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Effect of finite size on the Kosterlitz-Thouless transition in two-dimensional arrays
of proximity-coupled junctions
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We have investigated the Kosterlitz-Thouless~KT! transition in a series of proximity-coupled Josephson
junction arrays of varying widths. Our results indicate that the KT transition in any experimentally realizable
sample is almost always obscured by the presence of thermally generated, finite-size-induced free vortices.
While the existence of these finite-size-induced free vortices has been known for some time, our work suggests
that they are much more prevalent and thus have a far greater effect on the transition than had been previously
thought. As a consequence of this, the vortex-unbinding transition temperatureTKT may not occur when the
experimentally measured current-voltage exponenta(T)53, but in fact may occur at significantly higher
temperatures. We present a detailed picture of these finite-size effects applied specifically to arrays, but which
may have implications for other two-dimensional systems.@S0163-1829~98!08101-6#
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I. INTRODUCTION

In 1979 Beasley, Mooij, and Orlando1 ~BMO! suggested
that the Kosterlitz-Thouless~KT! transition may be observ
able in two-dimensional~2D! superconducting systems
They showed that under certain conditions the relevant p
etration depthl'5l2/d ~where l is the bulk penetration
depth andd the sample thickness! could reach lengths com
parable to the sample size. This would allow vortices to
teract logarithmically2 over the entire sample, a necessa
condition for a KT transition to be seen.

In the more than one and a half decades of investiga
since that time, many groups have reported evidence for
behavior in a variety of 2D superconducting systems, incl
ing high-resistance granular films and arrays of Joseph
junctions.3 Recently, a whole new class of systems, the
prate superconductors, has been suggested as exhibit
KT transition.4 While many of the features of the KT trans
tion have been reported in these systems, many discrepa
remain to be explained.

One such discrepancy, which will be the focus of th
paper, involves the current-voltage (I -V) characteristics of a
2D superconductor. The KT theory predicts power-law b
havior in theI -V curves~i.e., V}I a(T)! for temperatures a
and below the KT transition temperatureTKT . Precisely at
TKT , the I -V exponenta(T) is predicted to be 3, with in-
creasing values as the temperature is lowered. This po
law behavior should persist to the limit of zero current. E
perimentalI -V curves, however, very often exhibit devia
tions from pure power-law behavior towards an Ohmic slo
570163-1829/98/57~2!/1154~10!/$15.00
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@a(T)51# at very low currents, precisely where they shou
not occur. Often these deviations are dismissed as resu
from a small remnant magnetic field, or from instrumentati
or current noise.

In this paper we present evidence that deviations of
I -V curves from pure power-law behavior below the tran
tion temperature are caused by the presence of therm
generated free vortices that are not the result of the KT th
mal unbinding mechanism, but rather result from the sam
being of finite size. The existence of finite-size-induced fr
vortices was first noted by KT~Ref. 5! and BMO,1 and later
by Minnhagen6 for a 2D Coulomb gas. It has often bee
assumed, however, that the number of finite-size-indu
vortices is small and hence would have few experimenta
observable consequences. Our analysis suggests that t
not the case. Here we present a more detailed picture
finite-size effects applied specifically to arrays of Joseph
junctions, but which has broad implications for other 2
systems. Since the KT picture involves the transition from
low-temperature state in which only paired vortices exist t
high-temperature state in which free vortices occur,
would argue that the existence of free vortices belowTKT
means that the KT transition does not take place in the s
sense of a true phase transition~i.e., no free vortices below
TKT and free vortices aboveTKT!.

This strict interpretation of the definition of a phase tra
sition does not mean, however, that the KT vortex-unbind
mechanismdoes not occur and is not observable. If we i
nore the deviations at low current and simply extract theI -V
exponents from the power-law portion of theI -V curves
~which generally has been done for many years!, we fre-
1154 © 1998 The American Physical Society
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57 1155EFFECT OF FINITE SIZE ON THE KOSTERLITZ- . . .
quently obtain the expected jump ina(T) from 1 to 3 as
predicted by the KT model. Despite the presence of t
seemingly unambiguous signpost of the KT transition@i.e.,
the jump ina(T)#, our analysis indicates that the significa
presence of finite-size-induced vortices may mask the pow
law exponent, making the simple approach to analyzing
I -V curves problematic and leading to an incorrect estim
of the transition temperature.

The remainder of the paper will be organized as follow
In Sec. II we present data from a systematic study
proximity-coupled Josephson junction arrays to examine
effect that finite array size has on theI -V characteristics. In
Sec. III we briefly review the relevant details of the K
theory, and in Sec. IV we derive an expression for the fr
vortex density in finite-sized arrays. We discuss the exp
mental consequences of the free-vortex density in Sec. V
apply the results to experimental data on finite-sized arr
in Sec. VI. Finally, we summarize the overall conclusions
the paper in Sec. VII.

II. EXPERIMENTAL RESULTS ON FINITE-SIZED
ARRAYS

Our measurements were performed on a series
proximity-coupled Josephson junction arrays consisting o
square lattice of niobium crosses decorating a continu
gold film ~see Fig. 1!. The cross arms were nominally 1mm
wide with a gap distance between adjacent cross arm
approximately 0.7mm; the lattice constant for all the array
was 10mm. The arrays were 300 crosses long in the dir
tion of the current, but varied in width~i.e., transverse to the
current!, with the samples studied beingW5300, 200, 100,
75, 50, 20, 15, 10, and 3 crosses wide.7 Transport measure
ments~dc! were made by applying a square-wave excitat

FIG. 1. Scanning electron micrograph of a typical array show
the superconducting cross geometry.
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current (f 513 Hz) and synchronously detecting the volta
using a transformer-coupled lock-in amplifier. The noi
floor of the system was approximately 0.5 nV. The tempe
ture was controlled to better than61 mK and the Earth’s
magnetic field was canceled using a small superconduc
solenoid, yielding an ambient magnetic field of less than
mOe. All measurements were taken inside a ground
shielded screened room.

In Fig. 2 we show theI -V characteristics for four array
of widths 300, 75, 50, and 20 crosses. TheI -V curves for
each sample are shown at various temperatures, sp
roughly 0.1 K apart. As the data are plotted logarithmical
a straight line denotes power-law behavior and the slope
the curve is theI -V exponenta(T). An I -V curve with a
slope of one indicates Ohmic behavior. The heavy black l
in each plot indicates a slope of 3, which, in the KT theory8,9

is the zero-current slope of theI -V curve at the transition
temperatureTKT . However, several of theI -V curves in Fig.
2 identified with the heavy black line display a ‘‘tail’’ at low
currents which deviates from a slope of 3. In addition,
will show in Sec. VI that a measured slope of 3 in the da
does not necessarily imply that one isat the KT transition
temperature or even that such a transition exists. Thus we
reluctant to label this temperature the KT transition tempe
ture. For the purposes of discussion, however, it will be u
ful to defineTa53 as the temperature at which the power-la
portion of theI -V curve displays a slope of 3.~In the ab-
sence of finite-size effects, we would normally identi
Ta535TKT .! For the four arrays shown here,Ta53 is mea-
sured to be 2.55, 2.48, 2.32, and 3.22 K for theW5300, 75,
50, and 20 arrays, respectively.

Focusing on theI -V curves at and belowTa53 , the data
for the W5300 array exhibit behavior indicative of a KT
transition: Ohmic behavior at high temperatures follow
by a sudden jump to power-law behavior with a slope of 3
the transition temperature. The power-law slopes of 3
greater arise out of the noise floor and persist over sev
decades, with the slope increasing as the temperature is
creased. Note, however, that the data for theI -V curve at
Ta53 begins to deviate from a strict power law at the lowe
currents, bending towards an Ohmic~linear! slope. Although
this variation is slight, deviations of this kind or muc
greater are usually observed in 2D arrays10 and are often
dismissed as resulting from a small remnant magnetic fi
or instrumentation noise. By contrast in our arrays, where
remnant field is small and careful filtering has been done,
believe that these deviations indicate the presence of a
tional free vortices in the array that are not created via
KT vortex-unbinding process, but result from the arrays b
ing of finite extent.

The deviation from power-law behavior appears to be s
nificant ~if small! only at Ta53 for the W5300 array; for
lower temperatures, theI -V curves are still power-law-like
to the lowest measurable currents. As the arrays bec
more narrow, however, these deviations persist to lower t
peratures and become more pronounced. TheW575 array
data show a significant tail, nearly Ohmic in slope, forI -V
curves fromTa53 to the lowest temperature measured. T
W550 array shows data similar in character to theW575
array, but the tail is less dramatic~i.e., less obviously Ohmic!
and disappears at the lowest temperatures rather than pe

g
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FIG. 2. Current-voltage characteristics as a function of temperature for four arrays of width~a! 300 crosses,~b! 75 crosses,~c! 50 crosses,
and~d! 20 crosses. Each array is 300 crosses long. The current is divided by the widthW of each array~in units of amperes/junction!. The
solid line in each plot indicates a slope of 3.
f

,
-

is
h

ne
t
se

p

l

ior

y

io
u
c

-
is-
-
in

k

sig-
ith
of

eir
er-
uld
In

ught

the

he

of
ing as it does in theW575 array. The different behavior o
the Ohmic tails in theW575 and 50 arrays~indeed, between
any two arrays! will be explored more fully in Sec. V.

We could proceed then, as has been commonly done
ignoring the tail region of theI -V curves and simply mea
sure the slope of the power-law region. Figure 3~a! shows the
measuredI -V exponents from thepower-law regionof the
curve as a function of temperature for theW5300, 75, and
50 arrays. Each array exhibits a significant jump ina(T)
from 1 to 3, butTa53 is suppressed and the transition
broadened as the arrays become narrower. This effect
been observed previously in randomly disordered arrays
the percolation threshold10 and is a result of the arrays no
being fully renormalized as the KT scale length decrea
with decreasing width.7,13 If instead we measure eachI -V
exponent in the limit of zero current~as the KT prescription
dictates!, we obtain quite a different picture@Fig. 3~b!#. The
W5300 array still shows a significant jump, though su
pressed slightly in temperature. No jump occurs for theW
575 and 50 arrays. TheW550 array shows only a gradua
rise that seems to continue unchanged througha(T)53,
while the W575 array displays essentially Ohmic behav
to the lowest temperature measured.

Figures 3~a! and 3~b! point out a long-standing quandar
concerning where to measure the correctI -V exponent. We
believe that the deviations from pure power-law behav
belowTKT are not the result of data collection conditions, b
are intrinsic to the finite-sized nature of the sample. As su
by

as
ar

s

-

r
t
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ignoring the Ohmic tail region of theI -V curve and measur
ing the power-law region alone can lead to potentially m
leading and incorrect values ofa(T) and, hence, a misinter
pretation of the KT transition. We will return to this issue
Sec. VI.

The I -V curves of Figs. 2~b! and 2~c!, along with the
correspondinga(T) data in Fig. 3~b!, are reminiscent of re-
cent measurements by Repaciet al.11 in which they reported
the absence of a KT transition in single unit-cell-thic
YBa2Cu3Ox ~YBCO! films. In that work they showI -V
curves with power-law slopes greater than 3 that have
nificant Ohmic tails. They argue, in a manner consistent w
ours, that the Ohmic tail results from a thermal population
free vortices. The absence of the KT transition in th
YBCO films may not be surprising since the cuprate sup
conductors are not in the dirty limit and, as such, sho
display little enhancement of the bulk penetration depth.
contrast, Josephson junction arrays have long been tho
to display a KT transition.

Finally, theW520 array@Fig. 2~d!# shows power-lawI -V
curves with an Ohmic tail at and just belowTa53 , but the
I -V curves quickly turn over to a downward curvature as
temperature is lowered. In theW515 array~not shown!, the
I -V curves are concave downward with no trace of t
power-law behavior seen in wider arras. In fact, theI -V
characteristics of theW515 array strongly resemble theI -V
characteristics of a single junction. Thus theW520 array is
the narrowest array in which the experimental signature
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57 1157EFFECT OF FINITE SIZE ON THE KOSTERLITZ- . . .
vortex unbinding, the power-lawI -V characteristic, can be
observed. This result is consistent with a simple thermo
namic argument.~See the Appendix.! The details of this will
be explored in a future paper.7

III. REVIEW OF KT THEORY

In order to discuss the origin of the Ohmic tail, it is in
structive to review the various length scales important to
KT transition. It is well known that the KT transition is onl
rigorously defined for an infinite 2D system where the v
tices interact logarithmically.1,5,6 In two dimensions, the per
pendicular penetration depthl' gives the length scale below
which the screening current density varies2 as 1/r ; for r
.l' , the screening current density varies as 1/r 2. In order
to assure that vortices will interact logarithmically over
lengths,l' must be larger than the sample sizeL, so that we
must satisfy the conditionl'@L→` to be in the thermody-
namic limit.

Above the transition temperatureTKT , an important pa-
rameter is the vortex correlation lengthj1(T), which defines
the size of the fluctuations associated with the phase tra
tion or, alternatively, gives the average distance between
vortices. For 2D arrays,j1(T) is12

j1~T!5C1a0 exp$@C2 /~T82TKT8 !#1/2%, ~1!

where C1 and C2 are of order unity anda0 is the lattice
constant of the array. A dimensionless temperatureT8
52ekBT/\ i c(T) is used to remove the strong temperatu

FIG. 3. a(T) vs T for the W5300, 75, and 50 arrays~a! as
measured from the power-law regime only and~b! as measured in
the limit of low applied current.
-

e

-
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dependence of the single-junction critical currenti c(T) from
the temperature dependence of the underlying phase tra
tion.

As T approachesTKT from above,j1 increases, meaning
that, on average, free vortices are separated by greater
tances. Vortices separated by distances less thanj1 are, on
average, bound. In the presence of asmallexternal excitation
current, the free vortices will move, creating a flux-flow r
sistance, and hence we see an Ohmic response in the cu
voltage characteristics. AsT is decreased further,j1 contin-
ues to grow, more and more vortices become bound in pa
and the magnitude of the flux-flow resistance is reduced.
TKT , j1 becomes infinite, meaning that all vortices a
bound and the resistance disappears; a true zero-resis
state occurs in the limit of zero current.

A finite applied current will unbind the most weakl
bound vortices~those ‘‘infinitely’’ far apart!, leading to dis-
sipation, so that even though a true zero-resistance state
ists, it also has zero critical current. This current-induc
vortex unbinding is a non-Ohmic, power-law process@V(I )
}I a(T) wherea(T).3#; no Ohmic behavior should exist be
low TKT at sufficiently low current densities. AtTKT the KT
theory specifies that the exponent of the power law
a(TKT)53, and we have the so-called ‘‘universal jump’’ i
the superfluid density—since for sufficiently small curren
an Ohmic regime exists just aboveTKT , a plot of a(T) vs
temperature will show a jump from 1 to 3 atTKT . Note the
emphasis on small currents. Sufficiently large currents
unbind pairs, leading to a non-OhmicI -V curve even above
TKT @although in this regime 1,a(T),3#.

One important complication for ‘‘infinite’’ samples in
volves the renormalization of the vortex-antivortex intera
tion. This is dealt with extensively elsewhere,13 and so we
will simply sketch the results here. For all temperatur
above zero, there will exist bound vortex-antivortex pa
separated by a range of distances, both large and small.
tex pairs separated by large distances will be screened
smaller, polarizable pairs that exist between a particu
bound vortex and antivortex. The effect is to reduce
strength of the interaction that binds pairs separated by
greatest distances. These weakly bound pairs have the g
est effect on the measurements, in terms of the tempera
and current dependence. This renormalization of the inte
tion is accounted for by introducing into the expression
the vortex interaction potential@U(r )52pEj (T)ln(r/a0)# a
length-dependent effective dielectric constante(r ), so that
U(r ) becomes

U~r !5E
r 85a0

r 85r 2pEj~T!

e~r 8!
d~ lnr 8!, ~2!

whereEj (T)5\ i c(T)/2e is the bare or unrenormalized vo
tex coupling energy andr is the vortex separation. The vor
tex interaction potential is often written UP(r )
52pEJ* (T)ln(r/a0), whereEj* (T) is known as the renormal
ized coupling energy. At infinite distances, intervening vo
tex pairs of all sizes modify the vortex interaction and t
interaction is fully renormalized; the essential features of
KT transition, however—the universal jump and the squa
root cusp in the current-voltage exponent—are preserved
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Any experimental system will be of finite size and th
maximum separation between bound vortices will be limi
by the sample size. In addition, only vortex pairs separa
by distances less than the sample size can participate in
screeninge(r ) and the transition will not be fully renormal
ized. The effect of finite sample size on the renormalizat
of the transition can be dealt with in a calculable way, a
this has been done by Kadin, Epstein, and Goldman.13 As the
sample size is reduced from infinity, the universal jump b
comes broadened anda(T) no longer jumps from 1 to 3 a
the transition, but rather exhibits a more gradual crosso
This effect has been observed and verified experimenta10

and isnot the effect that we will discuss here.

IV. FINITE-SIZE CUTOFF

Another more serious effect of finite sample size is
existence of thermally generated free vortices in the arraat
all nonzero temperatures. This is in contrast to the true KT
transition where there are no thermally generated free vo
ces forT<TKT .

In a finite array the free energy to create a single vorte
finite for all temperatures. The probability of creating a fr
vortex is given byPf;exp@2F(T)/kBT#, whereF(T) is the
free energy of a vortex. The number of possible places fo
vortex of core sizea0 to exist in a square array of sizeL2 is
L2/a0

2 so that we may write the positional entropy asS(L)
5kB ln(L2/a0

2). Hence the free energy isF(T)5U(L)
2TS(L)5pEJ* ln(L/a0)2kBT ln(L2/a0

2). For the probability
we then have

Pf;expH 21

kBT
F lnS L

a0
D pEJ*

2 lnS L

a0
D 2kBTG J . ~3!

Simplifying,

Pf;S L

a0
D 2pEj* /kBTS L

a0
D 2

;S L

a0
D 222TKT /T

, ~4!

where the final form follows fromkBTKT5pEJ* (TKT)/2. For
temperatures belowTKT , pEJ* /kBT.2 and hencePf50 for
an infinite specimen. For a finite sample, however,Pf is
neverzero for nonzero temperatures. AtTKT , Eq. ~4! tells us
that the probability of creating a single free vortex is of ord
1, regardless of the sample size. However, as we shall s
below, for an infinite sample the free-vortexdensityis zero at
T5TKT .

Equation~4! does not give us the actual free-vortex de
sity needed to compute a flux-flow resistance. The fr
vortex densitynf8 for a finite sample will be proportional to
the probability of creating a free vortex, and so we use
~4! to write

nf85b1S L

a0
D 222TKT /T

, ~5!

whereb1 is a parameter to be determined~with dimensions
of inverse area!.

We may obtain another expression for the finite-siz
free-vortex densityabove TKT in the following manner. For a
KT transition in an infinite sample,nf5bj1

22(T) for T
d
d
he

n
d

-

r.

e

ti-

is

a

r
w

-
-

.

d

.TKT and nf50 for T<TKT . ~Note that hereb is a
constant.! Using a finite-size scaling assumption, we m
write,

nf85
b

j1
2 ~T!

f ~L/j1!, ~6!

wheref (L/j1) is a scaling function to be determined. Sin
j1 diverges atTKT , but nf850 only for L5`, Eq. ~6! im-
plies f (L/j1)5b2(j1 /L)2 for L!j1 . ~Here b2 may in
fact be temperature dependent.! Thus, atTKT , Eq. ~6! be-
comes

nf8~T5TKT!5
bb2~T!

L2 . ~7!

Comparing Eqs. ~5! and ~7! at T5TKT gives b1
5bb2(T)/L25b(T)/L2 ~where b[bb2!, and Eq.~5! be-
comes

nf85
b~T!

a0
2 S L

a0
D 2pEJ* /kBT

. ~8!

Note that for an infinite sample the free-vortex densitynf8
goes to zero atTKT as it should. The parameterb(T) can
be determined by a rigorous calculation of the energy o
vortex pair in equilibrium with an externally applie
current. This treatment yields14 b(T)>b0 exp(2pEJ* /kBT)
5b0 exp(2p/T8), where b0 may be taken as constant fo
small currents.

The previous analysis applies to finite-sized samples
which l'@L.a0 . A similar analysis can be done for th
case in whichl' is smaller than the sample size, that
when L.l'.a0 . In this case it is possible for vortices t
exist in the sample that are separated by more thanl' and,
hence, are not logarithmically bound. Thusl' , rather than
L, becomes the relevant length scale in the free energ
create a single vortex, and we replaceU(L) with U(l')
5pEJ* ln(l' /a0) in Eq. ~3!. We can thus write a more gen
eral expression for the finite-size-induced free vortex den
as

nf85
b0

a0
2 e2pEJ* /kBTS La0

D 2pEJ* /kBT

, ~9!

whereL[min$L,l'% and we have substituted in the expre
sion for b(T). While it is often assumed thatl' is larger
than the sample size, the actual value is highly dependen
individual sample characteristics. For proximity-coupled
rays, l' varies as 1/i c(T), where i c(T) depends exponen
tially on the temperature;12 weakly coupled arrays with
smaller single junction critical currents will have larger pe
pendicular penetration lengths than strongly coupled arra
As the temperature is lowered from aboveTKT , it is quite
possible for an array sample to havel' cross over and be
come smaller than the sample size near the KT vort
unbinding temperature. This crossover will be reflected
the free-vortex densitynf8 .

We pause here to clarify the distinction between the fr
vortex densitynf as normally used in a KT context andnf8 as
defined in Eq.~9!. The free-vortex densitynf refers to ther-
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57 1159EFFECT OF FINITE SIZE ON THE KOSTERLITZ- . . .
mally unbound free vortices generated via the KT vorte
unbinding mechanism. It is nonzero only aboveTKT , and is
technically applicable only in the thermodynamic limit.
contrast,nf8 refers to all thermally generated free vortice
those generated via the KT vortex-unbinding mechan
aboveTKT and those generated by finite-size effects at
finite temperatures. Thusnf8 is never zero for any finite-size
sample, except at zero temperature.

V. EXPERIMENTAL CONSEQUENCES

The KT vortex-unbinding transition occurs in sampl
wherel'.L@a0 . Thus the finite size ofL, l' , or both,
and the resulting finite-size-induced free vortices will hav
profound effect on experimental observations. Figure 4 ill
trates the finite-sized unbinding mechanism. In region I te
peratures are sufficiently aboveTKT that vortex-antivortex
pairs are created easily with average separations that
large compared to the lattice constanta0 . The KT correla-
tion lengthj1 is small in this regime~on the order ofa0! so
that all but the closest pairs are unbound. In this regi
effects of finite-sized-induced vortices are not observa
since all vortex pairs are unbound via the KT mechani
anyway. ThusI -V curves for temperatures in region I follow
the predicted KT behavior.

As the temperature is lowered towardTKT , j1 grows
quickly, eventually meeting and exceeding the cutoff len
scaleL[min$L,l'% ~region II!. For ‘‘infinite’’ samples, vor-
tices separated by less thanj1 should be bound, while vor
tices separated by distances greater than this length re
unbound, but will eventuallybecomebound asT decreases
The existence of the cutoff, however, means that the
vortex densitynf8(T) will have a temperature dependence
given in Eq.~9!. In practice, theI -V curves in region II will
strongly resemble the regular KT behavior: an Ohmic
gion at the lowest currents and power-law behavior with

FIG. 4. Diagram indicating the temperature dependence of
KT coherence lengthj1 and the different regions of the transitio
for an array of finite width.
-
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slope less than 3 at higher currents. The major differenc
that the Ohmic region will have a higher resistance result
from the presence of the finite-size-induced vortices. Wh
the I -V curves could in principle be analyzed to extract th
excess resistance, this would require an exact knowledg
nf , which is difficult to obtain.

The most profound and easily observed effect of fini
size-induced free vortices occurs in region III, at and bel
TKT . Herenf becomes zero, whilenf8 remains nonzero. This
results inI -V curves with a low-current Ohmic tail below th
nominalTKT ~or Ta53!, which can be clearly seen in Fig.
for our W575, 50, and 20 samples. The observed tail m
not in fact have a slope of 1, but may appear as a devia
from pure power-law behavior towards Ohmic behavi
however, it must eventually have a slope of 1 at low enou
current. The exact slope of the tail will depend on the volta
resolution of the measurement apparatus, the value ofnf8 ,
and the coupling energy of the array which defines the
unbinding temperature. Since the KT transition involves
establishment of quasi-long-range order resulting from
disappearance of all free vortices, the presence of free v
ces destroys the phase transition in a strict sense, e
though the KT vortex-unbinding mechanism may still be
evidence. In addition, the free vortices obscure the signat
of the KT vortex-unbinding mechanism by modifying th
apparent slopes of theI -V curves, as will be shown below.

VI. COMPARISON WITH EXPERIMENT

The KT vortex-unbinding mechanism in the thermod
namic limit (l' ,L→`) gives rise toI -V curves belowTKT
that have a power-law dependence. The temperature de
dence of the power-law exponenta(T) below TKT was pre-
dicted to be8,12,15

a~T!5
pEJ~T!

kBTec
115

p

T8ec
11, ~10!

where T8 is the reduced temperature andec is the fully
renormalized value of the dielectric constant just below
transition. Minnhagenet al.16 have predicted a slightly dif-
ferent form

a~T!5
2pEJ~T!

kBTec
215

2p

T8ec
21, ~11!

and recent measurements on both conventional proxim
coupled arrays and high-Tc weak-link arrays have shown
better agreement with this expression.17 We will thus use the
Minnhagen result in the ensuing discussion; we note they
equivalent atT5TKT . ~The results of this section do no
depend explicitly on which model we use: however, t
Minnhagen model seems to yield better results.!

Finite-size-induced free vortices will contribute a flu
flow voltage of the formV5a0

2r nnf8I[R8I in addition to the
usual KT voltage characteristics. The total voltage signal w
approximately be the sum of a power-law signal and a fl
flow resistance signal or

V5@a1I a~T!1a2~a0
2r nnf8!I #, ~12!

e



r

in
o

e
if
e

-la
is
a

b
e
-

d

e

o
b-

ur

er,
this

or

.

re-

th
th

to

1160 57S. T. HERBERTet al.
wherea1 is temperature dependent with units of V/~A!a(T),
a2 is dimensionless, andua1u andua2u are of the same orde
of magnitude.

The expression given by Eq.~12! is perhaps empirically
obvious, especially in light of the Ohmic tails present
many I -V curves, yet its experimental consequences are
ten not fully appreciated. Typically,I -V power-law behavior
is experimentally observable over only one or two decad
The presence of a significant Ohmic tail can easily mod
the observed slope of theI -V curve, masking the true valu
of the I -V exponent in the power-law region. Figure 5~a!
shows theI -V curve identified asTa53 for theW575 array,
where the dashed line shows a fit to the observed power
region of theI -V curve with a slope of 3. The solid curve
an attempt to reproduce theI -V data by adding together
resistive portion ~i.e., IR8! and the power-law portion
(I a(T)), both of which are shown as dotted lines. As can
seen, a slope much greater than 3 is needed to reproduc
actual data, meaning that theI -V curve experimentally iden
tified asTa53 is actually well belowTKT . In Fig. 5~b! we
show theI -V curve forT52.80 K, and a fit to the observe
power-law region~dashed line! yields a slopea(T)52.34.
As such, we would normally take thisI -V curve as being
above the KT transition temperature and extract the slop
the lower current region.~That is, we wouldnot ignore the
Ohmic tail.! A reproduction of the data~solid line!, how-
ever, requires a power-law slope of approximately 3~dotted
line!, meaning that this temperature is actually very near
below TKT . Thus simply extracting the slopes of the o
served power-law region of theI -V curves will yield incor-
rect results.

This masking of the power-law exponent will occ

FIG. 5. I -V curves from theW575 array at~a! T52.48 K and
~b! T52.80 K. Circles show actual data, and solid lines show
simulatedI -V curve at each temperature. The dotted lines show
power-law component and the flux-flow component~i.e., IR8!,
which add together to give the simulatedI -V curve @see Eq.~12!#.
The dashed lines show a fit to the apparent power-law region
each curve.
f-

s.
y

w

e
the

of

r

whenever a significant Ohmic tail is observed in theI -V
curve. Slight deviations from power-law behavior, howev
should not greatly affect the measured slope. To explore
effect more fully, we used Eq.~12! to produce simulatedI -V
curves for theW575 array, which displays significantI -V
tails at all temperatures, and for theW550 array, which
shows significant deviations from power-law behavior f
temperatures nearTa53 and only slight deviations for low
temperatures. These simulatedI -V curves are shown in Figs
6 and 7 where we have also replotted the data Figs. 2~b! and
2~c! to enhance the low-current and low-temperature
gimes. The simulated curves~solid lines! show very good
qualitative agreement with the data in each case.

e
e

of

FIG. 6. Current-voltage characteristics for theW550 array. The
solid circles denoteTa53 ~the dotted line shows a slope of 3 fitted
the power-law regime!. The solid lines show simulatedI -V curves
as discussed in the text. The unlabeled temperatures areT52.35,
2.32, 2.23, 2.17, 2.14, and 2.10 K, respectively.

FIG. 7. Current-voltage characteristics for theW575 array.
Solid circles denoteTa53 . Solid lines show simulatedI -V curves
~see text!. The unlabeled temperatures areT52.40, 2.30, 2.20, and
2.10, respectively.
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It is not surprising that we can fit the data of Figs. 6 a
7 with an equation consisting of the sum of a linear port
and a power-law portion. On closer inspection, however,
~12! is much more restrictive. The exponenta(T) and the
free-vortex densitynf8 are connected through their mutu
dependence on the Josephson coupling energyEJ

@5\ i c(T)/2e#, which in turn can be expressed in terms
the single-junction critical currenti c(T), a measurable quan
tity. Thus, by determiningi c(T), we should be able to gen
erate the entireset of I -V curves which reproduce the fea
tures of the I -V curves of finite-sized arrays. The K
transition temperature can be determined from the condi
that12 i c(TKT)/TKT>26.706 nA/K, leaving onlyb0 @the con-
stant from Eq.~9!# as an adjustable fitting parameter. On
chosen, however,b0 remains the same for allI -V curves.
~The values ofa1 , a2' log10 V/log10 Ia(T) are extracted from
the data at the top of the power-law region of eachI -V curve
and serve only to match the position of the simulatedI -V
curves to the data. They do not otherwise modify the sh
of the I -V curve.!

The proximity-coupled Josephson junctions of the ki
used in our arrays are known to follow the de Gennes
pression for the critical current in the dirty limit,18

i c~T!5 i c~0!S 12
T

Tcs
D 2

expF2
d

z
T1/2G , ~13!

where Tcs is the superconducting electrode transition te
perature (Tcs59.0 K), i c(0) is the zero-temperature critica
current, d is the junction gap spacing, andz
5@\vFl /3kB#1/2 ~vF is the Fermi velocity, andl is the mean
free path!. The single-junction critical currenti c(T) is usu-
ally extracted from theI -V characteristics of an array a
temperatures well belowTKT . For the arrays shown here
Ta53 (;TKT) occurred at temperatures near the lower lim
of our experimentally accessible temperature range, ma
it impossible to extract low-temperature critical current
formation from the experimental data. We were able to
tract thetemperature dependenceof i c(T) by fitting to the
temperature dependence of the measured values ofa(T). We
then usei c(0) as a fitting parameter19 ~in addition tob0! to
yield the best result for the simulatedI -V curves. We note
here that the simulatedI -V curves shown in Fig. 5 were
generated using the same parameters as those in Fig. 7

We do not wish to overemphasize the importance of
apparent agreement of our simulatedI -V curves with the
data, especially in light of our apparent two-parameter ‘‘fit
We do point out, however, that oncei c(0) and b0 were
determined, the only thing that varied from oneI -V curve to
the other was the temperature.

We now return to the issue of the masking of theI -V
exponent. Figure 8 shows the measuredI -V exponents, as
obtained by a fit to the power-law portion of the curve, f
theW550 array@Fig. 8~a!# and theW575 array@Fig. 8~b!#.
The solid lines show thea(T) values used in the simulate
I -V curves. For theW550 array, a noticeable differenc
between the measured and simulated values ofa(T) exists
only for thoseI -V curves with a significant deviation from
power-law behavior. For lower-temperatureI -V curves
where the deviation is small, the two values ofa(T) are
virtually the same. For theW575 array, all of theI -V curves
.

f

n

e

x-

-
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g

-

e

display a substantial Ohmic tail and the difference betwe
the measured and simulateda(T) values is quite large. The
KT vortex-unbinding temperatureTKT is given by the tem-
perature at which the simulateda(T)53 since this repre-
sents theI -V slope for an infinite sample~i.e., one in which
the flux-flow resistance due to finite-size-induced free vo
ces goes to zero!. For theW575 arrayTKT is about 14%
higher thanTa53 , where the measureda(T)53.

The effect of finite-size-induced vortices on theI -V
curves is embodied in the second term in Eq.~12!, which we
may label as a finite-size-induced flux-flow resistanceR8
5a0

2r nnf8 . We use this to explore the role that the samp
size plays in the appearance of the Ohmic tail. Since i
nearly impossible to fabricate arrays of different sizes w
exactly the same coupling energy, we do this by examin
the effect that varying the sample size has on simulatedI -V
curves while keeping the coupling energy constant. We s
with the same parameters and coupling energy tempera
dependence used for the simulatedI -V curves for theW
550 array, and we substitute a width ofW5300 ~instead of
W550! for L in Eq. ~9!. The corresponding effect~of in-
creasing the sample size! on theI -V curves is seen in Fig. 9
where the solid lines are the simulatedI -V curves for a wider
(W5300) array, but the data points are the same as show
Fig. 5 for theW550 array.@We emphasize again that th
W5300 simulated data shown here is merely an extensio
the W550 array to a larger width and is not to be confus
with the W5300 array data shown in Fig. 2~a!, which has a
different coupling energy.# Note that the Ohmic tail for
Ta53 (52.32 K) in the simulated wider array~solid line! is
practically nonexistent.

Notice, also, in Fig. 9 that the lowest-temperature sim

FIG. 8. a(T) vs temperature for~a! theW550 array and~b! the
W575 array. Solid circles show data as extracted from the pow
law portion of theI -V curves. The solid lines represent values us
in the simulatedI -V curves of Figs. 6 and 7.
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1162 57S. T. HERBERTet al.
lated I -V curve shows little effect of increasing the samp
width. This is the result ofnf8 being dependent onL
5min(L,l'); as the temperature is lowered,i c(T) increases
and l' @}1/i c(T)# decreases, eventually becoming smal
thanL. Thus, below a certain temperature, all arrays with
same coupling-energy temperature dependence, regardle
their size, will have a similar resistive tail. This implies th
simply fabricating much larger arrays will not necessar
decrease the number of finite-size-induced vortices. La
arrays mean thatl' will become smaller than the samp
size at a higher temperature. Only in making very wea
coupled large arrays, so thatl' remains relatively large a
low temperatures, can the number of finite-size-induced
vortices be reduced so that we will observeI -V curves with
no Ohmic tail belowTKT .

The actual shape, then, of theI -V characteristics in Jo
sephson junction arrays depends in a complicated way on
array size and coupling-energy temperature dependence
W575 array has a relatively weak temperature depende
and, because it is narrow, has a large finite-size-induced f
vortex Ohmic tail. Consequently, the true slope of theI -V
curve is masked and the nominal vortex-unbinding tempe
ture occurs well above the temperature at which anI -V
curve with a measured slope of 3 is observed. On the o
hand, theW550 array has a smaller resistive tail than t
W575 array, even though it is narrower, because its m
stronger coupling-energy temperature dependence cause
free-vortex density to decrease more precipitously. The re
is that a measured slope of three occurs very near to
nominal vortex-unbinding temperature. This complex dep
dence on coupling strength is one reason why in theW
550 array the Ohmic tail disappears more quickly with te
perature and is less noticeable than for theW575 array.

The masking of the power-law exponent may call in
question the validity of our method of determiningi c(T)
from the temperature dependence ofa(T). In the case of the
W550 array, the coupling-energy temperature dependen

FIG. 9. I -V curves illustrating the effect of finite size at consta
coupling strength. The solid lines areI -V curves using the hypo
thetical R8 for an array 300 crosses wide (r n526 mV). Open
circles show data for theW550 array as shown in Fig. 2~c!.
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sufficiently strong that onlyI -V curves very nearTKT have
an appreciable Ohmic tail and thus have a power-law ex
nent that is appreciably masked.I -V curves well belowTKT
are only slightly modified, and the measured values ofa(T)
should be very close to the nominal values. Fitting to t
low-temperature measured values should yield the ac
temperature dependence ofa(T). ~The results of the simu-
lated I -V curves of Fig. 6 seem to bear this out.! In the
case of theW575 array, the coupling-energy temperatu
dependence, and consequently the temperature depend
of R8, is sufficiently weak that all measuredI -V curves are
modified by the presence of an Ohmic tail in a similar wa
and thus the temperature dependence ofa(T) is preserved.
One can imagine an intermediate case, however, in which
masking ofa(T) is highly temperature dependent. In such
case~and, indeed, as a general case!, the temperature depen
dence of the coupling energy could not be extracted from
measured values ofa(T) and i c(T) would need to be deter
mined independently.

VII. SUMMARY

Any finite-sized array will have free vortices present at
nonzero temperatures. The actual number of free vorti
and the corresponding effect on the electrical transport pr
erties of the array, depends in a complex manner on the
of the array and the coupling-energy temperature dep
dence. The appearance of an Ohmic tail inI -V curves at and
below TKT , in the form of a deviation from pure power-law
behavior at low currents, is a clear indication that the pr
ence of free vortices cannot be neglected and that the
transition is not strictly observed. In addition, the existen
of an Ohmic tail inI -V curves at and belowTKT means that
the power-law exponent may be significantly modified fro
its nominal value. As such, the measured values ofa(T) will
not give a true picture of vortex unbinding and further ana
sis may be required. These results will apply to other fin
2D systems, such as superconducting granular films
high-temperature cuprate superconductors, so that care
be taken when analyzingI -V curves.

Note added in proof:Simkin and Kosterlitz have recentl
examined the issue of finite-size effects in arrays us
renormalization group analysis and numerical simulati
Their results are consistent with those shown here.20
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APPENDIX

For a rectangular array of lengthL and widthW ~both in
units of the array lattice constanta0!, we may use a simple
thermodynamic argument to obtain arough estimate of the
critical width for which an array crosses over from two-
one-dimensional behavior. An array will exhibit one
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dimensional behavior when thermal fluctuations cause an
tire row of width W to phase slip. The change in energy f
this event will beDErow5W(2EJ), and the entropy associ
ated with a row phase slipping isDSrow5kBln(L). The
change in the free energy of the array for this process is t

DF row52WEJ2kBT ln~L !. ~A1!

For our purposes we may approximateEJ'(2/p)kBTKT so
that

DF row5W
4

p
kBTKT2kBT ln~L !. ~A2!

If we let W5L→`, we see thatDF row is always greater
than zero; hence, this event will not occur. For fini
samples, however, there will exist some crossover temp
tureTrow , such that forT.Trow , the array will exhibit large
numbers of row switching events~1D behavior!, while for
T,Trow , there will be relatively few row switching event
en-
r

us

e
ra-

~2D behavior!. If we setDF row50, Eq. ~A2! becomes

W5S Trow

TKT
D p

4
ln~L !54.5S Trow

TKT
D , ~A3!

where the second expression comes from substitutinL
5300 for our arrays. IfTrow@TKT , the array will appear two
dimensional, while ifTrow!TKT , the array will appear one
dimensional. SettingTrow5TKT , we obtain W54.5 as a
rough estimate of the width of the array for which the cro
over from 2D to 1D behavior occurs. This value will b
modified slightly by the renormalization of the vortex inte
action. In Eq.~A1!, we should have used the renormaliz
coupling energyEJ* 5EJ /ec , resulting in an increase in th
estimated value of the crossover width by a factor ofec . As
ec is typically on the order of 2 for arrays, this would resu
in an approximate doubling of the previous estimate. T
compares favorably with the observed width ofW515.
-
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