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Spin-orbit interactions in the many-body theory of magnetic electron systems
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We have developed here a many-body theory of magnetic electron systems including both the one- and
two-particle spin-orbit interactions. Among the two-particle spin-orbit interactions, we focus attention on the
spin-same orbit and spin-other orbit terms, which were considered recently in the literature for nonmagnetic
systems. The spinor-Green function method employed here provides a clear self-consistent way of treating both
the single-particle and the two-particle properties in the system. It enables us to express in an elegant fashion
screening effects that appear in different forms with transparent physical significance to each type. We carry
out in some detail these contributions in the random-phase approximation and point out their significance
especially in the magnetic systems. This development is a contribution towards a new understanding of
magnetism in a wide class of systems ranging from clusters to nanomagnets that possess very large spin
moments. This should also be of importance in the new studies of spin transport and magnetoelectronics,
specifically in magnetic systems in low dimensions.@S0163-1829~98!02117-1#
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I. INTRODUCTION

The effects of spin-orbit coupling, including one- an
two-particle contributions in atoms as well as in semicond
tors have been discussed in the past.1,2 In view of the recent
experimental findings in spin transport,3 suggestions of
magnetoelectronics4 in magnetic two-dimensional electro
systems, and the enormous spin magnetic moments foun
clusters of atoms such as manganese,5 the understanding o
the role of spin-orbit interactions in these systems beco
paramount. A many-body theory including these effects
thus called for in investigating magnetic systems mentio
here. Only recently Grimaldi and Fulde6 investigated the
many-body theory of screening of the phonon-modula
spin-orbit interaction in nonmagnetic metals. They did n
consider magnetic systems and thus missed important ef
that arise when these are included. They argue that the s
orbit potential is unaffected by the electronic response
therefore introduce spin-other-orbit interaction to place
screening effects on the same footing. We find that this
true in the Hartree approximation used by them and for n
magnetic systems. By considering spin polarized syste
and by going beyond the Hartree approximation, we fi
interesting results, thus considerably enlarging the scop
the formalism to include the phenomena mentioned abo
Only the changes in phonon spectrum due to spin-orbit
fects in ferromagnetic metals were discussed some t
back,7 where the screening effects appear not only via d
sity fluctuations but also due to spin-density fluctuations.
the nonmagnetic situation, the spin effects all reduce in s
way as to lead to only the known density-fluctuation effe
as in Ref. 6. The above investigations are all based on
leading-order contributions of the relativistic effects to t
nonrelativistic description of atoms, molecules, and solids
is described in detail in Slater’s books.1,2 The corresponding
many-body theory in the relativistic formulation was dev
oped only recently.8,9 The purpose of this paper is to develo
570163-1829/98/57~18!/11582~10!/$15.00
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the many-body theory of magnetic electron systems incl
ing the one- and two-body spin-orbit interactions for tw
important reasons. First, for the experimental systems of
type discussed in Refs. 3–5, and for ‘‘moderately heav
atom systems, such an approximation scheme, often ca
the Pauli approximation,10 suffices, and second, the full
relativistic theory obscures the physical picture contained
the nonrelativistic-type description.

We employ a spinor-Green function method in this pap
originally developed for describing itinerant electron ma
netic systems,11 which exposes the physics of the system in
particularly transparent way. It provides a way to study bo
the single-particle and the two-particle properties of the s
tem in an elegant self-consistent manner. A major resul
this development is the appearance of new correlation fu
tions ~sixteen types! in this description besides the usu
~three types! density-density and spin density-spin dens
and cross-correlations functions of magnetic systems. Th
because the spin-orbit interactions involve the linear mom
tum density and spin-orbit density whose correlations w
the other two enlarge the scope of the inherent correlation
the system. In this way, we are able to express the var
contributions to screening in an elegant and physically me
ingful fashion. In Sec. II, we describe the Hamiltonian of t
system. In Sec. III, we develop the Green function theo
and describe the physical meanings of various terms
appear at each stage of approximation. In Sec. IV, so
approximation schemes such as Hartree mean field,
change only, and random-phase approximation are deri
In Sec. V, we develop in detail the random-phase appro
mation and display the various contributions of the differe
types of correlations to the magnetic properties of the s
tem. In Sec. VI, we give some concluding remarks. In p
ticular, in the case of weak one-particle potentials conside
in Ref. 6, we draw attention to the modified effective on
particle potential expressed in terms of the vertex functio
introduced here, exhibiting clearly the nature of screening
the bare potentials.
11 582 © 1998 The American Physical Society
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II. HAMILTONIAN OF THE SYSTEM

The Hamiltonian operator of the system under consid
ation in the second quantized form may be written as

Ĥ5Ĥ11Ĥ2 , Ĥ15T̂e1V̂ei1V̂s.o,

Ĥ25V̂C1V̂s.s.o1V̂s.o.o. ~1!

The one-particle Hamiltonian operatorĤ1 contains three
parts:T̂e is the usual kinetic energy operator of the electro
V̂ei is the ~periodic! potential due to the ions in the system
andV̂s.o is the spin-orbit contribution. We have dropped tw
other contributions, one due to the magnetic field and
other relativistic term that has no classical analog.1 The two-
particle Hamiltonian operatorĤ2 also contains three parts
V̂C is the usual two-particle Coulomb interaction betwe
electrons,V̂s.s.o is the interaction between one electron a
another electron under the influence of spin-orbit effe
r-

,

-

t,

termed here as spin-same-orbit interaction, andV̂s.o.o is a
similar two-electron interaction except that the spin of o
electron interacts with the orbital motion of the other, know
as the spin-other-orbit interaction. We have dropped th
other terms, representing orbit-orbit, spin-spin, and a rela
istic term with no classical analog.1 With this choice of the
Hamiltonian, we believe we have captured the essen
physical processes occurring in the systems under cons
ation. It may be remarked that Grimaldi and Fulde6 choose to
keep only two terms inĤ2 involving only spin-same-orbit
interaction.~It may be noted that in Ref. 6 the term ‘‘spin
other orbit’’ is used but the expression for it is that for ‘‘spin
same orbit’’ interaction as given by Slater,1 as we show later
explicitly.! The introduction of the ion motion and hence th
phonon modulated spin-orbit interaction is accomplished
adding the corresponding terms inĤ1 . We display here the
explicit forms of only those terms inĤ1 andĤ2 that may not
be commonly known.
rms
o

hould
trons

s and
st of our

nsidered

y

V̂s.o5mB
2 (

s,s8
E d3rcs

†~r !$E~r !•~ p̂r3tss8!%cs8~r !, ~2!

V̂s.s.o5mB
2 (

s1 ,s2 ,s3

E d3rE d3r 8cs1

† ~r !cs2

† ~r 8!$“ rnC~r ,r 8!•~ p̂r3ts1s3
!%cs2

~r 8!cs3
~r !, ~3!

V̂s.o.o522mB
2 (

s1 ,s2 ,s3

E d3rE d3r 8cs1

† ~r !cs2

† ~r 8!$“ rnC~r ,r 8!•~ p̂r 83ts1s3
!%cs2

~r 8!cs3
~r !, ~4!

where

mB5
e\

2mc
5Bohr magneton,

p̂r52 i“ r is the linear momentum operator,

E~r !52“ rVei~r ! and nC~r ,r 8!5ur2r 8u21.

Here and elsewhere we denote the vector-cross-product by3. We have chosen the notations to make the meaning of the te
self-evident. In all subsequent development, we use units with\51. By expressing the total Hamiltonian in terms of the tw
coupling constants,e2 andmB

2, we hope to have exhibited the relative orders of magnitude of the two interactions. We s
point out that all of magnetism is of ordermB

2, and the Coulomb interactions in general get screened by the other elec
while the magnetic terms are~Pauli! enhanced by the interactions, we have here a subtle interplay of interaction
correlations among the electrons. The purpose of this paper is to address this point in some detail, which, to the be
knowledge, has not been explicitly discussed in the literature. For ease of comparison of our Hamiltonian with that co
in Ref. 6, we express Eqs.~3! and ~4! in the plane-wave representation as is done in Ref. 6:

V̂s.s.o5 imB
2 (

kk8q,abg

nC~q!@~q3k!•tba#Ckb
† Ck8g

† Ck81qgCk2qa , ~38!

V̂s.o.o522imB
2 (

kk8q,abg

nC~q!@~q3k8!•tba#Ckb
† Ck8g

† Ck81qgCk2qa . ~48!

Here we have writtennC(q)54p/q2, which is the Fourier transform ofnC(r ,r 8) given above. From this it is clear b
comparing with Eq.~34! given in Ref. 6, the authors misrepresented what they called spin-other-orbit interaction~see Yafet,
Ref. 6!.

III. SPINOR-GREEN FUNCTION THEORY

We generalize here the method of spinor-Green function used in the theory of magnetic electron systems11 by introducing
external space- and time-dependent scalar potentialUext(r ,t), divergenceless vector potentialAext(r ,t), magnetic field
Bext(r ,t), and electric fieldEext(r ,t). These generate, respectively, the electron densityn̂(r )5(scs

†(r )cs(r ), the linear
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11 584 57A. K. RAJAGOPAL AND MOGUS MOCHENA
momentum density(scs
†(r )@ p̂rcs(r )#, the spin density(s,s8cs

†(r )tss8cs8 (r ), and the spin-orbit vector densit
(ss8cs

†(r )tss83@ p̂rcs8(r )#, and facilitate the calculation of the effects of interaction Hamiltonian on the many-ele
properties of the system. Heret is the well-known Pauli spin-matrix vector. The one-particle spinor-Green function ha
form @henceforth, 1[(r1 ,t1)#

G21~1,2!5G0
21~1,2!2Sxc~1,2!, ~5!

with

G0
21~1,2!5F i

]

]t1
2

pŴ r 1

2

2m
2Vei~rW1!2mB

2EW ~rW1!•~pŴ r 1
3tW !

2Uext~1!2BW ext~1!•tW2AW ext~1!•pW r 1
2EW ext~1!•~pŴ r 1

3tW !

2SH~1!

G d~122!. ~6!

HereSH(1) is the Hartree-like mean-field contribution to the self-energy from all the interactions andSxc~12! is the corre-
sponding nonlocal exchange and correlation contribution to the self-energy. Thus,

SH~1!52 ie2E d2̄nC~12̄!trG~2 21!2 imB
2E d2̄$trG~2 21!%@“ r 1

nC~12̄!#•~ p̂r 1
3t!

1 imB
2E d2̄“ r 1

nC~12̄!•$tr@ p̂r 2̄
3tG~2 28!#% 2̄852̄112imB

2E d2̄@“ r 1
nC~12̄!3tr$p̂r 2̄

G~2 28!% 2̄852̄1#•t

12imB
2E d2̄@“ r 1

nC~12̄!3tr$tG~2 21!%#•p̂r 1
. ~7!

Here tr denotes trace over spin indices. As in Ref. 11, we may express the spinor-Green functionG quite generally in terms
of the Pauli matrices containing a scalar and a vector component as follows:

G~12!5 1
2 $g~12!1t•s~12!% so that2 iG~221!5 1

2 $n~2!1t•s~2!%,

where n~2!5number density,s~2!5vector spin density. ~8!

Then Eq.~7! takes an elegant form:

SH~1!5e2E d2̄nC~12̄!n~ 2̄!1mB
2E d2̄n~ 2̄!$@“ r 1

nC~12̄!#3p̂r 1
%•t2mB

2E d2̄@“ r 1
nC~12̄!#•$p̂r 2̄

3s~2 28!% 2̄852̄1

22mB
2E d2̄@“ r 1

nC~12̄!#3$p̂r 2̄
n~2 28!% 2̄852̄1•t22mB

2E d2̄@“ r 1
nC~12̄!#•@s~ 2̄!3p̂r 1

#. ~9!

The first term is the well-known spin-independent scalar Hartree potential due to all other electrons that is partly can
the positive ion contribution not explicitly displayed here; the second term is the spin-orbit contribution due to the
electric field of all the other electrons and is a spin-dependent operator; the third term is a scalar, spin-independe
spin-orbit potential due to all other electrons of the system; the fourth term is the self-energy due to the mean magn
created by the mean linear momentum of the moving electrons interacting with the electric field of the Coulomb inte
giving rise to a spin-dependent contribution; and finally, the last term is a spin-independent operator contribution du
mean spin-magnetic moment interacting with the electric field. Equation~9! is valid quite generally.

The exchange-correlation contribution, on the other hand, is a spinor, nonlocal contribution, and involves four t
vertex functions, reflecting the various types of interactions arising out of the electric and magnetic fields generate
moving charges and spins in the system. Thus, we have,

Sxc~12!52 ie2E d2̄E d3̄nC~12̄!G~13̄!G0~ 3̄2;2̄!2 imB
2E d2̄E d3̄“ r 1

nC~12̄!•@~ p̂r 1
3t!G~13̄!G0~ 3̄2;2̄!#

1 imB
2E d2̄E d3̄“ r 1

nC~12̄!•G~13̄!ḠSO~ 3̄2;2̄!12imB
2E d2̄E d3̄“ r 1

nC~12̄!•@t3G~13̄!Gp~ 3̄2;2̄!#

22imB
2E d2̄E d3̄“ r 1

nC~12̄!•@ p̂r 1
3G~13̄!Gs~ 3̄2;2̄!#. ~10!

The four vertex functions appearing here are defined as follows:
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G0~12;3!5
dG21~12!

dUext~3!
; GSO~12;3!5

dG21~12!

dEext~3!
; Gp~12;3!5

dG21~12!

dAext~3!
; Gs~12;3!5

dG21~12!

dBext~3!
. ~11!
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The subscripts on the vertex functions are chosen to indi
clearly their physical meaning. Thus,G0 , indicating the ver-
tex associated with particle-density,GSO, with spin-orbit
density,Gp , with particle-momentum density, andGs , with
the spin density. The latter three are vector vertex functio
The equations obeyed by these vertex functions are ded
by taking the appropriate functional derivatives of Eq.~5!,
which we will not display here in its full glory. In the nex
section however, we will outline some commonly employ
approximation schemes.

IV. APPROXIMATION SCHEMES: GENERAL

The following approximation schemes and their con
quences are worth noting:

~a! Mean-field approximation: This is the lowest ord
scheme where all the vertex functions are set equal to z
Even at this level, the single-particle Green function is
spinor, due to the various spin-orbit contributions in t
Hartree-like scheme given by Eq.~9!, and must be solved
self-consistently. This Green function gives us the spectr
of single-particle energies. We may point out that in Ref.
third and fifth terms in their Hartree approximation are mi
ing because they did not consider spin polarization of
magnetic system. Also missing is the fourth term due to th
neglect of spin-same orbit contribution.

~b! Exchange only approximation: This is the leadi
order approximation to the equations obeyed by the ve
functions. They are

G0~12;3!'2d~12!d~13!5g0~12;3!,

GSO~12;3!'2d~13!~ p̂r 1
3t!d~12!5gSO~12;3!,

Gp~12;3!'2d~13!p̂r 1
d~12!5gp~12;3!, and

Gs~12;3!'2td~12!d~13!5gs~12;3!, ~12!

and the exchange only self-energy is then given by

Sx~12!5 ie2nC~12!G,~12!

1 imB
2@“ r 1

nC~12!#3@ p̂r 1
•tG,~12!#

12imB
2@“ r 1

nC~12!#3@ p̂r 2
•tG,~12!#

1 imB
2$@“ r 1

nC~12!#3@ p̂r 2
G,~12!#%•t

22imB
2$@“ r 1

nC~12!#3@ p̂r 1
G,~12!#%•t.

~13!

In obtaining this result we have integrated by parts whene
needed in the manipulation ofd functions and some well
known vector identities. As with the Hartree approximatio
the various terms have similar significance: the first term
the well-known exchange contribution due to Coulomb int
actions between electrons, while the last four terms are
te

s.
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,
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-
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to the two types of spin-orbit interactions among the el
trons. These contributions were not considered in Ref. 6

~c! Random-phase approximation: Here the vertex fu
tions are derived by considering the Hartree contributions
Eq. ~6! and so the various vertex functions in Eq.~7! take on
additional contributions. These equations can be solved
they are algebraic in structure, as in the conventional cas
suffices here to note that this approximation leads
‘‘screening’’ of the interactions in Eq.~13!, thus leading to a
generalized ‘‘screened exchange scheme.’’ This genera
tion includes terms arising not only from the density fluctu
tions but also from the spin density, momentum density d
to orbital motion, as well as spin-momentum density fluctu
tions in addition to cross correlations between them, wh
have not been considered in the literature before, it appe
Many of these contributions are zero if we consider nonm
netic systems and systems with center of symmetry. Th
aspects will be discussed in a subsequent, more detailed
per.

~d! Random-phase approximation with exchange corr
tions: Here the exchange terms are included in setting
the equations for the various vertex functions, which th
obey integral equations, which have to be solved in conju
tion with the Green function equations. We will relegate d
cussion of these to another paper.

The inclusion of phonon mediated spin-orbit interacti
proceeds by considering ion displacements in the elec
ion and the single-particle spin-orbit interaction arising fro
the ions as considered in Ref. 6. Our technique for dea
with these contributions proceeds by adopting the Gr
function technique to include these contributions in a gen
alization of the self-consistent perturbation method given
Ref. 12. We not only derive the results given in Ref. 6 b
also find the appropriate screening of the spin-orbit contri
tion when spin polarization is included, even when only t
Coulomb interaction between electrons is taken into acco
showing that there is a screening contribution without invo
ing spin-other-orbit interaction. This was already seen in
discussion of the phonon spectrum of magnetic system
Ref. 7.

In a fully relativistic formulation, it may be remarked, th
effects considered here would appear in a simple look
elegant form, in terms of the four-current correlations, a
the corresponding vertex functions. When resolved in ter
of a nonrelativistic scheme, these become expanded in te
of particle current, particle density, spin density, spin-curr
density with corresponding external four potential taking t
form of electric and magnetic fields, and the scalar and v
tor potentials. For our present purposes, our developm
suffices and is transparent. In the next section, we examin
detail the random-phase approximation and its implicatio

V. RESULTS BASED ON RANDOM-PHASE
APPROXIMATION

Using Eq.~7! for the Hartree self-energy and the defin
tions of the four vertex functions in Eq.~11!, we see that the
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11 586 57A. K. RAJAGOPAL AND MOGUS MOCHENA
equation for each of them leads to four correlation functio
corresponding to the four densities contained therein as
plained in Eq.~9!. These equations, being algebraic, can
be solved as in the magnetic case.11 In this paper, we will
illustrate these solutions for metallic magnetic systems wh
plane-wave solutions are pertinent. In a separate paper
will present the solutions in terms of the orbitals that ta
account of the one-particle spin-orbit potential so that
s
x-
ll

re
we

e

solutions are applicable more generally. By using the pla
wave scheme, we may be able to understand the phys
meaning of the various contributions, which are here deriv
for the first time. We will present the details of the calcul
tion for the vertex associated with the densityG0 and give
the final results for the rest of the vertex functions. Th
involves four types of correlation functions defined in a ma
ner similar to the ones in Ref. 11:
mentum
ast ones

metallic
xo,o~12!52 i
d

dUext~2!
trG~111!5 i E d1̄d2̄ tr@G~11̄!G0~ 1̄2̄;2!G~ 2̄11!#,

xso,o~12!52 i
d

dUext~2!
tr@~ p̂r 1

3t!G~1181!#18515 i E d1̄d2̄ tr@~ p̂r 1
3t!G~11̄!G0~ 1̄2̄;2!G~ 2̄181!#1851 ,

xp,o~12!52 i
d

dUext~2!
tr@~ p̂r 1

!G~1181!#18515 i E d1̄d2̄ tr@~ p̂r 1
!G~11̄!G0~ 1̄2̄;2!G~ 2̄181!#1851 ,

and

xs,o~12!52 i
d

dUext~2!
tr@~t!G~111!#5 i E d1̄d2̄ tr@~t!G~11̄!G0~ 1̄2̄;2!G~ 2̄11!#. ~14!

The first one is the particle density-particle density, the second, the spin-orbit density-particle density, the third, the mo
density-particle density, and the last one is the spin density-particle density correlation functions. The first and the l
were introduced earlier in the study of the magnetic problem without spin-orbit effects.11 The vertex functionG0 obeys the
equation, from the definition in Eqs.~11! and ~5!, and those in Eq.~14!:

G0~12;3!5g0~12;3!2e2E d2̄xo,o~ 2̄3!nC~12̄!d~122!2mB
2E d2̄xo,o~ 2̄3!@“ r 1

nC~12̄!#•~ p̂r 1
3t!d~122!

1mb
2E d2̄xso,o~ 2̄3!•@“ r 1

nC~12̄!#d~122!12mB
2E d2̄@“ r 1

nC~12̄!3xp,o~ 2̄3!#•td~122!

12mB
2E d2̄@“ r 1

nC~12̄!3xs,o~ 2̄3!#•p̂r 1
d~122!. ~15!

Further analysis of this equation and its solution is now presented in the plane-wave representation appropriate for
systems as in Ref. 11. Thus we define, using the standard four-dimensional notation

G~12!5E G~k!eik~122!
d4k

~2p!4 , G~12;3!5E G~k,q!eik~122!1 iq~123!
d4k

~2p!4

d4q

~2p!4 , ~16!

and obtain the following expressions for the correlation functions defined in Eq.~15!:

xo,o~q!5 i E d4k

~2p!4 tr@G~k1q!G0~k,q!G~k!#,

xso,o~q!5 i E d4k

~2p!4 tr$@~k1q!3t#G~k1q!G0~k,q!G~k!%,

xp,o~q!5 i E d4k

~2p!4 tr@~k1q!G~k1q!G0~k,q!G~k!#,

and

xs,o~q!5 i E d4k

~2p!4 tr@~t!G~k1q!G0~k,q!G~k!#, ~17!

Equation~15! then reads
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G0~k,q!5212e2nC~q!xo,o~q!2 imB
2nC~q!xo,o~q!@~k3t!•q#1 imB

2nC~q!q•xso,o~q!

12imB
2nC~q!@q3xp,o~q!#•t12imB

2nC~q!@q3xs,o~q!#•k. ~18!

This expression in Eq.~17! leads to the determination of the four correlation functions in terms of 16 types of correl
functions of the Lindhard type:

Po,o~q!5 i E d4k

~2p!4 tr@G~k1q!G~k!#, Po,so~q!5 i E d4k

~2p!4 tr@G~k1q!~k3t!G~k!#,

Po,s~q!5 i E d4k

~2p!4 tr@G~k1q!tG~k!#, Po,p~q!5 i E d4k

~2p!4 tr@G~k1q!kG~k!#, ~19a!

going with the equation forx0,0:

xo,o~q!52Po,o~q!2nC~q!@e2Po,o~q!1 imB
2q•Po,so~q!#xo,o~q!1 imB

2nC~q!Po,o~q!q•xso,o~q!

12imB
2nC~q!Po,s~q!•@q3xp,o~q!#12imB

2nC~q!Po,p~q!•@q3xs,o~q!#. ~19b!

Similarly,

Pso,o~q!5 i E d4k

~2p!4 tr$@~k1q!3t#G~k1q!G~k!%, PJ so,so~q!5 i E d4k

~2p!4 tr$@~k1q!3t#G~k1q!~k3t!G~k!%,

PJ so,s~q!5 i E d4k

~2p!4 tr$@~k1q!3t#G~k1q!tG~k!%, PJ so,p~q!5 i E d4k

~2p!4 tr$@~k1q!3t#G~k1q!kG~k!%,

~20a!

going with

xso,o~q!52Pso,o~q!2nC~q!@e2Pso,o~q!1 imB
2q•PJ so,so~q!#xo,o~q!1 imB

2nC~q!Pso,o~q!@q•xso,o~q!#

12imB
2nC~q!PJ so,s~q!•@q3xp,o~q!#12imB

2nC~q!PJ so,p~q!•@q3xs,o~q!#. ~20b!

Pp,o~q!5 i E d4k

~2p!4 tr@~k1q!G~k1q!G~k!#, PJ p,so~q!5 i E d4k

~2p!4 tr@~k1q!G~k1q!~k3t!G~k!#,

PJ p,s~q!5 i E d4k

~2p!4 tr@~k1q!G~k1q!tG~k!#, PJ p,p~q!5 i E d4k

~2p!4 tr@~k1q!G~k1q!kG~k!#, ~21a!

going with

xp,o~q!52Pp,o~q!2nC~q!@e2Pp,o~q!1 imB
2q•PJ p,so~q!#xo,o~q!1 imB

2nC~q!Pp,o~q!@q•xso,o~q!#

12imB
2nC~q!PJ p,s~q!•@q3xp,o~q!#12imB

2nC~q!PJ p,p~q!•@q3xs,o~q!#. ~21b!

Ps,o~q!5 i E d4k

~2p!4 tr@tG~k1q!G~k!#, PJ s,so~q!5 i E d4k

~2p!4 tr@tG~k1q!~k3t!G~k!#,

PJ s,s~q!5 i E d4k

~2p!4 tr@tG~k1q!tG~k!#, PJ s,p~q!5 i E d4k

~2p!4 tr@tG~k1q!kG~k!#, ~22a!

going with

xs,o~q!52Ps,o~q!2nC~q!@e2Ps,o~q!1 imB
2q•PJ s,so~q!#xo,o~q!1 imB

2nC~q!Ps,o~q!@q•xso,o~q!#

12imB
2nC~q!PJ s,s~q!•@q3xp,o~q!#12imB

2nC~q!PJ s,p~q!•@q3xs,o~q!#. ~22b!

These simultaneous linear equations for the four correlation functions can be solved in terms of the generalized Lind
functions introduced above and, in their turn, they determine the vertex functionG0 . To give an indication of the type of resu
we would obtain, we here give an approximate solution of this problem, by observing for the present that the Coulom
is the most dominant while those appearing with the Bohr magneton are smaller in magnitude. This is strictly for purp
illustration only and more detailed examination of these equations will be relegated to another paper. Here we want to
that this study has important implications to magnetic properties of systems.
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Thus we have the following approximate results:

xo,o~q!>2«21~q!Po,o~q!, xso,o~q!>2«21~q!Pso,o~q!,

xp,o~q!>2«21~q!Pp,o~q!, and xs,o~q!>2«21~q!Ps,o~q!,

where «~q!511e2nC~q!Po,o~q!5RPA dielectric function. ~23!

This in turn gives the vertex functionG0 from Eq. ~18! to be

G0~k,q![«21~q!H 211 imB
2nC~q!F P0,0~q!~qW 3kW !•tW

2qW •PW s0,0~q!22~qW 3PW p,0~q!!•tW

22~qW 3pW s,0~q!!•kW
G J . ~24!

We should remark here that in a more complete theory, the random-phase approximation~RPA! dielectric function would be
replaced by a more complete and complicated screening function and the expressions~23! and~24! would be much different
from those given here. These will be discussed in another paper. A similar calculation gives the other three vertex f
of interest and we give them here without exhibiting their derivation as they are obtained in the same manner as was d
above.

Gso~12;3!5gso~12;3!2e2E d2̄xo,so~ 2̄3!nC~12̄!d~122!2mB
2E d2̄xo,so~ 2̄3!@“ r 1

nC~12̄!#•~ p̂r 1
3t!d~122!

1mB
2E d2̄xJso,so~ 2̄3!•@“ r 1

nC~12̄!#d~122!12mB
2E d2̄@“ r 1

nC~12̄!3xJp,so~ 2̄3!#•td~122!

12mB
2E d2̄@“ r 1

nC~12̄!3xJs,so~ 2̄3!#•p̂r 1
d~122!. ~25a!

In the plane-wave representation, this is

Gso~k,q!52~k3t!2e2nC~q!xo,so~q!2 imB
2nC~q!xo,so~q!@~k3t!•q#1 imB

2nC~q!q•xJso,so~q!

12imB
2nC~q!@q3xJp,so~q!#•t12imB

2nC~q!@q3xJs,so~q!#•k. ~25b!

The approximate results corresponding to Eqs.~23! and ~24! are then

xo,so~q!>2«21~q!Po,so~q!,

xJso,so~q!>2«21~q!$PJ so,so~q!1e2nC~PJ so,soPo,o2Pso,oPo,so!%,

xJp,so~q!>2«21~q!$PJ p,so~q!1e2nC~PJ p,soPo,o2Pp,oPo,so!%,

and xJs,so~q!>2«21~q!$PJ s,so~q!1e2nC~PJ s,soPo,o2Ps,oPo,so!%,

where «~q!511e2nC~q!Po,o~q!5RPA dielectric function. ~25c!

This gives to leading order in the interaction strengthse2,mB
2,

GW s0~k,q!>«21~q!5
2~kW3tW !~11e2nC~q!P0,0~q!!1e2nC~q!P¢ 0,s0~q!

1 imB
2nC~q!F P¢ 0,s0~q!~qW 3kW !•tW

2qW •PW s0,s~q!22~qW 3PJ p,s0~q!!•tW

22~qW 3PJ s,s0~q!!•kW
G 6 ~25d!

Similarly, we have



57 11 589SPIN-ORBIT INTERACTIONS IN THE MANY-BODY . . .
Gp~12;3!5gp~12;3!2e2E d2̄xo,p~ 2̄3!nC~12̄!d~122!2mB
2E d2̄xo,p~ 2̄3!@“ r 1

nC~12̄!#•~ p̂r 1
3t!d~122!

1mB
2E d2̄xJso,p~ 2̄3!•@“ r 1

nc~12̄!#d~122!12mB
2E d2̄@“ r 1

nC~12̄!3xJp,p~ 2̄3!#•td~122!

12mB
2E d2̄@“ r 1

nC~12̄!3xJs,p~ 2̄3!#•p̂r 1
d~122!. ~26a!

In the plane-wave representation, this is

Gp~k,q!52k2e2nC~q!xo,p~q!2 imB
2nC~q!xo,p~q!@~k3t!•q#1 imB

2nC~q!q•xJso,p~q!

12imB
2nC~q!@q3xJp,p~q!#•t12imB

2nC~q!@q3xJs,p~q!#•k. ~26b!

The approximate results corresponding to Eqs.~23! and ~24! are then

xo,p~q!>2«21~q!Po,p~q!,

xIso,p~q!>2«21~q!$PJ so,p~q!1e2nC~PJ so,pPo,o2Pso,oPo,p!%,

xJp,p~q!>2«21~q!$PJ p,p~q!1e2nC~PJ p,pPo,o2Pp,oPo,p!%,

and xJs,p~q!>2«21~q!$PJ s,p~q!1e2nC~PJ s,pPo,o2Ps,oPo,p!%,

where «~q!511e2nC~q!Po,o~q!5RPA dielectric function. ~26c!

To leading order in the interaction strengths, as before,

GW p~k,q!>«21~q!5
2~kW !~11e2nC~q!P0,0~q!!1e2nC~q!PW 0,p~q!

1 imB
2nC~q!F pW 0,p~q!~qW 3kW !•tW

2qW •PJ s0,p~q!22~qW 3pJ p,p~q!!•tW

22~qW 3PJ s,p~q!!•kW
G 6 ~26d!

And finally,

Gs~12;3!5gs~12;3!2e2E d2̄xo,s~ 2̄3!nC~12̄!d~122!2mB
2E d2̄xo,s~ 2̄3!@“ r 1

nC~12̄!#•~ p̂r 1
3t!d~122!

1mB
2E d2̄xJso,s~ 2̄3!•@“ r 1

nC~12̄!#d~122!12mB
2E d2̄@“ r 1

nC~12̄!3xJp,s~ 2̄3!#•td~122!

12mB
2E d2̄@“ r 1

nC~12̄!3xJs,s~ 2̄3!#•p̂r 1
d~122!. ~27a!

In the plane-wave representation, this is

Gs~k,q!52t2e2nC~q!xo,s~q!2 imB
2nC~q!xo,s~q!@~k3t!•q#1 imB

2nC~q!q•xJso,s~q!

12imB
2nC~q!@q3xJp,s~q!#•t12imB

2nC~q!@q3xJs,s~q!#•k. ~27b!

The approximate results corresponding to Eqs.~23! and ~24! are then

xo,s~q!>2«21~q!Po,s~q!,

xJso,s~q!>2«21~q!$PJ so,s~q!1e2nC~PJ so,sPo,o2Pso,oPo,s!%,

xJp,s~q!>2«21~q!$PJ p,s~q!1e2nC~PJ p,sPo,o2Pp,oPo,s!%,

and xJs,s~q!>2«21~q!$PJ s,s~q!1e2nC~PJ s,sPo,o2Ps,oPo,s!%,

where «~q!511e2nC~q!Po,o~q!5RPA dielectric function. ~27c!
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And, again to leading order in the interaction strengths,

GW ~k,q![«21~q!5
2~tW !~11e2nC~q!P0,0~q!!1e2nC~q!P0,s~q!

1 imB
2nC~q!F P0,s~q!~qW 3kW !•tW

2qW •PJ s0,s~q!22~qW 3PJ p,s~q!!•tW

22~qW 3PJ s,s~q!•kW
G 6 ~27d!

This derivation of the various vertex functions even within a simple RPA is significant because it gives us imp
insights into the many-body contributions to ‘‘screening’’ of the various interactions and into the nature of the v
response functions that arise in this system. To bring the first point out, we now write the exchange-correlation self-ene
~10!, in the plane-wave representation:

Sxc~k!52 ie2E d4k8

~2p!4 nC~k8!G~k1k8!Go~k,k8!1 i 2mB
2E d4k8

~2p!4 nC~k8!~k83k!•tG~k1k8!G0~k,k8!

2 i 2mB
2E d4k8

~2p!4 nC~k8!G~k1k8!k8•Gso~k,k8!22i 2mB
2E d4k8

~2p!4 nC~k8!k8•@t3G~k1k8!Gp~k,k8!#

22i 2mB
2E d4k8

~2p!4 nC~k8!G~k1k8!~k83k!•Gs~k,k8!. ~28!

This expression clearly shows that the screenings of the various interactions are determined by the four vertex func
in Sec. IV, we can now discuss several levels of approximations. Neglecting the vertex functions entirely is the ‘‘mean
approximation discussed in Ref. 6 that we have commented upon already. The next level is to take the leading-order
mations to these vertex functions as in Eq.~12!. We thus obtain

Sx~k!51 ie2E d4k8

~2p!4 nC~k8!G~k1k8!2 i 2mB
2E d4k8

~2p!4 nC~k8!~k83k!•tG~k1k8!

1 i 2mB
2E d4k8

~2p!4 nC~k8!G~k1k8!~k83k!•t12i 2mB
2E d4k8

~2p!4 nC~k8!~k83k!•tG~k1k8!

12i 2mB
2E d4k8

~2p!4 nC~k8!G~k1k8!~k83k!•t. ~29!
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It is important to note the orders of the spinor Green funct
and the Pauli matrix appearing in the above expressions
the nonmagnetic case, with a scalar Green function, the
ond and third terms cancel out leaving behind the last
combining into a single term.

In the next level of approximation, we use the appro
mate RPA vertex functions derived above in Eq.~26!, which
clearly shows the screening of the various terms in a c
fashion. To leading order in the interaction strengths, o
the first term in Eq.~29!, the Coulomb interaction is screene
by the RPA dielectric function, while in the rest of the term
it is not. But, a more sophisticated approximation, beyo
the simplified version of RPA presented here and not
terms of orders of interaction strengths, immediately sho
that screening occurs in different forms for each of the ter
in Eq. ~29! according to the form of the interaction, as f
example, the spin-susceptibility enhancement due to inte
tions familiar in other contexts. This will be taken up fo
study in another paper.
n
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The second point of interest in this development is
sixteen types of correlation functions that appear in this s
tem. This reflects the varied nature of physical mechanis
underlying the two-particle interactions when the spin-or
effects are included in our considerations. In physical ter
they arise because the linear momentum and spin momen
vectors can now be independently specified, and there
the system acquires chirality. This is specially important
the magnetic systems where such anisotropy is evident in
domain structure, optical dichroism, etc. This also indica
another important feature of a possible vector-spin dens
functional theory in contrast to the magnetic electron-g
spin-density-functional theory where one can only spec
one component of the spin density, as in an Ising mode
magnetism. These features will be explored in a future pa

VI. CONCLUDING REMARKS

In conclusion, we have here presented a theoretical fra
work for incorporating spin-orbit effects in a many-bod
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theory of itinerant magnetic systems. We have shown he
variety of contributions, not present in nonmagnetic syste
that arise due to spin polarization and the spin-orbit inter
tion already within a simplified approximation of the RPA
More sophisticated integral equations for the vertex fu
tions appear when we take the nonlocal exchange self-en
in their construction. Much work needs to be done in t
analysis of these equations along with their physical im
cations. These considerations are expected to be of im
tance not only in the development of the vector-spin dens
functional theory of itinerant electron magnetism, but also
many of the new investigations of magnetic phenomena
ticularly in low-dimensional nanometric systems and in ma
netic cluster materials. The development given here bri
out the spin and spatial anisotropies in the system in an
egant way. Among the sixteen types of correlation functio
that appear in this system, the ones corresponding to pu
particle density, spin density, and linear momentum den
are familiar in separate physical contexts of dielectric, m
netic, and electromagnetic response, respectively. But in
present discussion, these, along with the new spin-orbit d
sity, add to the structure of the theory of itinerant electr
magnetism. To make this point explicit, consider as in Re
the one-particle termsV̂ei , the~periodic! potential due to the
ions in the system, andV̂s.o, the spin-orbit contribution in
Eq. ~1! to be weak so that a perturbation treatment wo
suffice. When the two-particle interactions are brought i
consideration, these contributions are modified. The ve
function method12 provides a clear way of developing th
perturbation scheme including the nonlocal contributio
For purposes of illustration, we here follow Ref. 6, and e
hibit the result in the Hartree approximation. Observing t
the ~periodic! potentialV̂ei then takes the place of the exte
nal potentialUext(r ,t), and the spin-orbit potentialV̂s.o takes
the place of the external electric fieldEext(r ,t) without their
time dependence, we obtain the modified effective o
particle potential in the form
II
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Veff~r1!>FVei~r1!1E d2̄
dSH~1!

dVei~r 2̄!
Vei~r 2̄!G

1FmB
2E~r1!•~ p̂r 1

3t!1E d2̄
dSH~1!

dE~r 2̄!
•E~r 2̄!G .

~30!

Here we have used the form appearing in Eq.~6!. From Eq.
~7! we see that the vertex functionsG0 , associated with
particle-densityGSO, with spin-orbit density, appear upo
performing the indicated functional derivatives. We m
then use the plane-wave expressions given in Eqs.~18! and
~25b! to work out the effective potential in detail. Even wit
simplified approximations subsequently given in Eqs.~24!
and~25c! we see the different forms of the screening effe
for the two terms. A detailed discussion of these will
given in another paper. It suffices here to draw attention
these important features of the effects of interaction on b
the effective one-particle potential the electron experien
as well as the two-particle correlations. We should also
mark that the nonlocal exchange correlation effects also c
tribute to these in important ways, just as in the itinera
electron systems.11
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