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Magnetic self-field entry into a current-carrying type-1l superconductor.
[ll. General criterion of penetration for an external field of arbitrary direction
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The first magnetic-flux penetration into a current-carrying cylindrical type-Il superconductor subjected to an
external magnetic field is considered in the frame of the London approximation. The lower transverse critical
field as well as critical field of the first vortex nucleation at the surface are evaluated on the basis of an exact
solution for a vortex of arbitrary flat configuration. Taken together with the previous consideration of the
parallel magnetic-field penetration in a current-carrying supercond{ietoys. Rev. B19, 6950 (1994 and
B 51, 3686(1999] the above results allow us to formulate the general criterium for the first flux entry in the
current-carrying samples of arbitrary transverse size subjected to an external field of arbitrary direction.
[S0163-182698)03902-3

[. INTRODUCTION tices may enter a perfect SC sample exposed to an external
magnetic fieldH only if it achieves the above valud, .

The surface effects play essential role in the electrody- Despite this clear analogy in first flux penetration into
namic behavior of type-Il superconductgd®C9 and are es- type-l and type-ll SC’s the current self-field was believed for
pecially important in the case of extreme situations withyears to first penetrate into a type-11 SC once the self-field of
Ginzburg-Landau parametar=\/£>1 where\ and ¢ are  the current,H,, achieves at the surface the value of the
the magnetic-field penetration depth and superconductintpwer critical field H,; .1"~2° Exact solutions for the vortex
correlation length, respectively. Considerable attention wasing'*?® and vortex heliX® entry into the current-carrying
recently paid to the problem of magnetic-flux penetrationtype-ll SC cylinder found recently in the frame of the Lon-
into the superconducting samples of various geometfi¥s. don approximation have shown that Silsbee’s rule holds for
The surface Bean-Livingstdhand geometricaf barriers ef-  the current self-field entry in type-ll SC’s and is also valid
fect on the nucleation of magnetic vortices in bulk SC’sfor the case of external magnetic field applied parallel to the
turned out to determine their resistive and hysteretic behawurrent direction. In the last case Silsbee’s rule applies to the
ior in a wide range of magnetic field and temperattf€°  total magnetic-field value at the surfat¢hat is vector sum

One of the consequences of surface effect in type-Il SC'®f the current self-field and external field.
is the validity of Silsbee’s rufé for a samples with a perfect In this paper we continue with the study of the first vortex
surfacé**® (the last implies that typical surface defect sizenucleation in a current-carrying type-ll SC cylinder exposed
8< €). Silsbee’s rule, established for the type-l1 SC’s shortlyto the magnetic field perpendicular to the transport current
after the discovery of superconductivity itsélfstated that direction. For this aim the solution of the London equation
the breakdown of the nondissipative state of a macroscopimside a SC cylinder of radiu®> ¢ is found for an arbitrarily
current-carrying sample occurs when the current self-field ashaped flat vortex. The general solution allows us to find the
the sample surface first attains the magnitude of the thermdirst critical fieldH ., for the SC cylinder in a transverse field
dynamic critical fieldH., the only characteristic field for and critical conditions for the first flux entry when both field
type-I SC’s. Contrary to type-l SC’s, type-ll SC’s have two and transport current are applied. Silsbee’s rule turns out to
critical fieldsH.;=H_ In «/xk andH,=kH_ and allow mag-  be valid for macroscopic samples wi#® \ in a field of any
netic flux to penetrate a sample in the form of magneticdirection but fails forR<\.
vortices in a wide range of external magnetic field A general criterium is established for the first flux-line
H.<H<H.,.'® Though, as was shown by Bean and penetration in a perfect current-carrying type-ll SC sample of
Livingston!! because of the surface potential barrier the vor-arbitrary transverse size subjected to a magnetic field of ar-
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FIG. 1. Magnetic-flux-lingvortex of an arbitrary form entering FIG. 2. Magnetic-flux line parallel to the external magnetic field
a cylindrical superconductor exposed to external transverse magying along the diameter of the superconducting cylinder.
netic field. There are at least two solutions of the equatiefi( )|

with respect to angle in the area where vortex is located. We start from the London equation in the fdfm
bitrary direction: the first vortex loop nucleates at the sample Ncurl curH+H=®, p<R (1)
surface wherfand whergthe total current achieves the value
of the depairing current. and Maxwell equations

The structure of the paper is as follows. A detailed de-
scription of the theoretical model and results is presented in curH=0, p=R 2
Secs. Il and Ill. Section Il is concerned with the calculation
of the structure of an arbitrary vortex inside a SC cylinder. div H=0, 3)

Subsequently the energy, magnetic flux, and moment of defi-

nite vortex configurations are evaluated in Sec. Ill that al.whereH is the total magnetic field. The source function on
lows us to find critical parameters of the SC cylinder withthe right-hand sidérhs) of Eq. (1) writes as

respect to the surface effect. The results are summarized and

discussed in Sec. IV.
=g [ distp-), @

Il. STRUCTURE OF A MAGNETIC VORTEX

IN A SUPERCONDUCTING CYLINDER wherep is the position vector in the plare=0, @, is the

unit flux quantum, andil is the flux-line element. The inte-
A type-ll superconducting cylinder of radil®> ¢ is con-  gration extends along the flux-lingortex core. The stray
sidered which extends along theaxis of cylindrical coordi- ~ field outside the superconductor is described by Maxwell
nate systemg, ¢,z). A transverse magnetic field is applied equationg2,3), the last of which is valid in the whole space.
along the positivey direction (¢=/2) as is shown in Fig. The boundary conditions ard approachedd, asymptoti-
1. The field is asymptotically uniforntat distances large cally (p—=), H is continuous in all components on the
compared tdR) and of magnitudéd,. The situation when a circle p=R.
transport current is applied in addition along thexis will The solution of Egs(1)—(3) may be represented by the
be studied below in Sec. lll. Here we address the question gfuperposition of the well-known Meissner respohig of a
the magnetic structure of the vortex itself. It is supposed t6SC cylinder to the transverse fiéfdand a fieldh of the
nucleate at some location on the equatorial lines of the cylvortex itself. The fieldHy, satisfies the uniform Eq$1)—(3)
inder (p=0 or ¢=m, p=R) at some critical fieldH, and with the zero rhab=0 and both boundary conditions. Tak-
then moves to the center of the cylinder. In the central posiing into account that the field is potential outside the cyl-
tion (Fig. 2 parallel toHq(¢=/2) it has the largest mag- inder and may be presentedtas V i we rewrite Eqs(1),(2)
netic moment that leads to the least Gibbs free energy. Thig the form
final vortex position is supposed to be stable. During the

motion from the cylinder surface to the center the vortex core Ncurl curh+h=®, p=<R, 5)
exhibits an arbitrary form that may be described by position
vector I(¢). Here and below we assumed for the sake of Ay=0, p>R (6)

simplicity the linel to be a flat curve(lying in the plane
z=0) that is favorable from the energy reasons. The problemwvith boundary condition&=V ¢ on the circlep=R, ¥—0,
remains, though, three-dimensional. p— o,
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The components of the field in cylindrical coordinates  52hZ =~ 1 ghZ m2 q);(m
h=(h,.h,.h,) may be written with the help of Fourier ~ — 7=+ —" —( 2+ —2') km= -5z PSR
transformation as P pop P (11

V(p00=3 explime) [ 5hl ol p)expl - ik

\P,2)= exp(im 5 expl —1Kz),
pe2)= 2 ¢) | - Mem(p P, L 0em (o, M bo=0, p>R. (12
@ i’ b ap p7| em ™5 0=

with the boundary conditions

W(p,¢,2)= E exmm«p)f — P m(p)eXp —ik2),

(8) (ij’m(OO):O, (III,(,m(R):h’Iz,m(R)!
where the inde) assumes the valugse,z.
In terms of the Fourier amplitudeh;{(ym and ¢, , Egs. . .
(5),(6) transform to the following set of one-dimensional — ik m(R)=hig (R, 'f/’k m(R)=him(R). (13
equations:
_ In Egs. (9)—(12) we introduced the valu®?=k?+ 1/A?
2 2 _
J hﬁém+ E Im ( 24 m l'l)hp _ 2|_r2nh¢ and Fourier amplitude of the source functieh @}, de-
dp p dp P mope km fined in the same manner as the field components inBqg.
PP The set of equationg9)—(12) is not equivalent to Egs.
- _ k'm, p=<R, (9) (5),(6) since by its derivation the equality curl cargk —Ah
A was used that implies diwv=0. To be the solution to Egs.
5 (5),(6) the solution of Eqs(9)—(12) should also satisfy Eq.
°hfn  1dhg, , M he Zimh" 3).
ap’> " p dp 7 | Mmt 7 Upon the transformatiof ,=h{ +ih¢ . all Egs.(9)—
. (120 may be solved separately in terms of the modified
_ Pim <R (10 Bessel function$® We obtain then the solutions regular at
z o PET p=0:
¢k,m(P)=‘1’k,me(|k|P), (14
hﬁ,m(p):Ck,mlm(Qp)a (15

i

m 1 + R + R _
ih'%m)ziHFk,m_fp dpp 7k m(P)Km+1(Qp) |Im+1(Qp) * {ka fdppnk,m(p)Km1(Qp)}|m1(Qp)

Km+1(Qp)f:dpp77Zm(p)lm+1(Qp)iKm1(Qp)fopdpp77k,m(p)lm1(Qp)}, (16)

where = —A"3(®f ,=®f ), |, andK, are the modified Bessel functiofisThe coefficients in Eqg14)—(16) may be
found with the help of Eqs(3) (13) and read

m+1(QR) Km-1(QR) 2R
Yy m= mﬂl(QR) f dppnkm(P)|m+1(Qp)+ . 11(QR) f dpp 7 m(P) I m-1(Qp)— Q)\ZKm(QR)(I)f(],m(R)
2k? Kin(|KIR) (Km+1(|k|R) Km1(|k|R)”1
Q iwer T SR T TR )| 17
Km=1([kIR)  Kne1(QR) (R N
F |k|\Pkm Im+1(QR) + Imtl(QR) 0 dPP’?k,m(P)lmtl(QP)a (18)
m(|KIR)
Cr. |k\Ifkm i (19

m(QR)
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The solution(14)—(16) with coefficients(17)—(19) satis- Ill. CRITICAL FIELDS AND CURRENTS
fies Egs.(9)—-(12) and Eg.(3) and, hence, Eqg5),(6). It is OF SUPERCONDUCTING CYLINDER
valid so far for an arbitrary form of the vortex, described by IN A TRANSVERSE FIELD

the function(4).

Although being rather complicated, the obtained solution
may nevertheless be used for calculation of the physical
properties of the vortices of definite configurations and criti-  To evaluate the first critical fieltl; we should study the
cal parameters of the superconductors. We derive here firé@se of a vortex assuming a stable position in the center of
some general formulas for the physical characteristics of théhe samplé”~**The vortex directed along the cylinder diam-

A. First critical field of a SC cylinder
in a transverse magnetic field

arbitrary vortex. eter parallel to the applied field, apparently leads to a local
The self-energy of the vorté%'°takes a form minimum of the Gibbs free energy of the system
1 1 G=F—-AW,, AW4=MH,, (23
— 2 2 2 2
F= 87 pngV[h +A"(curlh)*]+ 8 pBRdV(V ¥) whereF is the vortex self-energ§20) andM is the magnetic

moment of the sample due to presence of the vofthe
R constant Meissner contribution is omitie&ormula(23) fol-
dVhe— o— > J dkip m(R) P2y n(R). lows from the general expression for the Gibbs en&giof
" the system if form and position of the vortex are fixed and
(200 then the external field is slowly switched on.
The vortex lying on the cylinder diameter is shown in Fig.

One can see that the last surface term in Q) vanishes if 2 The corresponding rh® in Eq. (1) is written in this case
the vortex does not cross the surface of the samplé the form

[Pf (R)=0], that is known for flux lines of various forms
lying completely inside the SC sampf&!®2* though the
field at the surface and outside the cylinder is not equal to
zero. That takes place by virtue of the fact that the contribu- o i ,
tion from the outer space and from the surface tiiotiow- ~ UPON the substitution of E¢24) in the solution(14-19,

ing from the first integral in Eq(20)] exactly compensate ©N€ can find the approximate expressions for the self-energy

each other. Compensation of this sort was found by Brandt ifff the vortex(20)

877 pSR

mar

5 PE=0’=0. (24

Do :
(I)f()’mzm 0(R—p)sin

a calculation of the energy of an arbitrary distorted vortex 2
! D, 4R 9 R
lattice near a flat surfac@. F=|——| 2R|In —+ ———|, £<R<\, (25
The magnetic moment projection on the field direction 4m\ e 4w\
(see Fig. 1is for the case of the thin sample, and
1 - o205 Al Ren, @6
Mfzfdv[pxny “\amn NEYTRMN) . (29

R2 1 (R for thick samples wherey=0.577@...) is the Euler
=— 5 h§(R)— 5 f dpp(hf,—ihg). (21  constant’ _ . o
0 The magnetic flux flowing through the vortg22) is in
this case
The magnetic flux flowing through the vortex is written

o= —RZI \
o R - 02)\2 n ﬁ! (27)
<b=f dzJ dp[h®(p,0=0,2)—h®(p, o=,z
a4z p[h®(p,¢=02)—h*(p,o=1m,2)] for ¢<R<A, and
S 82
=23 | dph§an-1(p). (22 <I>=<I>o< 1- —2) , (28)
m=1 Jo 7R

for a macroscopic cylinder of radidg> \.

In the derivation of Eqs(20—22 the symmetry relations The magnetic momer21) induced by the vortex is

were used that follow from the general structure of the solu-
tion (14-19: d,R

2

LR/M|1(R/>\)—|_1(R/>\)

Io(RIN) TG

* _ + * + -
__\I,k, _\I,k,— I(F ) __F _F —m?
m " mkm km- " kemm whereL, is the modified Struve functiof? That gives in

limiting cases
(hﬁ,m)* = hk,m: hp,fm 1(hl<f,m)* = hf,m: hl‘(P.fm .
dR3 7\2
The above general formulas are used in the following sec- M=o 2|17 20r2): R<A (30

tions for the calculation of the critical parameters of the su-
perconductor. and
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FIG. 4. The specific form of the vortex loop used for the free-
energy calculation.

i .
(Dﬁ,m: - W_pq)o sin(mx(p))0(p—R+r), (I)E,mzoy

FIG. 3. First vortex loop nucleation at the surface of the super-

conducting cylinder exposed to an external magnetic field. Pe _% dx(p)

km="7 “dp cogmyx(p))8(p—R+r), (34

. R>\. (31)  where some smooth functiop(p) gives the specific form of
a loop penetrating the sample to the depth of

Here we consider a small vortex loop with a characteristic
length=r and the same depth of penetration in the sample.
f r<\,R then to the accuracy off(R)? the magnetic mo-
ment is

o PR (A
“ 7 7R

v

The first critical fieldH, is determined from Eq23) as
the field at which the vortex enerdy equals zero. For the
macroscopic sample one finds the result only slightly differ-
ent from the critical fieldH2,/2 of the bulk materialor the
bulk cylinder parallel to field multiplied by demagnetizing Doar? I(RIN)  Poar?(1l, R>\

17-19 ~ _ _ _
factor 1/2: 27 N IgRIN) 27 N | Ry, Ren’ B2
N Hgl N y—(MR)In R/ wherea is a factor of order of unity depending on the spe-
Hao=— |1+ g~ n x » R>N, (32 cific form of the vortex loog(for the details, see the Appen-

dix).
where H(C)l: (Py/4mN\?)In k. Let us note, though, that the To avoid divergencies during the energy calculation some
correction to the bulk valuél®; is not exponentially small more specified form for the trial vortex loop is taken close to
because of the power tails in the field distribution typical ofa semicircle of radius centered at the surface poipt=R,

the vortex crossing a surfaéé?® ©=0) but perpendicular to the surface as is shown in Fig. 4.
For the thin sample one finds The Fourier amplitudes of the corresponding source function
(4) look like

o 3\? In4R/eé+9/4m—RIX

HL, =H% — , ReN. (33 d
AR In < = LOR=p) 0(p = JRO=p?)sin Mo+ 0 p—R
B. Vortex loop nucleation on the SC cylinder surface +1)0(\RZ— rz—p)sin mx(p)],

in a transverse magnetic field

Magnetic-flux entry in the type-1l SC sample exposed to a P¢ - ®o R cosx(p)—p

uy | _ e n=— . O(p—R+r)

transverse magnetic field starts with the small vortex loop mp R sin x(p)

nucleation at the surface as shown in Fig. 3. This problem — z

was so far considered for the case of a flat surface and thin X (VR —r°=p)codmx(p)), Pi »,=0, (36)

films.*:9+29=%2To evaluate the critical field of the first vor- \yhere sing,=r/R and cosy(p)=(Re+ p2—r2)/2Rp. Then one
tex penetration into the SC cylinder using the Gibbs energyinds for both thick R>\) and thin R<\) samples
(23) we should specify the form of the loop and then esti-

mate the energg20) and momen{21) of the loop. The result d, \2 r

should not depend essentially on the form of the loop. F=(m) ar In 7 E<SI<R\, (37)
The calculation of the magnetic moment may be per-

formed for relatively general assumptions. A general expreswhere ¢ appears as cutoff parameter for the logarithmic di-

sion for the magnetic moment of an arbitrary loop is derivedvergency usual in the London approximation. This result co-

in the Appendix. An arbitrary smooth loop may be describedncides with that for flat surfa&®*32 since in the limit

by the rhs in Eq(1) represented by Fourier amplitudes as r<R,\ the curvature of the surface plays no role.
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FIG. 5. First vortex loop nucleation at the surface of the current-
carrying superconducting cylinder in the absence of an external

field FIG. 6. First vortex loop nucleation at the surface of the current-
ield.

carrying superconducting cylinder in an external transverse mag-

. . ) netic field.
The factora in the expression for magnetic momeBb)

is equalw/2 for the above specific form of the lo@p6) (see
Appendix.

The Gibbs free energy of the log@3) with F taken from  \yhereF is presented in Eq37). The current source contri-
Eg. (37) and M taken from Eq.(35) has a maximum as a pution, AW, , calculated in the spirit of publicatiohs*® is
function of loop sizer forming a Bean-Livingston barrier the work done by the Lorentz driving forde= ®[jx dl]/c
against the vortex entry. If the field, is high enough the exerted upon the flux-line elemedt wherej is the local
maximum occurs at~ ¢, then the barrier vanishes and spon- density of transport current. Since in the problem of nucle-
taneous vortex loop nucleation and further expansion beation we consider only the small loops of siz&R,\, the
comes possible. Using the criteriu#/or (r=¢) =0 for the  transport current density remains constant within the loop
first vortex nucleation we find the corresponding entry fieldand equal to the surface valup=(1/2wRN)1o(R/N)/

I1.(R/N), | is the total transport current. Then the work done

G=F—AW,, (39

l_i [o(R/N) 38) over the semicircle loop growing from the radips=0 to
P55 11(RIN)’ p=r reads as
whereH . =®/2v2m\ £.27 Thus, for the macroscopic cylin- Aawi ["do [ jOy  jsPomr? 40
der with radius of curvatur®s\, the first penetration field =, U PP T T T e (40
Hé is twice less than it may be obtained for the flat surface
in the same approxima}t'iolnl.:or small transverse siz@<\, Using the above criterium for vortex loop nucleati@ee
it is )\/R7 times magnified as is reasonable for the smallgec. |11 B) 9G/dr(r=¢)=0 we find for the critical current
samples. density on the surface
C. Vortex loop nucleation on the surface ja=iL V2 (41

of current-carrying SC sample . . .
. independently of sample radius, where the London critical
We proceed now with the case when a transport current i§ajyej, = cH./47\. This result is twice less than the critical

applied to the SC cylinder in the positizedirection and the  ¢\rrent for the perfect vortex ring entry into the cylinder
external field is absent. The current self-field as well as thgptained in the same approximatith?°

external one favors the nucleation of vortices at the cylinder
surface. In Refs. 14 and 20 the idealized process of the entry
of perfect ring into the SC cylinder was considered. In fact,
even for the perfect surface case the vortex first nucleates as
a small loop at somdarbitrary location, since the entry Here we consider finally the case of a current-carrying SC
process is stochastic in nature and is not correlated on theylinder subjected to a uniform transverse magnetic field as
scales much more than shown in Fig. 6. The current self-field imposed on the
We consider thus the same loop nucleation around th&leissner-response field makes the total field asymmetrical.
point (p=R, ¢=0) (Fig. 5 as in the previous section. The In this case the equatorial ling=R, ¢=0) where the two
Gibbs free energy taking also into account the work done byields add directly is a weak spot for the first vortex loop
the source of transport current is nucleation. The process is governed by the Gibbs energy

D. Vortex loop nucleation in current-carrying SC cylinder
in transverse field
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G=F—AW,—AW,, (42) cH,

==
whereF, AWy, andAW, are defined in Eq¥37),(23),(40), 4\
respectively. Using the criterium for the first vortex nucle- \ynich is of order of the depairing curreHt:1%% In other

ation (Sec. Ill B) 9G/dr(r=¢£)=0 we find a critical condi-  \yords, the first vortex entry occurs whéand whergthe SC

tion connecting the external transverse field and current 5 qer parameter is locally supressed by the current.

self-field at the surfacél,=2I/cR: The last criterion(46) is, in fact, more general than the

Y 4 —Y 43 Silsbee’s rule(45) and holds also for thin sampleR€&N\).

aHi+AH. =H, 43 10 check this, let us multiply Eq43) by c/4x\ to get the

where the coefficients a=v214(R/\)/I(R/\) and Londpn critical current valug_ on the right-hand side. Than

B=2v21,(RIN)/I1o(R/N). For the macroscopic cylinder the first term on the left-hand side

(R>N)a~pl2~1, and for the thin wire R<\)2/a

(46)

2.
~B~R/N. Thus, the critical condition for the first vortex ¢ aH, = ¢ 2_)‘ 27R th:j (47)
loop entry in the thick cylinder is approximately 4m\ 47n R cR ”
H=H,+2H, =H (44) presents the transport current density and the second term
Cc!
whereH is the maximal magnetic field at the cylinder sur- g o~ CR g~ 48
face achieved at the linp=R, ¢=0). 477)\/3 Iy AL (48)

In other words, the first vortex enters the perfect macro- ] S
scopic current-carrying type-ll SC cylindrical sample whenPresents the current density contribution induced by the
the total magnetic field first attains at the surface the value offansverse magnetic field. Since the currggtandjy are in
the thermodynamical magnetic field,. Thus, the break- this case of the same direction, the sumpj) is equal to
down of the nondissipative current-carrying state of the zerothe total currentj, which provides the validity of criterion
field-cooled type_” SC Subjected to a transverse magnet|é46) The latter is valid exactly for the parallel current-field
field occurs in accordance with the generalized Silsbee’§onfiguration too, as may be seen from Ref. 15. That allows

rule!® Let us note that this criterion turns out to be valid One to expect the above criteri¢A6) to hold for arbitrary
solely due to Bean-Livingston surface barrier. field directions and an arbitrary transverse size of the sample.

Though this result is formulated for a pin-free SC it seems
to be in qualitative agreement with numerical and magneto-
optic observations of magnetic-flux penetration into the hard

In this paper we have completed within the London ap-SC sample of a rectangular form performed by Schuster
proximation the study of magnetic-flux penetration in theet al®
current-carrying superconducting cylinder subjected to an The surface of a real sample is not perfect and contains
external magnetic field of arbitrary direction. We have found(normally) imperfections of the siz&>¢£. In this case one
an exact solution to the London and Maxwell equations forshould use in the criterion for the first vortex penetration
the magnetic vortex of the arbitrary flat shape. Then the entSec. Il B) the cutoff lengths instead of¢ which gives
ergy and magnetic moment of the definite vortex configura-
tions were calculated that allowed us to find the lower trans- aH;+BH, =(&§/0)He, <6<\ (49
verse critical field for the cylinder of arbitrary radius and . . .
critical field of the first vortex loop nucleation z)i/t the surfaceInStead of Eq(43). The modified value §/ 5)H. substitutes

i . ) . he field H, in Egs. (44)—(46) too. When the defect size
%azr::gtzgefrilélgarrymg SC cylinder subjected to a transvers >\ the thermodynamical critical field in Eq§38), (43)—

Now we are in a position to formulate the general crite—(46) shoulq be substituted by the lower critical figit}, as
rion for the first flux-line penetration valid for an external was done in Refs. 17-19 and many others. Such a roughness

field of arbitrary direction. Consider first the case of macro-Of the surface allows one 10 ignore completely the effect of

scopic sample R>\). Unified together with the criterion sgrfacg on the flux entry since the Bean-Livingston barrier
for the first flux penetration in a longitudinal fi¢Rithe width is (at H>H,) of the order of\. Let us note, that,

above criterion(44) may be extended to the case of the ex-Nanks to the circular cross—se;ctloréng the sample, tbere IS no
ternal field of general direction as follows: geomerical barrier effect in this case- Thus, Silsbee’s rule

for the breakdown of the nondissipative current-carrying
IHo+Hy||ma=He (45) state of zero-field-cooled bull§ samp!es turned out to be valid
for the type-ll superconducting cylinder solely due to the
whereH, is a local value of the magnetic field at the surface,surface(Bean-Livingston effect.
including external field and Meissner-response field. The critical conditions of the vortex nucleation at the sur-
Thus, the first vortex nucleation at the perfect surface oface of the thin wire of radiuR<<\ Eg. (43) shows that the
the bulk cylinder obeys a rather general modified Silsbee’sortex entry is strongly hindered in this case. If the thin wire
rule. The physical sense of this rule is quite simple: thecontains no inclusions or surface imperfections of the size of
first vortex enters at a location, where the totalits radius it should be capable of carrying a maximal possible
(transport-shielding) current per unit length of the surface persistent current of the order pf in the external magnetic
|s=cH/4x is the largest and the total current densjty field H<H, of arbitrary direction as well as in zero field.
achieves the critical value That means particularly that, in the absence of weak links,

IV. CONCLUSIONS
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the large internal share of the multiflamentary superconduct- . i®y ., d_
ing cables composed of the thin filaments WRk. A may be N0a= F 2P ﬁ[ﬁf sin x(p)]. (A3)
in the vortex-free state. Some recent experimental observa-

tions are in favor of the above conclusion. Extremely high 11,0 upon the substitution of the above amplitudes in the

o — . — 2 . . .
values of critical currenj=j,_=10" A/cm? in microbridges general expressiofi16),(21) one can obtain the magnetic
of the transverse size X were reported in Refs. 33 and 34. ,oment of the arbitrary loop:

The growth of the current-carrying capability of the submi-

cron multifilament cables with the decrease of the filament D, R _
diameter was observed in Ref. 35. M= W fRirdpp sin x(p){l1(p/\)
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FLAT VORTEX LOOP . .
Let us now consider a small loop with the lengthr <R.

The form of the vortex loop lying in the plare=0 may  That means that sig(p)=x(p) changes between 0 amdR
be defined in polar coordinates by some vector function  over the interval R—r,R). The last integral in EqA4) is as
- small as ¢/R)® and may be neglected. In the first integral the
p=l(e) (AL) product of the length of interval of integration and giis as
if this form is not too complicated. There are at least twosmall as ¢/R)? which allows us to evaluate all the Bessel
solutions of this equation with respect to angle as is shown ifiunctions atp=R. A specific form of the loop may result
Fig. 1: 6, (p) and 6_(p). Let us consider for simplicity the only in a factor of order of unity therefore we take here for
symmetrical loop for whichp, =—60_=x(p) is a monoto- the estimation the valug2R as the average of sipover the
nous function ofp. Let us denotdR—r as the least value of interval of integration. Then we obtain to the accuracy of
radiusp for which the solutiony(p) exists, theny(R—r)=0.  (r/R)? the magnetic moment of the small vortex lo(&5).
Making use of functiony(p) one can carry out integration For the definite form of the vortex loop described by Eq.

in Eq. (4) and find (36) one finds to the accuracy of (R)?
ol Dyl (RIN) (R , Dor? 1,(RIN)
p __0 _ _ _
D (p,¢,2) P 8(2)8(p—R+1)[ 50— x(p)) M= m Rirdpp sin x(p)— AN 4RIV
= (e+x(p))], (A5)
d For the vortex lying on the cylinder diametgsee Eg.
D%(p,p,2)=Dy5(2)8(p—R+T1) —X[8(<p—)((p)) (24)] x==/2 and one can find from EqA4) that its mag-
dp netic moment equals
+8(e+x(p)]. (A2) Do) Rix
. . ' . M= ——— dxxly(x)
That gives for the Fourier components defined in &q. wlo(RIN) Jo
expressiong34). The amplitudesng,= —\~3(®§,+DE )
entering the magnetic moment expressi@t) may be pre- = % —LO(R/)\)l (R/IN)—Ly(R/N) (AB)
sented in a form convenient for integration 2 IR ! '
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