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Spin-orbit-induced magnetic anisotropy for impurities in metallic samples.
II. Finite-size dependence in the Kondo resistivity
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The electrical resistivity, including the Kondo resistivity increase at low temperature, is calculated for thin
films of dilute magnetic alloys. Assuming that in the nonmagnetic host the spin-orbit interaction is strong like
in Au and Cu, the magnetic impurities have a surface anisotropy calculated in paper I. That anisotropy hinders
the motion of the spin. Including that anisotropy, the effective electron-impurity coupling is calculated by
using the second-order renormalization-group equations. The amplitude of the Kondo resistivity contribution is
reduced as the position of the impurity approaches the surface, but the increase occurs approximately at the
bulk Kondo temperature. Different proximity effects are also explained qualitatively, where the films of
magnetic alloys are covered by pure second films with different mean free path. The theory explains the
experimental results in those cases, where a considerable amount of impurities is at the surface inside the
ballistic region.@S0163-1829~98!05918-9#
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I. INTRODUCTION

In the preceding paper,1 ~hereafter referred to as I! follow-
ing Refs. 2 and 3, we have calculated the magnetic ani
ropy for a magnetic impurity embodied into a nonmagne
host ~e.g., Au, Cu! with large spin-orbit interaction for the
conduction electrons on the sites of the host atoms. The m
netic anisotropy is developed due to the exchange interac
between the magnetic impurities and the conduction e
trons. As the scattering due to impurities involves differe
angular momentum channels (2 l ,m, l ), the scattering
therefore depends on the directions of the conduction e
trons before and after the scattering. In this way, the sca
ing on the impurity itself depends on which host atoms
electrons are scattered by the spin-orbit interaction. Due
that dependence, the anisotropy is determined by the p
tions of host atoms around the impurity and it is larger
stronger the asymmetry around the impurity. As that inf
mation is carried by the momenta, therefore it is restricted
the atoms in the range of the elastic mean free pathl el . Thus
the anisotropy can be developed only if the impurity is ins
surface area of the thickness of the elastic mean free
~ballistic region of the surface!. If the surface in that region is
planelike, then the anisotropy energy is@see Eq.~1! of I
~Ref. 1!#

Ha5Kd~nS!2, ~1!

whereS is the spin operator of the impurity,n is the normal
direction of the experienced surface element, andKd is the
anisotropy constant depending apart from the oscillatory
like 1/d on the distanced, measured from the surface. O
course, if the ballistic region contains the more sophistica
part of the surface, then the determination of the direct
and amplitude of the anisotropy is a more complex task. T
570163-1829/98/57~18!/11609~14!/$15.00
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oscillatory part decays faster than 1/d, approaching the bulk
part of the sample@see Eq.~B20b! in I#.

In the surface area, the anisotropy energy leads to dif
ent splitting schema shown in Fig. 1, depending whether
spinS is an integer or half-integer. In this way the spin ve
nearby the surface freezes into a singlet or doublet consi
ing the integer and half-integer cases, respectively. Thu
low enough temperature the spin shows no, or a restric
dynamics. It is important to point out that the statesm56
1
2 for S5 5

2 cannot be replaced by a doublet ofS5 1
2 . The

spins are rather squeezed into planar states, as show
Fig. 2.

Assuming thatKd@T, the integer spin does not contribu
to the resistivity, contrary to the case of the half-integer sp
where the two lowest states contribute to the resistivity. T
spin S5 1

2 is, however, not affected by anisotropy. Thus d
ferent behaviors of the electrical resistivity can be expect
depending on the value of the spin. Considering impurit
nearby the surface inside the ballistic region, more and m
orbitals become active as the impurity positions approach
the bulk ~see Fig. 3!.

FIG. 1. The splitting schema due to the anisotropy for~a! S
52 and~b! S5

5
2 .
11 609 © 1998 The American Physical Society
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A similar structure appears in the temperature depende
of the resistivity. Cooling down the sample, at the beginni
almost all the spins are free. At further cooling, more a
more spin states are frozen; thus whenS52 at T,T1 three
orbitals are populated, and whenT,T2 , a single orbital is
populated (T1 :T254:1), while in case ofS5 5

2 each state is
double degenerate (T1 :T2525:9).

Assuming that in the region of the Kondo temperatureTK
the occupations of the different states are varying by a c
siderable amount depending on the positions of the imp
ties in the surface region, then, lowering the temperatu
fewer and fewer impurities can further develop the Kon
state, and thus fewer and fewer impurities can contribute
further increase of the Kondo resistivity. As has already b
pointed out, the reduction in the contribution to the resist
ity is somewhat less pronounced for a half-integer spin t
for an integer spin~see the discussion of Fig. 2!. The contri-
bution to the Kondo resistivity can be schematically plott
for impurities with different distances measured from t
surfaced3,d2,d1 ~see Fig. 4!.

The phenomena described above are very similar to
Kondo effect in the presence of a crystalline field at t
impurity site. When lowering the temperature different cry
tal field states are frozen out, but those fields are identica
all impurities of the same kind. Such calculations have b
performed, e.g., by Kashibaet al.4

The reduction in the averaged Kondo resistivity is sen
tive to the size of the sample, e.g., the film thickness
diameter of the wire, etc., as the ratio of the surfa
influenced impurities to the total number of impurities go
to zero as the size is further increased. The role of the sur
on the impurities can be reduced by depositing another p
film on the surface of the sample. The effect can be a
influenced by changing the elastic mean free path in
samples or in the deposited films. Effects of those kinds w
be summarized and discussed at the end of the paper~see
Sec. VII!, making use the qualitative results obtained for t
resistivity in Secs. V and VI, all of the references can
found there.

For the actual calculation of the resistivity, the tempe
ture dependence of the effective exchange coupling m
first be calculated. For that, except in the very lo
temperature region, second-order multiplicati
renormalization-group transformations~the two-loop ap-
proximation! can be used, which gives a smooth behavio
the Kondo temperature, in contrast to the first-order sca

FIG. 2. The squeezing of the spin into planar states due to
anisotropy is illustrated for~a! S52 and ~b! S5

5
2 . The lowest-

energy states are shown by heavy lines.
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~one-loop approximation!, which results in an artificial diver-
gence at the Kondo temperature. Those methods are ge
alized by taking into account the surface anisotropy ter
which occur as a low-energy cutoff of the logarithmic int
grals in the calculation of certain diagrams. The differe
diagrams depending on their spin labels have a different
frared, low-energy cutoff due to the anisotropy. These cal
lations are in close analogy to those with crystalline splittin
The next step is using these effective couplings to calcu
the electrical resistivity by solving the Boltzmann equatio
and an average over the impurity positions is also taken

Finally, to fit the calculated resistivity at low temperatur
an effective surface layer thicknessl can be introduced, by
assuming that inside of that surface region there is no Ko
effect, and outside the Kondo anomaly is fully develope
The experimental data are compared both with that phen
enological description and the original calculations, and th
give equally excellent fits.

The paper is organized as follows. In Sec. II the gene
scheme of the multiplicative renormalization group~MRG!
is presented for the Hamiltonian with the anisotropy ter
The scaling equations are presented in Sec. III, and
solved in Sec. IV. The electrical resistivity contribution
calculated in Sec. V, and the dilute limit and Kondo resist
ity in thin films are given in Sec. VI. Section VII is devote
to the experimental results, a theoretical interpretation of
results, and predictions. A general discussion is containe
Sec. VIII. The Appendix contains the actual calculation
the diagrams which are used in Sec. III. Throughout the
per,\5kB51 units were used.

FIG. 3. The different layers of the impurity positions whe
more orbitals become active as the impurity positions approach
bulk assuming thatd1 ,d2, l el . ~a! S52, ~b! S5

5
2 .

FIG. 4. The schematic plots of the contribution to the Kon
resistivity for impurities with different distancesd3,d2,d1 mea-
sured from the surface.
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II. HAMILTONIAN AND THE GENERAL FORM
OF THE MRG TRANSFORMATION

The Kondo Hamiltonian in the presence of the anisotro
is

H5(
k,s

«kaks
† aks1Ha

1 (
k,k8,s,s8

M ,M8

JMM8SMM8~aks
† sss8ak8s8!, ~2!

whereaks
† (aks) creates~annihilates! a conduction electron

with momentumk, spins, and energy«k measured from the
Fermi level. The conduction-electron band is taken with c
stant energy densityr0 for one spin direction, with a shar
and symmetric bandwidth cutoffD. s stands for the Paul
matrices,JMM8’s are the effective Kondo couplings, andHa
is given by Eq.~1!. For the impurity spin, the Abrikosov
pseudofermion representation5 was used,

S5bM
† SMM8bM8, ~3!

where the projections of thez component of the impurity
spin are described by an auxiliary fermionic fieldbM (M5
2S,...,S). Choosing the quantization axis parallel ton, with
this substitution, the Hamiltonian Eq.~2! becomes

H5(
k,s

«kaks
† aks1(

M
~l1KM !bM

† bM

1 (
k,k8,s,s8

M ,M8

JMM8~bM
† SMM8bM8!~aks

† sss8ak8s8!, ~4!

where the chemical potentiall→` was introduced to
project out the physical pseudofermion subspace(MbM

† bM

51, and the notationKM5KM2 was introduced for the
MRG calculation.

The conduction electron and pseudofermion Gree
functions are

Gks,k8s8~v!5
dkk8dss8

v2«k2Se
~5!

and

GMM8~ṽ !5
dMM8

ṽ2l2SM~ṽ !
, ~6!

whereṽ5v2KM . Se andSM(ṽ) are the self-energies fo
the conduction electrons and the pseudofermions, res
tively. They are diagonal in adequate spin quantum numb
and because of that the whole Hamiltonian is symmetric
der rotation around thez axis. The vertex function is denote
by GksM ,k8s8M8(v1 ,v2 ,v3 ,v4).

The multiplicative renormalization group transformatio
can be written as6

Gks,k8s8@v,JMM8~D !,KM~D !,D#

5ZS D0

D DGks,k8s8~v,JMM8
0 ,KM

0 ,D0!, ~7a!
y

-

’s

c-
s,
-

GMM8@ṽ,JM̃M̃8~D !,KM̃~D !,D#

5ZMS D0

D DGMM8~ṽ,JM̃M̃8
0 ,KM̃

0 ,D0!, ~7b!

GksM ,k8s8M8@v i ,JM̃M̃8~D !,KM̃~D !,D#

5
GksM ,k8s8M8~v i ,JM̃M̃8

0 ,KM̃
0 ,D0!

ZS D0

D
DAZMS D0

D
DAZM8S D0

D
D

, ~7c!

whereZ(D0 /D) andZM(D0 /D) are the renormalization fac
tors for the electrons and pseudofermions, respectively.
troducing x5 ln(D0 /D) as a scaling parameter, the Calla
Symantzik MRG equations are

2hG1
]G

]x
1 (

MM8
bMM8

]G

]JMM8

1(
M

gM

]G

]KM
50,

~8a!

2hMGM1
]GM

]x
1 (

M̃ M̃8
b M̃ M̃8

]GM

]JM̃M̃8

1(
M̃

g M̃

]GM

]KM̃

50,

~8b!

S h1
1

2
hM1

1

2
hM8DGMM81

]GMM8
]x

1 (
M̃ M̃8

b M̃ M̃8

]GMM8

]JM̃M̃8

1(
M̃

g M̃

]GMM8

]KM̃

50, ~8c!

where

h5
d ln Z

dx
, ~9a!

hM5
d ln ZM

dx
, ~9b!

bMM85
dJMM8

dx
, ~9c!

gM5
dKM

dx
, ~9d!

and for the sake of simplicity the electron and pseudoferm
Green’s function and the vertex function were denoted byG,
GM , andGMM8, respectively. The initial values for the reno
malization factors and couplings areZ5ZM51, KM5KM

(0)

5KM2, andJMM85J0 for eachM , M 8 at D5D0.
Using the definition of self-energies in Eqs.~5! and ~6!,

the first two equations can be rewritten as

2~v2«k2Se!h1
]Se

]x
1 (

MM8
bMM8

]Se

]JMM8

1(
M

gM

]Se

]KM
50, ~10a!
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2~ṽ2l2SM !hM1
]SM

]x
1 (

M̃ M̃8
b M̃ M̃8

]SM

]JM̃M̃8

1(
M̃

g M̃

]SM

]KM̃

1
dKM

dx
50, ~10b!

the forms of which are more comfortable for calculating t
MRG equations.

III. CONSTRUCTION OF THE MRG EQUATIONS

To construct the MRG equations the perturbation the
was applied; that is, the Hamiltonian was divided into no
interacting and interacting parts with small paramet
JMM8’s. When the electron self-energy contains a clos
pseudofermion loop,Se tends to zero asl→`. Thus in the
thermodynamical limit, for a single impurity from Eq.~10a!,
h50 andZ51.

Turning to the other two equations~10b! and ~8c!, they
were solved in a next-to-leading logarithmic approximatio
where the MRG equations are

~ṽ2l!hM
~2!5

]dSM
~2!

]x
1gM

~2! ~11!

and

]dGsM ,s8M8
~2!

]x
1sss8SMM8bMM8

~2!
50, ~12a!

S 1

2
hM

~2!1
1

2
hM8

~2! D JMM8sss8SMM81
]dGsM ,s8M8

~3!

]x

FIG. 5. The second- and third-order vertex corrections. T
double line represents the impurity spin with the anisotropy ene
the single one represents the conduction electrons, and the
circles stand for the exchange interaction.
y
-
s
d

,

1 (
M̃ M̃8

b M̃ M̃8
~2!

]GsM ,s8M8
~2!

]JM̃M̃8

1sss8SMM8bMM8
~3!

50,

~12b!

wherehM
(2) , gM

(2) , andbMM8
(2) are proportional to the secon

power, andbMM8
(3) to the third power of theJMM8’s, respec-

tively. The whole next-to-leading logarithmicb function is
bMM85bMM8

(2)
1bMM8

(3) .
Thus, to construct the next-to-leading logarithmic scali

equations, we have to calculate the second- (dGsM ,s8M8
(2) ) and

third- (dGsM ,s8M8
(3) ) order vertex corrections, and the secon

order self-energy correction (dSM
(2)) for the impurity spin.

These corrections were calculated by applying the th
modynamical Green’s-function technique and an analyt
continuation.7 Assuming scaling for the vertex functio
GMM8, only one energy variable was kept,8 thus v15v,
v25KM , v35v1KM2KM8, andv45KM8, wherev1 and
v2 are the incoming, andv3 andv4 the outgoing, electron
and pseudofermion energies, respectively.

The second- and third-order vertex diagrams, and
second-order correction to the self-energy for the impu
spin, are shown in Figs. 5 and 6, respectively. A detai
calculation of these diagrams is carried out in the Append
Collecting all the second- and third-order vertex correctio
together, they and the self-energy correction for the impu
spin were substituted into Eqs.~11! and ~12!. In Eq. ~12b!,
the contributions of the third-order parquet-type diagra
depicted in Figs. 5~b! and 5~d! were canceled out with the
terms( M̃ M̃8b M̃ M̃8

(2) (]GsM ,s8M8
(2) /]JM̃M̃8

), as the leading loga-

rithmic scaling equations are equivalent to the summing
of the parquet diagrams. The divergences at finiteT were
also canceled out. Thus only Fig. 5~c! contributes to Eq.
~12b!.

Introducing the dimensionless couplingsj MM85r0JMM8,
the next-to-leading logarithmic scaling equations are

e
y,
lid

FIG. 6. The second-order self-energy correction for the impu
spin. The double line represents the impurity spin with the anis
ropy energy, the single one represents the conduction electrons
the solid circles stand for the exchange interaction.
hM5
d ln ZM

dx
5q2~S,M ! j M ,M21 j M21,MQM ,M21~D !1p2~S,M ! j M ,M11 j M11,MQM ,M11~D !12M2 j M ,M

2 , ~13!

gM5
dKM

dx
5~KM212KM !q2~S,M ! j M ,M21 j M21,MQM ,M21~D !1~KM112KM !p2~S,M ! j M ,M11 j M11,MQM ,M11~D !,

~14!
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r0bM ,M115
d jM ,M11

dx
52@M j M ,M2~M11! j M11,M11# j M ,M11@11QM ,M11~D !#

1q2~S,M ! j M ,M21 j M21,M j M ,M11QM ,M21~D !@QM ,M11~D !2 1
2 #

1p2~S,M11! j M ,M11 j M11,M12 j M12,M11QM11,M12~D !@QM ,M11~D !2 1
2 #

2p2~S,M ! j M ,M11
2 j M11,MQM ,M11~D !2M2 j M ,M

2 j M ,M112~M11!2 j M11,M11
2 j M ,M11

12M ~M11! j M ,M j M ,M11 j M11,M11 , ~15!

r0bM ,M215
d jM ,M21

dx
52@~M21! j M21,M212M j M ,M# j M ,M21@11QM ,M21~D !#

1p2~S,M ! j M ,M11 j M11,M j M ,M21QM ,M11~D !@QM ,M21~D !2 1
2 #

1q2~S,M21! j M ,M21 j M21,M22 j M22,M21QM21,M22~D !@QM ,M21~D !2 1
2 #

2q2~S,M ! j M ,M21
2 j M21,MQM ,M21~D !2M2 j M ,M

2 j M ,M212~M21!2 j M21,M21
2 j M ,M21

12M ~M21! j M ,M j M ,M21 j M21,M21 , ~16!

and, forMÞ0,

r0bM ,M5
d jM ,M

dx
5

1

M
@q2~S,M !QM ,M21~D ! j M ,M21 j M21,M2p2~S,M !QM ,M11~D ! j M ,M11 j M11,M#

1q2~S,M !
M21

M
j M ,M21 j M21,M21 j M21,MQM ,M21~D !1p2~S,M !

M11

M
j M ,M11 j M11,M11 j M11,MQM ,M11~D !

2q2~S,M ! j M ,M21 j M21,M j M ,MQM ,M21~D !2p2~S,M ! j M ,M11 j M11,M j M ,MQM ,M11~D !, ~17!
a

-

e
qua-
of
whereQMM8(D) ensures thatD.A(KM2KM8)
21T2, with

the definition

QMM8~D !5H 1 if D.A~KM2KM8!
21T2

0 if D,A~KM2KM8!
21T2. ~18!

The definitions ofp(S,M ) and q(S,M ) are given in Eq.
~A7!. It must be stressed that these scaling equations
valid for T<D.

IV. SOLUTION OF THE SCALING EQUATIONS

It can be seen from Eq.~14! that the corrections to the
bareKM

(0) are proportional to the second power ofj MM8’s in
re

the leading order. In the other equations,KM appears only in
the arguments of theQ functions, which are multiplied by
the second or third power ofJMM8’s. Thus to keep the ap
proximation consistent,KM5KM

(0)5KM2 can be taken in the
arguments of theQ functions. After this consideration, th
solution of the equations becomes simpler, because the e
tions forbMM8 are not coupled. Exploiting the symmetries
the scaling equations,

j M ,M85 j M8,M , ~19a!

j M ,M85 j 2M ,2M8 ~19b!

must hold.
Thus the equations which have to be solved are
d jM ,M11

dx
52@M j M ,M2~M11! j M11,M11# j M ,M11@11QM ,M11~D !#1q2~S,M ! j M ,M21

2 j M ,M11QM ,M21~D !@QM ,M11~D !

2 1
2 #1p2~S,M11! j M ,M11 j M11,M12

2 QM11,M12~D !@QM ,M11~D !2 1
2 #2p2~S,M ! j M ,M11

3 QM ,M11~D !

2M2 j M ,M
2 j M ,M112~M11!2 j M11,M11

2 j M ,M1112M ~M11! j M ,M j M ,M11 j M11,M11 , ~20!
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and, forMÞ0,

d jM ,M

dx
5

1

M
@q2~S,M !QM ,M21~D ! j M ,M21

2

2p2~S,M !QM ,M11~D ! j M ,M11
2 #

1q2~S,M !
M21

M
j M ,M21
2 j M21,M21QM ,M21~D !

1p2~S,M !
M11

M
j M ,M11
2 j M11,M11QM ,M11~D !

2q2~S,M ! j M ,M21
2 j M ,MQM ,M21~D !

2p2~S,M ! j M ,M11
2 j M ,MQM ,M11~D !. ~21!

These equations were solved numerically for different i
tial couplingsj 05 j MM8(D5D0). The results forj 050.1 and
j 050.0435 atK/T510 are shown in Figs. 7 and 8 forS
52 and 5

2 , respectively. The initial bandwidth cutoff wa
chosen asD05105 K.

V. RESISTIVITY

The Kondo resistivity was calculated by solving th
Boltzmann equation in the presence of the spin-orbit-indu
anisotropy, using the value of running couplings (j MM8) cal-
culated in Sec. IV, atD5T.

Taking the usual form9 for the electron distribution func

FIG. 7. The running couplings forS52 as a function ofx
5 ln(D0 /D) at K56 K andT50.6 K, with parametersD05105 K,
~a! j 050.1, and~b! j 050.0435.
-

d

tion f («k) for both spin directions in the presence of th
electric fieldE as

f ~«k!5 f 0~«k!2~kE!F~«k!
] f 0~«k!

]«k
, ~22!

the Kondo contribution to the resistivity is

1

rKondo
52

e

3p2 ~2m!3/2E d«k«k
3/2F~«k!S 2

] f 0

]«k
D ,

~23!

where the functionF is determined by the Boltzmann equ
tion

e

m

] f 0~«k!

]«k
~kE!1S ] f

]t D
coll.

50. ~24!

The collision term (] f /]t)coll. can be expressed in terms o
transition probabilities as

S ] f

]t D
coll.

5
c

V (
k8s8

$W~k8,s8→k,s! f ~k8!@12 f ~k!#

2W~k,s→k8,s8! f ~k!@12 f ~k8!#%, ~25!

where e.g.,W(k8,s8→k,s) represents the transition prob
ability from a k8,s8 state to ak, s state,c is the impurity
concentration, andV is the volume.

FIG. 8. The running couplings forS5
5
2 as a function ofx

5 ln(D0 /D) at K56 K andT50.6 K, with parametersD05105 K,
~a! j 050.1, and~b! j 050.0435.
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Turning to our case, these probabilities can be calcula
as

W~k,s→k8,s8!5 (
MM8

pMw~k,s,M→k8,s8,M 8!,

~26!

where

w~k,s,M→k8,s8,M 8!

52puTk,s,M→k8,s8,M8u
2d~«k2«k81KM22KM 82!,

~27!

andpM5e2bKM2
/Z, b51/T, Z5(Me2bKM2

.
The scattering amplitude in Eq.~27! is expressed in term

of the renormalized couplingsJMM8(x) as

Tk,s,M→k8,s8,M8'JMM8S x5 ln
D0

T Dsss8SMM8, ~28!

where the dependence on the direction of the momentak and
k8 is ignored, and that makes the Boltzmann equation s
able in a simple form. Thek dependence may result as som
numerical factors in the final expression, but in the m
features of the temperature dependence those do not pla
important role.

Substituting these assumptions into Eq.~25!, changing
the sum (1/V) (k8 to *r(«k8)d«k8* (dVk8/4p)'
r0*

2D0

D0 d«*(dVk8/4p), using the properties of the spin a

gebra for s and S, and the ‘‘detailed balance’’ principle
„@] f 0(«k)/]t#coll.50…, we obtain, after linearization inE,

S ] f

]t D
coll.

5
2pc

r0
~kE!F~«k!

] f 0

]«k
F~«k!, ~29!

where

F~«k!5(
M

pMH M2 j M ,M
2 S x5 ln

D0

T D
1@S~S11!2M ~M11!# j M ,M11

2 S x5 ln
D0

T D
3$12~12e2~2M11!K/T! f 0@«k2~2M11!K#%J ,

~30!

where we introduced the dimensionless coupling const
j MM85r0JMM8. Inserting Eq.~29! into the Boltzmann equa
tion ~24!, we obtain, forF,

F~«k!52
e

mF2pc

r0
F~«k!G21

, ~31!

and, for the Kondo resistivity,

1

rKondo
5

1

r~0!E d«S 2
] f 0

]« DF21~«!, ~32!

where the usual assumption
d

v-

n
an

ts

E d««3/2S 2
] f 0

]« DF21~«!'«F
3/2E d«S 2

] f 0

]« DF21~«!

~33!

was taken into account, and the constantr (0)

5 3
4(m/e2)(2pc/«Fr0

2) was introduced. In the case ofK50,
Eq. ~32! reproduces the bulk Kondo resistivity.

The resistivity was calculated by evaluating the integ
occurring in Eq. ~32! numerically for differentK values
which are in the regime discussed in I.1 The resistivity as the
function of the temperature is shown in Figs. 9~a! and 9~b!
for S52 and 5

2 , respectively. The plots are similar to th
experimental ones~see Sec. VII!.

The effect of the anisotropy on the Kondo temperatu
defined by the largest slope in the resistivity can be exa
ined by looking at the derivative of the calculated resistiv
vs temperature. We can see from Figs. 9~a! and 9~b! that the
Kondo temperature defined in that way is only slightly a
fected by the anisotropy in those cases where the Ko
effect is pronounced~e.g.,K,0.5 K in Fig. 9!. The effect of
the anisotropy becomes dominant for larger strengths ofK.
The temperature dependence of the resistivity has a m
mum depending on the strength ofK, and the spin-flip con-
tribution freezes out gradually. That behavior is very diffe
ent for integer and half-integer spins for large anisotro
For integer spins the impurity contribution tends to zero in
way which is very sensitive to the strength of the anisotro
In the case of half-integer spins, however, the impurity res

FIG. 9. The resistivity for~a! S52 and ~b! S5
5
2 for different

values ofK. ~1! K50, ~2! K50.02 K, ~3! K50.05 K, ~4! K50.1
K, ~5! K50.2 K, ~6! K50.5 K, ~7! K51 K, and~8! K52 K. The
initial parameters were chosen asj 050.0435,D05105 K, and TK

50.3 K.
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11 616 57O. ÚJSÁGHY AND A. ZAWADOWSKI
tivity approaches a finite value at zero temperature whic
independent ofK. The resistivity there is determined by th
dynamics of the two lowest-energy levels shown in Fig. 2.
those cases the Kondo effect is also essentially reduced
to the smallness of the spin-flip amplitudes, but still prese
~The Kondo contribution in the lowest order is proportion
to Ss which gives a small amplitude forM56 1

2 .) It is
important to emphasize that, whenS5 1

2 , the anisotropy
loses its meaning.

In a real system the anisotropy strengthK has a distribu-
tion; thus the formation of the resistivity maximum at a fin
value of temperature cannot be expected at least above
Kondo temperature. The calculation is not reliable forT
,TK in any case.

VI. KONDO RESISTIVITY IN THIN FILMS

To obtain some information about the case of thin films
simple assumption is made that the two surfaces contrib
to the anisotropy constantK in an additive way. The anisot
ropy factor for a sample with thicknesst and in a distanced
measured from one of the surfaces is

K~d,t !5Kd1Kt2d5
a

d
1

a

t2d
, ~34!

where the coefficienta is estimated in I~Ref. 1! @see Eq.
~32!#. The appropriate calculation of the resistivity includin
the elastic impurity scattering with mean free pathl el is a
very difficult task for a film for an arbitrary ratio ofl el /t and
a value ofK. In order to avoid those difficulties, we mak
use of the fact that the magnetic exchange~Kondo! contri-
bution to the resistivityrKondo is smaller by a factor 1023

than the residual normal impurity resistivityrnor (r5rnor
1rKondo); thus an expansion in the Kondo contribution
appropriate. The calculation can be carried out in two lim
~i! t, l el and ~ii ! t@ l el . It will be shown that the final ex-
pression does not depend on which limit is considered
case~i!, the electrical resistivity contains the average va
of the inverse electron lifetime. Denoting the resistivity
temperatureT for a given value ofK by r(K,T), the average
over the value ofK(d,t) is

r̄~ t,T!5
1

t E0

t

r@K~x,t !,T#dx. ~35!

On the other hand, in case~ii ! the sample can be considere
as a set of parallel resistors of equal size, where each res
represents a stripe in the sample with a constantK. In that
case the conductances are additive, thus

r̄~ t,T!5
1

snor1
1

N(
i

s i@K~xi ,t !,T#

, ~36!

whereN is the number of the resistors~stripes! labeled byi ,
ands i represents the Kondo conductivity of stripei placed
at a distancexi . In the actual case only the first stripes d
pend on the surface anisotropy. The Kondo conductivity
defined by the Kondo resistivity given by Eq.~32! as

s5snor1sKondo5~rnor1rKondo!
21, ~37!
is

ue
s.
l

the

a
te

s

n
e
t

tor

-
s

wheresKondo'2rKondo/rnor
2 ,0. The expansion gives the fi

nal expression

r̄~ t,T!5rnor1
1

t E0

t

rKondo@K~x,t !,T#dx. ~38!

That expression valid in the limit whererKondo!rnor gives
back exactly the expression in Eq.~35!.

In the numerical calculation, the integral in Eqs.~35! or
~38! is replaced by a weighted sum with appropriate int
vals. Introducing the integration variablex/a, the calculated
Kondo resistivity depends only ont/a, which is shown in
Figs. 10~a! and 10~b! for S52 and 5

2 , respectively. Fitting
the calculated Kondo resistivity for temperaturesT@TK (T
52 – 4 K! by the functionrKondo/r (0)52Bcalc ln T, as has
been done in the experimental works~see Sec. VII!, the be-
havior ofBcalc was examined as a function oft/a, which can
be seen in Fig. 11. To compare this calculated dependenc
the coefficientB on the thickness to the experimental da
they were fitted by the functionB(t)5r (0)Bcalc(t/a), as
shown in Fig. 12. The fitted value ofa is a5247.7 Å K,
which is in agreement with the prediction given in I~Ref. 1!
by Eq. ~32! ~see Sec. VII!. The fit is not too sensitive to
small changes (,5%) in a.

If the sample is not thin, then the above results can
phenomenologically described in the framework of a sim
model where the impurities in the region of the surface
not contribute to the Kondo resistivity, and outside that

FIG. 10. The resistivity for~a! S52 and~b! S5
5
2 for different

values of t/a. ~1! t/a5`(K50), ~2! t/a5200(1/K), ~3! t/a
5100(1/K), ~4! t/a550(1/K), ~5! t/a525(1/K), ~6! t/a
510(1/K), and~7! t/a56(1/K). The initial parameters were cho
sen asj 050.0435,D05105 K, andTK50.3 K.
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gion they are not affected. In this way the effective suppr
sion lengthl can be introduced, and then the average re
tivity at low temperaturer t , e.g., for a thicknesst:

r t5r t5`

t22l

t
. ~39!

According to this semiphenomenological formula,B(t)
5B`(122l/t), which was fitted to the experimental dat
This can also be seen in Fig. 12, where the fitted value of
effective suppression layer parameter isl5207.5 Å.

The effect of the mean free path in the ballistic region c
be demonstrated directly by taking into account the effec
the mean free path in the anisotropy constant. We calcul
the change of the electrical resistivity for a thin film wi
thicknessL5600 Å, with anisotropy arising only at one o
the surfaces in the forms

K5A
l el

d
, ~40a!

K5A
l el

d
e2d/ l el, ~40b!

FIG. 12. Fit on the experimental data~squares! by the calculated
formula B(t)5r (0)Bcalc(t/a) ~the Kondo temperature was chose
as TK50.3 K! with fitting parametersr (0)520 nV cm and a
5247.7 Å K ~solid line!, and by the phenomenological theo
B(t)5B`(122l/t) with fitting parametersB`54.87 nV cm and
l5207.5 Å ~dashed line!. The fit is not too sensitive to sma
changes (,5%) in a.

FIG. 11. The calculated coefficientB as a function oft/a. The
Kondo temperature was chosen asTK50.3 K.
-
s-

e

n
f

ed

wherel el is the elastic electron mean free path~e.g.,l el5100
Å!, d is the distance measured from the surface with
anisotropy of strengthA, and the exponential decay is due
the mean free path. The electrical resistivity is calculated
S52 atT52TK just above the Kondo temperatureTK , as a
function of the strengthA of the anisotropy for two case
without and with an exponential factor@see Eq.~40!#. In-
creasing the anisotropy strengthA, the spins are completely
frozen in nearby the surface, but that region is limited by
finite mean free path. Figure 13 clearly demonstrates that
strength of the anisotropy and the size of the suppres
layer are reduced due to the finite mean free path, as ca
lated by taking into account the anisotropy only for one
the surfaces.

VII. COMPARISON WITH EXPERIMENTS

In the last couple of years a very extensive study of
Kondo effect in thin films and wires has been performe
The experimental works concentrated on a determination
the effect of reduced dimensions on the Kondo tempera
TK , and the amplitude of the resistivity anomaly. A detail
critical discussion of the earlier works were given in Ref. 1
The early studies were performed by Giordano a
co-workers,11,12and by DiTusaet al.13 In order to discuss the
effect of uncoupled magnetic impurities, only those expe
ments are listed which are performed in the dilute limit, th
e.g., for Au~Fe! alloys the Fe concentration is 30 ppm. The
experiments belong to two groups depending on whether
effect was observed or not.

Concerning the theory, two regions must be distinguish
When the size of the sample~e.g., the thickness of the
sample! is inside the ballistic region, then obviously th
present theory must be applied. In the case of thic
samples, more care must be used. There is another theo
Martin, Wan, and Phillips,14 which is applicable in the op-
posite limit of weak localization, where the disorder-induc
depression or enhancement of the Kondo effect is predic
depending on the value of the spin-flip scattering ratets

21

~depression is the case whereTK , \ts
21!T). The competi-

tion between these theories needs further studies.

FIG. 13. The effect of the mean free path on the Kondo re
tivity in the presence of anisotropy, arising from only one of t
surfaces in a thin film with thicknessL5600 Å, and elastic electron
mean free pathl el for S52 at T50.6 K, ~1! K5A( l el /d), and~2!
K5A ( l el /d) e2d/ l el. The Kondo temperature was chosen asTK

50.3 K.
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In the following, the discussion is organized according
different effects. First we discuss how the change in the d
sity of states at the surface can influence the Kondo eff
but it is ruled out as an explanation of the size effects to
discussed, because it is applicable only on a much sm
scale ~Sec. VII A!. Then experiments with a considerab
dependence on the size of the samples are discussed
compared with the present theory~Sec. VII B!. Finally those
experiments are listed where no size effect was obse
~Sec. VII C!, or the concentrations of the impurities are
the spin-glass region~Sec. VII D!.

A. Density-of-states effects

As been discussed in Sec. I of I,1 size dependence cann
be expected just because the Kondo cloud cannot fully
velop in all directions by reducing the size of the samp
The only possibility which was discussed by Zara´nd15 is that
nearby the surface there is a change in the density of stat
conduction electrons caused by formation of a Friedel-t
oscillation due to the surface. That explanation was ru
out, because those changes in the density of states are
much localized in a few atomic distances measured from
surface, and the smallest sizes in the experiments to be
cussed are about 300 Å. That effect may, however, show
in point-contact experiments, where the contact size
smaller by even more than one order of magnitude. S
experiments were performed by Yanson and co-workers16–18

with Mn and Fe impurities in Cu contacts. Zara´nd and
Udvardi19,20showed that, depending on the actual position
the impurity, the density of states for an essential ene
range around the Fermi surface can be enhanced or
pressed by even 20%; thusr5r01dr, whereudr/r0u,0.2.
In order to demonstrate the effect, an energy-independ
dr is assumed, and for that case, in the expression of
Kondo temperature TK5DA2Jr0exp@21/2J(r01dr)#
5DA2Jr0exp@21/2Jr0#exp@(2Jr0)

21 (dr/r0)# there is an
enhancement due to the second factor. Depending on
value of (Jr0)21, that enhancement can be over a factor
100 for Mn and about 2 – 3 for Fe impurities. The enhan
ment is larger the smaller the Kondo temperatureTK .16–18,20

In the experiments the enhancement is larger the smalle
contact size, thus to have a large enhancement most o
impurities must be nearby the surface. A similar effect w
also seen21 in point contacts with presumable tunneling tw
level systems~TLS’s!, where an atom jumps between tw
positions and the orbital Kondo effect is developed22,23 by
coupling the conduction electrons with different angular m
menta to the TLS’s. As the typical sizes of the studied fil
and wires are much larger, and such a dominating enha
ment of the Kondo temperature has never been obser
therefore this explanation can be ruled out.

FIG. 14. Bilayer structure.
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B. Experiments with observed size effect

Giordano and co-workers~for a review, see Ref. 10! per-
formed a series of different experiments under different c
ditions, where the size effect was observed but the chan
in the Kondo temperature were almost negligible. The
periments of different type are listed below.

1. Dependence on film thickness

The film experiments with thickness 265–1800 Å we
performed, e.g., with 30-ppm Fe in Au, but similar resu
were also obtained for 100 ppm.11,12 The resistivity was fit-
ted by the formula

r~T!5r2B ln~T!, ~41!

where B is an adjustable parameter. It is well known f
Kondo systems thatB is just not the result of the first non
vanishing third-order perturbational result whereB would be
B;J3, but it is the actual slope nearby or somewhat abo
the Kondo temperature~see, for example, Ref. 10!. In the
actual experiments the temperature range 1.8–4 K was s
ied, while TK50.3 K. The dependence of that coefficientB
on thickness was plotted as shown in Fig. 12. The exp
mental results are fitted by the calculated dependence oB
on the thickness with parametera5247.7 Å K, and by the
semiphenomenological formula given by Eq.~39! with the
effective suppression layer parameter valuel5207.5 Å in
Fig. 12.24,25 That value ofa is in agreement with the esti
mate given in I~Ref. 1! by Eq. ~32!. There was not any
signal of an essential change in the Kondo temperature,10 in
agreement with our theoretical result. It is interesting to n
that the estimated Kondo coherence length was abou
3104 Å, much larger than the thickness of the sample. Sim
lar experiments were performed with wires where more g
metrical effects are expected, and the results are qualitati
similar but not identical. The simple semiphenomenologi
formula given by Eq.~39! is not appropriate in those case
Qualitatively very similar results were reported in Ref. 2
but there are quantitative differences very likely due to
sample preparation.

2. Kondo proximity effect

A set of experiments27,28was performed where the film o
dilute alloys was covered by a second layer of pure me
The observation was that, in the case of a thin layer of dil
alloys with a significant suppression of the Kondo effect, t
covering by a second pure film results in a partial recovery
that suppression. In Fig. 14, with the suppression layers
dicated, it is shown that the bilayer structure has a supp
sion layer only on one side of the film of dilute alloys; thu
only one half of the suppression is expected. In order
verify the importance of the role of the spin-orbit interactio
in the superimposed layer to complete the neighborhood
the impurity with a uniform spin-orbit coupling, we sugge
experiments where the superimposed layer has neglig
spin-orbit interaction~e.g., Al or Mg!. In that case the
boundary is changed, but the anisotropy should remain.

3. Kondo proximity effect with overlayers with different disorde

It has been shown experimentally29 that the Kondo resis-
tivity suppression in a film of dilute alloys covered by a pu
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film but with different disorder depends on the disorder
the overlayer. It was found that the larger the disorder
smaller the recovery is. As discussed above, if the thickn
of the overlayer and the mean free pathl el in it are larger
than the thickness of the suppression layerl, then the de-
pression takes place only on one side of the film of dil
alloys. On the other hand, if the pure overlayer contains
order, then the electron entering that overlayer cannot b
back information to the magnetic impurity by their momen
as their momenta is changed in the overlayer~the overlayer
is not in the ballistic regime!. In these cases the reduction
the anisotropy is only partially developed, as the surrou
ings of the impurity are not perfectly spherical, in contrast
the case of an overlayer with long mean free path.

C. Experiments without size effect

In contrast to the measurements discussed in Sec. V
there is a series of experiments by Chandrasekharet al.30 in
which the size dependence was not found. The geometrie
these experiments were different, the thickness of the sam
t was kept the same (t5380 Å!, but the width of the stripes
w was changed between 380 and 106 Å ~see Fig. 15!. After
the correction due to weak-localization effects and
electron-electron interaction, no size dependence
claimed. On the basis of the present theory, for samplet
!w, no size dependence is expected, as the ratio of
volume of the suppression layers to the total volume is
changing. Wheret;w, the anisotropy due to the geomet
becomes more complicated, thus it is hard to make a c
parison with the present theory. On the other hand, fot
;w the experimental points fall off somewhat from the ma
averaged line; that, of course, may be due to experime
errors. According to the present theory the averaged Ko
resistivity for w@t had to be smaller than the bulk resisti
ity, but this seems to be not the case.31 Finally, it should be
mentioned that no size effect was observed study
La12xCex films, where Ce hasS5 1

2 , for which no surface
anisotropy is expected.32

D. Higher concentration

There are several experiments13,33 with higher impurity
concentrations. In these cases the impurity-impurity inter
tion mediated by the RKKY interaction competes with t
Kondo effect. In another set of experiments,13 the thickness
of the film was changed in samples made of Cu with 10
ppm Cr, and a very similar depression of the Kondo effe
as described above in Sec. VII B, was found. Wires w
geometries similar to those discussed in Sec. VII C, but w
2800 ppm impurities, do not show a dependence on
width d,33 but the overall amplitude is substantially su
pressed compared to the bulk, which was attributed to s
glass effects.

FIG. 15. Stripes with the same thicknesst and changing
width w.
e
ss

e
-
g
,

-

B,

of
le

as

e
t

-

al
o

g

c-

0
t,

h
e

n-

VIII. CONCLUSION

In the present paper, the influence of the spin-orbit
duced surface anisotropy is studied on the Kondo effec
dilute magnetic alloys samples of finite size at least in o
dimension. That anisotropy splits the energy levels for
impurity spinS. 1

2 . That anisotropy reduces as the bulk pa
of the sample is approached relatively slowly as 1/d, where
d is the distance of the impurity measured from the surfa
That anisotropy occurs for samples of any shape, but
those cases further theories should be developed. The r
where the anisotropy is relevant can be characterized by
suppression lengthl introduced in Sec. VI, which is propor
tional to the strength of the anisotropy but limited by t
mean free path of the electron as the anisotropy reflects
presence of the surface in the ballistic region nearby the
purity. Thus that suppression length cannot exceed a
hundred Å, in accordance with the experiments discusse
Sec. VII B.

That anisotropy hinders the motion of the impurity spinS
if S. 1

2 and the Kondo effect is affected in those regions
the samples where the anisotropy is not negligible relative
the Kondo temperatureTK . In order to calculate the Kondo
resistivity, the renormalized exchange coupling constants
calculated in Secs. III and IV by using the multiplicativ
renormalization-group technique which is applicable only
temperaturesT larger than the Kondo temperatureTK ; thus
no detailed prediction can be made outside that region. It
be accepted, however, that if the Kondo effect is alrea
reduced in the regionT.TK ,9 similar effect is also expected
for T,TK . The resistivity is calculated by solving th
Boltzmann equation in Sec. V for integer and half-integ
spins with different anisotropy strengths. Even if the calc
lated resistivity curves in Figs. 9~a! and 9~b! show different
characteristic features by developing a resistivity maxima
different temperatures and of different amplitudes, these
tures are smeared out as an average over the strength o
anisotropy is taken forT.TK . The curves calculated for thin
films ~see Fig. 10! show a smooth increase of the resistivit
More structures could be expected only in those experime
where the impurities are at a in certain distance measu
from the surface. If the anisotropy does not dominate
complete sample, then, as the result of the average taken
largest resistivity slope as a function of temperature is in
region of the Kondo temperatureTK , and its position canno
be shifted too much on the scale of the Kondo tempera
TK . That theoretical result is in accordance with the expe
mental findings~see Sec. VII B!.

The relatively weak sensitivity of the observed region
the largest resistivity slope on the size of the samples ru
out the density state effects nearby the surface, in contra
the point-contact experiments~see Sec. VII A!. The size de-
pendence associated with the large Kondo compensa
cloud is not observed, in agreement with the Kondo the
where such a simple connection is ruled out.

The calculated Kondo resistivity for thin films was fitte
for temperaturesT@TK (T52 – 4 K! by the function
rKondo/r (0)52Bcalcln T, which is compared to the exper
mental data in Fig. 12 and gives excellent agreement.
phenomenological theory using the effective suppress
length l ~see Sec. VI! works remarkably well to interpre
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qualitatively the experimental data quoted in Sec. VII. The
of the experimental data is shown in Fig. 12. The differe
proximity effects described in Sec. VII B can be also w
explained by the present theory.

It is important that the role of mean free path~Sec. VI; see
Fig. 13! reduces the effect of the large anisotropy consta
thus for a large range of strong anisotropy the size dep
dence remains in a limited range as long as the elastic m
free paths are in the same order of magnitude. In this way
size effect can be comparable for different host mater
with different large spin-orbit interactions but with comp
rable elastic mean free paths.

We have to emphasize, however, that our calculation d
not consider the localization effects which are present
samples of larger sizes. Such effects have recently been
dicted by Martin, Wan, and Phillips,14 and deserve furthe
detailed studies. In addition to those localization effects,
theoretical studies must be extended to the microscopic
culations of the anisotropy constant.

Considering further experiments, the mean free path
fects should be studied. The most relevant experimen
verify the role of the spin-orbit interaction directly could b
the proximity experiments, where the superimposed laye
made of another metal without spin-orbit interaction, as d
cussed in Sec. VII B. In those cases the uniform surround
of the impurity would not be developed; thus the anisotro
remains. Furthermore, experiments with impurities at a c
tain distance measured from the surface would be also
instructive. Summarizing, the presented theory is able to p
vide a coherent description of the size effects of the Kon
resistivity in thin films, which is not related to the size of th
Kondo compensation cloud in any sense.
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APPENDIX

Here we calculate the second- and third-order vertex c
rections, and the second-order self-energy correction for
impurity spin shown in Figs. 5 and 6, respectively.

Carrying out Matsubara’s summation and analytical co
tinuation, changing the integrals*„d3k/(2p)3

… to
*r(«)d«*(dVk/4p) and using the assumption forr(«) in
Sec. I, the contribution of the second-order diagrams are

JMM9JM9M8~s is j !ss8SMM9
i SM9M8

j r0

3E
2D

D

d«
12nF~«!

«2v1KM92KM

1JMM9JM9M8~s js i !ss8SMM9
i SM9M8

j r0

3E
2D

D

d«
nF~«!

«2v1KM82KM9

~A1!

for diagrams corresponding to Fig. 5~a!. The third-order dia-
grams’ contributions are

2~s is jsk!ss8JMNJNN8JN8M8SMN
i SNN8

j SN8M8
k r0

2

3E
2D

D @12nF~«!d«#

v2«1KM2KN
E

2D

D @12nF~«8!#d«8

v2«81KM2KN8

2~sks js i !ss8JMNJNN8JN8M8

3SMN
i SN8M8

j SNN8
k r0

2SMN
i SNN8

j SN8M8
k r0

2

3E
2D

D nF~«!d«

«2v1KM82KN
E

2D

D nF~«8!d«8

«82v1KM82KN8

~A2!

for diagrams corresponding to Fig. 5~b!,

2Tr~s is j !sss8
k JMNJNN8JN8M8SMN

i SN8M8
j SNN8

k r0
2

3E
2D

D E
2D

D nF~«!@12nF~«8!#d«d«8

~«2«81KM2KN!~«2«81KM82KN8!
~A3!

for diagrams corresponding to Fig. 5~c!, and
~s is jsk!ss8JMNJNN8JN8M8SMN
j SNN8

i SN8M8
k r0

2E
2D

D E
2D

D nF~«!@12nF~«8!#d«d«8

~v2«81KM2KN8!~«2«81KM2KN!

1~sks js i !ss8JMNJNN8JN8M8SMN
j SNN8

i SN8M8
k r0

2E
2D

D E
2D

D @12nF~«!#nF~«8!d«d«8

~«82v1KM82KN8!~«82«1KM2KN!

1~s is jsk!ss8JMN8JN8NJNM8SMN
i SNN8

k SN8M8
j r0

2E
2D

D E
2D

D nF~«!@12nF~«8!#d«d«8

~v2«81KM2KN!~«2«81KM82KN8!

1~sks js i !ss8JMN8JN8NJNM8SMN
i SNN8

k SN8M8
j r0

2E
2D

D E
2D

D @12nF~«!#nF~«8!d«d«8

~«82v1KM82KN!~«82«1KM82KN8!
~A4!
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for diagrams corresponding to Fig. 5~d!.
The second-order correction to the self-energy for

impurity spin according to Fig. 6 is

2Tr~s is j !JMM8JM8MSMM8
i SM8M

j r0
2

3E
2D

D

d«E
2D

D

d«8
@12nF~«!#nF~«8!

«2«82ṽ1KM82KM

. ~A5!

For the same indices, summation must be carried out.
The spin factors in Eqs.~A1!, ~A2!, ~A3!, ~A4!, and~A5!

were calculated by using the identities

~s is j !ss85d i j dss81 i« i jksss8
k , ~A6a!

~s is jsk!ss85d i j sss8
k

1d jksss8
i

2d iksss8
j

1 i« i jkdss8,
~A6b!

introducing theS6 operators in a usual way, and exploitin
that their matrix elements are

SMM8
1

5p~S,M 8!dM ,M811

5AS~S11!2M 8~M 811!dM ,M811 , ~A7a!

SMM8
2

5q~S,M 8!dM ,M821

5AS~S11!2M 8~M 821!dM ,M821 . ~A7b!

Turning to the integrals in Eqs.~A1!, ~A2!, ~A3!, ~A4!,
and~A5!, after changing the integration variable in integra
containing@12nF(«)# or @12nF(«8)# from « («8) to 2«
(2«8), they were evaluated in a logarithmic approximatio
The integrals in Eq.~A1! give the logarithmic contributions

I MM9
~1!

~D !5E
2D

D

d«
nF~«!

«1v1KM2KM9

' lnU v1KM2KM9
D U1I ~v1KM2KM9!

~A8!

for D.uv1KM2KM9u, and

I M8M9
~2!

~D !5E
2D

D

d«
nF~«!

«2v1KM82KM9

' lnU v2KM81KM9
D U1I ~v2KM81KM9!

~A9!

for D.u2v1KM82KM9u.
The integral in Eq.~A5! gives the logarithmic contribu

tion

I MM8
~3!

~D !5E
2D

D

d«E
2D

D

d«8
nF~«!nF~«8!

«1«81ṽ2l1KM2KM8

'~ṽ2l1KM2KM8!lnU ṽ2l1KM2KM8
D

U
~A10!
e

.

for D.uṽ2l1KM2KM8u.
The integrals in Eq.~A2! give the logarithmic contribu-

tions

I MNN8
~4!

~D !5I MN
~1! ~D !I MN8

~1!
~D !

'S lnU v1KM2KN

D U1I ~v1KM2KN! D
3S lnU v1KM2KN8

D U1I ~v1KM2KN8! D
~A11!

for D.uv1KM2KNu andD.uv1KM2KN8u and

I M8NN8
~5!

~D !5I M8N
~2!

~D !I M8N8
~2!

~D !

'S lnU v2KM82KN

D U1I ~2v1KM2KN! D
3S lnU v2KM82KN8

D U1I ~2v1KM82KN8! D
~A12!

for D.u2v1KM82KNu andD.u2v1KM2KN8u.
The integral in Eq.~A3! gives the logarithmic contribu-

tions for MÞN, M 8ÞN8, andKM82KN82KM1KNÞ0:

I MNM8N8
~6!

~D !5E
2D

D

d«E
2D

D

d«8

3
nF~«!nF~«8!

~«1«81KM2KN!~«1«81KM82KN8!

'
KM2KN

KM82KN82KM1KN

lnU KM2KN

D U
2

KM82KN8

KM82KN82KM1KN

lnU KM82KN8
D U

~A13!

for D.uKM2KNu and D.uKM82KN8u. For KM82KN8
5KM2KNÞ0,

I MNM8N8
~6!

~D !'2 lnUKM2KN

D U ~A14!

for D.uKM2KNu. Also,

I MMM8M8
~6!

~D !'2 lnUT

DU. ~A15!

The integrals in Eq.~A4! give the logarithmic contributions
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I MN8MN
~7!

~D !5E
2D

D

d«E
2D

D

d«8

3
nF~«!nF~«8!

~«81v1KM2KN8!~«1«81KM2KN!

'
1

2
ln2U v1KM2KN8

D U1I ~v1KM2KN8!

3 lnUA~KM2KN!21T2

D
U ~A16!

for D.uv1KM2KN8u andD.A(KM2KN)21T2, whereT
is the temperature;

I M8N8MN
~8!

~D !5E
2D

D

d«E
2D

D

d«8

3
nF~«!nF~«8!

~«82v1KM82KN8!~«1«81KM2KN!

'
1

2
ln2U 2v1KM82KN8

D U
1I ~2v1KM8KN8!

3 lnUA~KM2KN!21T2

D
U ~A17!
. B

t.

t
t in
0

y-
al

ia

st
for D.u2v1KM82KN8u andD.A(KM2KN)21T2;

I MNM8N8
~9!

~D !5E
2D

D

d«E
2D

D

d«8

3
nF~«!nF~«8!

~«82v1KM2KN!~«1«81KM82KN8!

5I MNM8N8
~7!

~D !; ~A18!

and

I M8NM8N8
~10!

~D !5E
2D

D

d«E
2D

D

d«8

3
nF~«!nF~«8!

~«82v1KM82KN!~«1«81KM82KN8!

5I M8NM8N8
~8!

~D !. ~A19!

In the estimations above, the function I (a)
5*0

`d« nF(«) @2«/(«22a2)# was introduced which is re
lated to the finite-T divergences. From the scaling equation
the I (a) function is canceled out. For the sake of handli
these contributions more comfortably,v,ṽ;T were set in
the arguments of the logarithms in a way that substitutedv

1a (ṽ1a) with Aa21T2.
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