PHYSICAL REVIEW B VOLUME 57, NUMBER 18 1 MAY 1998-11
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We have developed here a many-body theory of magnetic electron systems including both the one- and
two-particle spin-orbit interactions. Among the two-particle spin-orbit interactions, we focus attention on the
spin-same orbit and spin-other orbit terms, which were considered recently in the literature for nonmagnetic
systems. The spinor-Green function method employed here provides a clear self-consistent way of treating both
the single-particle and the two-particle properties in the system. It enables us to express in an elegant fashion
screening effects that appear in different forms with transparent physical significance to each type. We carry
out in some detail these contributions in the random-phase approximation and point out their significance
especially in the magnetic systems. This development is a contribution towards a new understanding of
magnetism in a wide class of systems ranging from clusters to hanomagnets that possess very large spin
moments. This should also be of importance in the new studies of spin transport and magnetoelectronics,
specifically in magnetic systems in low dimensiof80163-182@08)02117-1

[. INTRODUCTION the many-body theory of magnetic electron systems includ-
ing the one- and two-body spin-orbit interactions for two
The effects of spin-orbit coupling, including one- and important reasons. First, for the experimental systems of the
two-particle contributions in atoms as well as in semiconduciyPe discussed in Refs. 3-5, and for “moderately heavy”
tors have been discussed in the gesin view of the recent 210m Systems, such an approximation scheme, often called
experimental findings in spin transpdrtsuggestions of the Pauli approximation,” suffices, and second, the fully

magnetoelectroniésin magnetic two-dimensional electron relativistic theory obscures the physical picture contained in

systems, and the enormous spin magnetic moments found Fﬂe nonrelativistic-type description,
Y ' P g We employ a spinor-Green function method in this paper,

clusters of atoms such as mangariegie understanding of originally developed for describing itinerant electron mag-

the role of spin-orbit interactions in these systems becom_eﬁetiC systema! which exposes the physics of the system in a

paramount. A many-body theory including these effects ig,aticylarly transparent way. It provides a way to study both
thus called for in mvestl_gatlng magnetic _systems mentioneghe single-particle and the two-particle properties of the sys-
here. Only recently Grimaldi and Fuftiénvestigated the tem in an elegant self-consistent manner. A major result of
many-body theory of screening of the phonon-modulateghis development is the appearance of new correlation func-
spin-orbit interaction in nonmagnetic metals. They did nottions (sixteen typeks in this description besides the usual
consider magnetic systems and thus missed important effectthree types density-density and spin density-spin density
that arise when these are included. They argue that the spiand cross-correlations functions of magnetic systems. This is
orbit potential is unaffected by the electronic response antbecause the spin-orbit interactions involve the linear momen-
therefore introduce spin-other-orbit interaction to place theaum density and spin-orbit density whose correlations with
screening effects on the same footing. We find that this ighe other two enlarge the scope of the inherent correlations in
true in the Hartree approximation used by them and for nonthe system. In this way, we are able to express the various
magnetic systems. By considering spin polarized systemsontributions to screening in an elegant and physically mean-
and by going beyond the Hartree approximation, we findngful fashion. In Sec. I, we describe the Hamiltonian of the
interesting results, thus considerably enlarging the scope afystem. In Sec. Ill, we develop the Green function theory
the formalism to include the phenomena mentioned aboveand describe the physical meanings of various terms that
Only the changes in phonon spectrum due to spin-orbit efappear at each stage of approximation. In Sec. IV, some
fects in ferromagnetic metals were discussed some timapproximation schemes such as Hartree mean field, ex-
back! where the screening effects appear not only via denehange only, and random-phase approximation are derived.
sity fluctuations but also due to spin-density fluctuations. Fotn Sec. V, we develop in detail the random-phase approxi-
the nonmagnetic situation, the spin effects all reduce in suchmation and display the various contributions of the different
way as to lead to only the known density-fluctuation effectstypes of correlations to the magnetic properties of the sys-
as in Ref. 6. The above investigations are all based on theem. In Sec. VI, we give some concluding remarks. In par-
leading-order contributions of the relativistic effects to theticular, in the case of weak one-particle potentials considered
nonrelativistic description of atoms, molecules, and solids, a; Ref. 6, we draw attention to the modified effective one-
is described in detail in Slater’s booké The corresponding particle potential expressed in terms of the vertex functions
many-body theory in the relativistic formulation was devel- introduced here, exhibiting clearly the nature of screening of
oped only recently:® The purpose of this paper is to develop the bare potentials.
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lIl. HAMILTONIAN OF THE SYSTEM termed here as spin-same-orbit interaction, &Qg_o is a

The Hamiltonian operator of the System under Considersimilar two-electron interaction except that the Spin of one

ation in the second quantized form may be written as electron interacts with the orbital motion of the other, known
o as the spin-other-orbit interaction. We have dropped three
H=H;+H,, Hi=T.+Vg+Vso other terms, representing orbit-orbit, spin-spin, and a relativ-
L ~ istic term with no classical analdgwith this choice of the
Ho=Vc+VesstVeoo (1) Hamiltonian, we believe we have captured the essential

, L ~ . physical processes occurring in the systems under consider-
The one-particle Hamiltonian operatéf, contains three i |t may be remarked that Grimaldi and Féfidaoose to
parts:T, is the usual kinetic energy operator of the electrons‘<eep only two terms i, involving only spin-same-orbit
Vei is the (periodig potential due to the ions in the system, jnteraction.(It may be noted that in Ref. 6 the term “spin-
andV, is the spin-orbit contribution. We have dropped two other orbit” is used but the expression for it is that for “spin-
other contributions, one due to the magnetic field and ansame orbit” interaction as given by Slateas we show later
other relativistic term that has no classical andidde two-  explicitly.) The introduction of the ion motion and hence the
particle Hamiltonian operata, also contains three parts: phonon modulated spin-orbit interaction is accomplished by
V¢ is the usual two-particle Coulomb interaction betweenadding the corresponding termstity . We display here the
electrons,V, 5, is the interaction between one electron andexplicit forms of only those terms iH; andH, that may not
another electron under the influence of spin-orbit effectbe commonly known.

Vo= a2 f By (N{EM) - (BrX 7y ) o (1), v
Vesoud 2 | d f d*r gl (Pl (Y we(r ) - (B X 7o o) o, () (1), (3)
01,02,03
Veoo—2uf 2 | d f d*r gl (gl (Va1 0) - (B X Ty g )} (1) (1), (4)
where
,uBzm:Bohr magneton,

p,=—iV, is the linear momentum operator,
E(r)=—V,Ve(r) and ve(r,r’)=|r—r’|"1,

Here and elsewhere we denote the vector-cross-produgt Mye have chosen the notations to make the meaning of the terms
self-evident. In all subsequent development, we use units#ivitii. By expressing the total Hamiltonian in terms of the two
coupling constants? and,uzB, we hope to have exhibited the relative orders of magnitude of the two interactions. We should
point out that all of magnetism is of ordeaZB, and the Coulomb interactions in general get screened by the other electrons
while the magnetic terms ar@aul) enhanced by the interactions, we have here a subtle interplay of interactions and
correlations among the electrons. The purpose of this paper is to address this point in some detail, which, to the best of our
knowledge, has not been explicitly discussed in the literature. For ease of comparison of our Hamiltonian with that considered
in Ref. 6, we express Eq$3) and(4) in the plane-wave representation as is done in Ref. 6:

Vesaind 2 ve(@(aXK) 74,]CH5Ck CirqyChqas (3)
kk'q,aBy

Vso5= —2i Mékk > ve(@(axk) 75,1CLCL . Chr gy Cheqa- 4)
'q,aBy

Here we have writtervc(q) =4m/q?, which is the Fourier transform ofc(r,r’') given above. From this it is clear by
comparing with Eq(34) given in Ref. 6, the authors misrepresented what they called spin-other-orbit inter@et@oivafet,
Ref. 6.

Ill. SPINOR-GREEN FUNCTION THEORY

We generalize here the method of spinor-Green function used in the theory of magnetic electron'Systémiducing
external space- and time-dependent scalar potehtigfr,t), divergenceless vector potentiél,,(r,t), magnetic field
Bex(r,t), and electric fieldEg(r,t). These generate, respectively, the electron den%ﬂty=2(,¢//$(r)z,b,,(r), the linear
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momentum densityE(,gbZ(r)[E)r Us(r)], the spin densityEU,grwl(r)a-Wy%, (r), and the spin-orbit vector density
EUUr(//Z(r)TO.O.rX[E)rl,bo.r(r)], and facilitate the calculation of the effects of interaction Hamiltonian on the many-electron
properties of the system. Hereis the well-known Pauli spin-matrix vector. The one-particle spinor-Green function has the
form [henceforth, &(rq,t1)]

G 11,2=G,%1,2-3,4(1,2, (5)
with
|E_%_Vei(rl)_MBE(rl)'(prlx7')
G, 1(1,2)= . L L . . |6(1-2). (6)
_Uext(l)_Bext(l)'T_Aext(l)'prl_Eext(l)'(prIXT)
—2x(1)

HereX (1) is the Hartree-like mean-field contribution to the self-energy from all the interaction gitP) is the corre-
sponding nonlocal exchange and correlation contribution to the self-energy. Thus,

Iu(1)=—ie? f d20c(12)1G(227) ~iuj f d2(rG(22°)}[V,,vc(12]- (B, X 7
+iud f d2V, ve(12) -t pX 76(22') Vi 5+ +2i J d2[V, ve(12Xt{p-G(22)}z _5+] 7

+2ipd f d2[V, ve(12)Xtr{7G(22%)}]-P.. (7)

Here tr denotes trace over spin indices. As in Ref. 11, we may express the spinor-Green fGngtite generally in terms
of the Pauli matrices containing a scalar and a vector component as follows:

G(12)=3{g(12)+ 7 (12)} sothat-iG(22")=3{n(2)+ = 2)},
where n(2)=number densitys(2)=vector spin density. (8)

Then Eq.(7) takes an elegant form:
Sh(1)=¢? f d2vc(12)n(2)+ pd f d2n(2){[V,, »c(12]1XP, }- 7 ud f d2[V, ve(12)]-{Px 22}z 5+

—2u3 J d2[V, ve(12]X{PN(22 )}z 5+ 7 2ub f d2[V, vc(12)]-[s(2) %Py, ]. ©)

The first term is the well-known spin-independent scalar Hartree potential due to all other electrons that is partly canceled by
the positive ion contribution not explicitly displayed here; the second term is the spin-orbit contribution due to the mean
electric field of all the other electrons and is a spin-dependent operator; the third term is a scalar, spin-independent mean
spin-orbit potential due to all other electrons of the system; the fourth term is the self-energy due to the mean magnetic field
created by the mean linear momentum of the moving electrons interacting with the electric field of the Coulomb interaction,
giving rise to a spin-dependent contribution; and finally, the last term is a spin-independent operator contribution due to the
mean spin-magnetic moment interacting with the electric field. Equa&8pis valid quite generally.

The exchange-correlation contribution, on the other hand, is a spinor, nonlocal contribution, and involves four types of
vertex functions, reflecting the various types of interactions arising out of the electric and magnetic fields generated by the
moving charges and spins in the system. Thus, we have,

312 =-ie? f dz_f d3rc(12G(13T'o(32:2) ~ i f dz_f d3V,,vc(12)- [ (B, X PIG(13)T(32;2)]
+iM§f d2 ds_vrlvc(ﬁ)-G(1§)F50(3_2;5)+2m§f dz_f d3V, vc(12)-[7X G(13T(32;2)]

~2iup f dfj d3V, vc(12)-[B, X G(13T(32;2)]. (10

The four vertex functions appearing here are defined as follows:
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G112 G112 567112 5G1(12)

Fo(lz;a):m, Fso(lz;g):m, Fp(12;3)=m, FS(12;3):W. (11)

The subscripts on the vertex functions are chosen to indicat® the two types of spin-orbit interactions among the elec-
clearly their physical meaning. ThuBy, indicating the ver-  trons. These contributions were not considered in Ref. 6.
tex associated with particle-densit¥,so, with spin-orbit (c) Random-phase approximation: Here the vertex func-
density,I',, with particle-momentum density, ardd, with tions are derived by considering the Hartree contributions in
the spin density. The latter three are vector vertex functions=d- (6) and so the various vertex functions in K@) take on

The equations obeyed by these vertex functions are deducéglditional contributions. These equations can be solved as
by taking the appropriate functional derivatives of Eg),  they are algebraic in structure, as in the conventional case. It
which we will not display here in its full glory. In the next Suffices here to note that this approximation leads to

section however, we will outline some commonly employed Screening” of the interactions in Eq13), thus leading to a
approximation schemes generalized “screened exchange scheme.” This generaliza-

tion includes terms arising not only from the density fluctua-
tions but also from the spin density, momentum density due
IV. APPROXIMATION SCHEMES: GENERAL to orbital motion, as well as spin-momentum density fluctua-
tions in addition to cross correlations between them, which
have not been considered in the literature before, it appears.
Many of these contributions are zero if we consider nonmag-
etic systems and systems with center of symmetry. These
'spects will be discussed in a subsequent, more detailed pa-

The following approximation schemes and their conse
guences are worth noting:

(@) Mean-field approximation: This is the lowest order
scheme where all the vertex functions are set equal to zer
Even at this level, the single-particle Green function is

spinor, d_ue to the va_rious spin-orbit contributions in the (d) Random-phase approximation with exchange correc-
Hartree-like scheme given by E(), and must be solved (jons:  Here the exchange terms are included in setting up
self-consistently. This Green function gives us the Spectrumye equations for the various vertex functions, which then
of single-particle energies. We may point out that in Ref. 6,5pay integral equations, which have to be solved in conjunc-
third and fifth terms in their Hartree approximation are misS+jqn, with the Green function equations. We will relegate dis-

ing because they did not consider spin polarization of the. scion of these to another paper.

magnetic system. Also missing is the fourth term due to their T inclusion of phonon mediated spin-orbit interaction

neglect of spin-same orbit contribution. _proceeds by considering ion displacements in the electron
(b) Exchange only approximation: This is the leading i ang the single-particle spin-orbit interaction arising from
order approximation to the equations obeyed by the verteyq jons as considered in Ref. 6. Our technique for dealing

functions. They are with these contributions proceeds by adopting the Green

. _ . function technique to include these contributions in a gener-
I'p(12;3)~— 8(12) 8(13) = y4(12 . . ) . .

o(12;3) (12613 = %(12;3), alization of the self-consistent perturbation method given in
Tso(12;3)~ — 8(13)(py, X 1) 8(12) = 75o(12;3), Ref. 12. We not only derive the results given in Ref. 6 but

also find the appropriate screening of the spin-orbit contribu-
tion when spin polarization is included, even when only the
Coulomb interaction between electrons is taken into account,
showing that there is a screening contribution without invok-

Ip(12;3)~— 8(13)p,, 8(12) = ,(12;3), and

I's(12:3)~ - 75(12)5(13) = %5(12:3), 12) ing spin-other-orbit interaction. This was already seen in a
and the exchange only self-energy is then given by discussion of the phonon spectrum of magnetic systems in
Ref. 7.
3,(12)=ie*rc(12G=(12) In a fully relativistic formulation, it may be remarked, the

effects considered here would appear in a simple looking
elegant form, in terms of the four-current correlations, and
the corresponding vertex functions. When resolved in terms
of a nonrelativistic scheme, these become expanded in terms

+iug[Ve,rc(12]X [Py, 767(12)]

+2ipg[ Ve, vc(12 X [Py, 767(12)]

iV 12)1XTH. G<(12)]}- of particle current, particle density, spin density, spin-current
gl ’1VC( )] [prZ (1]}~ density with corresponding external four potential taking the
—2iMé{[Vrlvc(12)]X[f)rlG<(12)]}‘ . form of electric and magnetic fields, and the scalar and vec-

tor potentials. For our present purposes, our development
(13 suffices and is transparent. In the next section, we examine in

In obtaining this result we have integrated by parts Wheneveﬁjetall the random-phase approximation and its implications.
needed in the manipulation af functions and some well- V. RESULTS BASED ON RANDOM-PHASE
known vector identities. As with the Hartree approximation,

. e L . . APPROXIMATION
the various terms have similar significance: the first term is
the well-known exchange contribution due to Coulomb inter- Using Eq.(7) for the Hartree self-energy and the defini-
actions between electrons, while the last four terms are dugons of the four vertex functions in E¢L1), we see that the
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equation for each of them leads to four correlation functionssolutions are applicable more generally. By using the plane-
corresponding to the four densities contained therein as exvave scheme, we may be able to understand the physical
plained in Eq.(9). These equations, being algebraic, can allmeaning of the various contributions, which are here derived
be solved as in the magnetic cdddn this paper, we will  for the first time. We will present the details of the calcula-
illustrate these solutions for metallic magnetic systems wheréon for the vertex associated with the dendity and give
plane-wave solutions are pertinent. In a separate paper, whe final results for the rest of the vertex functions. This
will present the solutions in terms of the orbitals that takeinvolves four types of correlation functions defined in a man-
account of the one-particle spin-orbit potential so that thener similar to the ones in Ref. 11:

S S - _
XO'O(12)=—imtrG(ll+)=i d1d2 t{G(11)T(12;2)G(217)],

S . = - _
Xsoo(12)=—i mtr[(prlx T)G(11,+)]lr:1=|J d1d2 tr[(p,, ¥ NG(1YT(12;2)G(21" ) ]1/=1,

5 ) R — — = =
Xpo(12)=—i mtf[(prl)6(11’+)]1f—1=lf d1d2 trf (p;)G(1DTo(12,2)G(21" ") ]2/ 1,

and

S - - —
Xs’0(12)=—imtr[(f)G(lf)]:i d1d2 t](DG(1)To(12;2)G(21%)]. (14)

The first one is the particle density-particle density, the second, the spin-orbit density-particle density, the third, the momentum
density-particle density, and the last one is the spin density-particle density correlation functions. The first and the last ones
were introduced earlier in the study of the magnetic problem without spin-orbit etfe€tse vertex functio”, obeys the
equation, from the definition in Eq§l1) and(5), and those in Eq(14):

To(12;3)=70(12;3)— € f d2x0,0(23) vc(12) 8(1—2) — f d2x0,0(23)[ V', vc(12)]- (B X 7) 5(1-2)
+ u f 02X50,0(23) [V, vc(12)]6(1-2) + 23 f d2[V, vc(12)X xpo(23)]- 78(1-2)

+2uf f d2[V, vc(12) X xs0(23)]- By, 8(1-2). (15)
Further analysis of this equation and its solution is now presented in the plane-wave representation appropriate for metallic
systems as in Ref. 11. Thus we define, using the standard four-dimensional notation
4

(2m)*

d*k  dq
(2m* (2m)*

G(12)=f G(k)e*(t=2 r(12;3)=f I(k,q)ekit-2+al=3) (16)

and obtain the following expressions for the correlation functions defined iri15y.

) d*k
Xo,o(q):|J Wtf[G(k+Q)Fo(k,Q)G(k)].

) d*k
Xso,0(Q) =i f 2m)? tr{[(k+q) X 7]G(k+a)o(k,a)G(K)},

o d%
Xp,o(q):|J Wtr[(k+0|)G(k+CI)To(k,Q)G(k)],

and

. d*k
Xs,o(Q)Zlf Wtf[(T)G(k+Q)Fo(k,Q)G(k)], 17

Equation(15) then reads
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To(k,0)=—1—€?vc(a) Xo,o(d) —i £3vc(A) Xo.o DI (KX 7) - gl +i w3vc(A) - Xs0,0(a)

+2i 3 ve(DLAX Xpo(@) ] 7+ 2i ware(A)[AX Xs0(A)]-K. (18)

This expression in Eq(17) leads to the determination of the four correlation functions in terms of 16 types of correlation
functions of the Lindhard type:

[ d% [ d%
Ho,o(q):|J Wtr[G(kJrQ)G(k)], Ho,so(q)zlf Wtr[G(kJFQ)(kXT)G(k)],

[ d% o d%
T, (q) =i f 2 MOkt 76K, Mo p(a)=i f @ MB(k+ kG (K], (193
going with the equation fogg o:

Xo,o(q) = _Ho,o(Q) - VC(q)[eZHo,o(Q) +i MEQ' Ho,so(q)]Xo,o(Q) +i Mévc(q)no,o(q)Q'Xso,o(Q)
+2i ugve(@) o () - [aX Xp o(A) ]+ 2i nEve(A) o () - [GX X5 0(a) - (190
Similarly,

[ d% - o d%
Hso,o(q)zlf Wtr{[(k+Q)><T]G(k+Q)G(k)}, Hso,so(q):|j Wtr{[(k+CI)><T]G(k+Q)(k><T)G(k)},

- o d% . o d%k
Hso,s(Q):|f Wtr{[(k+q)><7-]G(k+q)1-G(k)}, Hso,p(q)zlj Wtr{[(k+Q)><T]G(k+CI)kG(k)},
(209
going with
Xso,o(q) =- Hso,o(q) - VC(Q)[eZHSO,O(Q) +i /-LEQ' ﬁso,so(Q)]Xo,o(q) +i MéVC(Q)Hso,o(Q)[q' Xso,o(q)]
+2i e @) TTs0,6(0) - [AX Xp,o( )] +21 5 c(@) T p(0) - [AX X 0] (20b)
) d*k - ] d*k
Hp,o(Q)Zlf (ZT)4U[(|<+Q)G(|<+Q)G(1<)], Hp,so(q)zlf Wtr[(k+Q)G(k+Q)(k><T)G(k)],
IR ) d*k - ) d*k
Hp,s(Q):lf Wtr[(k+q)6(k+q)76(k)], Hp,p(Q)=lf Wtr[(k+q)6(k+q)k6(k)], (219
going with
Xp,o(Q):_Hp,o(Q)_VC(q)[eZHp,o(q)+iﬂqu'ﬁp,so(q)]Xo,o(Q)+iMévc(q)np,o(q)[Q'Xso,o(Q)]
+2i g ve()IT, (@) [aX Xp o)+ 21 g re(@) T p(a) - [AX X0 @)]- (21b
[ d% . o d%
Mao(@=i | a6 B0, Tasa=i | -t 7G(k+ o) (kx HG(KI]
o . d*k o . d*k
Hs,s(Q)—lf (ZT)4U[7G(|<+Q)TG(|<)], Hs,p(Q)—lf Wtr[TG(k+Q)kG(k)], (2239
going with

Xs,o(q) =- Hs,o(q) - VC(Q)[eZHs,o(q) +i MZBq' ﬁs,so(q)]Xo,o(Q) +i ﬂZBVC(q)Hs,o(q)[q' Xso,o(q)]

+2i pave(D)ITs (@) - [AX Xp.o(A) ]+ 2i 3re(DTTs p(A) - [aX Xs.0(A)]. (22b)

These simultaneous linear equations for the four correlation functions can be solved in terms of the generalized Lindhard-like
functions introduced above and, in their turn, they determine the vertex fudgfiomo give an indication of the type of result

we would obtain, we here give an approximate solution of this problem, by observing for the present that the Coulomb term
is the most dominant while those appearing with the Bohr magneton are smaller in magnitude. This is strictly for purposes of
illustration only and more detailed examination of these equations will be relegated to another paper. Here we want to establish
that this study has important implications to magnetic properties of systems.
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Thus we have the following approximate results:
Xo.o(@)=—8"(DT50(q), Xsool®@=—51(a)s00(q),
Xp.ol@)=—e Y, 0(q), and xso(q)=—e"(a)sc(q),
where g(q) = 1+e2vc(q)H0,O(q)= RPA dielectric function. (23

This in turn gives the vertex functiohiy from Eq. (18) to be

Mo o(a)(gXK)- 7
To(k,)=¢"1q){ —1+iparc(a)| —a-Tgpoa)—2(qXT,e(@) 7| ¢ - (24)
—2(qX 7s0(q))-K

We should remark here that in a more complete theory, the random-phase approxifR&#rdielectric function would be
replaced by a more complete and complicated screening function and the expré23iarsd (24) would be much different
from those given here. These will be discussed in another paper. A similar calculation gives the other three vertex functions

of interest and we give them here without exhibiting their derivation as they are obtained in the same manner as was described
above.

Fo(12;3) = ¥54(12;3) — € f d2Xo,56(23) 7c(12) (1~ 2) — f d2X6,5o(23)[ V', vc(12)]- (B X 1) 8(1-2)
+ud f 02Xs050(23) [V, vc(12)]18(1—2)+ 23 f d2[V, vc(12)X Xp s 23)]- 76(1-2)

+ 204 [ 4V, ve(1D X 30 )15y, 51~ 2). (259

In the plane-wave representation, this is

Tso(k,q) = — (kX 7) — €2rc(0) Xo.so(A) — i #57c(@) Xo.sol DL (KX ) - q1+i wdrc(A) G- Xsos0(a)
+2i uBve(AX Xp.so(@)]- 7+ 2i w3re(D[AX Xs,50( D] - K. (25h)

The approximate results corresponding to ES) and(24) are then
Xosol @) ==&~ ()1, so(q),
Xsosd ==& A{Ts050(a) + € vc(ITsosoll0,0~ Msoolo,s0)}
Xpsol@=—&" AT, so(a) +vc(TTy sollo 0~ M oo 50}
and xsso(@) =~ (A){IT55o(0) +*rc(Tlssollo 0~ s oMo 50}
where g(q) = 1+62VC(Q)H0’O(Q): RPA dielectric function. (250

This gives to leading order in the interaction strengghgu2,

— (KX 7)(1+€2vc(a)TTo o d)) + €2re(A) o o(q)
iiOsO(q)(a><E)‘;

+iudve(@)| —g- g (@) —2(qX T, (@) - 7
—2(qx T4 () -k

Too(k,a)=e1(q) (250)

Similarly, we have
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I(12;3)= 7,(12;3)— € J d2X0,5(23) ve(12) 8(1-2) — puf f d2x0,p(23)[ Vs, 7c(12)]- (B, X 7) 8(1~2)
+ f d2Xs0p(23) [V, v6(12)]16(1~2) + 2413 f d2[V, ve(12)X Xp po(23)]- 78(1-2)

+ 204 [ 4V, ve(12 X ,(29)]-Br,5(1-2),

In the plane-wave representation, this is

(263

Fp(k1q): _k_eZVC(q)Xo,p(q)_iﬂévc(q)Xo,p(q)[(kX ) Q]+iﬂévc(q)(]';so,p((1)

+2i uBre(DLAX Xpp(D)]- 7+ 2i B (D[ AX Yo p(D)]-K.

(26b)
The approximate results corresponding to ES) and(24) are then

Xo,p(c])E - 8_1(Q)Ho,p(Q),
Xsop(@) =2 H(A){ITs0 () +€2rc(ITgo 1Mo 0~ Msg,0lMo )},
)?p,p(q)E - 871(q){ﬁ)p,p(q) + ezvc(ﬁp,pno,o_ Hp,oHo,p)}=

and xsp(a)=—&" ({115 p(q) +€?ve(ITg oo o — s oI, )},

where s(q)=1+e2vc(q)l'[0,o(q)=RPA dielectric function.

(260
To leading order in the interaction strengths, as before,

—(K)(1+€?ve(q) g o(q)) +€?re(q) T p(a)

70,0(Q)(qXK) - 7
o, N R - (260)
+ipgre(@)| —q-Igp(q) —2(gX 7, 5(Q)) - 7

—2(qx T, (q))-K

ok, q)=¢"%(q)
And finally,

Iy(12;3)= 7(12;3)— €2 f d2x0(23) vc(12) 8(1-2) — f d2x08(23)[V,,vc(12)]- (B, X 1) 8(1-2)
+ 1 f 02X50(23)- [V, vc(12)]8(1-2) + 245 f d2[V, 7c(12)% Xp<(23)]- 78(1-2)

+ 204 [ 4V, 0e(12)% 4542315y, 51~ 2).

(273
In the plane-wave representation, this is
To(k,q)=— 7= €2c(A) Xo,s(q) — i #5Vc(D) Xo (D[ (KX D) - ql+i nErc(A)a- Xso,s(d)
+2i pare(DaX Xp,s(A)] 7+ 2i wErc(A)[ X xs,s(a)] - k. (27b)

The approximate results corresponding to ES) and(24) are then
Xos(@)=—¢ (@), «(q),
Xeos(D)=—2"2(0){ITe0s(@) +€2rc(ITaoalTo o Mool o)},
Xp ()=~ ){ITp () + eIl Lo 0= 11, o1l o)},

and xss(@)=—e H(q){ITss(q) + e2vc(TgelTy o— Mg oy 6},

where s(q)=1+ezvc(q)Ho,o(q)=RPA dielectric function. (270
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And, again to leading order in the interaction strengths,

—<?>(1+e2vC<q)Ho;o(q3)t e?ve(q)Ip 4(q)
I, <(9) (g% K) - 7

+iugre(a)| —g-Tg(q)—2(gx1T, (q))-
—2(qxTTs(q) -k

I'(k,q)=¢"%q) (270

This derivation of the various vertex functions even within a simple RPA is significant because it gives us important
insights into the many-body contributions to “screening” of the various interactions and into the nature of the various
response functions that arise in this system. To bring the first point out, we now write the exchange-correlation self-energy, Eq.
(20), in the plane-wave representation:

, d*k’ , d*k’
Syc(k)= —|e2f 2" ve(k)G(k+ k’)FO(k,k’)+|2,u§f 2 ve(K ) (K’ XK) - 7G(K+k")To(k,k")
i2 2 d4k, ’ AYVL ’ i2 2 d4k, AY ’ ’
—i ,uBJ' @7 ve(k)G(k+K K- Tgo(k,K") —2i ,uBf 27 ve(KDK' - [7XG(k+K")Ip(K,k")]
22 d*’
—2i ,uBf (27)4vc(k’)G(kJrk’)(k’><k)~l“s(k,k’). (28
This expression clearly shows that the screenings of the various interactions are determined by the four vertex functions. As
in Sec. IV, we can now discuss several levels of approximations. Neglecting the vertex functions entirely is the “mean-field”

approximation discussed in Ref. 6 that we have commented upon already. The next level is to take the leading-order approxi-
mations to these vertex functions as in EtR). We thus obtain

— 1in2 d4k, ' ’ i2. 2 d4k, ’ ’ '

3, (K)=+ie f e ek )Gk k) i MBJ Gy Vel (K XK) - 76 (k+K')
122 d4k, ' ’ ’ 122 d4k, ' ' ’
+i “Bf @yt V(KGR (K xK)- 7421 MBJ 2yt vk XK - 76k )

2,2 [ 9K k")G(k+k') (k' xk
+2i Maf (zT)uc( )G(k+k")(k"XK)- 7. (29

It is important to note the orders of the spinor Green function The second point of interest in this development is the
and the Pauli matrix appearing in the above expressions. Isixteen types of correlation functions that appear in this sys-
the nonmagnetic case, with a scalar Green function, the seteém. This reflects the varied nature of physical mechanisms

ond and third terms cancel out leaving behind the last twdinderlying the two-particle interactions when the spin-orbit
combining into a single term. effects are included in our considerations. In physical terms,

In the next level of approximation, we use the approxi-they arise because the linear momentum and spin momentum

mate RPA vertex functions derived above in E26), which ~ Vectors can now be independently specified, and therefore
clearly shows the screening of the various terms in a cleaj’® Systém acquires chirality. This is specially important in
fashion. To leading order in the interaction strengths, only!€ Magnetic systems where such anisotropy is evident in the

the first term in Eq(29), the Coulomb interaction is screened domain structure, optical dichroism, etc. This also indicates
by the RPA dielectric function, while in the rest of the terms another important feature of a possible vector-spin density-

it is not. But, a more sophisticated approximation, beyonofunctional theory in contrast to the magnetic electron-gas

the simplified version of RPA presented here and not inspin-density—functional theory where one can only specify

terms of orders of interaction strengths, immediately showN€ component of the spin dgnsny, as in an Ising model of
that screening occurs in different forms for each of the termgnagneﬂsm. These features will be explored in a future paper.
in Eq. (29) acco_rding to th_e_f_orm of the interaction, as for VI. CONCLUDING REMARKS

example, the spin-susceptibility enhancement due to interac-

tions familiar in other contexts. This will be taken up for  In conclusion, we have here presented a theoretical frame-
study in another paper. work for incorporating spin-orbit effects in a many-body
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theory of itinerant magnetic systems. We have shown here a — 63 4(1)
variety of contributions, not present in nonmagnetic systems, Ves(r1) =| Vei(r,) + f d2 Ny Vei(r2)
that arise due to spin polarization and the spin-orbit interac- et 2

tion already within a simplified approximation of the RPA. ) ~ —o2.4(1)

More sophisticated integral equations for the vertex func- +| ugE(ry) - (pr X T)"'J d BE() 'E(@}
tions appear when we take the nonlocal exchange self-energy 2

in their construction. Much work needs to be done in the (30)

analysis of these equations along with their physical |mpI|—Here we have used the form appearing in E&}. From Eq.

cations. These considerations are expected to be of impoh) we see that the vertex functiond,, associated with
tance not only in the development of the vector-spin density- article-densitvl" with spin-orbit deﬁsit appear unon
functional theory of itinerant electron magnetism, but also in? ylso, P Y, app P

many of the new investigations of magnetic phenomena pal;:_>erform|ng the indicated functional derivatives. We may

. . . ; . ) then the plane-wave expressions given in Efd.an
ticularly in low-dimensional nanometric systems and in mag- €n use he plane-wave expressions give and

netic cluster materials. The development given here bringg?rib)lii?e\évoark ?g;?g‘;ggﬁstgjbggteun;ﬁll n ?\?eti"'mE\éeqim\;V'th
out the spin and spatial anisotropies in the system in an eEmd?ZSc) wepgee the different forr?ws of %lhg screening effects
egant way. Among the sixteen types of correlation function 9

that appear in this system, the ones corresponding to pure r the two terms. A detailed discussion of these will be

paricle density, spin density, and linear momentur densitf (22 1 B3 TR FAORE. T 8RR RS G LR ot
are familiar in separate physical contexts of dielectric, mag; P

netic, and electromagnetic response, respectively. But in thtge effective one-paruc!e patential .the electron experiences
s well as the two-particle correlations. We should also re-

present discussion, these, along with the new spin-orbit den?ﬁark that the nonlocal exchange correlation effects also con-
sity, add to the structure of the theory of itinerant electron 9

magnetism. To make this point explicit, consider as in Ref. 6tribute fo these in important ways, just as in the itinerant
. ~ e ) electron systems:

the one-particle termg,;, the(periodig potential due to the

ions in the system, an¥ly,, the spin-orbit contribution in

Eqg. (1) to be weak so that a perturbation treatment would ACKNOWLEDGMENTS
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