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Spin-orbit-induced magnetic anisotropy for impurities in metallic samples.
Il. Finite-size dependence in the Kondo resistivity
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The electrical resistivity, including the Kondo resistivity increase at low temperature, is calculated for thin
films of dilute magnetic alloys. Assuming that in the nonmagnetic host the spin-orbit interaction is strong like
in Au and Cu, the magnetic impurities have a surface anisotropy calculated in paper |. That anisotropy hinders
the motion of the spin. Including that anisotropy, the effective electron-impurity coupling is calculated by
using the second-order renormalization-group equations. The amplitude of the Kondo resistivity contribution is
reduced as the position of the impurity approaches the surface, but the increase occurs approximately at the
bulk Kondo temperature. Different proximity effects are also explained qualitatively, where the films of
magnetic alloys are covered by pure second films with different mean free path. The theory explains the
experimental results in those cases, where a considerable amount of impurities is at the surface inside the
ballistic region.[S0163-182@8)05918-9

[. INTRODUCTION oscillatory part decays faster thardl/approaching the bulk
part of the samplésee Eq.(B20b) in I].
In the preceding papér(hereafter referred to a3 flollow- In the surface area, the anisotropy energy leads to differ-

ing Refs. 2 and 3, we have calculated the magnetic anisoent splitting schema shown in Fig. 1, depending whether the
ropy for a magnetic impurity embodied into a nonmagneticSPin S is an integer or half-integer. In this way the spin very

host (e.g., Au, CU with large spin-orbit interaction for the nearby the surface freezes into a singlet or doublet consider-
conduction electrons on the sites of the host atoms. The mabdﬁg the integer and half-integer cases, respectively. Thus at

netic anisotropy is developed due to the exchange interactiogV’ €nough temperature the spin shows no, or a restricted,

between the magnetic impurities and the conduction elecdynamics. It is important to point out that the states: =
g b 1 for S=3 cannot be replaced by a doublet 8. The

trons. As the scattering due to impurities involves different2 ' h 4 into ol at h .
angular momentum channels-{<m<l), the scattering Spins are rather squeezed Into planar states, as shown in

therefore depends on the directions of the conduction eIetf'g' 2.

trons before and after the scattering. In this way, the scatter- Assum_lng '.[haKd>T’ the integer spin does not contrlbutg
to the resistivity, contrary to the case of the half-integer spin,

ing on the impurity itself depends on which host atoms the ) A
electrons are scattered by the spin-orbit interaction. Due tyhere the two lowest states contribute to the resistivity. The

. _ l . . . 2
that dependence, the anisotropy is determined by the po pinS=3 is, however, not affgcted by grjlsotropy. Thus dif
tions of host atoms around the impurity and it is larger the erent b_ehawors of the electrical resistivity can be _expeqt_ed,
stronger the asymmetry around the impurity. As that infor_dependlng on the value of the spin. Considering impurities

mation is carried by the momenta, therefore it is restricted t(pea_rby the surface |_n3|de the palhsﬂ_c region, more and more
the atoms in the range of the elastic mean free hattThus orbitals become active as the impurity positions approaching

the anisotropy can be developed only if the impurity is insidethe bulk (see Fig. 3

surface area of the thickness of the elastic mean free path AE AE
(ballistic region of the surfagelf the surface in that region is — Iml=5/2
planelike, then the anisotropy energy [see Eq.(1) of |
(Ref. 1] Iml=2

Ha=Kq(nS)?, D

iml=3/2

whereS is the spin operator of the impurity, is the normal K, lml=1 K,
direction of the experienced surface element, Kpds the 0 =0 0 Iml=1/2

anisotropy constant depending apart from the oscillatory part
like 1/d on the distanced, measured from the surface. Of 2) b)

course, if the ballistic region contains the more sophisticated

part of the surface, then the determination of the direction FIG. 1. The splitting schema due to the anisotropy (@r S
and amplitude of the anisotropy is a more complex task. The=2 and(b) S=3.
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FIG. 2. The squeezing of the spin into planar states due to the
anisotropy is illustrated fofa) S=2 and (b) Szg. The lowest- a) b)
energy states are shown by heavy lines.
FIG. 3. The different layers of the impurity positions where
more orbitals become active as the impurity positions approach the

A similar structure appears in the temperature dependendailk assuming thadl; ,d,<l¢. (&) S=2, (b) S=3.
of the resistivity. Cooling down the sample, at the beginning, o ) ) -
almost all the spins are free. At further cooling, more and(©ne-loop approximatignwhich results in an artificial diver-
more spin states are frozen; thus wign2 atT<T, three ~ 9ence at the .Kon.do temperature. Those methods are gener-
orbitals are populated, and whan<T,, a single orbital is ahzgd by taking into account the surface anisotropy terms
populated T;:T,=4:1), while in case ofS= 2 each state is WhICh'OCCUI’ as a Iovy—energy cut.off qf the Iogarlthmlp inte-
double degenerateT(:T,=25:9). g_rals in the calcglatlon of perta}ln diagrams. The. dn‘ferent

Assuming that in the region of the Kondo temperafiige diagrams depending on their spin Iabe_ls have a different in-
the occupations of the different states are varying by a conlfared, low-energy cutoff due to the anisotropy. These calcu-
siderable amount depending on the positions of the impuri'—at'ons are in cl_ose qnalogy to thosg with cry;tallme splitting.
ties in the surface region, then, lowering the temperature! "€ Next step is using these effective couplings to calculate
fewer and fewer impurities can further develop the Kondothe electrical resistivity by solvmg the_BoItzmann equation,
state, and thus fewer and fewer impurities can contribute to gnd an average over the Impurlty p_o_smons is also taken.
further increase of the Kondo resistivity. As has already been Finally, to fit the calculated resistivity at low temperature,
pointed out, the reduction in the contribution to the resistiv-2n effective surface layer thicknesscan be introduced, by
ity is somewhat less pronounced for a half-integer spin tha@Ssuming that |n_S|de of that surface region there is no Kondo
for an integer spirisee the discussion of Fig).2The contri- effect, anq outside the Kondo anomaly is fylly developed.
bution to the Kondo resistivity can be schematically plottedTn€ experimental data are compared both with that phenom-
for impurities with different distances measured from the€nological description and the original calculations, and they
surfaceds<d,<d, (see Fig. 4 give equally excellent 'fItS.

The phenomena described above are very similar to the The paper is organized as follows. In Sec. Il the general
Kondo effect in the presence of a crystalline field at theScheme of the multiplicative renormalization gro(MRG)
impurity site. When lowering the temperature different crys-iS Presented for the Hamiltonian with the anisotropy term.
tal field states are frozen out, but those fields are identical fof "€ scaling equations are presented in Sec. Ill, and are
all impurities of the same kind. Such calculations have bee§0IVed in Sec. IV. The electrical resistivity contribution is
performed, e.g., by Kashibet al® 'calgzulat'ed in Sec. V,' and _the dilute limit and Kondo resistiv-

The reduction in the averaged Kondo resistivity is sensilty in thin films are given in Sec. VI. Section VIl is devoted
tive to the size of the sample, e.g., the film thickness offo the expenmen?al_ results, atheore'_ucal m_terp_retatlon_of th_e
diameter of the wire, etc., as the ratio of the surfacetesults, and predlct|on§. Agengral discussion is conta}med in
influenced impurities to the total number of impurities goesS€¢: VIII. The Appendix contains the actual calculation of
to zero as the size is further increased. The role of the surfadB€ diagrams which are used in Sec. Ill. Throughout the pa-
on the impurities can be reduced by depositing another pur@er.#i=kg=1 units were used.
film on the surface of the sample. The effect can be also
influenced by changing the elastic mean free path in theAR
samples or in the deposited films. Effects of those kinds will
be summarized and discussed at the end of the paeer
Sec. VII), making use the qualitative results obtained for the
resistivity in Secs. V and VI, all of the references can be
found there.

For the actual calculation of the resistivity, the tempera-
ture dependence of the effective exchange coupling mus \
first be calculated. For that, except in the very low- T T
temperature region, second-order multiplicative K
renormalization-group transformationghe two-loop ap- FIG. 4. The schematic plots of the contribution to the Kondo
proximatior) can be used, which gives a smooth behavior atesistivity for impurities with different distancesy<d,<d; mea-
the Kondo temperature, in contrast to the first-order scalingured from the surface.
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Il. HAMILTONIAN AND THE GENERAL FORM

OF THE MRG TRANSFORMATION Gum-L@,Jiifa (D). Ki(D),D]

The Kondo Hamiltonian in the presence of the anisotropy :ZM(%) QMM/(Z),J%,\]HK% Do), (7b)

is
r rermrLwi  Igm (D), Ki(D),D
H:E Skalaak(r—’_Ha koM koM [ @i, 5 (D), Ki(D),D]

k,o

0 0
Fiom it ormr (@i, 5K Do)

= , (70
+ Z ‘JMM’SMM’(alao-(r(r’ak’(r’)v (2)
k,k' o0 Z

GREENE

wherea]  (ay,) creates(annihilate$ a conduction electron whereZ(D,/D) andZy,(D,/D) are the renormalization fac-
with momenturnk, spino, and energy, measured from the tors for the electrons and pseudofermions, respectively. In-
Fermi level. The conduction-electron band is taken with controducing x=In(Dy/D) as a scaling parameter, the Callan-
stant energy densitg, for one spin direction, with a sharp Symantzik MRG equations are

and symmetric bandwidth cutofd. o stands for the Pauli

matrices,Jym-'s are the effective Kondo couplings, aht}, JG
is given by Eg.(1). For the impurity spin, the Abrikosov’ —nG+ ax T E, Buwm' E 7M IK
pseudofermion representatfowas used, MM MM M (8a)
S=biSum-bu, 3 o .
where the projections of the component of the impurity - nMgMJr —_— Z B —— Z m—M: ,
spin are described by an auxiliary fermionic fiddg, (M= MM’ NIV K
—S,...,S). Choosing the quantization axis parallelrtowith (8b)
this substitution, the Hamiltonian ER) becomes
nNT 5T 5T L mmy MM’
H=> Skaloaka—’_E (N +Kw) blyby 2 2 X MM’ Jiini’
k,o M
aFMM!
+2 7R =0, 8C
+ 2 Jum by Sumbu) (@040 8 1), (4) % ™ KR (89
kK’ 0,0
M,M’ where
where the chemical potentiah—« was introduced to
project out the physical pseudofermion subspE(,;)ﬁo*MbM 7= dinz (93
=1, and the notatiork,,=KM? was introduced for the dx '
MRG calculation.
The conduction electron and pseudofermion Green’s din2zy
functions are ™M™y (9b)
5kk!5 ’
y ()= —2% dJym
Gka’,k o ((,L)) w_gk_ze (5) MM’ — dMM y (gc)
X
and
dKu @)
Omm M= '
Gum (@)= =————= (6) dx
wn ( w-A=3y(w )

_ and for the sake of simplicity the electron and pseudofermion
wherew=w—K, . 3, andS () are the self-energies for Green’s function and the vertex function were denote@by
the conduction electrons and the pseudofermions, respe&, , andl'yy, respectively. The initial values for the renor-
tively. They are diagonal in adequate spin quantum numbersnalization factors and couplings afe=Zy=1, Ky=K(®
and because of that the whole Hamiltonian is symmetric un=KM?2, andJyy = J, for eachM, M’ atD=D,,.
der rotation around the axis. The vertex function is denoted  Using the definition of self-energies in Eq&) and (6),

by I'iom k' orm/ (@1, 02,03, 04). the first two equations can be rewritten as
The multiplicative renormalization group transformation
can be written &5 95,
_(w_sk_ze)n
Gk(r,k'lr'[wiJMM’(D)iKM(D)!D] MM’ ‘]MM’

Dy a2,
_Z( )Gkok’o’(w JMMHKRA: 0)s (78 +% ™ aK; =0, (103
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FIG. 6. The second-order self-energy correction for the impurity
spin. The double line represents the impurity spin with the anisot-
ropy energy, the single one represents the conduction electrons, and
the solid circles stand for the exchange interaction.

o
(2) oM,a"M’ 3) _
+_Z, BW"T T oo Sum Bigu =0,
FIG. 5. The second- and third-order vertex corrections. The MM VIvE
double line represents the impurity spin with the anisotropy energy, (12b)

the single one represents the conduction electrons, and the solid
circles stand for the exchange interaction.
where 7{2), 2, andg2),, are proportional to the second

2 L IZm power, andﬂ(,\f?\,', to the third power of thely\’s, respec-
—(@=A=Zy)pyt X +MM, MM 3 tively. The whole next-to-leading logarithmjé function is
2 3
Bumr=Biga: + Bl -
IZm dKM Thus, to construct the next-to-leading logarithmic scaling
+E Vi — =0, (10b) . 2)
KM dx equations, we have to calculate the secorﬁlf—jw(,,,\,l,) and
. (3) .
the forms of which are more comfortable for calculating thethird- (61" ;) Order vertex corrections, and the second-
MRG equations. order self-energy correctiorﬁE(Mz)) for the impurity spin.
These corrections were calculated by applying the ther-
ll. CONSTRUCTION OF THE MRG EQUATIONS modynamical Green’'s-function technique and an analytical

continuation! Assuming scaling for the vertex function
was applied: that 1, the Haitonian was dvided mta pon- ;O one energy variable was kpthus v, ~
interacting and interacting parts with small parameters w=Kw, w?:w+.KM_KM" andw, =K, Wherewl and
Jum's. When the electron self-energy contains a closed”2 &' c the incoming, and; and w, the outgoing, electron
MMI . . .
pseudofermion loops. tends to zero ax —c. Thus in the and pseudofermion energies, respectively.

thermodynamical limit, for a single impurity from E¢L03), The second- and_thlrd—order vertex diagrams, .and t.he
7=0 andZ=1. second-order correction to the self-energy for the impurity

spin, are shown in Figs. 5 and 6, respectively. A detailed

Turning to the other two equatior¢0b) and (8¢), the . . . ) . ;
g d raoby (80 y calculation of these diagrams is carried out in the Appendix.

were solved in a next-to-leading logarithmic approximation,

where the MRG equations are Collecting all the second- and third-order vertex corrections
together, they and the self-energy correction for the impurity

- (2)_‘?52&/!2) (2) spin were su_bstituted into I_Eq(ﬂl) and (12). In Eq. (1_2b),
(0=N)7y = X +vm 11 the contributions of the third-order parquet-type diagrams

depicted in Figs &) and 5d) were canceled out with the

termsE,r,,M,,BMM,((gr(fN)l U,M,/(;JMM,), as the leading loga-

and

agrf,\)ﬂ - , rithmic scaling equations are equivalent to the summing up
T (s S SMM,ﬁﬁ\A;\A,— , (129 of the parquet diagrams. The divergences at fillitevere
also canceled out. Thus only Fig(ch contributes to Eq.
(3) (12b).
1 2, = 1 3 n ISL oy o Introducing the dimensionless couplinggy: = podmm: s
2T 5 | I @0 Sume X the next-to-leading logarithmic scaling equations are
din ZM )
™M= gx G(SM)jmm-1im-1mOMm-1(D) +PAS,M)jmm1im+1MOmm+1(D)+2M? JM,M! (13

dKy ] ] ) ]
M Gx =(Kp-1—=Km)GASM)jimum-1im-1mOmm-1(D) + Ky 1= Kp)PASM)jmms1im+ imOmm+1(D),

(14
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dimm+1 . . )
PO,BM,MH:T: “[Mjum—(M+Djuramrlimm+a1+ Oy m1(D)]

+02(SM)imm-1im-1mimm+1Omm-1(D)[ Oy m+1(D)— 3]
+PASM+Djyvmstimsim+2imsam+1Omsim+2(D)[ Oy mr1(D)— 3]

_pz(S,M)jfn,MﬂjM+1,M®M,M+1(D)_ szfA,MjM,MH_(M +1)2j§/|+1,M+1jM,M+1

+F2M(M+DjumimmrtimMrimets (15
_de,M—l_ . . .
pPoBMM-1= dx —[(M=Dju-1m-1—Mjumlimm-1[1+Oy m-1(D)]

+PA(SM)jum+timcimimm-1Oum+1(D)[Onu-1(D) = 3]
+A?(SM—1)jmm-1im-1m—2im—2m-1Om-1m2(D)[Opym-1(D)— 3
_qz(SyM)ij,M—le—l,MM,M—l(D)_szfA,MjM,M—l_(M _1)2jf/|—1,M—1jM,M—1
+2M(M=1)jpumimm-1im-1m-1, (16)

and, forM #0,

dium _ 1, . . ) . .
PO,BM,M:W:M[Q (SM)Oym-1(D)jmm-1im-1m—PA(SM)Oy m+1(D)jmm+1im+1m]

M-1. . . ) M+1. . .
M iMm-tdm-1m-1im-1mOmm-1(D)+p (SaM)TJM,M+1]M+1,M+1JM+1,M®M,M+1(D)

+09%(S,M)

— g% (SM)jmm-1im-1mimMOMm-1(D) =P (SM)imm+1im+1mimmOmm+1(D), (17)

where® /(D) ensures thab > (K — Ky )2+ T2, with  the leading order. In the other equatioks, appears only in
the definition the arguments of th@® functions, which are multiplied by
the second or third power afy/’'s. Thus to keep the ap-
1 if D>(Ky— Ky )2+ T2 proximation consistent = K{3’=KM? can be taken in the
(18) arguments of thé@® functions. After this consideration, the
solution of the equations becomes simpler, because the equa-

tions for By,\+ are not coupled. Exploiting the symmetries of
The definitions ofp(S,M) and q(S,M) are given in Eq. the scaling equations,
(A7). It must be stressed that these scaling equations are

Oum (D)=10 it D<\(Ky—Ky )2+ T2

valid for T<D. MM =im M (199
IV. SOLUTION OF THE SCALING EQUATIONS IMM =i-M M (19b
It can be seen from Ed14) that the corrections to the must hold.
bareKSl)) are proportional to the second powerj@fy+'s in Thus the equations which have to be solved are
djmm+1 _ . , . 2 2 .
ax “[Mjum—(M+Djpmsamealimm+1[1+Op m1(D)I+HA(SM)jym-1imm+1Omm-1(D)Oy m+1(D)

—%]-}—pz(S,M +1)]M,M+1j2|v|+1,|v|+2®M+1,M+2(D)[®M,M+1(D)_%]—pz(syM)jﬁn,M+1M,M+1(D)

_szfA,MjM,MH—(M +1)2jﬁﬂ+1,M+1jM,M+1+2M(M +DjmmiMmetiMeime, (20)
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FIG. 7. The running couplings foB=2 as a function ofx FIG. 8. The running couplings foB=3 as a function ofx
=In(Dy/D) atK=6 K andT=0.6 K, with parameter®,=10 K, =In(Dy/D) atK=6 K andT=0.6 K, with parameter®,=10° K,
(@ jo=0.1, and(b) j,=0.0435. (@ jo=0.1, and(b) j,=0.0435.
and, forM #0, tion f(g,) for both spin directions in the presence of the
' electric fieldE as
dimm 1, .2
ax L (SM)Oy m-1(D)im-1 of o)
. fen=tole0 - (KE)P(a)— =0 (22)
—P?(SM)Oy m+1(D)jgm+1]
M—1 the Kondo contribution to the resistivity is
+q2(S1M)TJ.§A,M71jM71,M71M,Mfl(D)
! :—i(zm)wf deyey D (e )(—ﬂ
2 M+1.2 . PKondo 37’ KoK X dey)’
P SM) —— i dmeam+1Omm+1(D) (23
—g2(SM)j2 v 1immOm m-1(D) where the functionb is determined by the Boltzmann equa-
’ ’ ' tion
—PASM)itimsimmOumm1(D). (21)
e dfg(ey) of
These equations were solved numerically for different ini- m oey (KE)+|=¢ o =0. (24)

tial couplingsjo=jum (D =Dg). The results fof,=0.1 and
jo=0.0435 atK/T=10 are shown in Figs. 7 and 8 @&
=2 and 2, respectively. The initial bandwidth cutoff was
chosen a,=10° K.

The collision term §f/dt).y,. can be expressed in terms of
transition probabilities as

of c . ,
V. RESISTIVITY = :Vz {W(K",o" =k, o) f(k')[1—f(K)]
coll. "k'c’
The Kondo resistivity was calculated by solving the —W(k,o—k", ) f(K[1-f(k)]}, (25

Boltzmann equation in the presence of the spin-orbit-induced

anisotropy, using the value of running couplingg () cal- where e.g. W(k',o’ —Kk,o) represents the transition prob-

culated in Sec. IV, aD=T. ability from ak’,o’ state to &k, o state,c is the impurity
Taking the usual forthfor the electron distribution func- concentration, and is the volume.
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Turning to our case, these probabilities can be calculatec.

as

)= >, puw(k,c,M—k',c’,M"),
MM’
(26)

W(k,o—k’,o’

where
w(k,o,M—k’,0’ ,M")
=27|Ti o m—kr,or a0 28 8k— £ + KMZ—KM'?),
(27)
andpy=e FKM?z, B=1T, =36 FKM*,

The scattering amplitude in E(R7) is expressed in terms

of the renormalized coupling®yy(X) as

(L SVI M7 (28)

Do
T oMokl or M= Immr | X= ?

where the dependence on the direction of the momieratad

k' is ignored, and that makes the Boltzmann equation solv-
able in a simple form. Thk dependence may result as some
numerical factors in the final expression, but in the main
features of the temperature dependence those do not play a

important role.
Substituting these assumptions into E85), changing
the sum ()2 to [p(ep)dew S (dQldm)~
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FIG. 9. The resistivity foa) S=2 and(b) S= for different

pol %, Do dsf(ko,/4w) using the properties of the spin al- values ofK. (1) K=0, (2) K=0.02 K, (3) K=0.05 K (4 K=0.1

gebra foro- and S, and the “detailed balance” principle

([ ofo(g)!dt]con=0), we obtain, after linearization iR,
ot —ZWC kE)® F 29
e _K( ) (8k)_ (&1, (29
coll.
where
) D
F(e =2 Pw M2J§/I,M len?o)
M

+[S(S+1)—M(M +1)]jf,,’M+1(x=In%)

X{1—(1—e CM+DKITYf [, —(2M + 1)K]}],

(30

K, (6) K=0.2 K, (6) K=0.5K, (7) K=1 K, and(8) K=2 K. The
initial parameters were chosen ps=0.0435,D,=10° K, and T

=0.3 K.
afg of
3/2 -1 £32 _ 7901
fdss ( (9) (e)=~ f s( r?s)F (e)
(33
was taken into account, and the constant®

=%(m/e2)(277c/st§) was introduced. In the case #f=0,
Eq. (32 reproduces the bulk Kondo resistivity.

The resistivity was calculated by evaluating the integral
occurring in Eq.(32) numerically for differentK values
which are in the regime discussed ih The resistivity as the
function of the temperature is shown in Figga@and 9b)
for S=2 and 3, respectively. The plots are similar to the
experimental onetsee Sec. V).

The effect of the anisotropy on the Kondo temperature
defined by the largest slope in the resistivity can be exam-

where we introduced the dimensionless coupling constantiied by looking at the derivative of the calculated resistivity

immr=podmm:- Inserting Eq(29) into the Boltzmann equa-
tion (24), we obtain, ford,

PP L 31
Ex)—— | — & y
k m o k
and, for the Kondo resistivity,
1 1 g ( afo)F o) @2
= & g),
PKondo p(o) de

where the usual assumption

vs temperature. We can see from Fig&) &nd 9b) that the
Kondo temperature defined in that way is only slightly af-
fected by the anisotropy in those cases where the Kondo
effect is pronouncede.g.,K<0.5 K in Fig. 9. The effect of

the anisotropy becomes dominant for larger strengthk.of
The temperature dependence of the resistivity has a maxi-
mum depending on the strength f and the spin-flip con-
tribution freezes out gradually. That behavior is very differ-
ent for integer and half-integer spins for large anisotropy.
For integer spins the impurity contribution tends to zero in a
way which is very sensitive to the strength of the anisotropy.
In the case of half-integer spins, however, the impurity resis-
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tivity approaches a finite value at zero temperature whichis  , = 0.5 —¢;
independent oK. The resistivity there is determined by the @5 1) o
dynamics of the two lowest-energy levels shown in Fig. 2. In
those cases the Kondo effect is also essentially reduced du ®
to the smallness of the spin-flip amplitudes, but still presents. 03 (4
(The Kondo contribution in the lowest order is proportional
to So- which gives a small amplitude foM=+31.) It is 02 ©
important to emphasize that, whe®=3%, the anisotropy
loses its meaning. 0.1f @
In a real system the anisotropy streng¢gthhas a distribu- )
tion; thus the formation of the resistivity maximum at a finite 0 L L L
value of temperature cannot be expected at least above th 1 12 !
Kondo temperature. The calculation is not reliable for (2)
<Tg in any case. 0.5
PKondo ) (1)
VI. KONDO RESISTIVITY IN THIN FILMS POS(S+1) 04F @
To obtain some information about the case of thin films, a
. . - - 03F @
simple assumption is made that the two surfaces contribute
to the anisotropy constait in an additive way. The anisot- "
ropy factor for a sample with thicknessand in a distance 0.2
measured from one of the surfaces is EZ;
0.1F @
o
K(d!t):Kd—i_thd:E*—mr (34) 0 _'1 (') i
InT

where the coefficientr is estimated in I(Ref. 1) [see Eq. b)
(32)]. The appropriate calculation of the resistivity including

the elastic impurity scattering with mean free paghis a FIG. 10. The resistivity fofa) S=2 and(b) S=3 for different
very difficult task for a film for an arbitrary ratio d§;/t and  values oft/a. (1) t/a=o(K=0), (2) t/a=200(1K), (3) t/a

a value ofK. In order to avoid those difficulties, we make =100(1K), (4) t/a=50(1K), (5 t/a=25(1K), (6) t/a
use of the fact that the magnetic excharifendo contri-  =10(1K), and(7) t/a=6(1K). The initial parameters were cho-
bution to the resistivitypxongo is Smaller by a factor I0°  sen asj;=0.0435,D,=10° K, and Ty =0.3 K.

than the residual normal impurity resistivigyor (2= pPnor

+ prongd); thus an expansion in the Kondo contribution is WNereayonds™ — Prondol Paor<0. The expansion gives the fi-
appropriate. The calculation can be carried out in two limitsnal expression

(i) t<lg and(ii) t>1g. It will be shown that the final ex- 1t

pression does not depend on which limit is considered. In — _ -

case(i), the electrical resistivity contains the average value P(LT)=prort tjopKondC[K(X't)’T]dX' 38
of the inverse electron lifetime. Denoting the resistivity at
temperaturd for a given value oK by p(K,T), the average
over the value oK(d,t) is

That expression valid in the limit whergongo< Pnor giVes
back exactly the expression in E@5).

In the numerical calculation, the integral in Eq85) or
_ 1 [t (39) is replaced by a weighted sum with appropriate inter-
p(t,T)= ?J p[K(x,t),T]dx. (35  vals. Introducing the integration variabtéa, the calculated

0 Kondo resistivity depends only ori«, which is shown in
On the other hand, in casi) the sample can be considered Figs. 1Ga) and 1@b) for S=2 and 3, respectively. Fitting
as a set of parallel resistors of equal size, where each resistite calculated Kondo resistivity for temperatufes Ty (T

represents a stripe in the sample with a conskantn that  =2-4 K) by the functionpyonge/p?= —BeacIn T, as has
case the conductances are additive, thus been done in the experimental wortsee Sec. VI, the be-
havior of B, Wwas examined as a function g, which can
— 1 be seen in Fig. 11. To compare this calculated dependence of
p(t,T)= 1 ' (36)  the coefficientd on the thickness to the experimental data,
Tnort NZ ai[K(x;,1),T] they were fitted by the functioB(t)=p(®B.{t/a), as
! shown in Fig. 12. The fitted value af is «=247.7 A K,
whereN is the number of the resistotstripes labeled byi, ~ Which is in agreement with the prediction given ifRef. 1)

and o; represents the Kondo conductivity of stripplaced by Eg. (32) (see Sec. VIi. The fit is not too sensitive to
at a distance; . In the actual case only the first stripes de-small changes<{5%) in a.
pend on the surface anisotropy. The Kondo conductivity is If the sample is not thin, then the above results can be

defined by the Kondo resistivity given by E@Q2) as phenomenologically described in the framework of a simple
model where the impurities in the region of the surface do

0= 0 nort Tkonds= (Prort Prondo) s (37 not contribute to the Kondo resistivity, and outside that re-



57 SPIN-ORBIT-INDUCED MAGNETEC ... . 1. ... 11617

BY |
B(e)
0.8 |-
0.6
0.4 -
0.2
o L ] ] ]
0 50 100 150 200 A
t /1 In =
a0 :
a \K

FIG. 13. The effect of the mean free path on the Kondo resis-
tivity in the presence of anisotropy, arising from only one of the
surfaces in a thin film with thickneds=600 A, and elastic electron
) . . mean free path for S=2 atT=0.6 K, (1) K=A(l/d), and(2)
gion they are not affected. In this way the effective SUPPresk —a (I,,/d) e %', The Kondo temperature was chosen e
sion length\ can be introduced, and then the average resis=q 3 k.
tivity at low temperaturep,, e.g., for a thicknest

FIG. 11. The calculated coefficieBt as a function ot/a. The
Kondo temperature was chosengs=0.3 K.

wherel is the elastic electron mean free paghg.,l =100
_ t—2x (39) A), d is the distance measured from the surface with an
Pr=Pree anisotropy of strengti, and the exponential decay is due to
the mean free path. The electrical resistivity is calculated for
According to this semiphenomenological formuB(t) S=2 atT=2T just above the Kondo temperatufg, as a
=B.(1—2\/t), which was fitted to the experimental data. function of the strengthA of the anisotropy for two cases
This can also be seen in Fig. 12, where the fitted value of thevithout and with an exponential factgsee Eq.(40)]. In-
effective suppression layer parameteiis207.5 A. creasing the anisotropy strengt the spins are completely
The effect of the mean free path in the ballistic region carfrozen in nearby the surface, but that region is limited by the
be demonstrated directly by taking into account the effect ofinite mean free path. Figure 13 clearly demonstrates that the
the mean free path in the anisotropy constant. We calculatestrength of the anisotropy and the size of the suppression
the change of the electrical resistivity for a thin film with layer are reduced due to the finite mean free path, as calcu-
thicknessL =600 A, with anisotropy arising only at one of lated by taking into account the anisotropy only for one of
the surfaces in the forms the surfaces.

I
K=A el (409 VIl. COMPARISON WITH EXPERIMENTS

In the last couple of years a very extensive study of the
| Kondo effect in thin films and wires has been performed.
K:A_e'e*d“a (40b) The experimental works concentrated on a determination of
d the effect of reduced dimensions on the Kondo temperature
Tk, and the amplitude of the resistivity anomaly. A detailed
critical discussion of the earlier works were given in Ref. 10.
The early studies were performed by Giordano and
co-workerst'*2and by DiTusaet al*® In order to discuss the
effect of uncoupled magnetic impurities, only those experi-
ments are listed which are performed in the dilute limit, thus
e.g., for AuFe) alloys the Fe concentration is 30 ppm. These
experiments belong to two groups depending on whether size
effect was observed or not.
Concerning the theory, two regions must be distinguished.
. . . . When the size of the samplée.g., the thickness of the
0 sample is inside the ballistic region, then obviously the
0 1000 2000 t(A) 3000 4000 5000 present theory must be applied. In the case of thicker
samples, more care must be used. There is another theory by
Martin, Wan, and Phillipg? which is applicable in the op-

B(nflem)

FIG. 12. Fit on the experimental datsquaresby the calculated

formula B(t)=p®B{t/«) (the Kondo temperature was chosen S T o X .
as TK=O.(3)K)pwithcalfci(ttinag) [(f)arameteI’Sp(o) :pzo n cm and a posite limit of weak localization, where the disorder-induced

=247.7 A K (solid line, and by the phenomenological theory d€Pression or enhancement of the Kondo effect is predicted
B(t)=B..(1—2\/t) with fitting parameters3, =4.87 M) cm and ~ depending on the value of the spin-flip scattering rafé

N=207.5 A (dashed ling The fit is not too sensitive to small (depression is the case whefg, %75 '<T). The competi-
changes €5%) in a. tion between these theories needs further studies.
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In the following, the discussion is organized according to B. Experiments with observed size effect

, Where the size effect was observed but the changes

discussed, because it is applicable only on a much smallgr the Kondo temperature were almost negligible. The ex-
scale (Sec. VII A). Then experiments with a considerable periments of different type are listed below
e .

dependence on the size of the samples are discussed, an
compared with the present thedigec. VII B). Finally those 1. Dependence on film thickness
experiments are listed where no size effect was observed
(Sec. VII O, or the concentrations of the impurities are in
the spin-glass regiofSec. VII D).

The film experiments with thickness 265-1800 A were
performed, e.g., with 30-ppm Fe in Au, but similar results
were also obtained for 100 ppth!? The resistivity was fit-
ted by the formula
A. Density-of-states effects
. : . p(T)=p—B In(T), (41
As been discussed in Sec. | of §ize dependence cannot ) . )
be expected just because the Kondo cloud cannot fully devhere B is an adjustable parameter. It is well known for
velop in all directions by reducing the size of the sample.Kondo systems thaB is just not the result of the first non-
The only possibility which was discussed by Zad¥ is that vanishing third-order perturbational result wh&evould be
nearby the surface there is a change in the density of states Bf-J°, but it is the actual slope nearby or somewhat above
conduction electrons caused by formation of a Friedel-typdhe Kondo temperaturésee, for example, Ref. 10In the
oscillation due to the surface. That explanation was ruledctual experiments the temperature range 1.8—4 K was stud-
out, because those changes in the density of states are véfg, while Tx=0.3 K. The dependence of that coefficidht
much localized in a few atomic distances measured from thén thickness was plotted as shown in Fig. 12. The experi-
surface, and the smallest sizes in the experiments to be digental results are fitted by the calculated dependend# of
cussed are about 300 A. That effect may, however, show ugh the thickness with parameter=247.7 AK, and by the
in point-contact experiments, where the contact size i$emiphenomenological formula given by E§9) with the
smaller by even more than one order of magnitude. Suckffective suppression layer parameter vale207.5 A in
experiments were performed by Yanson and co-woRetd  Fig. 122%% That value ofa is in agreement with the esti-
with Mn and Fe impurities in Cu contacts. Zathand mate given in I(Ref. 1) by Eq. (32). There was not any
Udvardit®2°showed that, depending on the actual position ofsignal of an essential change in the Kondo temperaflire,
the impurity, the density of states for an essential energpgreement with our theoretical result. It is interesting to note
range around the Fermi surface can be enhanced or déhat the estimated Kondo coherence length was about 3
pressed by even 20%; thps= py+ 8p, where|dp/pg|<0.2. X 10* A, much larger than the thickness of the sample. Simi-
In order to demonstrate the effect, an energy-independetar experiments were performed with wires where more geo-
8p is assumed, and for that case, in the expression of thenetrical effects are expected, and the results are qualitatively
Kondo temperature TK:D\/mexq_l/zJ(po+ 5p)] similar but not identical. The simple semiphenomenological
=D \2Jpgexd —1/2)polexr(2Jp) 1 (Splpg)] there is an formula given by Eq(3_9) is not appropriate in those cases.
enhancement due to the second factor. Depending on tHeualitatively very similar results were reported in Ref. 26
value of (Ipy) %, that enhancement can be over a factor oftut there are quantitative differences very likely due to the
100 for Mn and about 2—3 for Fe impurities. The enhanceS@mple preparation.
ment is larger the smaller the Kondo temperaflige'6-182°
In the experiments the enhancement is larger the smaller the
contact size, thus to have a large enhancement most of the A set of experimentd-®was performed where the film of
impurities must be nearby the surface. A similar effect wadilute alloys was covered by a second layer of pure metal.
also seeft in point contacts with presumable tunneling two- The observation was that, in the case of a thin layer of dilute
level systemgTLS's), where an atom jumps between two alloys with a significant suppression of the Kondo effect, the
positions and the orbital Kondo effect is develoffigd by ~ covering by a second pure film results in a partial recovery of
coupling the conduction electrons with different angular mo-that suppression. In Fig. 14, with the suppression layers in-
menta to the TLS’s. As the typical sizes of the studied filmsdicated, it is shown that the bilayer structure has a suppres-
and wires are much larger, and such a dominating enhancsion layer only on one side of the film of dilute alloys; thus
ment of the Kondo temperature has never been observednly one half of the suppression is expected. In order to
therefore this explanation can be ruled out. verify the importance of the role of the spin-orbit interaction
in the superimposed layer to complete the neighborhood of
the impurity with a uniform spin-orbit coupling, we suggest

2. Kondo proximity effect

pure metal experiments where the superimposed layer has negligible
spin-orbit interaction(e.g., Al or Mg. In that case the
alloy alloy boundary is changed, but the anisotropy should remain.

I N
L

3. Kondo proximity effect with overlayers with different disorder

a) b) It has been shown experimentafigthat the Kondo resis-
FIG. 14. Bilayer structure. tivity suppression in a film of dilute alloys covered by a pure
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VIIl. CONCLUSION

In the present paper, the influence of the spin-orbit in-
duced surface anisotropy is studied on the Kondo effect in
dilute magnetic alloys samples of finite size at least in one

FIG. 15. Stripes with the same thicknessand changing dimension. That anisotropy splits the energy levels for an
width w. impurity spinS> 3. That anisotropy reduces as the bulk part

of the sample is approached relatively slowly ad, M/here
film but with different disorder depends on the disorder ing js the distance of the impurity measured from the surface.
the overlayer. It was.found t.hat the larger thg disorder therpat anisotropy occurs for samples of any shape, but for
smaller the recovery is. As discussed above, if the thicknesgose cases further theories should be developed. The range
of the overlayer and the mean free pathin it are larger \yhere the anisotropy is relevant can be characterized by the
than the thickness of the suppression layerthen the de- o, qression length introduced in Sec. VI, which is propor-

. . *Gional to the strength of the anisotropy but limited by the
alloys. On the other hand, if the pure overlayer contains d.'sfnean free path of the electron as the anisotropy reflects the
order, then the electron entering that overlayer cannot brin

back information to the magnetic impurity by their momenta %re_sence of the surface in t_he ballistic region nearby the im-
as their momenta is changed in the overlaie overlayer "purity. Thus that suppression length cannot exceed a few

is not in the ballistic regime In these cases the reduction in hundred A, in accordance with the experiments discussed in

the anisotropy is only partially developed, as the surround-sec' VIB.
o P ¢ pec, That anisotropy hinders the motion of the impurity sfin

Lﬂgsc(:s:]i; r;r?uor\lgrgierrl?:/i?he ﬁ?:élymsg);ne?rzael,[;r;t(r:](.)ntrast toif S>3 and the Kondo effect is affected in those regions of

the samples where the anisotropy is not negligible relative to
_ _ _ the Kondo temperatur&y . In order to calculate the Kondo
C. Experiments without size effect resistivity, the renormalized exchange coupling constants are

In contrast to the measurements discussed in Sec. VII Bsalculated in Secs. Il and IV by using the multiplicative
there is a series of experiments by Chandrasekhat®>in  renormalization-group technique which is applicable only for
which the size dependence was not found. The geometries &Mmperatured’ larger than the Kondo temperatufe ; thus
these experiments were different, the thickness of the sample0 detailed prediction can be made outside that region. It can
t was kept the same € 380 A), but the width of the stripes be accepted, however, that if the Kondo effect is already
w was changed between 380 and 20 (see Fig. 15 After reduced in the regiofi> T, ,° similar effect is also expected
the correction due to weak-localization effects and tofor T<Tx. The resistivity is calculated by solving the
electron-electron interaction, no size dependence waBoltzmann equation in Sec. V for integer and half-integer
claimed. On the basis of the present theory, for Samp'es SpinS with different anisotropy Strengths. Even if the calcu-
<W, no size dependence is expected’ as the ratio of th@ted reSiStiVity curves in F|gS(@ and qb) show different
volume of the suppression layers to the total volume is nogharacteristic features by developing a resistivity maxima at
changing. Wherg~w, the anisotropy due to the geometry different temperatures and of different amplitudes, these fea-
becomes more complicated, thus it is hard to make a confures are smeared out as an average over the strength lof the
parison with the present theory. On the other hand,tfor anisotropy is taken fof >Ty . The curves calculated for thin
~w the experimental points fall off somewhat from the main films (see Fig. 1D show a smooth increase of the resistivity.
averaged line; that, of course, may be due to experimentdylore structures could be expected only in those experiments
errors. According to the present theory the averaged Kond@here the impurities are at a in certain distance measured
resistivity forw>t had to be smaller than the bulk resistiv- from the surface. If the anisotropy does not dominate the
ity, but this seems to be not the casdsinally, it should be ~ complete sample, then, as the result of the average taken, the
mentioned that no size effect was observed studyinéargeSt resistivity slope as a function of temperature is in the

La,_,Ce, films, where Ce ha$=1, for which no surface egion of the Kondo temperatufig , and its position cannot
anisotropy is expectetf. be shifted too much on the scale of the Kondo temperature

Tk . That theoretical result is in accordance with the experi-
mental findings(see Sec. VII B.

The relatively weak sensitivity of the observed region of

There are several experimelitd® with higher impurity  the largest resistivity slope on the size of the samples rules
concentrations. In these cases the impurity-impurity interaceut the density state effects nearby the surface, in contrast to
tion mediated by the RKKY interaction competes with thethe point-contact experimen{see Sec. VII A. The size de-
Kondo effect. In another set of experimefitshe thickness pendence associated with the large Kondo compensation
of the film was changed in samples made of Cu with 100Ccloud is not observed, in agreement with the Kondo theory
ppm Cr, and a very similar depression of the Kondo effectwhere such a simple connection is ruled out.
as described above in Sec. VII B, was found. Wires with The calculated Kondo resistivity for thin films was fitted
geometries similar to those discussed in Sec. VII C, but witdfor temperaturesT>Ty (T=2-4 K) by the function
2800 ppm impurities, do not show a dependence on th@konde/p'?’= — Beadn T, Which is compared to the experi-
width d,® but the overall amplitude is substantially sup- mental data in Fig. 12 and gives excellent agreement. The
pressed compared to the bulk, which was attributed to spinphenomenological theory using the effective suppression
glass effects. length A (see Sec. V)l works remarkably well to interpret

D. Higher concentration
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gualitatively the experimental data quoted in Sec. VII. The fit APPENDIX
of the experimental data is shown in Fig. 12. The different
proximity effects described in Sec. VII B can be also well
explained by the present theory.

Here we calculate the second- and third-order vertex cor-
rections, and the second-order self-energy correction for the

s mportant et h e of mean ree pasec viisee MUY A SN ES S & epecthely
Fig. 13 reduces the effect of the large anisotropy constant;. frying . ; 3 3y
thus for a large range of strong anisotropy the size depentlnuat'on’ changing the integralsf(d°k/(2m)%) to
(e)def(dQ/47) and using the assumption fpi(e) in

dence remains in a limited range as long as the elastic me Le. | the contribution of the second-order diaarams are
free paths are in the same order of magnitude. In this way the =" " 9

size effect can be comparable for different host materials

with different large spin-orbit interactions but with compa-

rable elastic mean free paths. D 1-ne(s)
We have to emphasize, however, that our calculation does X J

not consider the localization effects which are present in -b

samples of larger sizes. Such effects have recently been pre-

L i ;
JMM"‘]M"M’(UIUJ)U’U”SMM”SJM”M/pO

&
e—w+t KMH_KM

i i j
dicted by Martin, Wan, and Phillip¥, and deserve further FImmr I (00 5o Sy S o
detailed studies. In addition to those localization effects, the
. . . . D nF(g)
theoretical studies must be extended to the microscopic cal- % de (A1)
culations of the anisotropy constant. -D e—wt+Ky —Kyr

Considering further experiments, the mean free path ef: . . : . .
fects should %e studied.pThe most relevant experi'rjnent ut)or dla’grams'cor'respondmg to Figie The third-order dia-
verify the role of the spin-orbit interaction directly could be grams’ contributions are
the proximity experiments, where the superimposed layer is
made of another metal without spin-orbit interaction, as dis-

cussed in Sec. VII B. In those cases the uniform surrounding fD [1-ne(s)de] (D [1—ng(e’)]ds’

Pk i j k 2
—(d'do )erMNJNNrJN'M'SMNSNN'SN'M'pO

of the impurity would not be developed; thus the anisotropy

remains. Furthermore, experiments with impurities at a cer-
tain distance measured from the surface would be also very
instructive. Summarizing, the presented theory is able to pro-

*Dw_s—’—KM_KN *Dw_8’+KM_KNr

_(O'kO'jO'i)o.g.rJMNJNN/JN/M/

. e . o ‘ o
Vld.e a pohererjt d_escnpﬂqn c_)f the size effects of 'Fhe Kondo XSIMNSJN'M'SNN//)S IMNSJNN’SN’M’pg
resistivity in thin films, which is not related to the size of the
Kondo compensation cloud in any sense. J‘D ne(e)de J‘D ne(e’)de’
X
7D8_w+KM!_KN *DSI_(U'FKM/_KN/
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for diagrams corresponding to Fig(db.
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f0r D>|(U )\+KM KM’l

The second-order correction to the self- energy for the The |ntegra|s in Eq(AZ) g|Ve the |ogar|thm|c contribu-

impurity spin according to Fig. 6 is
_Tr(O'iO'j)JMmrJM/MSiMMrSJMrMpg

D D 1-n ne(e’
Xf dsj de’ ] '1(.8)] Fe’) .
-D -D e—e'—w+Ky —Ky

For the same indices, summation must be carried out.
The spin factors in EqgAL), (A2), (A3), (A4), and(A5)
were calculated by using the identities

(A5)

(O-io-j)o'o’:5ij50'0"+i8ijk0-|;—g—" (A6a)

ik — k i j i
(0' dgo )U(r/—5ij000/+5jk0'o 6|k0-0-(,-/+|8ijk5

oo’

(ABb)

tions

1 (D) =D, (D)

w+KM—KN
D
w+KM—KN,
X[ In| — =N [ (w+ Ky — Ky

(A11)

introducing theS* operators in a usual way, and exploiting 1?) ,(D)=1{7) (D)I'?),.(D)

that their matrix elements are

=p(SM") Sy m +1

MM/
=VS(S+1)-M'(M"+1) 8y mr+1, (A78)
Sum =A(SM") Sy mr -1
=VS(S+1)-M'(M'=1)8y m'—1- (ATb)

Turning to the integrals in EqgAl), (A2), (A3), (A4),

and(Ab), after changing the integration variable in integrals

containing[1—ng(e)] or[1—ng(e’)] from e (&) to —

(—¢'), they were evaluated in a logarithmic approximation.

The integrals in Eq(A1) give the logarithmic contributions

Ne(e)
8+Q)+KM_KM//

D
;,};A,,(D)=f_Dds

w+ KM_KM”

~In D

+|(w+ KM_KMH)

(A8)
for D>|w+Ky—Ky|, and

D Ne(e
|<M2>,M,,(D)=f de (=)
-D 8_w+KMr_KMH
w—Kpr+Kyr
~In # +|((1)_KM/+KM//)
D
(A9)

fOI’ D>|_LL)+KM/_KMN|.

The integral in Eq(A5) gives the logarithmic contribu-
tion

MM,(D J dsJ de’

~(o—A+Ky—Ky)n

Ne(e)ne(e’)
8+8,+’(:)_)\+KM_KMI

Z_)\"FKM_KMI
D

(A10)

(1 @K Ky +|(—w+KM—KN))
D
x| In w_K“g_KN' +|(—w+KM,—KN,))
(A12)
for D>|—w+Ky, —Ky| andD>|— o+ Ky —Ky:|.

The integral in Eq(A3) gives the logarithmic contribu-
tions forM =N, M’ #N’, andKy;, — Ky — Ky +Ky#0:

;AG,)\IM,N,(D)—I dsj de’

Ne(e)ng(e’)

X
(8+8,+KM_KN)(8+8’+KM1_KN/)
Ky—Ky ‘KM—KN
~ In
Ky — Ky —Ku+ Ky D
KM'_KN’ ‘KM!_KNI
- In
K — Ky — Ky + Ky D
(A13)
f0r D>|KM_KN| and D>|KM’_KN’|' FOl’ KM’_KN’
:KM_KNio,
Km— Ky
|(“f|3,)W,N,(D)~—|nT (A14)
(6) T
o (D)~ —In| =, (A15)

The integrals in Eq(A4) give the logarithmic contributions
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|<M7)N,MN(D)=JD dst de’
-D -D

Ne(e)ng(e’)
(8,+Q)+KM_KNr)(8+8,+KM_KN)

(l)+KM_KNr
D

Ky—Kyn)2+T?
Xm‘ [(Ky DN>

for D>|w+Ky—Ky/| andD> (Ky —Ky)?+ T2, whereT

is the temperature;

18 (D)=fD dst de’
M/N’MN b b

« Ne(e)ne(e’)
(8,_a)+KMr_KNr)(8+8I+KM_KN)

1|2

~=In

2 +|(w+KM—KN,)

(A16)

_(D+KM/_KNr
D

+|(_w+KM/KNr)

Ky—Kn)*+T?
><|n‘ [(Ky DN)

(A17)
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for D>|— w+Ky —Ky/| andD> (Ky— Ky)2+ T2
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In the estimations above, the functionl(«)
=[3de ne(e) [2e/(e2— a?)] was introduced which is re-
lated to the finiteF divergences. From the scaling equations,
the I («) function is canceled out. For the sake of handling
these contributions more comfortably, w~T were set in
the arguments of the logarithms in a way that substituéed

+a (w+a) with JaZ+ T2,
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