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Metamagnetism in theXXZ model with next-to-nearest-neighbor coupling

C. Gerhardt and K.-H. Mu¨tter*
Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
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~Received 4 December 1997!

We investigate ground-state energies and magnetization curves in the one-dimensionalXXZ model with
next-to-nearest neighbor couplinga.0 and anisotropyD (21<D<1) at T50. In between the familiar
ferro- and antiferromagnetic phase we find a transition region—called the metamagnetic phase—where the
magnetization curve is discontinuous at a critical fieldBc(a,D). @S0163-1829~98!01718-4#
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I. INTRODUCTION

Experimental results for the magnetization curves
FexMn12xTiO3, GdNi2Sb2, GdCu2Sb2, or Tb12xScxMn2
show a rapid increase~or discontinuity! if the appliedB field
exceeds a critical valueBc . For B.Bc the substance is al
most fully magnetized. This phenomenon is called ‘‘sp
flip’’ or ‘‘metamagnetic’’ transition.1–3 There have been
various attempts made to explain the ‘‘metamagnetic’’ tra
sition in the context of Ising-like Hamiltonians. It is the pu
pose of this paper to show that discontinuities in the mag
tization curve can be seen as well in the one-dimensio
spin-12 XXZ model with next-to-nearest-neighbor~NNN!
coupling

H~a,D,B!5J1(
i 51

N

Si
xSi 11

x 1Si
ySi 11

y 1DSi
zSi 11

z

1J2~Si
xSi 12

x 1Si
ySi 12

y 1DSi
zSi 12

z !1BSi
z

~1.1!

in the presence of a uniform external fieldB. We chose the
next-nearest-~NN! neighbor couplingJ1 to be antiferromag-
netic (J1.0) and use the notationa5J2 /J1. In the a2D
plane, we will primarily concentrate on the regim
a>0, 21<D<1.

The isotropic model withD51 and NNN couplinga has
been investigated by many authors.4–8 Most of these inves-
tigations focused on the transition9 from the ‘‘spin fluid
phase’’ a,ac to the dimer phasea.ac . The transition
point ac50.2411 . . . has recently been determined wit
high precision6,10 by means of conformal field theory an
renormalization group techniques.

The Hamiltonian witha51/2, D51 has been studied
first by Majumdar and Ghosh.11–13 They found that the
‘‘dimer states’’

uc&5
1

2N/4
@1,2#@3,4# ••• @N21,N#, ~1.2!

uf&5
1

2N/4
@2,3#@4,5# ••• @N,1# ~1.3!
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are eigenstates ofH(a51/2,D51,B50). Here

@ i ,i 11#5
1

A2
@x1~ i !x2~ i 11!2x2~ i !x1~ i 11!#

~1.4!

are nearest-neighbor~NN! valence bond states with total sp
zero, called dimers. van den Broek14 proved that the dimer
states are indeed ground states of the Hamiltonian at
‘‘Majumdar-Ghosh’’ point (a51/2,D51). Affleck,
Kennedy, Lieb, and Tasaki15,16 were able to show that the
dimer states are the only ground states and that there
finite gap to the first excited state.

Hamada, Kane, Nakagawa, and Natsume17 discussed uni-
formly distributed resonating valence bonds~UDRVB! in the
generalized railroad trestle model, which is equivalent to
isotropic linear Heisenberg chain with NN and NNN inte
actions. They found that for negativeJ1 andJ2521/4J1 the
UDRVB is the ground state which is degenerate with t
fully magnetized state with total spinS5Sz5N/2. As we
will show later this phenomenon also occurs for positi
values ofJ1 if the parametersa andD are properly chosen in
the Hamiltonian~1.1!.

Shastry and Sutherland discussed the frustrated m
with different interaction strengths inx,y, andz direction.18

The critical properties of the anisotropic model (DÞ1) in
the absence of an external fieldB have been elaborated b
Nomura and Okamoto.19 They confirmed that this model an
the quantum sine-Gordon model belong to the same uni
sality class. Tonegawa and Harada20 have studied Hamil-
tonian ~1.1! with ferromagnetic NN and antiferromagnet
NNN interactions for positiveD.

The dimer states~1.2!, ~1.3! are eigenstates of the aniso
tropic model along the whole linea5 1

2 , 2`,D,` as will
be shown explicitly in Sec. II. However, the eigenvalues

EDS a5
1

2
,D D52NS 1

4
1

D

8 D ~1.5!

are ground-state energies only forD.2 1
2. For D,2 1

2 the
ground stateuF6& with energy
11 504 © 1998 The American Physical Society
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57 11 505METAMAGNETISM IN THE XXZ MODEL WITH NEXT- . . .
EFS a5
1

2
,D D52

3

8
DN ~1.6!

is found in the ferromagnetic sector where all spins are do
or up. This is a first hint, that the model~1.1! is particularly
suited to study the transition from antiferromagnetism to f
romagnetism.

The outline of the paper is as follows. In Sec. II we rep
on the quantum numbers and the finite size effects of
ground states as they depend ona,D and the magnetization
M5Sz /N. Section III is devoted to an analysis of the ma
netic properties of the model~1.1!. Three phases can b
found in thea2D plane: the ferromagnetic, the antiferro
magnetic, and the metamagnetic phase.

The Hamiltonians witha50, D521 anda50.5, D5
20.5 are special in the sense that the ground state is hi
degenerate — namely with respect toSz50,61,62, . . . ,
6N/2. This feature is discussed in Sec. IV.

II. QUANTUM NUMBERS AND FINITE SIZE EFFECTS
IN THE GROUND STATE

Let us start with the ground-state properties of the Ham
tonian ~1.1! in the strip

0<a<
1

2
. ~2.1!

In the absence of a magnetic field, the ground state is fo
in the sector with total spinSz50 and momentump0 (p0
50,N52n,n even, p05p,N52n,n odd!. We obtain the
ground-state energiesE(Sz ,a,D,N) on finite systems up to
N530 through a direct Lanczos diagonalization, making u
of the translational invariance of Hamiltonian~1.1!. This re-
duces the dimension of the Hilbert space approximately b
factor of N. We choose a set of base states as propose
Ref. 21 by Takahashi. This choice results in a real Ham
tonian matrix even for momentapÞ0,p. Hence we obtain
the proper ground state of the model even if its momentum
not p50 or p5p.

Along the linea5 1
2 ,D.2 1

2 the ground state is twofold
degenerate; the two states are just the dimer states~1.2!,
~1.3!. The proof of this statement follows the arguments
van den Broek.14 The Hamiltonian

HS a5
1

2
,D,B50D5(

i
H~ i ,i 11,i 12,D! ~2.2!

is expressed in terms of three spin Hamiltonians:

H~ i ,i 11,i 12,D!5
1

4
~Si

1Si 11
2 1Si

2Si 11
1 1Si 11

1 Si 12
2

1Si 11
2 Si 12

1 1Si
1Si 12

2 1Si
2Si 12

1 !

1
D

2
~Si

zSi 11
z 1Si 11

z Si 12
z 1Si

zSi 12
z !.

~2.3!

The dimer states~1.2!, ~1.3! turn out to be eigenstates o

H( i ,i 11,i 12,D) with eigenvaluee0(D)52( 1
4 1D/8). One

can easily prove that this is the lowest eigenvalue of the th
n

-
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spin Hamiltonian forD.2 1
2. However, this is not the cas

for D,2 1
2, where the lowest eigenvalue of the three sp

Hamiltonian is given bye1(D)523D/8. The corresponding
eigenstate has all three spins pointing in the same direc
@cf. ~1.6!#.

Let us next turn to the finite size effects of the groun
state energy. Within the strip 0<a< 1

2 ,D.2 1
2, they turn out

to be monotonically increasing withN. Finite size effects
vanish on the ‘‘dimerline’’a5 1

2 ,D>2 1
2, where the ground

state is completely dimerized and degenerate. Right to
dimerline, i.e., for a. 1

2 ,D>2 1
2, the ground-state

properties—with respect to its momentum quantu
numbers—change and the monotonic behavior of the fi
size effects is lost.

In the presence of a uniform magnetic fieldB with mag-
netization M (B)5Sz /N the ground state of the isotropi
model (D51) is found in the sector with total spinSz5S. A
rule for the momentaps of these states can be deduced fro
Marshall’s sign rule:22

ps50 for 2S1N54n,

ps5p for 2S1N54n12. ~2.4!

This rule has been proven4,8 to be correct in the unfrustrate
case, however it turned out to be valid in a larg
M -dependent domain in thea2D plane. For example, in the
isotropic case (D51) we found8 that the momentum rule
~2.4! is satisfied fora,a0(M ), i.e., below some curve
a0(M ), which starts at the Majumdar-Ghosh point

a0~M50,D51!5
1

2
~2.5!

and ends at

a0S M5
1

2
,D51D5

1

4
. ~2.6!

The ground state is degenerate along the curvea0(M ,D).
The two states differ in their momenta; the first one follow
~2.4!. A rule for the momentum of the second state has
yet been found.

In Fig. 1 we have plotted numerical results of the curv
a0(M ,D) for various values of the anisotropy parameterD
51.0,0.4,0.1,20.2. The data fora0(M ,D) mark those points
in the a2M plane, where the ground states with ener
e„M ,a0(M ,D),D,N…, N512, . . . ,18 aretwofold degener-
ate. Finite size effects ofa0(M ,D) are visible atM51/4 and
M51/6,1/3 where systems of sizeN512,16 andN512,18,
respectively, are realized. In spite of the finite size effects
think that the finite system results shown in Fig. 1 reprodu
the qualitative features of the curvesa0(M ,D) in the ther-
modynamical limit: 1. All curves start and end at the poin
~2.5! and ~2.6!. 2. a0(M ,D51) has a pronounced max
mum aroundM50.2 with rather large finite size effects. Fo
decreasing values ofD the height of the maximum is reduce
and its position is shifted to smaller values ofM .

Beyond the curvea0(M ,D) — i.e., for a.a0(M ,D) —
the ground-state momenta deviate from the rule~2.4! and we
therefore expect a change in the ground-state properties
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FIG. 1. The ground states of the Hamiltonian~1.1! are degenerate along the curvesa0(M ,D). The numerical data points were obtaine
on finite system calculations withN512,14,16, and 18 and are shown forD51.0,0.4,0.1, and20.2.
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III. THE PHASE DIAGRAM IN THE PRESENCE
OF A MAGNETIC FIELD

In this section we will present numerical results f
the ground-state energy per sitee(M ,a,D,N)
5(1/N)E(Sz ,a,D,N). We are in particular interested in th
changes of theM dependence of these energies witha andD
since they indicate a change in the ground-state order
The following situations have been found.

Ferromagnetic phase. Here the free energy

f ~M ,a,D!5e~M ,a,D!2BM ~3.1!

is minimized by the statesuF6&, where all spins are up
(1) or down (2), respectively. It turns out that the boun
ary of the ferromagnetic phaseD,D f(a) is characterized by
the degeneracy

e„M50,a,D f~a!,N…5eS M5
1

2
,a,D f~a!,ND ~3.2!

of the lowest energy eigenvalues in the sectors withSz50
andSz5N/2.

Antiferromagnetic phase.The minimum of the free en
ergy is found for 0<M< 1

2 at

de

dM
2B50, ~3.3!

d2e

dM2
.0. ~3.4!

This means thate(M ,a,D,N) is monotonically increasing
and convex for 0<M< 1

2. The saturating field

de

dM
uM51/25BS M5

1

2
,a,D D , ~3.5!
g.

which is needed to align all spins in the system, can
computed from the one magnon states:

Up,Sz5
N

2
21L 5

1

AN
(

x
eipxux&, ~3.6!

whereux& denotes the state with one spin down at sitex and
all other spins up. The energy of this state is

ES Sz5
N

2
21,a,D,ND5cosp1a cos 2p

1D~12a!S N

4
21D ~3.7!

and the ground-state energy is found by minimization w
respect top. For 0<a<1/4 the minimum is found atp
5p and the saturating field is

BS M5
1

2
,a,D D5D~11a!1~12a!. ~3.8!

For 1
4 ,a< 1

2, the minimum energy~3.7! is found for

cosp52
1

4a
, ~3.9!

which yields for the saturating field

BS M5
1

2
,a,D D5D~11a!1a1

1

8a
. ~3.10!

The boundaryDa(a) of the antiferromagnetic phaseD
.Da(a) is characterized by the condition

d2e

dM2
~M ,a,Da~a!,N!uM51/250, ~3.11!

i.e., the convexity condition is lost forD,Da(a).
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57 11 507METAMAGNETISM IN THE XXZ MODEL WITH NEXT- . . .
Metamagnetic phase. Between the ferromagnetic and th
antiferromagnetic phase

D f~a!,D,Da~a!, ~3.12!

we find a metamagnetic phase, which is characterized b
zero in the second derivative:

d2e

dM2
.0, 0,M,Mc~a,D!, ~3.13!

d2e

dM2
~M ,a,D,N!uM5Mc

50. ~3.14!

The minimum of the free energy is found for

de

dM
5B for 0,M,Mc~a,D! ~3.15!

and at

M5
1

2
for B.Bc5

de

dM U
M5Mc

. ~3.16!

Therefore, in this metamagnetic phase we have a discon
ity at Bc(a,D) where the magnetization curve jumps fro
M5Mc(a,D) to M5 1

2. Bc(a,D) decreases, if one crosse
the metamagnetic phase coming from the antiferromagn
phase and moving towards the ferromagnetic phase. An
ample will be given below.

For small magnetic fields 0,B,Bc the system looks an
tiferromagnetic, forB.Bc ferromagnetic.

For the determination of the phase boundariesD f(a) and
Da(a) of the ferromagnetic and antiferromagnetic phase,
have first computed the lowest energy densit
e(M ,a,D,N) as they depend on the magnetizationM and
the parametersa andD. As an example we show in Fig. 2~a!
the evolution of the M dependence forD520.6,a
50.0, . . . ,0.40 on a system withN516 sites. One clearly
observes the three phases discussed above. For small v

FIG. 2. ~a! M dependence of the ground-state energy per
e(M ,a,D,N) with N516, D520.6, anda50.0,0.1, . . . ,0.4. ~b!
Magnetization curvesM (B,a,D) for D520.6 as they follow from
the ground-state energy per sitee(M ,a,D,N) shown in~a!. In the
metamagnetic phase~e.g., ata50.2,0.25, andD520.6) there is a
critical field Bc(a,D), where the system jumps into the fully mag
netic state withM51/2.
a

u-

tic
x-

e
s

lues

of a, e(M ,a,D) is monotonically increasing and conve
Here, we are in the antiferromagnetic phase. Ata50.15 the
second derivative~3.14! vanishes first atMc5 1

2. The meta-
magnetic phase extends froma50.15 to a50.305, where
the degeneracy~3.2! shows up. The behavior of the corre
sponding magnetization curves can be seen in Fig. 2~b!. We
obtain these magnetization curves by applying the metho
Bonner and Fisher23 to our finite system results. Fora
.0.305 we then enter the ferromagnetic phase. The resu
phase diagram in thea2D plane is shown in Fig. 3 . The
numerical evaluation of~3.2! on finite systems does no
show a significant finite size dependence. In other words,
determination of the phase boundaryD f(a) is well under
control.

The determination of the second phase boundaryDa(a)
from ~3.11! turned out to be much more difficult. We nu
merically calculatede(M51/222/N,a,D,N)—i.e., the low-
est eigenvalue in the sector with two spins flipped—on rat
large systems withN520,30,40,50 and looked for a zero i
the second derivative:

eS M5
1

2
2

2

N
,a,D,ND1eS M5

1

2
,a,D,ND

22eS M5
1

2
2

1

N
,a,D,ND50. ~3.17!

The resultingDa(a) suffers under finite size effects particu
larly in the vicinity of the pointa50.5,D520.5. The curve
Da(a) plotted in the phase diagram~Fig. 3! represents the
result of ~3.17! for the largest system sizeN550.

The pointsa50,D521 anda5 1
2 ,D52 1

2 are special in
the sense that the boundariesDa(a),D f(a) for the antiferro-
magnetic and ferromagnetic phase meet. Therefore, we h
no metamagnetic phase between the ferro- and antiferrom
netic phase at these points. This can also be clearly see
Figs. 4~a! and 4~b!, where we have plotted theM and D
dependence ofe(M ,a50,D) and e(M ,a51/2,D), respec-
tively. These energies turn out to be convex forD.21,
(a50) andD.2 1

2, (a50.5) and concave forD,21, (a
50), D,2 1

2, (a50.5), respectively. AtD521,a50 and

e

FIG. 3. The phase diagram in thea2D plane, as it follows from
the numerical evaluation of~3.2! (N518) and~3.10! (N550). The
metamagnetic domainD f(a),D,Da(a) is hatched.
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D52 1
2 ,a5 1

2, the ground-state energiese(M ,a,D,N) are all
degenerate with respect toM . This feature will be investi-
gated in the next section.

IV. GROUND-STATE DEGENERACY AT THE POINTS
WHERE THE PHASE BOUNDARIES MEET

According to~3.2! the phase boundaryD f(a) of the fer-
romagnetic phase is defined by the degeneracy of two ei
states with total spinSz50 andSz5N/2, respectively. At the
points D521,a50 and D52 1

2 ,a5 1
2 where D f(a)

5Da(a), a much larger degeneracy of the ground state w
respect to all values ofSz50, . . . ,N/2 occurs. We are going
to show now that then-magnon statesS1(p)nuF2&—
obtained byn-fold application of the rising operator

S1~p!5(
l

eiplSl
1 ~4.1!

on the ferromagnetic stateuF2&—are eigenstates of th
Hamiltonian

H~a,D,B!S1~p!nuF2&5EFS1~p!nuF2& ~4.2!

for

~a! a50, D521, p5p, ~4.3!

~b! 2`,a,`, D52
1

2
, p5

2p

3
, p5

4p

3
.

~4.4!

Here

EF5
N

4
~D1D•a! ~4.5!

is the energy of the ferromagnetic state. For the proof
~4.2! we start from the commutation relations:

@H~a,D,B!,S1~p!#5(
j 51

2 S aj(
l

Sl
1Sl 1 j

z eipl

1bj(
l

Sl
zSl 1 j

1 eipl D , ~4.6!

FIG. 4. Ground-state energiese(M ,a,D,N520,24) along the
lines ~a! a50.5, D51.0,0.6, . . . ,21.0, and ~b! a50.0, D
51.0, . . . ,21.8. The ground-state degeneracy is clearly visible
a50.5, D520.5 anda50, D521, where the direct transition
from antiferromagnetism to ferromagnetism occurs.
n-

h

f

where

a152eip1D, b15211Deip,

a25a~2e2ip1D!, b25a~211De2ip! ~4.7!

and

†@H~a,D!,S1~p!#,S1~p!‡5(
j 51

2

cj(
l

Sl
1Sl 1 j

1 e2ipl ,

~4.8!

where

c152eip~D2cosp!,

c252ae2ip~D2cos 2p!. ~4.9!

All further commutators withS1(p) vanish identically. Ap-
plication of ~4.6! and ~4.8! onto the ferromagnetic stat
uF2& yields

@H~a,D!,S1~p!#uF2&522„D2cosp

1a~D2cos 2p!…up&,

~4.10!

whereup& is the one-magnon state~3.6!. Similarly one finds

†@H~a,D!,S1~p!#,S1~p!‡uF2&

52eip~D2cosp!u2p,1&12e2ipa~D2cos 2p!u2p,2&,

~4.11!
where

u2p, j &5(
l

e2ipl u l ,l 1 j & ~4.12!

are two magnon states with two spins up at sitesl and l 1 j .
Note that the right hand sides of~4.10! and~4.11! vanish for
the two cases listed in~4.3! and~4.4!, respectively. The first
point ~4.3! marks the transition from antiferromagnetism
ferromagnetism in the nearest neighborXXZ model. Indeed,
the rising operatorS1(p) commutes with the Hamiltonian
H(a50,D521).

Along the line ~4.4!, the endpoint of the dimerline (a
50.5,D520.5) is of special interest. Here the eigenvalu
~1.5! of the dimer states~1.2!, ~1.3! are degenerate with th
energy ~4.5! of the ferromagnetic states. This also impli
that then-magnon states~4.2! are ground states fora5 1

2,
which explains the degeneracy found in Fig. 4~a! for a5
20.5.

In Fig. 5 we have plotted the ground-state energ
e(M ,a,D520.5) on a ring with 18 sites along the lin
~4.4!, where the degeneracy of then-magnon states~4.2! has
been proven. For a,0.5 the ground-state energie
e(M ,a,D520.5) are monotonically increasing withM ; i.e.,
the corresponding ground states cannot be identified with
degeneraten-magnon states~4.2!. The ground-state energie
e(M ,a,D520.5) meet each other for allM at a50.5 and
stay very close together in the interval 0.5,a,0.6. This
leads to the narrow width of the metamagnetic phase in F
3 for 0.5,a,0.6. Fora.0.6 the quasidegeneracy with re
spect toM is lifted again.

r
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FIG. 5. a andM dependence of the ground-state energiese(M ,D,N518) along the lineD520.5.
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V. DISCUSSION AND CONCLUSION

Metamagnetism denotes a mixed phase between fe
magnetism and antiferromagnetism, which has been
served in various substances such as, e.g., FexMn12xTiO3.
The characteristic signal is a rapid increase~or discontinuity!
in the magnetization curve, if the external field exceeds
critical valueBc . For B.Bc the substance is almost fully
magnetized. In this paper we have shown that the phen
enon of metamagnetism can be observed in the one dim
sional spin-1/2XXZ model with next-to-nearest-neighbo
n

d

g

e

o-
b-

a

-
n-

coupling a and anisotropyD. The phase diagram in th
a2D plane ~Fig. 3! contains three regimes: the antiferr
magnetic one withD.Da(a), the ferromagnetic one with
D,D f(a) and the metamagnetic one in betweenDa(a)
>D>D f(a). The metamagnetic phase shrinks to zero aa
50 anda50.5, whereDa(a)5D f(a). At these points there
is a direct transition from antiferromagnetism to ferroma
netism and the ground state turns out to be highly degene
— namely with respect toSz50,1,2, . . . ,N/2. These states
can be identified withn-magnon states.
v.

n.

Soc.
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