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Fundamental inversion problem for the magnetic-force microscopy of superconductors
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~Received 25 July 1997; revised manuscript received 21 November 1997!

A fundamental inversion problem for the magnetic-force microscopy~MFM! of a semi-infinite supercon-
ductor in the Meissner state is formulated. Under certain assumptions on the MFM tip and superconductor
geometry, a unique layer-dependent penetration depthl(z) can be recovered from one-dimensional force
measurements. This development opens new possibilities for the nondestructive evaluation of superconducting
crystals and films. Some of the implications of the detailed knowledge of the temperature dependence of the
penetration depth at low temperature on the superconducting pairing state are noted.@S0163-1829~98!04818-8#
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INTRODUCTION

In magnetic-force microscopy1–3 a magnetized tip sense
the stray field of a sample. A flexible cantilever, often w
an optical sensor of displacement,1–3 is used to measure th
force. In particular, magnetic-force microscopes~MFMs! op-
erating at cryogenic temperatures provide a tool for mea
ing the electromagnetic fields of superconductors.2,3 This pa-
per is concerned with the inversion of MFM force data f
superconductors, where the measured stray field is indu
by the tip.

In the direct MFM modeling problem for superconduc
ors, material properties such as the penetration depth
magnetic permeability are assumed given. On the other h
in the inverse problem the material characteristics are to
extracted from the measurements. In the direct problem,
culated fields give the expected force, while in the inve
problem the force is to be used to recover the material pr
erties.

It may be useful to recall some broad characteristics
inverse problems, as these lie at the core of the observati
problem in physics. These problems are among the m
challenging in all of mathematical physics. General pro
dures for solution are limited to very special classes of pr
lems and in practice each procedure must be fashioned to
specifics of the application. The traditional theoretical~di-
rect! approach is to make an informed guess about the p
erties of a system and then see what consequences fo
However, the more fundamental, and generally more diffic
approach, as taken in this paper, is to recover the sys
properties from the observables.

In general, the MFM inversion problem is ill posed, wi
difficulties of nonuniqueness and instability, a feature of t
class of problems.4 This paper focuses on a semi-infinite s
perconductor, probed by a point tip of specific magneti
tion, where force data at all heights above the surface
assumed known. The result of inversion is a unique lay
dependent penetration depth functionl(z).

The purpose of this paper is to demonstrate in detail
in principle l5l(z) can be recovered. However, the stab
ity of the algorithm needs to be further explored and i
proved. In particular, the question of numerical inver
Laplace transformation needs to be addressed.5 In addition,
curve-fitting procedures need to be considered in expan
570163-1829/98/57~18!/11648~6!/$15.00
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the wave number-dependent kernel function. Alternatives
this approach exist, which are secondary to the current
oretical aim.

The results of this research have many potential tech
logical applications. This new approach to the analysis
MFM data opens the way to a new method of characteriz
superconducting crystals and films. The functionl(z) re-
flects the quality of the sample, withl diverging for normal
material. The inversion procedure provides a contactl
method to access a property throughout the thickness of
sample.

In particular, multilayer superconducting structures a
now routinely made by processes including laser ablati
deposition and sputtering techniques.6 The data from such
structures with alternating superconductor and subst
could provide input to the algorithm. In any case, in fir
testing the algorithm, synthetic data can and should be g
erated for analytically solvable models. The discussion s
tion of this paper touches on this point. Experimental d
with the concomitant noise bring another set of issues.

The inverse MFM problem also has many implications
the basic physics of superconductivity. The detailed tempe
ture dependence of the penetration depth, especially at
peratures close to absolute zero, can shed light on the b
mechanism. In particular, the deviation ofl(T) from a con-
stant at low temperature, of exponential vs power-law for
is of interest. For s-wave superconductivity,7 Dl/l(0)
[@l(T)2l(0)#/l(0)'3.33(Tc /T)1/2exp(21.76Tc /T) for
low temperature, whereTc is the transition temperature
However, other pairing states can lead to an algebraic t
perature dependence at low temperature; powersT, T2, T3,
andT4 are possible depending upon the type of nodes in
energy gap.8 Furthermore, the specific power, if this ca
holds, can give insight into the role of disorder in the ma
rial. A study of YBa2Cu3O72d data interpreted a crossover
Dl from T2 to T at approximately 0.27Tc as a result of
disorder-induced modifications in the superconducting sta9

A calculation for a disordered, two-dimensionald-wave su-
perconductor may support this view.10

Therefore information onDl(T) can be used to discrimi
nate the angular momentum of the pairing state of superc
ducting holes or electrons. The reproducibility of MFM me
surements and the ability of the MFM to scan through
range of temperatures makes it a very appropriate tool
11 648 © 1998 The American Physical Society
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57 11 649FUNDAMENTAL INVERSION PROBLEM FOR THE . . .
such a test. Furthermore, the local, or microscopic, natur
magnetic force measurement makes it possible to avoid
effects of grain boundaries and related sample imperfect
on l(T) in high-Tc materials. Other methods, such as mic
wave techniques, effectively give an averaged penetra
depth. It is recalled that the short coherence length of hi
Tc superconductors makes them unusually sensitive to st
tural imperfections.

For the inverse problem it is especially important to
view the necessary changes to the governing partial diffe
tial equations when a position-dependent penetration dep
present. After a condensed consideration of this topic,
inversion procedure is developed. In considering the m
netic boundary value problem for stratified superconduct
the solution technique builds on earlier work of th
author.11,13

In this paper the solution of a MFM inverse proble
whose associated forward problem is also nonlinear
avoided. This especially applies to a consideration of us
the coupled Ginzburg-Landau~GL! equations. It is recalled
that these equations are nonlinear in both the complex o
parameter and vector potential~or magnetic field!. It seems
that not even a partial mathematical solution of the inve
problem for the GL equations is available. Given the sign
cant mathematical difficulties of the inverse GL proble
these equations still lack physically: they strictly hold on
near the transition temperatureTc . Additionally, in the high-
Tc materials, with their short coherence lengths, fluctuati
play a major role nearTc . Therefore a GL approach appea
to be fraught with many difficulties, whose mathematical
tricacies may not be easily physically justifiable. In this p
per the starting point for the forward problem is linear Lo
don theory.

BASIC SUPERCONDUCTOR EQUATIONS

The following treatment will assume axisymmetry for th
superconducting half space problem. The important simp
cations that arise for this geometry are emphasized here
particular, the modification of the London equation for
layer-dependent penetration depthl(z) is considered. From
the London relationj s(x)52A(x)/@m0l2(x)#, where j s is
the supercurrent density andA the vector potential, the rela
tion for the magnetic inductionB5¹3A, and Ampere’s
law, it follows that

¹3~¹3B!52
1

l2 B1A3¹S 1

l2D . ~1!

In obtaining this equation the total current density has b
taken to be the supercurrent density andB has been taken
equal tom0H for simplicity. Of note here in the vector equa
tion for the magnetic induction is the last term of Eq.~1!.
This term complicates the solution for this field, especially
non-Cartesian coordinate systems.

SinceB is the principal field for MFM force calculation
and we desire to solve boundary value problems for it,
axisymmetry assumption is introduced. Here we assume
terms of cylindrical coordinates, that the penetration de
depends onz alone, thatB has only radial and vertical com
ponents, and thatA can be taken to be azimuthal. The im
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portant point for us here is that the vertical component of E
~1! reduces to the usual London equation, with variable
efficient,

¹2Bz~r,z!5
1

l2~z!
Bz~r,z!. ~2!

SinceB is divergenceless,Bz can be employed as a scal
potential.13

INVERSE BOUNDARY VALUE PROBLEM

We now wish to develop the inverse boundary val
problem for a semi-infinite superconductor, with surface
planez50, in the Meissner state, in the presence of a vert
point magnetic dipole of momentm at heighta. The case of
a point magnetic charge tip~monopole tip! is considered in
Ref. 14. Most practical tips are found to lie somewhere
tween the dipole and monopole cases. The latter situa
tends to hold for longer vertical tips.14

The governing partial differential equations in conjoin
half spaces become

¹2Bz~r,z!5Vz~r,z!5m0md~z2a!¹2D
2 d2D~r!, z>0,

~3a!

@¹22l22~z!#Bz50, z<0. ~3b!

Two-dimensional Fourier transformation15 of Eqs.~3! gives

~]z
22k2!Bz~k,z!5Vz~k,z!, z>0, ~4a!

@]z
22g2~z!#Bz~k,z!50, z<0, ~4b!

where the ~unknown! coefficient function g2(z)[k2

1l22(z). The transform of the source is

Vz~k,z!5E
0

`

rJ0~kr!Vz~r,z!dr52
m0m

2p
d~z2a!k2.

~4c!

Here and throughoutJn denotes the Bessel function of ord
n of the first kind.17

A particular solution of Eq.~3a! is

B1z~r,z!5
m0m

4p

@2~z2a!22r2#

@r21~z2a!2#5/2. ~5!

In the upper half spaceB5B11B2 where the vertical com-
ponent of the induced field is taken to have the form

B2z~r,z>0!5E
0

`

F1~k!e2kzJ0~kr!k dk. ~6!

The function B2z(r,z) is a homogeneous solution of Eq
~3a!; it is a harmonic function in the upper half space. In t
lower half space the vertical component is taken to have
form

Bz~r,z<0!5E
0

`

F2~k!Z2~z,k!J0~kr!k dk. ~7!

The functionZ2 solves Eq.~4b! and satisfies the boundar
conditionZ2→0 asz→2`. The solution space of Eq.~4b!
has as a basis two linearly independent solutions, a grow
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11 650 57MARK W. COFFEY
one and a decaying one.~By Abel’s identity, their Wronskian
is a constant.! The functionZ2 vanishing asz→2` will be
the unique monotonically decreasing solution when two c
ditions are met. First, assuming thatg2(z) is a continuous
function, the functionzg2(z) should not be inL(0,̀ ). Sec-
ond, fixing the value ofZ2 at a point, say atz50, makesZ2
unique.16

The expansion coefficientsF1 andF2 are fixed by conti-
nuity boundary conditions atz50.13 Using Eqs.~5!, ~6!, and
~7! and the continuity ofBz and]zBz yields17,18

m0m

4p
ke2ka1F1~k!5F2~k!Z2~0,k!, ~8a!

m0m

4p
k2e2ka2kF1~k!5F2~k!Ż2~0,k!, ~8b!

where the notationŻ(0,k)[@]zZ(z,k)#z50 is used. The so-
lution of Eqs.~8! is

F1~k!5
m0m

4p
ke2ka

@kZ2~0,k!2Ż2~0,k!#

@kZ2~0,k!1Ż2~0,k!#
, ~9a!

F2~k!5
m0m

2p

k2e2ka

@kZ2~0,k!1Ż2~0,k!#
. ~9b!

Then follows the components of the magnetic inductio13

Bz~r,z>0!5B1z~r,z!1
m0m

4p E
0

`

k2dk J0~kr!e2k~z1a!

3
@12K~k!#

@11K~k!#
, ~10a!

Bz~r,z<0!5
m0m

2p
E

0

`

k2dk
J0~kr!Z2~z,k!e2ka

@Z2~0,k!1Ż2~0,k!/k#
,

~10b!

Br~r,z>0!5B1r~r,z!1
m0m

4p E
0

`

k2dk J1~kr!e2k~z1a!

3
@12K~k!#

11K~k!
, ~10c!

Br~r,z,0!52
m0m

2p
E

0

`

k2dk
J1~kr!Ż2~z,k!e2ka

@kZ2~0,k!1Ż2~0,k!#
,

~10d!

where the kernel function

K~k![
Ż2~0,k!

kZ2~0,k!
~11!

has been introduced. The azimuthal supercurrent density
be computed from Ampere’s law and Eqs.~10b! and ~10d!:
-

an

j su~r,z<0!52
m

2p
E

0

`

k2dk J1~kr!e2ka

3
@ Z̈2~z,k!2k2Z2~z,k!#

@kZ2~0,k!1Ż2~0,k!#
. ~12!

It will be seen that the wave-number-dependent funct
K(k) is central to the inversion algorithm. From Eqs.~10b!
and~10d! and Hankel inversion the equivalence of the kern
function and interface quantities is known:

K~k!52E
0

`

Br~r,0!J1~kr!r drY
3E

0

`

Bz~r,0!J0~kr!r dr. ~13!

Even more important here is the connection betweenK and
the measured MFM forceF. The magnetostatic self
interaction energy for the vertical dipole isU(a)

52( 1
2 )mB2z(r50,z5a). Using Eq.~10a! this becomes

U~a!52
m0m2

8p E
0

`

k2dk e22ka
@12K~k!#

@11K~k!#
. ~14!

Then the lifting forceFz52]U/]a is

Fz~a!52
m0m2

4p E
0

`

k3dk e22ka
@12K~k!#

@11K~k!#
. ~15!

The above results can be checked in the special cas
the direct problem withl5const. ThenZ2(z,k)5exp(gz),
kZ2(0,k)1Ż2(0,k)5k1g, andK(k)5g/k.

Recognizing Eq.~15! as a Laplace transform, the kern
function can be obtained in terms of the inverse Lapla
transform of the force

KS k

2D5
11~cm /k3! L21@Fz~a!#

12~cm /k3! L21@Fz~a!#
, ~16!

where cm[64p/m0m2. Alternatively, the kernel function
could be found from the potential energy function, Eq.~14!.
It remains to show howl22(z) can be recovered from th
kernel function.

RECOVERY OF THE PENETRATION DEPTH PROFILE

The penetration depth function can be recovered from
kernel function by using the form of the Schro¨dinger-like
equation~4b!, Z̈2 /Z22k25l22(z), and an infinite series so
lution. For large wave numbers,Z2 approaches exp(kz), in
which caseK(k)→1. Therefore the kernel function has th
expansion

K~k!5 (
n50

`
an

kn , ~17!

where a051. If we introduce the logarithmic derivative
function v(z,k)5]z lnZ2(z,k), then it is seen thatK(k)
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5v(0,k)/k. In a sense the functionv serves to extend the
kernel away fromz50. Since for largek, v→k, this func-
tion has an expansion

v~z,k!5k(
n50

`
an~z!

kn , ~18!

wherea051 and each coefficient has the boundary con
tion a j (z)→aj as z→0. Based upon the~direct problem!
special case thatl5const, where

K~k!→S 11
1

l2k2D 1/2

511
1

2l2k22
1

8

1

l4k4 1
1

16

1

l6k6

2
5

128

1

l8k8 1¯ , ~19!

we anticipate thatl22(z) can be found as 2a2(z). If we
integratev(z,k) from z to zero, we have

ln@Z2~0,k!/Z2~z,k!#5k(
n50

`
1

kn E
z

0

an~z8!dz8. ~20!

When v is substituted into Eq.~4b!, a Ricatti equation
results:

v21 v̇5k21l22~z!. ~21!

Equation~21! manifests the well-known connection betwe
the second-order, linear Schro¨dinger equation and the first
order, nonlinear Ricatti equation.4 When the expansion~18!
is substituted into Eq.~21!, we find thata150, that indeed

2a2~z!5l22~z!, ~22!

and the recursion relation

(
n50

l

ana l 2n52ȧ l 21~z!, l .2. ~23!

Equation~23! expresses the derivativesȧ l(z) in terms of
the functionsa j (z) themselves. From this recursion relatio
one extracts the function

a2~z!5 (
n50

` a2
~n!~0!

n!
zn. ~24!

The higher derivatives ofa2 at z50 are also computable
from Eq. ~23!. In fact, we have

a2~0!5a2 , 2ȧ2~0!52a3 ,

ä2~0!/2!52a41a2
2, 2a2

~3!~0!/3!54a5/318a2a3/3,

a2
~4!~0!/4!52a6/312a2a415a3

2/312a2
3/3, ~25!

so that the beginning of the series forl22(z) is

l22~z!;2a224a3z12~2a41a2
2!z22~ 8

3 !~a512a2a3!z3

1••• . ~26!

The correctness of the relations~25! can be checked in the
special casel5const, from Eq.~19!, wherea2n1150.
i-

DISCUSSION

A brief examination of some very simple but importa
special cases may help to illuminate the above proced
When the lower half space is no longer superconductingl
→`, the measured MFM force is zero, its inverse Lapla
transform is null, and by Eq.~16! K(k)51, as expected. On
the other hand, consider the case of perfect diamagnet
l→0. Then the force as a function of height isFz(a)
53m0m2/32pa4, which has the inverse Laplace transfor
k3/cm . Then by Eq.~16! the kernel function diverges, a
expected sinceg diverges.

A nontrivial example is to use the MFM force data whe
l is known to be a nonzero constant and to verify cons
tency. In this case the magnetostatic interaction energy
force are expressible in terms of differences of Struve a
Neumann functions,Hp2Np .12 Then

L21@Fz~a/2!#5
16

cm
k3~112l2k222kl2Ak21l22!,

~27!

which, together with some algebra, givesK(k)5g/k.
Several extensions of the research reported here ca

made, including the consideration of a superconductor w
finite thickness, and will be discussed elsewhere.18 Under the
assumptions that the coefficient functiong2(z) in Eq. ~4b! is
always positive and continuous, a positive monotonically
creasing solution is guaranteed to exist. This justifies
assumption of the existence of a monotonic solutionZ2(z,k)
vanishing asz→2`.16,18 It also makes the definition of the
function v(z,k) meaningful.

It is worth describing the nonrelativistic quantum m
chanics analogy with the present work. The left-hand side
Eq. ~4b!, written with terms (]z

22l22)Bz , corresponds to a
scaled Hamiltonian operating on a wave function. If we co
pare this equation in detail with the Schro¨dinger equation
then we can make the correspondencesl2(z)→\2/2mV(z)
and k2→22mE/\2, wherem is the particle mass,V is the
potential energy, andE the energy eigenvalue. Therefore,
we expect, a weak potential corresponds to a large pene
tion depth, and vice versa. The negative sign ofE, which
indicates a bound state in quantum mechanics, is conne
to the fact that the superconductor problem corresponds t
attenuation, rather than a propagation, problem. In the
mulation of this paper,B1z(k,z) acts like an incident field,
B2z(k,z) like a reflected field, andBz(k,z<0) like a trans-
mitted field. The functionZ2(z,k), with the defining prop-
erty

lim
z→2`

e2kzZ2~z,k!51, ~28!

might be called a Jost function. By using the Hankel rep
sentation ofB1z(r,z) and Eqs.~10a! and ~10b!, it is then
possible to write

R~k!5
K~k!21

K~k!11
, ~29!

T~k!5
2

11K~k!
, ~30!
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11 652 57MARK W. COFFEY
as reflection and transmission coefficients, withR1T51.
~Here the exponential factor exp(22ka) coming from the
nonzero height of the MFM tip is omitted.! For the direct
problem withl5const, these expressions reduce toR5(g
2k)/(g1k) andT52k/(g1k). The inversion procedure o
this paper may then be phrased as using knowledge of
reflection coefficient, as known from the MFM force data,
recover the unknown penetration depth as a function of
tance.

NUMERICAL LAPLACE TRANSFORM INVERSION

As mentioned in the Introduction, other approaches to
inverse problem exist. Specifically, an integral equat
formulation18 as opposed to a differential equation formalis
as used here can be followed. However, in each case, du
the form of the magnetostatic interaction, Eq.~15!, the gen-
erally delicate task of numerical Laplace transform invers
must be confronted. This operation is discussed and il
trated in this section. Once the inverse Laplace transform
performed, the kernel function is available for the rest of
inversion method.

The difficulty of inversion of MFM results is further com
pounded by the fact that the Laplace transform is kno
only for real values. Therefore the present discussion is l
ited to considering a continuous Laplace transform functi

FIG. 1. Numerical inverse Laplace transform of the functi
F(p)51/p4, obtained with the Gaver-Stehfest method withn
518.

FIG. 2. Numerical inverse Laplace transform of the functi
F(p)51/(p11)4, obtained with the Gaver-Stehfest method w
n518.
he

s-

e
n

to

n
s-
is
e

n
-
.

Two methods known to give fairly accurate and reliable
sults for real valued functions19 are those of Piessens bas
upon the use of Chebyshev polynomials20 and of Gaver and
Stehfest using an extrapolated sample.21 Both of these meth-
ods have been implemented. The second, having fewer
merical parameters, is easier to work with, and is illustra
here.

A basic Laplace transform pair for the MFM proble
with a point dipole tip is a force functionF(p)51/p4 with
inversex3/6. This pair corresponds to the diamagnetic lim
as discussed above. The numerically obtained inverse fu
tion is plotted in Fig. 1. The number of points in the samp
n, which must be even, has been taken as 18 for all of
example functions presented here. This is a suitable num
for double precision arithmetic.21 If the force should be
F(p)51/(p11)4, the exact transform isx3e2x/6. The nu-
merically obtained inverse is shown in Fig. 2. The Lapla
inverse transform of the functionF(p)51/@(p211)1/2

1p#4 is 4J4(x)/x, whereJ4 is the fourth-order Bessel func
tion of the first kind. The result of numerical inversion o
F(p) is shown in Fig. 3. The functionF(p)51/(p211)2 has
inverse transformp1/2x3/2J3/2(x)/23/2 and the numerical re-
sult is shown in Fig. 4. It is seen that the numerically co
puted inverse function in this case significantly degrades
larger values ofx.

FIG. 3. Numerical inverse Laplace transform of the functi
F(p)51/@p1(p211)1/2#4, obtained with the Gaver-Stehfes
method withn518.

FIG. 4. Numerical inverse Laplace transform of the functi
F(p)51/(p211)2, obtained with the Gaver-Stehfest method wi
n518.
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SUMMARY

A ready application of this work is the contactless asse
ment of the quality of high-temperature superconduct
crystals and films. High-temperature superconducting fi
are now fabricated from a variety of techniques. These m
tilayers, to a good first approximation, have the axisymme
assumed in this paper. In this discussion of the concep
inversion, an infinite width of the sample was also assum
so that Fourier transformation could be applied.

The MFM imaging of high-Tc superconductors is now
possible in both the Meissner and mixed states. The l
temperature MFMs are able to reliably image the same a
under different temperature and magnetic-field condition3

Force detection at the pico-Newton level has be
achieved.2,3

The inverse MFM problem also has many implications
the basic physics of superconductivity. The detailed temp
ture dependence of the penetration depth, especially at
peratures close to absolute zero, can provide information
the symmetry of the pairing wave function. In particular, t
al
s-
g
s
l-
y
of
d

-
ea
.
n

r
a-
m-
n

deviation of l(T) from a constant at low temperature, o
exponential vs power law form, is of interest.

In this work axisymmetry was assumed and tw
dimensional Fourier transformation was used to eliminate
~r,u! coordinates. The solution of the coupled electroma
netic boundary value problem along thez direction was ef-
fected by employing a wave number-dependent kernel fu
tion K(k). From the continuity boundary conditions a
z50, the form of the kernel function was found, Eq.~11!. It
is assumed that the MFM force data is available for a vert
dipole tip, for all heightsa.0. Therefore the inversion algo
rithm can be summarized as follows.~a! Laplace inversion of
the MFM force data, as a function of wave numberk. ~b!
Calculation of the kernel functionK from this information,
Eq. ~16!. ~c! Expansion of the kernel function in powers o
reciprocal wave number, Eq.~17!. The set of numbers$aj% is
then known.~d! From this series the auxiliary functiona2(z)
appearing in Eqs.~18! and ~24! is determined.~e! Finally,
from Eq. ~22!, the layer-dependent penetration depthl(z) is
recovered.
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