) andT=2k/(y+k). The Inversion procedure of aods have been implemented. The second, having fewer nu-
this paper may then be phrased as using knowledge of the

reflection coefficient, as known from the MFM force data, tc)mencal parameters, is easier to work with, and is illustrated

recover the unknown penetration depth as a function of disbere‘

tance. A basic Laplace transform pair for the MFM problem
with a point dipole tip is a force functioR (p)=1/p* with
inversex®/6. This pair corresponds to the diamagnetic limit,
NUMERICAL LAPLACE TRANSFORM INVERSION as discussed above. The numerically obtained inverse func-

As mentioned in the Introduction, other approaches to th&ion iS plotted in Fig. 1. The number of points in the sample
inverse problem exist. Specifically, an integral equation’» Which must be even, has been taken as 18 for all of the

formulatior® as opposed to a differential equation formalism &<@mple functions presented here. This is a suitable number
as used here can be followed. However, in each case, due {8 double precision arithmetfe. If the forff should be

the form of the magnetostatic interaction, E5), the gen- F(P)=1/(p+1)", the exact transform ix”e */6. The nu-
erally delicate task of numerical Laplace transform inversionerically obtained inverse is shown in Fig. 2. Tzhe Lelllglace
must be confronted. This operation is discussed and illusi"Verse transform of the functiorF(p)=11(p~+1)

trated in this section. Once the inverse Laplace transform ig P1" 1S 4J4(x)/x, whereJ, is the fourth-order Bessel func-

performed, the kernel function is available for the rest of thelion of the first kind. The result of numericalzinverzsion of
inversion method. F(p) is shown in Fig. 3. The functiokR(p) =1/(p“+ 1)~ has

The difficulty of inversion of MFM results is further com- inverse transformmx*234/(x)/2°? and the numerical re-
pounded by the fact that the Laplace transform is knowrSult iS shown in Fig. 4. It is seen that the numerically com-
only for real values. Therefore the present discussion is limputed inverse function in this case significantly degrades for

ited to considering a continuous Laplace transform functionlarger values ok.

0.24 1 3
022t *
0.20 2r
018}
0.16 |-
014
012}
0.10 b
0.08 |-
0.06 - -2t
0.04 |-
002} =3r
0.00

linv
linv

9 10 ¢] 1 2 3 4 5 6 7 8 9 10

FIG. 2. Numerical inverse Laplace transform of the function FIG. 4. Numerical inverse Laplace transform of the function
F(p)=1/(p+1)* obtained with the Gaver-Stehfest method with F(p)=1/(p?+1)?, obtained with the Gaver-Stehfest method with
n=18. n=18.
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SUMMARY deviation of \(T) from a constant at low temperature, of

A ready application of this work is the contactless assess(?)(pom—:‘n.tlal VS power law form, is of interest.
In this work axisymmetry was assumed and two-

ment of the quality of high-temperature superconducting . ) . . -
crystals and films. High-temperature superconducting fi|m§i|men5|ongl Fourier transformatlon was used to eliminate the
are now fabricated from a variety of techniques. These mullp:6) coordinates. The solution of the coupled electromag-
tilayers, to a good first approximation, have the axisymmetry?etic boundary value problem along thedirection was ef-
assumed in this paper. In this discussion of the concept dected by employing a wave number-dependent kernel func-
inversion, an infinite width of the sample was also assumedon K(k). From the continuity boundary conditions at

so that Fourier transformation could be applied.
The MFM imaging of high¥; superconductors is now

z=0, the form of the kernel function was found, E41). It
is assumed that the MFM force data is available for a vertical

possible in both the Meissner and mixed states. The lowdipole tip, for all heightsa>0. Therefore the inversion algo-
temperature MFMs are able to reliably image the same aredthm can be summarized as follow) Laplace inversion of
under different temperature and magnetic-field conditfons.the MFM force data, as a function of wave numiker(b)

Force detection at the pico-Newton level

achieved:®

has beerCalculation of the kernel functioK from this information,

Eqg. (16). (c) Expansion of the kernel function in powers of

The inverse MFM problem also has many implications forreciprocal wave number, E¢L7). The set of numberga; } is
the basic physics of superconductivity. The detailed temperahen known(d) From this series the auxiliary functiam,(z)
ture dependence of the penetration depth, especially at temappearing in Eqs(18) and (24) is determined(e) Finally,
peratures close to absolute zero, can provide information ofifom Eq.(22), the layer-dependent penetration depffz) is
the symmetry of the pairing wave function. In particular, therecovered.
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