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Metamagnetism in the XXZ model with next-to-nearest-neighbor coupling
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We investigate ground-state energies and magnetization curves in the one-dimeKsi@haiodel with
next-to-nearest neighbor coupling>0 and anisotropyA (—1<A=<1) at T=0. In between the familiar
ferro- and antiferromagnetic phase we find a transition region—called the metamagnetic phase—where the
magnetization curve is discontinuous at a critical fiBld«,A). [S0163-18298)01718-4

I. INTRODUCTION are eigenstates ¢i(a«=1/2A=1B=0). Here

Experimental results for the magnetization curves of
FeMn,_,TiO3, GdNiL,Sh,, GdCwySh,, or Th,_,ScMn, . 1 ] . _ _
show a rapid increas@r discontinuity if the appliedB field [i,i+1]= E[)H(I IX-(i+1)=x-()x+(i+1)]
exceeds a critical valuB.. For B>B_ the substance is al-
most fully magnetized. This phenomenon is called “spin-
flip” or “metamagnetic” transition!™ There have been

1.9

various attempts made to explain the “metamaanetic” tran-2"€ nearest-ngighb(JlNN) valence bond states with tota] spin
P b g zero, called dimers. van den Brdélproved that the dimer

sition in the context of Ising-like Hamiltonians. It is the pur- at indeed d stat f the Hamiltoni ¢ th
pose of this paper to show that discontinuities in the magneg'aes are indeed ground states of the Hamiltonian at the

tization curve can be seen as well in the one-dimensiona}LMajumdar'_GhOSh” poérlgm @=12A=1).  Affleck,
spin3 XXZ model with next-to-nearest-neighbdNNN) ennedy, Lieb, and Tasaki*were able to show that the
dimer states are the only ground states and that there is a

li - , )
coupting finite gap to the first excited state.
N Hamada, Kane, Nakagawa, and Natsthascussed uni-
H(a’A’B)ZJliZl SIS+, FASS, formly distributed resonating valence bor{i#{DRVB) in the

generalized railroad trestle model, which is equivalent to the
XX yay 22 isotropic linear Heisenberg chain with NN and NNN inter-
TI2(S'S o+ SIS, T ASTSLL ) +BS actions. They found that for negatide andJ,= —1/4J, the
(1.2 UDRVB is the ground state which is degenerate with the

in th f i | fieid h h fully magnetized state with total spiB=S,=N/2. As we
in the presence of a uniform external fiddd We chose the " show Jater this phenomenon also occurs for positive

next-nearesttNN) neighbor coupling, to be antiferromag- | 5jes of], if the parameters andA are properly chosen in
netic (J;>0) and use the notatioa=J,/J;. In the a—A the Hamiltonian(1.1).

plane, we will primarily concentrate on the regime
a=0, —1sA<1.

The isotropic model witlA=1 and NNN couplingy has
been investigated by many auth8r§.Most of these inves-
tigations focused on the transitibrirom the “spin fluid
phase” a<a. to the dimer phaser>a.. The transition
point a.=0.2411 ... hasrecently been determined with
high precisiofi'® by means of conformal field theory and
renormalization group techniques.

The Hamiltonian witha=1/2, A=1 has been studied
first by Majumdar and Ghosh: 2 They found that the
“dimer states”

Shastry and Sutherland discussed the frustrated model
with different interaction strengths iny, andz direction’®
The critical properties of the anisotropic model 1) in
the absence of an external fieBlhave been elaborated by
Nomura and Okamot®. They confirmed that this model and
the quantum sine-Gordon model belong to the same univer-
sality class. Tonegawa and Har&l&ave studied Hamil-
tonian (1.1) with ferromagnetic NN and antiferromagnetic
NNN interactions for positive\.

The dimer state$l.2), (1.3) are eigenstates of the aniso-
tropic model along the whole line=3 , —<A <o as will
be shown explicitly in Sec. Il. However, the eigenvalues

1
=—1,2][3,4] --- [N—1N], 1.2 1 1 A
[9)= SRl 1234 - [ ] (1.2 ED((FE,AF_N 1,8 ws
1 . 1 1
=—12,3][4,5] --- [N,1 1.3 are ground-state energies only far>—3. For A<—3 the
) 2N’4[ I14.3] - [NA] (13 ground statdF =) with energy
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3 spin Hamiltonian forA > — 3. However, this is not the case
EF( a= E’A> =- gAN (1.6 for A<—3, where the lowest eigenvalue of the three spin
Hamiltonian is given by;(A)= —3A/8. The corresponding
is found in the ferromagnetic sector where all spins are dowrigenstate has all three spins pointing in the same direction
or up. This is a first hint, that the modél.1) is particularly  [cf. (1.6)].
suited to study the transition from antiferromagnetism to fer- Let us next turn to the finite size effects of the ground-
romagnetism. state energy. Within the strip9a<3,A> — 3, they turn out
The outline of the paper is as follows. In Sec. Il we reportto be monotonically increasing witN. Finite size effects
on the quantum numbers and the finite size effects of thganish on the “dimerline”a=3,A=— 3, where the ground
ground states as they depend @/ and the magnetization state is completely dimerized and degenerate. Right to the
M=S,/N. Section Il is devoted to an analysis of the mag-dimerline, i.e., for a>3A=-3% the ground-state
netic properties of the moddll.1). Three phases can be properties—with respect to its momentum quantum
found in thea—A plane: the ferromagnetic, the antiferro- numbers—change and the monotonic behavior of the finite

magnetic, and the metamagnetic phase. size effects is lost.

The Hamiltonians witha=0, A=—1 anda=0.5, A= In the presence of a uniform magnetic fi@dwith mag-
—0.5 are special in the sense that the ground state is highlyetization M(B)=S,/N the ground state of the isotropic
degenerate — namely with respect $=0,£1,=2,..., model (A=1) is found in the sector with total spB,=S. A
+N/2. This feature is discussed in Sec. IV. rule for the momentg; of these states can be deduced from

Marshall’s sign rulé”
Il. QUANTUM NUMBERS AND FINITE SIZE EFFECTS
IN THE GROUND STATE ps=0 for 2S+N=4n,

Let us start with the ground-state properties of the Hamil-

tonian(1.1) in the strip ’ Prop ps=m for 2S+tN=4n+2. 2.4
This rule has been provéfto be correct in the unfrustrated

E_ (2.1) case, however it turned out to be valid in a larger

2 M-dependent domain in the— A plane. For example, in the

isotropic case 4=1) we found that the momentum rule

2.4) is satisfied fora<ay(M), i.e., below some curve

ao(M), which starts at the Majumdar-Ghosh point

O=sas

In the absence of a magnetic field, the ground state is foun
in the sector with total spirf5,=0 and momentunp, (pg
=0N=2n,n even, po=m,N=2n,n odd. We obtain the
ground-state energids(S,,«,A,N) on finite systems up to
N =30 through a direct Lanczos diagonalization, making use ap(M=0A=1)= 1
of the translational invariance of Hamiltoni&h.1). This re- 2
duces the dimension of the Hilbert space approximately by a
factor of N. We choose a set of base states as proposed f?\nd ends at
Ref. 21 by Takahashi. This choice results in a real Hamil-
tonian matrix even for momentp# 0,77. Hence we obtain ao( M= l A=1) 1 2.6
the proper ground state of the model even if its momentum is 2’
notp=0 orp=. )

Along the linea=1%,A>—1 the ground state is twofold 1€ ground state is degenerate along the curyeM,A).
degenerate; the two states are just the dimer State, The two states differ in their momenta; the first one follows
(1.3). The proof of this statement follows the arguments of(2'4)' A rule for the momentum of the second state has not

van den BroeR? The Hamiltonian yet been found. .
In Fig. 1 we have plotted numerical results of the curves

1 ao(M,A) for various values of the anisotropy parameter
H( a= E’A’BZO) =2 H(i,i+1i+2A) (22  =1.0,0.4,0.1-0.2. The data forg(M,A) mark those points
' in the «a—M plane, where the ground states with energy
is expressed in terms of three spin Hamiltonians: e(M,ag(M,A),A,N), N=12,...,18 aretwofold degener-
ate. Finite size effects afy(M,A) are visible aM =1/4 and
M =1/6,1/3 where systems of sid¢=12,16 andN=12,18,
respectively, are realized. In spite of the finite size effects we
think that the finite system results shown in Fig. 1 reproduce

(2.5

o 1 . b
H(I,I+1,I+2,A)=Z(S, Sii1tS St S51Se

+S5.1S5 2+ S St S Sk the qualitative features of the curveg(M,A) in the ther-
A modynamical limit: 1. All curves start and end at the points
(T F T Tyt ). (2.5 and (2.6). 2. @g(M,A=1) has a pronounced maxi-
2 mum aroundM = 0.2 with rather large finite size effects. For

(2.3  decreasing values df the height of the maximum is reduced
) ) and its position is shifted to smaller values Mf
The dimer state41.2), (1.3) turn out to be eigenstates of Beyond the curvery(M,A) — i.e., for a>ag(M,A) —
H(i,i+1i+2A) with eigenvalueey(A)=—(3+A/8). One  the ground-state momenta deviate from the (@ld) and we
can easily prove that this is the lowest eigenvalue of the thretherefore expect a change in the ground-state properties.
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FIG. 1. The ground states of the Hamiltoniéin1) are degenerate along the curvegM,A). The numerical data points were obtained
on finite system calculations with=12,14,16, and 18 and are shown for=1.0,0.4,0.1, and-0.2.

Ill. THE PHASE DIAGRAM IN THE PRESENCE which is needed to align all spins in the system, can be
OF A MAGNETIC FIELD computed from the one magnon states:

In this section we will present numerical results for N 1
the ground-state energy per sitee(M,a,A,N) p,SzZ——1> = _E eP|x), (3.6)
=(1/N)E(S,,«,A,N). We are in particular interested in the 2 VN
changes of tht! dependence of these energies witandA
since they indicate a change in the ground-state orderin
The following situations have been found.

Ferromagnetic phaseHere the free energy

where|x) denotes the state with one spin down at sitnd
%4l other spins up. The energy of this state is

E(S;%—l,a,A,N) =cosp+a CcOS
f(M,a,A)=€¢(M,a,A)—BM (3.2

is minimized by the statef~+), where all spins are up +A(l—a)(ﬂ—l> (3.7
(+) or down (=), respectively. It turns out that the bound- 4
ary of the ferromagnetic phase<A(«) is characterized by and the ground-state energy is found by minimization with
the degeneracy respect top. For O<a<1/4 the minimum is found ap

= and the saturating field is

e(M=0,a,A¢(a),N)=¢€ |\/|=E,oz,Af(a),N (3.2

1
2 B(M=§,a,A)=A(1+a)+(l—a). 3.9
of the lowest energy eigenvalues in the sectors @tk 0 L L o ]
andS,=N/2. For ; <a=<3, the minimum energy3.7) is found for
Antiferromagnetic phaseThe minimum of the free en- 1
ergy is found for B=M =<3 at cosp=——, (3.9
;_E —B=0 (3.3 which yields for the saturating field
M ’ '
1 1
$2e B MZE,a,A =A(l+a)+a+a. (3.10
5>0. (3.9 _ .
dMm The boundaryA,(«) of the antiferromagnetic phasa

) ) ] ) ) >A,(«) is characterized by the condition
This means that(M,«,A,N) is monotonically increasing

and convex for &M =1. The saturating field d2e

—Z(M,a,Aa(a),N)|M=1/2=O, (311)

de dm

1
am m=12= B( M= E’“'A) ' 39 6. the convexity condition is lost fak<A(a).
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FIG. 2. () M dependence of the ground-state energy per site
€(M,a,A,N) with N=16, A=—-0.6, ande=0.0,0.1 ... ,0.4. (b) 0

i\r/llagnetlzadtlotn furveM(B,a,A)_ﬁfor A=A—'8.6 ?}S the)_/ fé)l)l()\:v ftrgm FIG. 3. The phase diagram in the- A plane, as it follows from

e ground-state energy per s#eM,a,A,N) shown in(@. Inthe . " .o o aluation @B.2) (N=18) and(3.10 (N=50). The

metamagnetic phage.g., ate=0.2,0.25, and\ = —0.6) there is a . . .
critical field B¢(«,A), where the system jumps into the fully mag- metamagnetic domaitt(a)<A<Aq(a) is hatched.

netic state withM =1/2. . . . .
of a, €(M,a,A) is monotonically increasing and convex.

Here, we are in the antiferromagnetic phaseaAt0.15 the
second derivativg3.14) vanishes first aM .= 3. The meta-
magnetic phase extends froar=0.15 to «=0.305, where
A(a)<A<A,(a), (3.12  the degeneracy3.2) shows up. The behavior of the corre-
) ) o , sponding magnetization curves can be seen in Fig. Ve
we find a metamagnetic phase, which is characterized by ghyain these magnetization curves by applying the method of

Metamagnetic phasd3etween the ferromagnetic and the
antiferromagnetic phase

zero in the second derivative: Bonner and Fishéf to our finite system results. Fo
5 >0.305 we then enter the ferromagnetic phase. The resulting
£>0 0<M<M(a,A) (3.13 phase diagram in the— A plane is shown in Fig3 . The
M2 e numerical evaluation of3.2) on finite systems does not
show a significant finite size dependence. In other words, the
2¢ determination of the phase boundaky(«) is well under
—— (M, ,A,N)[y-_m =0. (3.14  control.
dM The determination of the second phase boundgyf«)
The minimum of the free energy is found for from (3.11 turned out to be much more difficult. We nu-
g merically calculatec(M =1/2—2/N,a,A,N)—i.e., the low-
€ est eigenvalue in the sector with two spins flipped—on rather
gw =B for 0<M<Mc(a.A) (3.19 large systems witiN=20,30,40,50 and looked for a zero in
the second derivative:
and at
1 d 1 2 1
M= for B>B,=— . (3.16 E(M_z NN e M_z'“’A’N)
2 dM 1, _,,
¢ 1 1
Therefore, in this metamagnetic phase we have a discontinu- —26< M=35- N,a,A,N) =0. (3.1

ity at B;(a,A) where the magnetization curve jumps from

M=M_(a,A) to M=3. B.(a,A) decreases, if one crosses The resultingA ,(«) suffers under finite size effects particu-
the metamagnetic phase coming from the antiferromagnetil@rly in the vicinity of the pointa=0.5,A=—0.5. The curve
phase and moving towards the ferromagnetic phase. An exx,(«a) plotted in the phase diagraffig. 3 represents the

ample will be given below. result of (3.17) for the largest system sidé=50.
For small magnetic fields@B<B, the system looks an- The pointsa=0A=—1 anda=3%,A=—13 are special in
tiferromagnetic, foB> B, ferromagnetic. the sense that the boundari®g(«),A¢(«) for the antiferro-

For the determination of the phase boundafigéa) and  magnetic and ferromagnetic phase meet. Therefore, we have
A, (a) of the ferromagnetic and antiferromagnetic phase, weno metamagnetic phase between the ferro- and antiferromag-
have first computed the Ilowest energy densitiesetic phase at these points. This can also be clearly seen in
€(M,a,A,N) as they depend on the magnetizatighand Figs. 4a) and 4b), where we have plotted thil and A
the parametera andA. As an example we show in Fig(@  dependence o&(M,a=0,A) and e(M,a=1/2A), respec-
the evolution of the M dependence forA=—-0.6  tively. These energies turn out to be convex for-—1,
=0.0,...0.40 on a system witilN=16 sites. One clearly (a=0) andA>—3, («=0.5) and concave foA<—1, («
observes the three phases discussed above. For small value®), A< —3, (a=0.5), respectively. AbM=—1,a=0 and
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ot where
06 a;=—€eP+A, b;=—-1+A€P,
04 2i 2i
a,=a(—e“P+A), b,=a(—1+AeP) 4.7
0.2
© and
V]
-02 .
[H(a,8).8.(P)].SH(P)1= 2 62 S'S e,
", (4.8
o8 where
0 0.2 0.4 0 0.2 0.4 .
M M c,=2e'"(A—cosp),
_ FIG. 4. Ground-state energiegM,«,A,N=20,24) along the Cz=2anip(A—Cos ). (4.9
lines (@ «=0.5, A=1.0,0.6...,—-1.0, and (b) «=0.0, A ) o )
=1.0,... ~1.8. The ground-state degeneracy is clearly visible forAll further commutators witrs, (p) vanish identically. Ap-

a=0.5,A=—-0.5 ande=0, A=—1, where the direct transition
from antiferromagnetism to ferromagnetism occurs.

A=—1 a=3 the ground-state energieéM,a,A,N) are all
degenerate with respect ¥d. This feature will be investi-
gated in the next section.

IV. GROUND-STATE DEGENERACY AT THE POINTS
WHERE THE PHASE BOUNDARIES MEET

According to(3.2) the phase boundard(«) of the fer-

plication of (4.6) and (4.8) onto the ferromagnetic state
|F—) yields

[H(a,A),S,(p)]|F—)=—2(A—cosp

+a(A—cos 2))[p),
(4.10

where|p) is the one-magnon stat8.6). Similarly one finds

[[H(a,A),S.(p)].S+(P]F-)

romagnetic phase is defined by the degeneracy of two eigen-

states with total spis,=0 andS,=N/2, respectively. At the

points A=—1,a4=0 and A=—3,a=3 where A¢(a)

=2eP(A—cosp)|2p,1)+2e?Pa(A—cos 2)|2p,2),
(4.11

=A,(«), a much larger degeneracy of the ground state withyhere

respect to all values &,=0, ... ,N/2 occurs. We are going
to show now that then-magnon statesS, (p)"|F—)—
obtained byn-fold application of the rising operator

s+<|o>=2I ef's’ (4.2)

on the ferromagnetic statg=—)—are eigenstates of the
Hamiltonian

H(a,A,B)S,(p)"[F—)=EeS.(P)"[F—) (4.2
for
(& a=0, A=-1, p=m, (4.3
_ 1 _277 _477
(b) —o<a<omo, A——E, p—?, p—?
(4.4
Here
N
EF:Z(A+A'C¥) (4.5

[2p.iy=2 e®?|lI+]) (4.12
are two magnon states with two spins up at sitesd| +j.
Note that the right hand sides ¢£.10 and(4.11) vanish for

the two cases listed it#.3) and(4.4), respectively. The first
point (4.3) marks the transition from antiferromagnetism to
ferromagnetism in the nearest neighoXZ model. Indeed,
the rising operatoS, (7r) commutes with the Hamiltonian
H(a=0A=-1).

Along the line (4.4), the endpoint of the dimerlinea(
=0.5A=—-0.5) is of special interest. Here the eigenvalues
(1.5 of the dimer state$l.2), (1.3) are degenerate with the
energy (4.5 of the ferromagnetic states. This also implies
that then-magnon state¢4.2) are ground states fow= 13,
which explains the degeneracy found in Figa)4for a=
—0.5.

In Fig. 5 we have plotted the ground-state energies
€(M,a,A=—-0.5) on a ring with 18 sites along the line
(4.4), where the degeneracy of themagnon stategt.2) has
been proven. For«<0.5 the ground-state energies

is the energy of the ferromagnetic state. For the proof ofe(M,«,A= —0.5) are monotonically increasing wit; i.e.,

(4.2) we start from the commutation relations:

2
[H(aA B).S:(P)]=2 |32 S8, e™

+ b,-EI sfsrﬂeip') . (4.6

the corresponding ground states cannot be identified with the
degenerate-magnon state#l.2). The ground-state energies
€(M,a,A=—0.5) meet each other for @l at «=0.5 and
stay very close together in the interval &&<0.6. This
leads to the narrow width of the metamagnetic phase in Fig.
3 for 0.5<a<0.6. Fora>0.6 the quasidegeneracy with re-
spect toM is lifted again.
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FIG. 5. « andM dependence of the ground-state energigd,A,N=18) along the lineA=—0.5.

V. DISCUSSION AND CONCLUSION coupling @ and anisotropyA. The phase diagram in the

Metamagnetism denotes a mixed phase between ferrocf_A p!ane (Fig._ 3 contains three regimes: the antife_rro—
magnetism and antiferromagnetism, which has been opfagnetic one witA>A,(a), the ferromagnetic one with
served in various substances such as, e.gMfg ,TiO;. A <Ar(e) and the metamagnetic one in betweag(a)

The characteristic signal is a rapid increésediscontinuity ~ =2A=A¢(@). The metamagnetic phase shrinks to zeraat

in the magnetization curve, if the external field exceeds & 0 anda=0.5, whereA,(a)=A¢(a). At these points there
critical valueB,. For B>B, the substance is almost fully is @ direct transition from antiferromagnetism to ferromag-
magnetized. In this paper we have shown that the phenonfetism and the ground state turns out to be highly degenerate
enon of metamagnetism can be observed in the one dimer= namely with respect t&,=0,1,2 ... ,N/2. These states
sional spin-1/2XXZ model with next-to-nearest-neighbor can be identified witm-magnon states.
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