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Effect of finite size on the Kosterlitz-Thouless transition in two-dimensional arrays
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We have investigated the Kosterlitz-Thould®8) transition in a series of proximity-coupled Josephson
junction arrays of varying widths. Our results indicate that the KT transition in any experimentally realizable
sample is almost always obscured by the presence of thermally generated, finite-size-induced free vortices.
While the existence of these finite-size-induced free vortices has been known for some time, our work suggests
that they are much more prevalent and thus have a far greater effect on the transition than had been previously
thought. As a consequence of this, the vortex-unbinding transition tempefigigmmay not occur when the
experimentally measured current-voltage expore(it)=3, but in fact may occur at significantly higher
temperatures. We present a detailed picture of these finite-size effects applied specifically to arrays, but which
may have implications for other two-dimensional syste[5§163-182@08)08101-§

[. INTRODUCTION [a(T)=1] at very low currents, precisely where they should
not occur. Often these deviations are dismissed as resulting

In 1979 Beasley, Mooij, and Orland¢BMO) suggested from a small remnant magnetic field, or from instrumentation

that the Kosterlitz-ThoulesgKT) transition may be observ- Or current noise.

able in two-dimensional(2D) superconducting systems.  In this paper we present evidence that deviations of the

They showed that under certain conditions the relevant perl-V curves from pure power-law behavior below the transi-
etration depth\, =\?/d (where \ is the bulk penetration tion temperature are caused by the presence of thermally
depth andd the sample thicknes®ould reach lengths com- 9enerated free vortices that are not the result of the KT ther-
parable to the sample size. This would allow vortices to in-al unbinding mechanism, but rather result from the sample

teract logarithmically over the entire sample, a necessarybe'?g of f|n|te;(_5|§e. Ihg sxitencfe of fln(;teB—lazoel—mdéJclzetd free
condition for a KT transition to be seen. vortices was first noted by KTRef. 5 an » anda 1ater

In the more than one and a half decades of investigatiortl)y Minnhagefi for a 2D Coulomb gas. It has often been

since that time. manv arouns have reported evidence for K ssumed, however, that the number of finite-size-induced
behavior | T ¢ yngD P dp " ¢ incl dvortices is small and hence would have few experimentally
penhaviorin a variety o superconducting systems, INCIUCG, e aple consequences. Our analysis suggests that this is
ing high-resistance granular films and arrays of JosephsoH

: 2 ot the case. Here we present a more detailed picture of
junctions: Recently, a whole new class of systems, the Cusinite _sjze effects applied specifically to arrays of Josephson

prate superconductors, has been suggested as exhibiting g\ctions, but which has broad implications for other 2D
KT transition” While many of the features of the KT transi- systems. Since the KT picture involves the transition from a
tion have been reported in these systems, many discrepancigsy-temperature state in which only paired vortices exist to a
remain to be explained. high-temperature state in which free vortices occur, we
One such discrepancy, which will be the focus of thiswould argue that the existence of free vortices belbyy
paper, involves the current-voltage-¥) characteristics of a means that the KT transition does not take place in the strict
2D superconductor. The KT theory predicts power-law be-sense of a true phase transitifre., no free vortices below
havior in thel-V curves(i.e., Vc13() for temperatures at Tyr and free vortices abovExr).
and below the KT transition temperatufg;. Precisely at This strict interpretation of the definition of a phase tran-
Tkr, the l-V exponenta(T) is predicted to be 3, with in- sition does not mean, however, that the KT vortex-unbinding
creasing values as the temperature is lowered. This powenechanisndoes not occur and is not observable. If we ig-
law behavior should persist to the limit of zero current. Ex-nore the deviations at low current and simply extractlthé
perimentall-V curves, however, very often exhibit devia- exponents from the power-law portion of theV curves
tions from pure power-law behavior towards an Ohmic slopgwhich generally has been done for many ygavge fre-
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current §=13 Hz) and synchronously detecting the voltage
using a transformer-coupled lock-in amplifier. The noise
floor of the system was approximately 0.5 nV. The tempera-
ture was controlled to better thah1l mK and the Earth’'s
magnetic field was canceled using a small superconducting
solenoid, yielding an ambient magnetic field of less than 0.5
mOe. All measurements were taken inside a grounded,
shielded screened room.

In Fig. 2 we show thd-V characteristics for four arrays
of widths 300, 75, 50, and 20 crosses. TIh¥ curves for
each sample are shown at various temperatures, spaced
roughly 0.1 K apart. As the data are plotted logarithmically,
a straight line denotes power-law behavior and the slope of
the curve is thd-V exponenta(T). An |-V curve with a
slope of one indicates Ohmic behavior. The heavy black line
in each plot indicates a slope of 3, which, in the KT thebty,
is the zero-current slope of tHeV curve at the transition
temperaturd 1. However, several of the 'V curves in Fig.

2 identified with the heavy black line display a “tail” at low
currents which deviates from a slope of 3. In addition, we
will show in Sec. VI that a measured slope of 3 in the data
does not necessarily imply that one&asthe KT transition
temperature or even that such a transition exists. Thus we are
reluctant to label this temperature the KT transition tempera-

FIG. 1. Scanning electron micrograph of a typical array showingture. For the purposes of discussion, however, it will be use-
the superconducting cross geometry. ful to defineT,_5 as the temperature at which the power-law

portion of thel-V curve displays a slope of 3In the ab-
guently obtain the expected jump &(T) from 1 to 3 as sence of finite-size effects, we would normally identify
predicted by the KT model. Despite the presence of thisT,_3;=Tkr.) For the four arrays shown herg,_ is mea-
seemingly unambiguous signpost of the KT transitios.,  sured to be 2.55, 2.48, 2.32, and 3.22 K for We- 300, 75,
the jump ina(T)], our analysis indicates that the significant 50, and 20 arrays, respectively.
presence of finite-size-induced vortices may mask the power- Focusing on thé-V curves at and below,_5, the data
law exponent, making the simple approach to analyzing théor the W=300 array exhibit behavior indicative of a KT
|-V curves problematic and leading to an incorrect estimateransition: Ohmic behavior at high temperatures followed
of the transition temperature. by a sudden jump to power-law behavior with a slope of 3 at

The remainder of the paper will be organized as follows:the transition temperature. The power-law slopes of 3 or
In Sec. Il we present data from a systematic study ofgreater arise out of the noise floor and persist over several
proximity-coupled Josephson junction arrays to examine thelecades, with the slope increasing as the temperature is de-
effect that finite array size has on the/ characteristics. In  creased. Note, however, that the data for kh¢ curve at
Sec. Il we briefly review the relevant details of the KT T,_; begins to deviate from a strict power law at the lowest
theory, and in Sec. IV we derive an expression for the freeeurrents, bending towards an Ohnglimear slope. Although
vortex density in finite-sized arrays. We discuss the experithis variation is slight, deviations of this kind or much
mental consequences of the free-vortex density in Sec. V angreater are usually observed in 2D arfdyand are often
apply the results to experimental data on finite-sized arraydismissed as resulting from a small remnant magnetic field
in Sec. VI. Finally, we summarize the overall conclusions ofor instrumentation noise. By contrast in our arrays, where the
the paper in Sec. VII. remnant field is small and careful filtering has been done, we
believe that these deviations indicate the presence of addi-
tional free vortices in the array that are not created via the
KT vortex-unbinding process, but result from the arrays be-
ing of finite extent.

Our measurements were performed on a series of The deviation from power-law behavior appears to be sig-
proximity-coupled Josephson junction arrays consisting of anificant (if small) only at T,_5 for the W=300 array; for
square lattice of niobium crosses decorating a continuouwer temperatures, thieV curves are still power-law-like
gold film (see Fig. 1 The cross arms were nominallyum  to the lowest measurable currents. As the arrays become
wide with a gap distance between adjacent cross arms ahore narrow, however, these deviations persist to lower tem-
approximately 0.7um; the lattice constant for all the arrays peratures and become more pronounced. he75 array
was 10um. The arrays were 300 crosses long in the direcdata show a significant tail, nearly Ohmic in slope, feY
tion of the current, but varied in widtfi.e., transverse to the curves fromT,_5 to the lowest temperature measured. The
curren), with the samples studied beiMy=300, 200, 100, W=50 array shows data similar in character to he=75
75, 50, 20, 15, 10, and 3 crosses widEransport measure- array, but the tail is less dramatice., less obviously Ohmijc
ments(dc) were made by applying a square-wave excitationand disappears at the lowest temperatures rather than persist-

II. EXPERIMENTAL RESULTS ON FINITE-SIZED
ARRAYS
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FIG. 2. Current-voltage characteristics as a function of temperature for four arrays of(®i800 crossedb) 75 crossesc) 50 crosses,
and(d) 20 crosses. Each array is 300 crosses long. The current is divided by theWvioftleach arrayin units of amperes/junctionThe
solid line in each plot indicates a slope of 3.

ing as it does in th&V/=75 array. The different behavior of ignoring the Ohmic tail region of the-V curve and measur-
the Ohmic tails in théV= 75 and 50 arrayéndeed, between ing the power-law region alone can lead to potentially mis-
any two arrayswill be explored more fully in Sec. V. leading and incorrect values afT) and, hence, a misinter-
We could proceed then, as has been commonly done, byretation of the KT transition. We will return to this issue in
ignoring the tail region of thé-V curves and simply mea- Sec. VI.
sure the slope of the power-law region. Figufe)3hows the The |-V curves of Figs. &) and Zc), along with the
measured -V exponents from th@ower-law regionof the  correspondinga(T) data in Fig. 8b), are reminiscent of re-
curve as a function of temperature for té=300, 75, and cent measurements by Repatiall! in which they reported
50 arrays. Each array exhibits a significant jumpaifT) the absence of a KT transition in single unit-cell-thick
from 1 to 3, butT,_5 is suppressed and the transition is YBa,CusO, (YBCO) films. In that work they show -V
broadened as the arrays become narrower. This effect hasirves with power-law slopes greater than 3 that have sig-
been observed previously in randomly disordered arrays neanificant Ohmic tails. They argue, in a manner consistent with
the percolation thresholland is a result of the arrays not ours, that the Ohmic tail results from a thermal population of
being fully renormalized as the KT scale length decreasefree vortices. The absence of the KT transition in their
with decreasing widtf*® If instead we measure eadhV ~ YBCO films may not be surprising since the cuprate super-
exponent in the limit of zero curreriés the KT prescription conductors are not in the dirty limit and, as such, should
dictates, we obtain quite a different pictufd-ig. 3(b)]. The display litle enhancement of the bulk penetration depth. In
W=2300 array still shows a significant jump, though sup-contrast, Josephson junction arrays have long been thought
pressed slightly in temperature. No jump occurs for ¥de to display a KT transition.
=75 and 50 arrays. Th&/=50 array shows only a gradual  Finally, theW= 20 array{Fig. 2d)] shows power-law-V
rise that seems to continue unchanged throagf)=3, curves with an Ohmic tail at and just beloly_3, but the
while the W=75 array displays essentially Ohmic behavior |-V curves quickly turn over to a downward curvature as the
to the lowest temperature measured. temperature is lowered. In th&/= 15 array(not shown, the
Figures 3a) and 3b) point out a long-standing quandary |-V curves are concave downward with no trace of the
concerning where to measure the corredt exponent. We power-law behavior seen in wider arras. In fact, th&/
believe that the deviations from pure power-law behaviorcharacteristics of th#&/= 15 array strongly resemble ttheV
below T+ are not the result of data collection conditions, butcharacteristics of a single junction. Thus te=20 array is
are intrinsic to the finite-sized nature of the sample. As suchthe narrowest array in which the experimental signature of
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7 - - - . dependence of the single-junction critical curreg) from
6 3 : VWV:(S’O a) | the temperature dependence of the underlying phase transi-
0. ~O— W=50 tion. . |
5| z>‘<v>_ i As T approached ¢t from above £, increases, meaning _
N ‘Q.“ ° that, on average, free vortices are separated by greater dis-
—~ 4r “‘A KX 1 tances. Vortices separated by distances less ¢haare, on
% - <’foA ”-._. average, bound. In the presence ahaallexternal excitation
] "Qj’"’""" P T current, the free vortices will move, creating a flux-flow re-
5L ‘\0_ ] sistance, and hence we see an Ohmic response in the current-
T voltage characteristics. AB is decreased furtheg,, contin-
1+ A, £ 8 ¢} ues to grow, more and more vortices become bound in pairs,
and the magnitude of the flux-flow resistance is reduced. At
b = = Tkr, &+ becomes infinite, meaning that all vortices are
o : Yoae b) | bound and the resistance disappears; a true zero-resistance
- > W =50 state occurs in the limit of zero current.
5. @ i A finite applied current will unbind the most weakly
< '*-.' bound vorticeqthose “infinitely” far apar), leading to dis-
4t 0 ' . sipation, so that even though a true zero-resistance state ex-
E:_;, \<> ists, it also has zero critical current. This current-induced
3 , < ‘-._. vortex unbinding is a non-Ohmic, power-law proc¢¥$l)
.1 \ 5 . | oc| &T) wherea(T)>3]; no Ohmic behavior should exist be-
?2O low Ty at sufficiently low current densities. Atct the KT
1P A A 4 LERG 4 theory specifies that the exponent of the power law is
- a(Tkr) =3, and we have the so-called “universal jump” in
02.0 212 214 216 218 3.0 the superfluid density—since for sufficiently small currents
TK) an Ohmic regime exists just aboVgy, a plot ofa(T) vs

temperature will show a jump from 1 to 3 @k, . Note the
FIG. 3. a(T) vs T for the W=300, 75, and 50 array&) as  €MPhasis on small currents. Sufficiently large currents can
measured from the power-law regime only ail as measured in  unbind pairs, |?ad|U9 to a non-OhnlieV curve even above
the limit of low applied current. Tkt [although in this regime £a(T)<3].
One important complication for “infinite” samples in-
vortex unbinding, the power-law-V characteristic, can be Volves the renormalization of the vortex-antivortex interac-
observed. This result is consistent with a simple thermodytion. This is dealt with extensively elsewhéreand so we

namic argumentSee the Appendix.The details of this will ~ Will simply sketch the results here. For all temperatures
be explored in a future papér. above zero, there will exist bound vortex-antivortex pairs

separated by a range of distances, both large and small. Vor-
tex pairs separated by large distances will be screened by
smaller, polarizable pairs that exist between a particular
In order to discuss the origin of the Ohmic tail, it is in- bound vortex and antivortex. The effect is to reduce the
structive to review the various length scales important to thetrength of the interaction that binds pairs separated by the
KT transition. It is well known that the KT transition is only greatest distances. These weakly bound pairs have the great-
rigorously defined for an infinite 2D system where the vor-€st effect on the measurements, in terms of the temperature
tices interact logarithmically>® In two dimensions, the per- and current dependence. This renormalization of the interac-
pendicular penetration depih gives the length scale below tion is accounted for by introducing into the expression for
which the screening current density vafiess 1f; for r  the vortex interaction potentidlu(r) =2=E;(T)In(r/aj)] a
>\, , the screening current density varies as’1in order  length-dependent effective dielectric consta(tt), so that
to assure that vortices will interact logarithmically over all U(r) becomes
lengths\ ;| must be larger than the sample sizeso that we
must sa}tisfy the condition | >L — to be in the thermody- = 2mE;(T)
namic limit. U(r)=f —_—
Above the transition temperatuiig;, an important pa- =€)
rameter is the vortex correlation length(T), which defines
the size of the fluctuations associated with the phase transwhereE;(T)=7i (T)/2e is the bare or unrenormalized vor-
tion or, alternatively, gives the average distance between freiex coupling energy and is the vortex separation. The vor-

lll. REVIEW OF KT THEORY

d(Inr’), 2

vortices. For 2D arrayst. (T) is*? tex interaction potential is often written Up(r)
=27E} (T)In(r/ag), whereE} (T) is known as the renormal-
£ (T)=Cjay exp{[C, /(T —Ti1) 13, (1)  ized coupling energy. At infinite distances, intervening vor-

tex pairs of all sizes modify the vortex interaction and the
where C; and C, are of order unity andy, is the lattice interaction is fully renormalized; the essential features of the
constant of the array. A dimensionless temperatlife KT transition, however—the universal jump and the square-
=2ekgT/%i (T) is used to remove the strong temperatureroot cusp in the current-voltage exponent—are preserved.
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Any experimental system will be of finite size and the >T,; and n;=0 for T<Txr. (Note that hereb is a
maximum separation between bound vortices will be limitedconstant. Using a finite-size scaling assumption, we may
by the sample size. In addition, only vortex pairs separategyrite,
by distances less than the sample size can participate in the
screeninge(r) and the transition will not be fully renormal- ,
ized. The effect of finite sample size on the renormalization N 2% f(L/E+), (6)
of the transition can be dealt with in a calculable way, and
this has been done by Kadin, Epstein, and Goldiias the ~ Wheref(L/&,) is a scaling function to be determined. Since
sample size is reduced from infinity, the universal jump be<. diverges afTxr, butn;=0 only for L=, Eq. (6) im-
comes broadened ara{T) no longer jumps from 1 to 3 at plies f(L/£,)=B,(¢, /L)? for L<&, . (Here B, may in
the transition, but rather exhibits a more gradual crossoveffact be temperature dependénthus, atTyy, EqQ. (6) be-
This effect has been observed and verified experimentally comes
and isnot the effect that we will discuss here

' bB,(T)
nf(T:TKT):T- (7)
IV. FINITE-SIZE CUTOFF

Another more serious effect of finite sample size is theComparing Egs. (5) and (7) at T=Tgr gives B;
existence of thermally generated free vortices in the aatay =bB2(T)/L?=B(T)/L? (where B=bp,), and Eq.(5) be-
all nonzero temperatured his is in contrast to the true KT COMEeS
transition where there are no thermally generated free vorti-

_ *
ces forT=Tr. ,_B(T) L wES IkgT ®
In a finite array the free energy to create a single vortex is = ag a

L

Ao

In

2

L\~ 7E] /keT

Qo

L
ao

L

P:~ J—
f a

—7E} kT

: (©)

L

dp

finite for all temperatures. The probability of creating a free
free energy of a vortex. The number of possible places for goes to zero allkr as it should. The parametgh(T) can
vortex of core sizey, to exist in a square array of siz¢ is  be determined by a rigorous calculation of the energy of a
—kg In(L¥a?). Hence the free energy i¥(T)=U(L) current. This treatment yield B(T)= B, exp(—7E}/ksT)
—TY(L)=mE} In(L/ag)—kgT In(L%a3). For the probability =50 exp(—a/T'), where B, may be taken as constant for
The previous analysis applies to finite-sized samples for
-1 2kgT which N\, >L>a,. A similar analysis can be done for the
P;~ex ﬁ
B whenL>\, >a,. In this case it is possible for vortices to
Simplifying, exist in the sample that are separated by more Maand,
2-2T /T L, becomes the relevant length scale in the free energy to
, (4) create a single vortex, and we repladéL) with U(\ )
where the final form follows fronkg Ty = 7E% (T«r)/2. For eral expression for the finite-size-induced free vortex density
temperatures beloWyr, mE¥/kgT>2 and henc®;=0 for S
neverzero for nonzero temperatures. Btr, Eq. (4) tells us @ o 7E} kgT
that the probability of creating a single free vortex is of order aé
below, for an infinite sample the free-vortdensityis zero at ~ WhereL=min{L,\,} and we have substituted in the expres-
T=Tkr. sion for B(T). While it is often assumed that, is larger
sity needed to compute a flux-flow resistance. The freeindividual sa.lmple characteristics._ For proximity-coupled ar-
vortex densityn/ for a finite sample will be proportional to @S, A, varies as 1¢(T), whereic(T) depends exponen-

vortex is given byP;~exf —F(T)/kgT], whereF(T) is the  Note that for an infinite sample the free-vortex density
|_2/ag so that we may write the positional entropy $d.) vortex pair in equilibrium with an externally applied
we then have small currents.

(3) case in which\, is smaller than the sample size, that is,
hence, are not logarithmically bound. Thns, rather than
=mEJIn(\, /ap) in Eq. (3). We can thus write a more gen-

an infinite specimen. For a finite sample, howevey, is
1, regardless of the sample size. However, as we shall show

Equation(4) does not give us the actual free-vortex den-than the sample size, the actual value is highly dependent on
the probability of creating a free vortex, and so we use Eqially on the temperatur€, weakly coupled arrays with

(4) to write smaller single junction critical currents will have larger per-
pendicular penetration lengths than strongly coupled arrays.
L \2-2Tkr /T As the temperature is lowered from abovg;, it is quite
ni=pB a_o , (5) possible for an array sample to haxge cross over and be-

come smaller than the sample size near the KT vortex-
where 8, is a parameter to be determinggith dimensions unbinding temperature. This crossover will be reflected in
of inverse area the free-vortex density; .

We may obtain another expression for the finite-sized We pause here to clarify the distinction between the free-
free-vortex densitpbove L+ in the following manner. For a  vortex densityn; as normally used in a KT context and as
KT transition in an infinite samplen;=b&;%(T) for T  defined in Eq(9). The free-vortex density; refers to ther-
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o slope less than 3 at higher currents. The major difference is
g that the Ohmic region will have a higher resistance resulting
from the presence of the finite-size-induced vortices. While
thel-V curves could in principle be analyzed to extract this
excess resistance, this would require an exact knowledge of
n¢, which is difficult to obtain.
i Cutoff at min{L A} The most profound and easily observed effect of finite-
! size-induced free vortices occurs in region lll, at and below
: j Tkr . Heren; becomes zero, while; remains nonzero. This
\ results inl-V curves with a low-current Ohmic tail below the
nominal Ty (or T,—3), which can be clearly seen in Fig. 2
~— HI— H: I for our W=75, 50, and 20 samples. The observed tail may
| N not in fact have a slope of 1, but may appear as a deviation
' + from pure power-law behavior towards Ohmic behavior;
TR however, it must eventually have a slope of 1 at low enough
current. The exact slope of the tail will depend on the voltage
resolution of the measurement apparatus, the value; of
and the coupling energy of the array which defines the KT
unbinding temperature. Since the KT transition involves the
Ter T establishment of quasi-long-range order resulting from the
disappearance of all free vortices, the presence of free vorti-
FIG. 4. Diagram indicating the temperature dependence of th%es destroys the phase transition in a strict sense, even
KT coherence Ign.gtt&. and the different regions of the transition though the KT vortex-unbinding mechanism may still be in
for an array of finite width. evidence. In addition, the free vortices obscure the signatures
of the KT vortex-unbinding mechanism by modifying the

mally unbound free vortices generated via the KT vortex-gnparent slopes of theV curves, as will be shown below.
unbinding mechanism. It is nonzero only abdMg;, and is

technically applicable only in the thermodynamic limit. In

contrast,n; refers to all thermally generated free vortices,

those generated via the KT vortex-unbinding mechanism The KT vortex-unbinding mechanism in the thermody-

aboveTyr and those generated by finite-size effects at allnamic limit (\, ,L— o) gives rise tol-V curves belowT

finite temperatures. Thuyg is never zero for any finite-sized that have a power-law dependence. The temperature depen-

sample, except at zero temperature. dence of the power-law exponeafT) below T, was pre-
dicted to b&'15

VI. COMPARISON WITH EXPERIMENT

V. EXPERIMENTAL CONSEQUENCES
- . . wE;(T) T
The KT vortex-unbinding transition occurs in samples a(T)= Te +1=T,€ +1, (10
where\, >L>a,. Thus the finite size of, \, , or both, B Tc c

and the resulting finite-size-induced free vortices will have avhere T’ is the reduced temperature arg is the fully

profound effect on experimental observations. Figure 4 illusyenormalized value of the dielectric constant just below the

trates the finite-sized unbinding mechanism. In region | teM3,ansition Minnhageret al® have predicted a slightly dif-
peratures are sufficiently abovir that vortex-antivorteX  ¢arent form

pairs are created easily with average separations that are

large compared to the lattice constant The KT correla- 27E,(T) o
tion length¢ ., is small in this regiméon the order of,) so a(T)= J ==
that all but the closest pairs are unbound. In this regime kgTec T'e

effects of finite-sized-induced vortices are not observable

since all vortex pairs are unbound via the KT mechanisnNd recent measurements on both conventional proximity-

anyway. Thud-V curves for temperatures in region | follow CouPled arrays and high; weak-link arrays have shown
the predicted KT behavior. better agreement with this expressidiwe will thus use the

As the temperature is lowered towaftky, £, grows Minnhagen result in the ensuing discussion; we note they are

quickly, eventually meeting and exceeding the cutoff Iengthequ'valent at.T.: Tir (The results of this s.ectlon do not
scaleC=min{L\, } (region 1. For “infinite” samples, vor-  depend explicitly on which model we use: however, the
tices separated by less than should be bound, while vor- Minnhagen model seems to yield better reshilts.

tices separated by distances greater than this length remajn Fifite-sizesinduced iree ;/omf:es VY'"_ contn.b.ute a flux-
unbound, but will eventuallpecomebound asT decreases. [1OW voltage of the formv=agr,n{|=R’l in addition to the
The existence of the cutoff, however, means that the fre&sual KT voltage characteristics. The total voltage signal will
vortex densityn/ (T) will have a temperature dependence as2PProximately be the sum of a power-law signal and a flux-
given in Eq.(9). In practice, thd-V curves in region Il will flow resistance signal or

strongly resemble the regular KT behavior: an Ohmic re- T )

gion at the lowest currents and power-law behavior with a V=[ay12 T+ ay(agrni)l], (12

1, (11)
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10—
ra) T=248K
107
10°F
E g5 ~—slope=4.15 s\
—_ ,’<.,'v—slope=3 ; E
E/ ——+— ] -
> |b) T=2.80K
107
10° 3 «——slope = 3.07 4
/«— slope =2.34
o I(A)
]0-9 PRI A PR | 1
10° 10° 10* 10°

A FIG. 6. Current-voltage characteristics for he=50 array. The
( ) solid circles denot& ,_; (the dotted line shows a slope of 3 fitted to
FIG. 5. 1-V curves from théV="75 array afa) T=2.48 K and the p_ower-law_ regime The solid lines show simulatddV curves
- . - as discussed in the text. The unlabeled temperatures a2 35,

(b) T=2.80 K. Circles show actual data, and solid lines show the2 32 293 217 214 and 2.10 K. respectivel
simulatedl -V curve at each temperature. The dotted lines show the ™™= === === == ) ' P y:
poyver-law component _and the_flux-flow compondhe., IR), whenever a significant Ohmic tail is observed in thé&/
which add together to give the simulated/ curve[see Eq(12)]. . - .

4 . : urve. Slight deviations from power-law behavior, however,
The dashed lines show a fit to the apparent power-law region o‘f: !
each curve. should not greatly affect the measured slope. To explore this
effect more fully, we used Eq12) to produce simulatet-V
curves for thew=75 array, which displays significahtV
tails at all temperatures, and for the=50 array, which

shows significant deviations from power-law behavior for

where a; is temperature dependent with units of &)™,
a, is dimensionless, andr;| and|a,| are of the same order

of magnitude. ; -
. . . . temperatures nedf,-; and only slight deviations for low
The expression given by E€L2) is perhaps empirically temperatures. Thesae 3éimulaﬂeéi/ curves are shown in Figs.

obvious, especially in light of the Ohmic tails present in 6 and 7 where we have also replotted the data Figs. ahd
many |-V curves, yet its experimental consequences are of

) ; i 2(c) to enhance the low-current and low-temperature re-
ten not fully appreciated. Typically;V power-law behavior - yines The simulated curvesolid lineg show very good
is experimentally observable over only one or two decade%qualitative agreement with the data in each case.
The presence of a significant Ohmic tail can easily modify
the observed slope of tHeV curve, masking the true value
of the I-V exponent in the power-law region. Figuréab
shows thd -V curve identified a3 ,_ 5 for the W=75 array,
where the dashed line shows a fit to the observed power-law
region of thel-V curve with a slope of 3. The solid curve is
an attempt to reproduce tHeV data by adding together a
resistive portion(i.e., IR’) and the power-law portion
(13My, both of which are shown as dotted lines. As can be ~
seen, a slope much greater than 3 is needed to reproduce the ;10_ F
actual data, meaning that theV curve experimentally iden-
tified asT,—5 is actually well belowTx;. In Fig. 5b) we
show thel-V curve forT=2.80 K, and a fit to the observed
power-law region(dashed ling yields a slopea(T)=2.34.
As such, we would normally take thisV curve as being
above the KT transition temperature and extract the slope of
the lower current region(That is, we wouldnot ignore the 10
Ohmic tail) A reproduction of the datésolid line), how-
ever, requires a power-law slope of approximatel§d8tted I(A)
line), meaning that this temperature is actually very near or
below Tyr. Thus simply extracting the slopes of the ob-  FI|G. 7. Current-voltage characteristics for tNé=75 array.
served power-law region of theV curves will yield incor-  Solid circles denotd,_5. Solid lines show simulatet+V curves
rect results. (see text The unlabeled temperatures are 2.40, 2.30, 2.20, and

This masking of the power-law exponent will occur 2.10, respectively.
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It is not surprising that we can fit the data of Figs. 6 and T
7 with an equation consisting of the sum of a linear portion a) 300 x 50
and a power-law portion. On closer inspection, however, Eq.
(12) is much more restrictive. The exponeafT) and the
free-vortex densityn; are connected through their mutual
dependence on the Josephson coupling eneky
[=hic(T)/2e], which in turn can be expressed in terms of
the single-junction critical current(T), a measurable quan-
tity. Thus, by determining.(T), we should be able to gen- ]
erate the entirsetof |-V curves which reproduce the fea-
tures of thel-V curves of finite-sized arrays. The KT
transition temperature can be determined from the condition
that'2i (Twr)/ Tkr=26.706 nA/K, leaving only3, [the con-
stant from Eq.(9)] as an adjustable fitting parameter. Once
chosen, however3, remains the same for allV curves.
(The values ofx;, a,~log;oV/log;o 13" are extracted from
the data at the top of the power-law region of ek curve
and serve only to match the position of the simulated
curves to the data. They do not otherwise modify the shape
of thel-V curve)

The proximity-coupled Josephson junctions of the kind
used in our arrays are known to follow the de Gennes ex-

pression for the critical current in the dirty lin#,
T 2
2
Lo T_cs) ex;{ a Z T } W=75 array. Solid circles show data as extracted from the power-
law portion of thel -V curves. The solid lines represent values used

where T is the superconducting electrode transition tem-in the simulated -V curves of Figs. 6 and 7.
perature T.s=9.0K), i;(0) is the zero-temperature critical
current, d is the junction gap spacing, and

a(T)

a(T)

d FIG. 8. a(T) vs temperature fofa) the W="50 array andb) the

ic(T)=i,(0) (13

display a substantial Ohmic tail and the difference between
=[#vel/3kg]*? (v is the Fermi velocity, andl is the mean the measured and simulatedT) values is quite large. The
free path. The single-junction critical current(T) is usu- KT vortex-unbinding temperatur&yr is given by the tem-
ally extracted from thd-V characteristics of an array at perature at which the simulatea{T)=3 since this repre-
temperatures well beloWyr. For the arrays shown here, sents thd-V slope for an infinite samplé.e., one in which
T.—3 (~Tky) occurred at temperatures near the lower limitthe flux-flow resistance due to finite-size-induced free vorti-
of our experimentally accessible temperature range, makinges goes to zejo For theW=75 array Ty is about 14%

it impossible to extract low-temperature critical current in- higher thanT,_3, where the measurea(T) = 3.

formation from the experimental data. We were able to ex- The effect of finite-size-induced vortices on theV
tract thetemperature dependenad i .(T) by fitting to the  curves is embodied in the second term in B®), which we
temperature dependence of the measured valuaglof We  may label as a finite-size-induced flux-flow resistariRe
then use .(0) as a fitting paramet&t (in addition to3,) to zagrnnf’ . We use this to explore the role that the sample
yield the best result for the simulatédV curves. We note size plays in the appearance of the Ohmic tail. Since it is
here that the simulatet-V curves shown in Fig. 5 were nearly impossible to fabricate arrays of different sizes with
generated using the same parameters as those in Fig. 7. exactly the same coupling energy, we do this by examining

We do not wish to overemphasize the importance of thehe effect that varying the sample size has on simulbt®d
apparent agreement of our simulated/ curves with the curves while keeping the coupling energy constant. We start
data, especially in light of our apparent two-parameter “fit.” with the same parameters and coupling energy temperature
We do point out, however, that ondg(0) and B, were  dependence used for the simulated/ curves for theWw
determined, the only thing that varied from olr& curve to =50 array, and we substitute a width\&f=300 (instead of
the other was the temperature. W=50) for £ in Eqg. (9). The corresponding effecof in-

We now return to the issue of the masking of th&/  creasing the sample sizen thel-V curves is seen in Fig. 9,
exponent. Figure 8 shows the measufted exponents, as where the solid lines are the simulated/ curves for a wider
obtained by a fit to the power-law portion of the curve, for (W= 300) array, but the data points are the same as shown in
the W=50 array[Fig. 8a)] and theW=75 array[Fig. 8b)]. Fig. 5 for theW=50 array.[We emphasize again that the
The solid lines show tha(T) values used in the simulated W= 300 simulated data shown here is merely an extension of
-V curves. For theW=50 array, a noticeable difference the W=50 array to a larger width and is not to be confused

between the measured and simulated valuea(d) exists
only for thosel-V curves with a significant deviation from
power-law behavior. For lower-temperatuleV curves
where the deviation is small, the two values affT) are
virtually the same. For th&/= 75 array, all of thé-V curves

with the W= 300 array data shown in Fig(&, which has a
different coupling energy. Note that the Ohmic tail for
Ta=3 (=2.32K) in the simulated wider arraigolid line) is
practically nonexistent.

Notice, also, in Fig. 9 that the lowest-temperature simu-
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10 sufficiently strong that only-V curves very neafl 1 have

an appreciable Ohmic tail and thus have a power-law expo-
nent that is appreciably maskddV curves well belowT 1

are only slightly modified, and the measured values(d¥)
should be very close to the nominal values. Fitting to the
low-temperature measured values should yield the actual
temperature dependence afT). (The results of the simu-

g lated |-V curves of Fig. 6 seem to bear this gutIn the

] case of theW=75 array, the coupling-energy temperature
dependence, and consequently the temperature dependence
of R’, is sufficiently weak that all measuréeV curves are
modified by the presence of an Ohmic tail in a similar way,

] and thus the temperature dependenca(df) is preserved.
2.05K One can imagine an intermediate case, however, in which the
masking ofa(T) is highly temperature dependent. In such a
case(and, indeed, as a general cagthe temperature depen-
dence of the coupling energy could not be extracted from the
measured values @f(T) andi (T) would need to be deter-
mined independently.

V(V)

10

10°

I(A)

FIG. 9. 1-V curves illustrating the effect of finite size at constant
coupling strength. The solid lines afeV curves using the hypo-
thetical R’ for an array 300 crosses wide ,&26 m()). Open VIl. SUMMARY

circles show data for the/=50 array as shown in Fig.(®. . . . .
Any finite-sized array will have free vortices present at all

) ) ) nonzero temperatures. The actual number of free vortices,
lated |-V curve shows little effect of increasing the sample ynq the corresponding effect on the electrical transport prop-
width. This is the result ofn; being dependent orC  erties of the array, depends in a complex manner on the size
=min(L,A,); as the temperature is lowered(T) increases of the array and the coupling-energy temperature depen-
and\, [*1/i,(T)] decreases, eventually becoming smallerdence. The appearance of an Ohmic tailW curves at and
thanL. Thus, below a certain temperature, all arrays with theoelowTKT, in the form of a deviation from pure power-law
same coupling-energy temperature dependence, regardlessfhavior at low currents, is a clear indication that the pres-
their size, will have a similar resistive tail. This ImpIIeS that ence of free vortices cannot be neg]ected and that the KT
simply fabricating much larger arrays will not necessarilytransition is not strictly observed. In addition, the existence
decrease the number of finite-size-induced vortices. Largesf an Ohmic tail inl-V curves at and beloW,; means that
arrays mean thak, will become smaller than the sample the power-law exponent may be significantly modified from
size at a higher temperature. Only in making very weaklyits nominal value. As such, the measured values(a? will
coupled large arrays, so that remains relatively large at not give a true picture of vortex unbinding and further analy-
low temperatures, can the number of finite-size-induced fregjs may be required. These results will apply to other finite
vortices be reduced so that we will obseitv® curves with 2D systems, such as superconducting granu|ar films and
no Ohmic tail belowTyy . high-temperature cuprate superconductors, so that care must

The actual shape, then, of theV characteristics in JO- pe taken when analyzinigV curves.
sephson junction arrays depends in a complicated way on the Note added in proofSimkin and Kosterlitz have recently
array size and coupling-energy temperature dependence. TeRamined the issue of finite-size effects in arrays using
W=75 array has a relatively weak temperature dependenagnormalization group analysis and numerical simulation.
and, because it is narrow, has a large finite-size-induced fregheir results are consistent with those shown Here.
vortex Ohmic tail. Consequently, the true slope of th¥
curve is masked and the nominal vortex-unbinding tempera-
ture occurs well above the temperature at which lav
curve with a measured slope of 3 is observed. On the other We wish to acknowledge Edward Harris and Richard
hand, thew=>50 array has a smaller resistive tail than theBojko for their assistance in fabricating the arrays. This work
W=75 array, even though it is narrower, because its muclvas supported in part by grants from the ONR under Con-
stronger coupling-energy temperature dependence causes t&ct No. 00014-92-J-168@Cincinnat), from the Air Force
free-vortex density to decrease more precipitously. The resulinder Grant No. F49620-92-J-004aryland, and by the
is that a measured slope of three occurs very near to th€ornell Nanofabrication Facility.
nominal vortex-unbinding temperature. This complex depen-
dence on coupling strength is one reason why in \itie
=50 array the Ohmic tail disappears more quickly with tem-
perature and is less noticeable than for e 75 array. For a rectangular array of lengthand widthW (both in

The masking of the power-law exponent may call intounits of the array lattice constaat), we may use a simple
guestion the validity of our method of determining(T) thermodynamic argument to obtainraugh estimate of the
from the temperature dependencea¢T). In the case of the critical width for which an array crosses over from two- to
W=50 array, the coupling-energy temperature dependence @e-dimensional behavior. An array will exhibit one-
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dimensional behavior when thermal fluctuations cause an eri2D behavioy. If we setAF,,,=0, Eq.(A2) becomes

tire row of width W to phase slip. The change in energy for

this event will beAE,,,=W(2E;), and the entropy associ- T - T

ated with a row phase slipping iaS,=kgIn(L). The w=( “°W) — In(L)=4.5( ’°W), (A3)
change in the free energy of the array for this process is thus Ter/ 4 Tkr

AF ow=2WE;—kgT In(L). (A1) where the second expression comes from substituting
: =300 for our arrays. I ,,,> Tk, the array will appear two
E](;rtour purposes we may approximdig= (2/m)kgTxr so dimensional, while ifT,,<T«r, the array will appear one
dimensional. Settingl,,,=Txt, we obtainW=4.5 as a
4 rough estimate of the width of the array for which the cross-
AFrOW=W; kgTkr—kgT In(L). (A2) over from 2D to 1D behavior occurs. This value will be
modified slightly by the renormalization of the vortex inter-
If we let W=L—x, we see thatAF,, is always greater action. In Eq.(Al), we should have used the renormalized
than zero; hence, this event will not occur. For finite coupling energye} =E;/e., resulting in an increase in the
samples, however, there will exist some crossover temperastimated value of the crossover width by a factoeof As
ture Ty, such that folT>T,,, the array will exhibit large ¢, is typically on the order of 2 for arrays, this would result
numbers of row switching eventdD behavio), while for  in an approximate doubling of the previous estimate. This
T<T,ow, there will be relatively few row switching events compares favorably with the observed widthW#= 15.
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