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Magnetic self-field entry into a current-carrying type-II superconductor.
III. General criterion of penetration for an external field of arbitrary direction
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The first magnetic-flux penetration into a current-carrying cylindrical type-II superconductor subjected to an
external magnetic field is considered in the frame of the London approximation. The lower transverse critical
field as well as critical field of the first vortex nucleation at the surface are evaluated on the basis of an exact
solution for a vortex of arbitrary flat configuration. Taken together with the previous consideration of the
parallel magnetic-field penetration in a current-carrying superconductor@Phys. Rev. B49, 6950 ~1994! and
B 51, 3686~1995!# the above results allow us to formulate the general criterium for the first flux entry in the
current-carrying samples of arbitrary transverse size subjected to an external field of arbitrary direction.
@S0163-1829~98!03902-2#
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I. INTRODUCTION

The surface effects play essential role in the electro
namic behavior of type-II superconductors~SCs! and are es-
pecially important in the case of extreme situations w
Ginzburg-Landau parameterk5l/j@1 wherel and j are
the magnetic-field penetration depth and superconduc
correlation length, respectively. Considerable attention w
recently paid to the problem of magnetic-flux penetrat
into the superconducting samples of various geometries1–10

The surface Bean-Livingston11 and geometrical12 barriers ef-
fect on the nucleation of magnetic vortices in bulk SC
turned out to determine their resistive and hysteretic beh
ior in a wide range of magnetic field and temperature.1,6,9,10

One of the consequences of surface effect in type-II S
is the validity of Silsbee’s rule13 for a samples with a perfec
surface14,15 ~the last implies that typical surface defect si
d,j!. Silsbee’s rule, established for the type-I SC’s shor
after the discovery of superconductivity itself,13 stated that
the breakdown of the nondissipative state of a macrosc
current-carrying sample occurs when the current self-field
the sample surface first attains the magnitude of the ther
dynamic critical fieldHc , the only characteristic field fo
type-I SC’s. Contrary to type-I SC’s, type-II SC’s have tw
critical fieldsHc1.Hc ln k/k andHc2.kHc and allow mag-
netic flux to penetrate a sample in the form of magne
vortices in a wide range of external magnetic fie
Hc1!H!Hc2 .16 Though, as was shown by Bean an
Livingston,11 because of the surface potential barrier the v
570163-1829/98/57~2!/1164~9!/$15.00
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tices may enter a perfect SC sample exposed to an exte
magnetic fieldH only if it achieves the above valueHc .

Despite this clear analogy in first flux penetration in
type-I and type-II SC’s the current self-field was believed
years to first penetrate into a type-II SC once the self-field
the current,HI , achieves at the surface the value of t
lower critical field Hc1 .17–19 Exact solutions for the vortex
ring14,20 and vortex helix15 entry into the current-carrying
type-II SC cylinder found recently in the frame of the Lo
don approximation have shown that Silsbee’s rule holds
the current self-field entry in type-II SC’s and is also va
for the case of external magnetic field applied parallel to
current direction. In the last case Silsbee’s rule applies to
total magnetic-field value at the surface15 that is vector sum
of the current self-field and external field.

In this paper we continue with the study of the first vort
nucleation in a current-carrying type-II SC cylinder expos
to the magnetic field perpendicular to the transport curr
direction. For this aim the solution of the London equati
inside a SC cylinder of radiusR@j is found for an arbitrarily
shaped flat vortex. The general solution allows us to find
first critical fieldHc1 for the SC cylinder in a transverse fiel
and critical conditions for the first flux entry when both fie
and transport current are applied. Silsbee’s rule turns ou
be valid for macroscopic samples withR@l in a field of any
direction but fails forR,l.

A general criterium is established for the first flux-lin
penetration in a perfect current-carrying type-II SC sample
arbitrary transverse size subjected to a magnetic field of
1164 © 1998 The American Physical Society
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57 1165MAGNETIC SELF-FIELD ENTRY . . . . III. . . .
bitrary direction: the first vortex loop nucleates at the sam
surface when~and where! the total current achieves the valu
of the depairing current.

The structure of the paper is as follows. A detailed d
scription of the theoretical model and results is presente
Secs. II and III. Section II is concerned with the calculati
of the structure of an arbitrary vortex inside a SC cylind
Subsequently the energy, magnetic flux, and moment of d
nite vortex configurations are evaluated in Sec. III that
lows us to find critical parameters of the SC cylinder w
respect to the surface effect. The results are summarized
discussed in Sec. IV.

II. STRUCTURE OF A MAGNETIC VORTEX
IN A SUPERCONDUCTING CYLINDER

A type-II superconducting cylinder of radiusR@j is con-
sidered which extends along thez axis of cylindrical coordi-
nate system (r,w,z). A transverse magnetic field is applie
along the positivey direction (w5p/2) as is shown in Fig.
1. The field is asymptotically uniform~at distances large
compared toR! and of magnitudeH0 . The situation when a
transport current is applied in addition along thez axis will
be studied below in Sec. III. Here we address the questio
the magnetic structure of the vortex itself. It is supposed
nucleate at some location on the equatorial lines of the
inder ~w50 or w5p, r5R! at some critical fieldHp and
then moves to the center of the cylinder. In the central po
tion ~Fig. 2! parallel toH0(w5p/2) it has the largest mag
netic moment that leads to the least Gibbs free energy. T
final vortex position is supposed to be stable. During
motion from the cylinder surface to the center the vortex c
exhibits an arbitrary form that may be described by posit
vector l~w!. Here and below we assumed for the sake
simplicity the line l to be a flat curve~lying in the plane
z50! that is favorable from the energy reasons. The prob
remains, though, three-dimensional.

FIG. 1. Magnetic-flux-line~vortex! of an arbitrary form entering
a cylindrical superconductor exposed to external transverse m
netic field. There are at least two solutions of the equationr5u l(w)u
with respect to angle in the area where vortex is located.
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We start from the London equation in the form21

l2curl curlH1H5F, r<R ~1!

and Maxwell equations

curlH50, r>R ~2!

div H50, ~3!

whereH is the total magnetic field. The source function o
the right-hand side~rhs! of Eq. ~1! writes as

F5F0E dld~r2 l!, ~4!

wherer is the position vector in the planez50, F0 is the
unit flux quantum, anddl is the flux-line element. The inte
gration extends along the flux-line~vortex core!. The stray
field outside the superconductor is described by Maxw
equations~2,3!, the last of which is valid in the whole spac
The boundary conditions areH approachesH0 asymptoti-
cally (r→`), H is continuous in all components on th
circle r5R.

The solution of Eqs.~1!–~3! may be represented by th
superposition of the well-known Meissner responseHM of a
SC cylinder to the transverse field22 and a fieldh of the
vortex itself. The fieldHM satisfies the uniform Eqs.~1!–~3!
with the zero rhsF50 and both boundary conditions. Tak
ing into account that the fieldh is potential outside the cyl-
inder and may be presented ash5¹c we rewrite Eqs.~1!,~2!
in the form

l2curl curlh1h5F, r<R, ~5!

Dc50, r.R ~6!

with boundary conditionsh5¹c on the circler5R, c→0,
r→`.

g-
FIG. 2. Magnetic-flux line parallel to the external magnetic fie

lying along the diameter of the superconducting cylinder.
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1166 57YU. A. GENENKO et al.
The components of the field in cylindrical coordinat
h5(hr ,hw ,hz) may be written with the help of Fourie
transformation as

hj~r,w,z!5(
m

exp~ imw!E dk

2p
hk,m

j ~r!exp~2 ikz!,

~7!

c~r,w,z!5(
m

exp~ imw!E dk

2p
ck,m~r!exp~2 ikz!,

~8!

where the indexj assumes the valuesr,w,z.
In terms of the Fourier amplitudeshk,m

j and ck,m Eqs.
~5!,~6! transform to the following set of one-dimension
equations:

]2hk,m
r

]r2 1
1

r

]hk,m
r

]r
2S Q21

m211

r2 Dhk,m
r 2

2im

r2 hk,m
w

52
Fk,m

r

l2 , r<R, ~9!

]2hk,m
w

]r2 1
1

r

]hk,m
w

]r
2S Q21

m211

r2 Dhk,m
w 1

2im

r2 hk,m
r

52
Fk,m

w

l2 , r<R, ~10!
]2hk,m
z

]r2 1
1

r

]hk,m
z

]r
2S Q21

m2

r2 Dhk,m
z 52

Fk,m
j

l2 , r<R,

~11!

]2ck,m

]r2 1
1

r

]ck,m

]r
2S k21

m2

r2 Dck,m50, r>R, ~12!

with the boundary conditions

ck,m~`!50, ck,m8 ~R!5hk,m
r ~R!,

2 ikck,m~R!5hk,m
z ~R!,

im

R
ck,m~R!5hk,m

w ~R!. ~13!

In Eqs. ~9!–~12! we introduced the valueQ25k211/l2

and Fourier amplitude of the source function~4! Fk,m
j de-

fined in the same manner as the field components in Eq.~7!.
The set of equations~9!–~12! is not equivalent to Eqs

~5!,~6! since by its derivation the equality curl curlh52Dh
was used that implies divh50. To be the solution to Eqs
~5!,~6! the solution of Eqs.~9!–~12! should also satisfy Eq
~3!.

Upon the transformationf k,m
6 5hk,m

r 6 ihk,m
w all Eqs. ~9!–

~12! may be solved separately in terms of the modifi
Bessel functions.23 We obtain then the solutions regular
r50:
ck,m~r!5Ck,mKm~ ukur!, ~14!

hk,m
z ~r!5Ck,mI m~Qr!, ~15!

S hk,m
r

ihk,m
w D 5

1

2 F FFk,m
1 2E

r

R

drrhk,m
1 ~r!Km11~Qr!G I m11~Qr!6FFk,m

2 2E
r

R

drrhk,m
2 ~r!Km21~Qr!G I m21~Qr!

2Km11~Qr!E
0

r

drrhk,m
1 ~r!I m11~Qr!7Km21~Qr!E

0

r

drrhk,m
2 ~r!I m21~Qr!G , ~16!

wherehk,m
6 52l22(Fk,m

r 6Fk,m
w ), I n andKn are the modified Bessel functions.23 The coefficients in Eqs.~14!–~16! may be

found with the help of Eqs.~3!, ~13! and read

Ck,m5FKm11~QR!

I m11~QR!
E

0

R

drrhk,m
1 ~r!I m11~Qr!1

Km21~QR!

I m21~QR!
E

0

R

drrhk,m
2 ~r!I m21~Qr!2

2R

Ql2 Km~QR!Fk,m
r ~R!G

3F2k2

Q

Km~ ukuR!

I m~QR!
1ukuS Km11~ ukuR!

I m11~QR!
1

Km21~ ukuR!

I m21~QR! D G21

, ~17!

Fk,m
6 52ukuCk,m

Km61~ ukuR!

I m61~QR!
1

Km61~QR!

I m61~QR!
E

0

R

drrhk,m
6 ~r!I m61~Qr!, ~18!

Ck,m52 ikCk,m

Km~ ukuR!

I m~QR!
. ~19!



by

io
ic
iti
fi
th

p
s

l t
bu

t
te

on

lu

e
su

r of
-
l

nd

g.

rgy
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The solution~14!–~16! with coefficients~17!–~19! satis-
fies Eqs.~9!–~12! and Eq.~3! and, hence, Eqs.~5!,~6!. It is
valid so far for an arbitrary form of the vortex, described
the function~4!.

Although being rather complicated, the obtained solut
may nevertheless be used for calculation of the phys
properties of the vortices of definite configurations and cr
cal parameters of the superconductors. We derive here
some general formulas for the physical characteristics of
arbitrary vortex.

The self-energy of the vortex17,19 takes a form

F5
1

8p E
r<R

dV@h21l2~curlh!2#1
1

8p E
r>R

dV~¹c!2

5
1

8p E
r<R

dVhF2
R

8p (
m

E dkck,m~R!F2k,2m
r ~R!.

~20!

One can see that the last surface term in Eq.~20! vanishes if
the vortex does not cross the surface of the sam
@Fk,m

r (R)50#, that is known for flux lines of various form
lying completely inside the SC sample,14,15,24 though the
field at the surface and outside the cylinder is not equa
zero. That takes place by virtue of the fact that the contri
tion from the outer space and from the surface term@follow-
ing from the first integral in Eq.~20!# exactly compensate
each other. Compensation of this sort was found by Brand
a calculation of the energy of an arbitrary distorted vor
lattice near a flat surface.25

The magnetic moment projection on the field directi
~see Fig. 1! is

M y5
1

2c E dV@r3 j #y

52
R2

2
h0,1

w ~R!2
1

2i E0

R

drr~h0,1
r 2 ih0,1

w !. ~21!

The magnetic flux flowing through the vortex is written

F5E
2`

`

dzE
0

R

dr@hw~r,w50,z!2hw~r,w5p,z!#

52 (
m51

` E
0

R

drh0,2m21
w ~r!. ~22!

In the derivation of Eqs.~20–22! the symmetry relations
were used that follow from the general structure of the so
tion ~14–19!:

Ck,m* 52Ck,m5Ck,2m ,~Fk,m
1 !* 52Fk,m

1 5Fk,2m
2 ,

~hk,m
r !* 52hk,m

r 5hk,2m
r ,~hk,m

w !* 5hk,m
w 5hk,2m

w .

The above general formulas are used in the following s
tions for the calculation of the critical parameters of the
perconductor.
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III. CRITICAL FIELDS AND CURRENTS
OF SUPERCONDUCTING CYLINDER

IN A TRANSVERSE FIELD

A. First critical field of a SC cylinder
in a transverse magnetic field

To evaluate the first critical fieldHc1 we should study the
case of a vortex assuming a stable position in the cente
the sample.17–19The vortex directed along the cylinder diam
eter parallel to the applied fieldH0 apparently leads to a loca
minimum of the Gibbs free energy of the system

G5F2DWH , DWH5MH 0, ~23!

whereF is the vortex self-energy~20! andM is the magnetic
moment of the sample due to presence of the vortex~the
constant Meissner contribution is omitted!. Formula~23! fol-
lows from the general expression for the Gibbs energy26,27of
the system if form and position of the vortex are fixed a
then the external field is slowly switched on.

The vortex lying on the cylinder diameter is shown in Fi
2. The corresponding rhsF in Eq. ~1! is written in this case
in the form

Fk,m
r 5

F0

ipr
u~R2r!sin

mp

2
, Fw5Fz50. ~24!

Upon the substitution of Eq.~24! in the solution~14–19!,
one can find the approximate expressions for the self-ene
of the vortex~20!

F5S F0

4pl D 2

2RF ln
4R

ej
1

9

4p
2

R

l G , j!R!l, ~25!

for the case of the thin sample, and

F5S F0

4pl D 2

2RF ln k2g1
l

R
ln

R

l G , R@l, ~26!

for thick samples whereg50.577(2 . . . ) is the Euler
constant23.

The magnetic flux flowing through the vortex~22! is in
this case

F5F0

R2

2l2 ln
l

R
, ~27!

for j!R!l, and

F5F0S 12
8l2

pR2D , ~28!

for a macroscopic cylinder of radiusR@l.
The magnetic moment~21! induced by the vortex is

M5
F0R

2 FL0~R/l!

I 0~R/l!
I 1~R/l!2L1~R/l!G , ~29!

where Ln is the modified Struve function.23 That gives in
limiting cases

M5
F0R3

6pl2 S 12
7l2

40R2D , R!l ~30!

and
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M5
F0R

p S 12
l

RD , R@l. ~31!

The first critical fieldHc1 is determined from Eq.~23! as
the field at which the vortex energyG equals zero. For the
macroscopic sample one finds the result only slightly diff
ent from the critical fieldHc1

0 /2 of the bulk material~or the
bulk cylinder parallel to field! multiplied by demagnetizing
factor 1/2:17–19

Hc1
' 5

Hc1
0

2 S 11
l

R
2

g2~l/R!ln R/l

ln k D , R@l, ~32!

where Hc1
0 5(F0/4pl2)ln k. Let us note, though, that th

correction to the bulk valueHc1
0 is not exponentially smal

because of the power tails in the field distribution typical
the vortex crossing a surface.27,28

For the thin sample one finds

Hc1
' 5Hc1

0 3l2

R2

ln 4R/ej19/4p2R/l

ln k
, R!l. ~33!

B. Vortex loop nucleation on the SC cylinder surface
in a transverse magnetic field

Magnetic-flux entry in the type-II SC sample exposed t
transverse magnetic field starts with the small vortex lo
nucleation at the surface as shown in Fig. 3. This prob
was so far considered for the case of a flat surface and
films.1,9,11,29–32To evaluate the critical field of the first vor
tex penetration into the SC cylinder using the Gibbs ene
~23! we should specify the form of the loop and then es
mate the energy~20! and moment~21! of the loop. The result
should not depend essentially on the form of the loop.

The calculation of the magnetic moment may be p
formed for relatively general assumptions. A general expr
sion for the magnetic moment of an arbitrary loop is deriv
in the Appendix. An arbitrary smooth loop may be describ
by the rhs in Eq.~1! represented by Fourier amplitudes as

FIG. 3. First vortex loop nucleation at the surface of the sup
conducting cylinder exposed to an external magnetic field.
-
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s-
d
d

Fk,m
r 52

i

pr
F0 sin„mx~r!…u~r2R1r !, Fk,m

z 50,

Fk,m
w 5

F0

p

dx~r!

dr
cos„mx~r!…u~r2R1r !, ~34!

where some smooth functionx~r! gives the specific form of
a loop penetrating the sample to the depth ofr .

Here we consider a small vortex loop with a characteris
length.r and the same depth of penetration in the samp
If r !l,R then to the accuracy of (r /R)2 the magnetic mo-
ment is

M.
F0a

2p

r 2

l

I 1~R/l!

I 0~R/l!
→

F0a

2p

r 2

l H 1, R@l

R/2l, R!l
, ~35!

wherea is a factor of order of unity depending on the sp
cific form of the vortex loop~for the details, see the Appen
dix!.

To avoid divergencies during the energy calculation so
more specified form for the trial vortex loop is taken close
a semicircle of radiusr centered at the surface point~r5R,
w50! but perpendicular to the surface as is shown in Fig
The Fourier amplitudes of the corresponding source func
~4! look like

Fk,m
r 5

F0

ipr
@u~R2r!u~r2AR22r2!sin mf t1u~r2R

1r !u~AR22r 22r!sin mx~r!#,

Fk,m
w 5

F0

pr

R cosx~r!2r

R sin x~r!
u~r2R1r !

3u~AR22r 22r!cos„mx~r!…, Fk,m
z 50, ~36!

where sinft5r/R and cosx(r)5(R21r22r2)/2Rr. Then one
finds for both thick (R@l) and thin (R!l) samples

F5S F0

4pl D 2

pr ln
r

j
, j!r !R,l, ~37!

wherej appears as cutoff parameter for the logarithmic
vergency usual in the London approximation. This result
incides with that for flat surface29,30,32 since in the limit
r !R,l the curvature of the surface plays no role.

r-

FIG. 4. The specific form of the vortex loop used for the fre
energy calculation.
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The factora in the expression for magnetic moment~35!
is equalp/2 for the above specific form of the loop~36! ~see
Appendix!.

The Gibbs free energy of the loop~23! with F taken from
Eq. ~37! and M taken from Eq.~35! has a maximum as a
function of loop sizer forming a Bean-Livingston barrie
against the vortex entry. If the fieldH0 is high enough the
maximum occurs atr'j, then the barrier vanishes and spo
taneous vortex loop nucleation and further expansion
comes possible. Using the criterium]G/]r (r 5j)50 for the
first vortex nucleation we find the corresponding entry fie

Hp
'5

Hc

2&

I 0~R/l!

I 1~R/l!
, ~38!

whereHc5F0/2&plj.27 Thus, for the macroscopic cylin
der with radius of curvatureR@l, the first penetration field
Hp

' is twice less than it may be obtained for the flat surfa
in the same approximation.1 For small transverse sizeR!l,
it is l/R times magnified as is reasonable for the sm
samples.27

C. Vortex loop nucleation on the surface
of current-carrying SC sample

We proceed now with the case when a transport curren
applied to the SC cylinder in the positivez direction and the
external field is absent. The current self-field as well as
external one favors the nucleation of vortices at the cylin
surface. In Refs. 14 and 20 the idealized process of the e
of perfect ring into the SC cylinder was considered. In fa
even for the perfect surface case the vortex first nucleate
a small loop at some~arbitrary! location, since the entry
process is stochastic in nature and is not correlated on
scales much more thanl.

We consider thus the same loop nucleation around
point ~r5R, w50! ~Fig. 5! as in the previous section. Th
Gibbs free energy taking also into account the work done
the source of transport current is

FIG. 5. First vortex loop nucleation at the surface of the curre
carrying superconducting cylinder in the absence of an exte
field.
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G5F2DWI , ~39!

whereF is presented in Eq.~37!. The current source contri
bution, DWI , calculated in the spirit of publications17,19 is
the work done by the Lorentz driving forcef5F0@ j3dl#/c
exerted upon the flux-line elementdl where j is the local
density of transport current. Since in the problem of nuc
ation we consider only the small loops of sizer !R,l, the
transport current density remains constant within the lo
and equal to the surface valuej s5(I /2pRl)I 0(R/l)/
I 1(R/l), I is the total transport current. Then the work do
over the semicircle loop growing from the radiusr50 to
r5r reads as

DWI5E
0

p

dwE
0

r

drr
j F0

c
5

j sF0pr 2

2c
. ~40!

Using the above criterium for vortex loop nucleation~see
Sec. III B! ]G/]r (r 5j)50 we find for the critical current
density on the surface

j cr5 j L /& ~41!

independently of sample radius, where the London criti
value j L5cHc/4pl. This result is twice less than the critica
current for the perfect vortex ring entry into the cylind
obtained in the same approximation.14,20

D. Vortex loop nucleation in current-carrying SC cylinder
in transverse field

Here we consider finally the case of a current-carrying
cylinder subjected to a uniform transverse magnetic field
shown in Fig. 6. The current self-field imposed on t
Meissner-response field makes the total field asymmetri
In this case the equatorial line~r5R, w50! where the two
fields add directly is a weak spot for the first vortex loo
nucleation. The process is governed by the Gibbs energ

t-
al FIG. 6. First vortex loop nucleation at the surface of the curre
carrying superconducting cylinder in an external transverse m
netic field.



e-

r

x

r-

ro
en
e

ro
et
e

lid

p
he
a

nd
fo
e
ra
ns
d

ce
rs

te
al
ro

x

e

o
e

th
ta
ce

e

rm

the

ld
ws

ple.
ms
to-

ard
ter

ins

on

ness
of
ier

no

ng
alid
he

r-

ire
of

ible

ks,

1170 57YU. A. GENENKO et al.
G5F2DWH2DWI , ~42!

whereF, DWH , andDWI are defined in Eqs.~37!,~23!,~40!,
respectively. Using the criterium for the first vortex nucl
ation ~Sec. III B! ]G/]r (r 5j)50 we find a critical condi-
tion connecting the external transverse fieldH' and current
self-field at the surfaceHI52I /cR:

aHI1bH'5Hc , ~43!

where the coefficients a5&I 0(R/l)/I 1(R/l) and
b52&I 1(R/l)/I 0(R/l). For the macroscopic cylinde
(R@l)a;b/2;1, and for the thin wire (R,l)2/a
;b;R/l. Thus, the critical condition for the first vorte
loop entry in the thick cylinder is approximately

H5HI12H'.Hc , ~44!

whereH is the maximal magnetic field at the cylinder su
face achieved at the line~r5R, w50!.

In other words, the first vortex enters the perfect mac
scopic current-carrying type-II SC cylindrical sample wh
the total magnetic field first attains at the surface the valu
the thermodynamical magnetic fieldHc . Thus, the break-
down of the nondissipative current-carrying state of the ze
field-cooled type-II SC subjected to a transverse magn
field occurs in accordance with the generalized Silsbe
rule.13 Let us note that this criterion turns out to be va
solely due to Bean-Livingston surface barrier.

IV. CONCLUSIONS

In this paper we have completed within the London a
proximation the study of magnetic-flux penetration in t
current-carrying superconducting cylinder subjected to
external magnetic field of arbitrary direction. We have fou
an exact solution to the London and Maxwell equations
the magnetic vortex of the arbitrary flat shape. Then the
ergy and magnetic moment of the definite vortex configu
tions were calculated that allowed us to find the lower tra
verse critical field for the cylinder of arbitrary radius an
critical field of the first vortex loop nucleation at the surfa
of a current-carrying SC cylinder subjected to a transve
magnetic field.

Now we are in a position to formulate the general cri
rion for the first flux-line penetration valid for an extern
field of arbitrary direction. Consider first the case of mac
scopic sample (R@l). Unified together with the criterion
for the first flux penetration in a longitudinal field15 the
above criterion~44! may be extended to the case of the e
ternal field of general direction as follows:

uHs1HIuumax.Hc , ~45!

whereHs is a local value of the magnetic field at the surfac
including external field and Meissner-response field.

Thus, the first vortex nucleation at the perfect surface
the bulk cylinder obeys a rather general modified Silsbe
rule. The physical sense of this rule is quite simple:
first vortex enters at a location, where the to
(transport1shielding) current per unit length of the surfa
I s5cH/4p is the largest and the total current densityj t
achieves the critical value
-

of

-
ic
’s

-

n

r
n-
-
-

e

-

-

-

,

f
’s
e
l

j t. j L5
cHc

4pl
, ~46!

which is of order of the depairing current.17–19,26 In other
words, the first vortex entry occurs when~and where! the SC
order parameter is locally supressed by the current.

The last criterion~46! is, in fact, more general than th
Silsbee’s rule~45! and holds also for thin samples (R!l).
To check this, let us multiply Eq.~43! by c/4pl to get the
London critical current valuej L on the right-hand side. Than
the first term on the left-hand side

c

4pl
aHI.

c

4pl

2l

R

2pR2 j tr

cR
5 j tr ~47!

presents the transport current density and the second te

c

4pl
bH';

cR

4pl2 H'. j M ~48!

presents the current density contribution induced by
transverse magnetic field. Since the currentsj tr and j M are in
this case of the same direction, the sum (j tr1 j M) is equal to
the total currentj t which provides the validity of criterion
~46!. The latter is valid exactly for the parallel current-fie
configuration too, as may be seen from Ref. 15. That allo
one to expect the above criterion~46! to hold for arbitrary
field directions and an arbitrary transverse size of the sam

Though this result is formulated for a pin-free SC it see
to be in qualitative agreement with numerical and magne
optic observations of magnetic-flux penetration into the h
SC sample of a rectangular form performed by Schus
et al.8

The surface of a real sample is not perfect and conta
~normally! imperfections of the sized.j. In this case one
should use in the criterion for the first vortex penetrati
~Sec. III B! the cutoff lengthd instead ofj which gives

aHI1bH'5~j/d!Hc , j,d,l ~49!

instead of Eq.~43!. The modified value (j/d)Hc substitutes
the field Hc in Eqs. ~44!–~46! too. When the defect size
d.l the thermodynamical critical field in Eqs.~38!, ~43!–
~46! should be substituted by the lower critical fieldHc1 as
was done in Refs. 17–19 and many others. Such a rough
of the surface allows one to ignore completely the effect
surface on the flux entry since the Bean-Livingston barr
width is ~at H.Hc1! of the order ofl. Let us note, that,
thanks to the circular cross-section of the sample, there is
geomerical barrier effect in this case.6,12 Thus, Silsbee’s rule
for the breakdown of the nondissipative current-carryi
state of zero-field-cooled bulk samples turned out to be v
for the type-II superconducting cylinder solely due to t
surface~Bean-Livingston! effect.

The critical conditions of the vortex nucleation at the su
face of the thin wire of radiusR,l Eq. ~43! shows that the
vortex entry is strongly hindered in this case. If the thin w
contains no inclusions or surface imperfections of the size
its radius it should be capable of carrying a maximal poss
persistent current of the order ofj L in the external magnetic
field H,Hc of arbitrary direction as well as in zero field.14

That means particularly that, in the absence of weak lin
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the large internal share of the multifilamentary supercond
ing cables composed of the thin filaments withR,l may be
in the vortex-free state. Some recent experimental obse
tions are in favor of the above conclusion. Extremely hi
values of critical currentj . j L.109 A/cm2 in microbridges
of the transverse size.l were reported in Refs. 33 and 3
The growth of the current-carrying capability of the subm
cron multifilament cables with the decrease of the filam
diameter was observed in Ref. 35.

ACKNOWLEDGMENTS

Yu.A.G. would like to acknowledge the support of th
work by the Alexander von Humboldt Foundation and ho
pitality of the Metal Physics Institute of the University o
Göttingen.

APPENDIX: MAGNETIC MOMENT OF AN ARBITRARY
FLAT VORTEX LOOP

The form of the vortex loop lying in the planez50 may
be defined in polar coordinates by some vector function

r5 l~w! ~A1!

if this form is not too complicated. There are at least tw
solutions of this equation with respect to angle as is show
Fig. 1: u1(r) andu2(r). Let us consider for simplicity the
symmetrical loop for whichu152u25x(r) is a monoto-
nous function ofr. Let us denoteR2r as the least value o
radiusr for which the solutionx~r! exists, thenx(R2r )50.

Making use of functionx~r! one can carry out integratio
in Eq. ~4! and find

Fr~r,w,z!5
F0

r
d~z!u~r2R1r !@d„w2x~r!…

2d„w1x~r!…#,

Fw~r,w,z!5F0d~z!u~r2R1r !
dx

dr
@d„w2x~r!…

1d„w1x~r!…#. ~A2!

That gives for the Fourier components defined in Eq.~7!
expressions~34!. The amplitudesh0,1

6 52l22(F0,1
r 6F0,1

w )
entering the magnetic moment expression~21! may be pre-
sented in a form convenient for integration
t-

a-

t

-

in

h0,1
6 57

iF0

pl2 r61
d

dr
@r71sin x~r!#. ~A3!

Then upon the substitution of the above amplitudes in
general expression~16!,~21! one can obtain the magneti
moment of the arbitrary loop:

M5
F0

2plI 0~R/l!
E

R2r

R

drr sin x~r!$I 1~r/l!

1~R/l!I 1~R/l!@K0~R/l!I 1~r/l!

1I 0~R/l!K1~r/l!#%

2
F0

2pl3 E
R2r

R

drrE
R2r

r

dsssin x~s!@K0~r/l!I 1~s/l!

1I 0~r/l!K1~s/l!#. ~A4!

Let us now consider a small loop with the lengthl .r !R.
That means that sinx(r).x(r) changes between 0 andr /R
over the interval (R2r ,R). The last integral in Eq.~A4! is as
small as (r /R)3 and may be neglected. In the first integral t
product of the length of interval of integration and sinx is as
small as (r /R)2 which allows us to evaluate all the Bess
functions atr5R. A specific form of the loop may resul
only in a factor of order of unity therefore we take here f
the estimation the valuer /2R as the average of sinx over the
interval of integration. Then we obtain to the accuracy
(r /R)2 the magnetic moment of the small vortex loop~35!.

For the definite form of the vortex loop described by E
~36! one finds to the accuracy of (r /R)2

M5
F0I 1~R/l!

plI 0~R/l!
E

R2r

R

drr sin x~r!→
F0r 2

4l

I 1~R/l!

I 0~R/l!
.

~A5!

For the vortex lying on the cylinder diameter@see Eq.
~24!# x5p/2 and one can find from Eq.~A4! that its mag-
netic moment equals

M5
F0l

pI 0~R/l!
E

0

R/l

dxxI1~x!

5
F0R

2 FL0~R/l!

I 0~R/l!
I 1~R/l!2L1~R/l!G . ~A6!
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