
PHYSICAL REVIEW B 1 MAY 1998-IIVOLUME 57, NUMBER 18
Numerical study of the two-dimensional Heisenberg model
using a Green function Monte Carlo technique with a fixed number of walkers

Matteo Calandra Buonaura and Sandro Sorella
Istituto Nazionale di Fisica della Materia and International School for Advanced Study, Via Beirut 4, 34013 Trieste, Italy

~Received 4 November 1997; revised manuscript received 2 February 1998!

We describe in detail a simple and efficient Green function Monte Carlo technique for computing both the
ground state energy and the ground state properties by the ‘‘forward walking’’ scheme. The simplicity of our
reconfiguration process, used to maintain the walker population constant, allows us to control any source of
systematic error in a rigorous and systematic way. We apply this method to the Heisenberg model and obtain
accurate and reliable estimates of the ground state energy, the order parameter, and the static spin structure
factor S(q) for several momenta. For the latter quantity we also find very good agreement with available
experimental data on the La2CuO4 antiferromagnet.@S0163-1829~98!04418-X#
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I. INTRODUCTION

After almost one decade since the discovery of highTc
superconductivity we have certainly understood much m
about magnetism rather than superconductivity. In particu
since almost all the stoichiometric compounds of high-Tc
superconductors are good antiferromagnets, well descr
by the two-dimensional Heisenberg model~HM!, from the
very beginning a strong numerical effort has been devote
the simulation of this model.1,2 The HM is defined by the
following Hamiltonian:

HJ5J(
^ i , j &

SW i•SW j , ~1!

where the spin one-half vectorsSW i satisfy SW 253/4 andJ is
the nearest-neighbor antiferromagnetic superexchange
pling, connecting nearest-neighbor pairs^ i , j &. Henceforth
periodic boundary conditions are assumed in a finite squ
lattice with Na5 l 3 l sites.

Although a rigorous proof that this model has long-ran
antiferromagnetic order in two spatial dimensions is s
lacking, there is a general consensus that long-range o
exists even in this interesting case. In other words its pr
erties should be very well understood by the simple sp
wave theory, which assumes long-range antiferromagn
order in the ground state.3

In this work we give accurate ground state properties
the HM using a new and more efficient version of the Gre
function Monte Carlo~GFMC! technique, applied on a lat
tice by Trivedi and Ceperley, some years ago.2

With the present scheme we also estimate the ground
energy of the HM on the square lattice to be20.669 442J
60.000 026J slightly different, but more accurate than th
previous GFMC estimates. Analogously we obtain for t
antiferromagnetic order parameter the valuem50.3077
60.0004, consistent with other numerical estimates but w
a very accurate control of the finite-size effects. We disc
also our results for the static spin structure factor in view
the recently proposed theory for the finite-size scaling i
quantum antiferromagnet.4 In particular we verify that, as a
remarkable prediction of the theory, the small-q behavior of
570163-1829/98/57~18!/11446~11!/$15.00
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this function behaves asS(q)5xcuqu, wherex is the mag-
netic spin susceptibility andc the spin-wave velocity of the
HM. This relation is particularly important as this function
experimentally detectable in neutron scattering experimen5

Let us discuss now the technical part of our work, whi
is based on the GFMC technique, as we have mentio
before. As is well known this technique allows one to sam
statistically the ground state of a many-body HamiltonianH
by a set of walkers (wi ,xi) which represent vectorswx of a
large~or even infinite! Hilbert space. The set of all configu
rationsx spans a normalized and complete basis. The aim
this approach is to sample statistically the ground state oH,
by a large population of walkers.6 As it will be described
later on, in the finite-dimensional case, the GFMC on a
tice is based on a statistical application of the Hamilton
matrix-vector productwi8xi8→(2H)wixi to the walker con-
figurations$wx% i , thus filtering out, after many iterations
the desired population distribution for the ground state.
this statistical iteration, however, the walker weightswi in-
crease or decrease exponentially so that after a few iterat
most of the walkers have negligible weights and some k
of reconfiguration becomes necessary to avoid large sta
cal errors. The process to eliminate the irrelevant walkers
generate copies of the important ones is called ‘‘branchin
This scheme is in principle exact only if the population
walkers is let to increase or decrease without any limitati
Any reconfiguration of the population size may in fact intr
duce some spurious correlation between the walkers
may affect the statistical sampling of the ground state.
practice for a long simulation it is always necessary to c
trol the population size, as, otherwise, one easily exceeds
maximum allowed computer memory. This control of th
walker population size may introduce some kind of bias t
vanishes quite slowly for an infinite number of walkers.6,7 In
this case only by performing several runs with different nu
bers of walkers may one in principle estimate the size of
residual bias.

Following the Hetherington’s work,11 we define here an
efficient reconfiguration process at a fixed numberM of
walkers, with a rigorous control of the bias and without ne
of the conventional branching scheme.
11 446 © 1998 The American Physical Society
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In the last sections we present the results obtained for
HM up to an Na516316 lattice size, together with som
numerical tests on a smallNa5434 lattice where an accu
rate numerical solution is available by exact diagonalizati
Previous calculations on this model, using the Green fu
tion Monte Carlo technique, were performed either witho
correcting the bias2 and controlling it for small lattices with a
large number of walkers or by correcting the bias in a w
which is probably correct, but is not possible to pro
rigorously.8

II. GFMC TECHNIQUE

In the following sections we describe in detail how
evaluate the maximum eigenvector of a matrixHx8,x with all
positive definite matrix elements, using a stochastic
proach. Clearly in any physical problem, described by
HamiltonianH, the most interesting eigenvalue is the lowe
one: the ground state energy. This is, however, just a ma
of notation, as the ground state ofH represents the maximum
excited state of2H. In the following, for simplicity, we
assume a change in the sign ofH so that the physical groun
state is, in this notation, the maximum eigenvector ofH.
More important instead is the restriction of positive defin
matrix elementsHx8,x , which drastically constrains the clas
of Hamiltonians that can be treated with this method, with
facing the old but still unsolved ‘‘sign problem.’’ Wheneve
the Hamiltonian has matrix elements with arbitrary sig
schemes like the ‘‘fixed node approximation,’’ and their r
cent developments to finite lattices, are possible within
GFMC method.9,10 Of course, if negative signs occur only i
the diagonal elements ofH, a simple change of the Hamil
tonian H→Hx8,x1ldx8,x , will not change the ground stat
but the Hamiltonian will satisfy the conditionHx8,x>0 for a
large enough shiftl. For instance, the Heisenberg Ham
tonian can be easily cast in the previous form as had b
previously shown.2

From a general point of view the ground state ofH can be
obtained by applying the well-known power method:

uc0&5 lim
L→`

HLucT&, ~2!

where the equality holds up to~infinite! normalization, and
ucT& is a trial state nonorthogonal to the ground stateuc0&.

In the following a simple stochastic approach is describ
for evaluating the stateHMucT&. To this purpose we define
basic element of this stochastic approach: the so-ca
walker. A walker is determined by an indexx corresponding
to a given elementux& of the chosen basis and a weightw.
The walker ‘‘walks’’ in the Hilbert space of the matrixH
and assumes a configurationwx according to a given prob
ability distributionP(w,x).

The task of the Green function Monte Carlo approach
to define a Markov process, yielding after a large numben
of iterations a probability distributionPn(w,x) for the
walker which determines the ground state wave functionc0.
To be specific in the most simple formulation one has

E dwwP~w,x!5^xuc0&.
e
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III. SINGLE-WALKER FORMULATION

In the following the distributionP(w,x) is sampled by a
finite numberM of walkers. Let us first consider the simple
caseM51. In order to define a statistical implementation
the matrix multiplicationux&→Hux&, the standard approac
is first to determine the Hamiltonian matrix elementsHi ,x
connected tox which are different from zero. Then a ne
index x8 is chosen for the walker among the indicesi ac-
cording to the probability determined by

pi ,x5Hi ,x /bx , ~3!

wherebx5( iHi ,x has been introduced in order to satisfy t
normalization condition( i pi ,x51. This simple iteration
scheme to go from a configurationx to a new configuration
x8 is easily implemented but is not sufficient to determi
stochastically the matrix-vector productHx. The full matrix
is a product of a stochastic matrixpi ,x and a diagonal one
bx :

Hi ,x5pi ,xbx . ~4!

As is intuitively clear the diagonal matrixbx , not included in
the stochastic process, is very easily determined by a sca
of the weightw of the walker:

w8→bxw. ~5!

The two previous updates, the stochastic one~3! and the
deterministic one~5!, define a new walkerw8,x8 in place of
the ‘‘old’’ walker w,x; i.e., they determine a Markov pro
cess.

At this point it is important to understand the evolution
the probability distributionP(w,x) after such process. A
subscriptn to this functionP will indicate the number of
iterations of the Markov process. The probability evoluti
Pn→Pn11 is easily determined by

Pn11~w8,x8!5(
x

px8,xPn~w8/bx ,x!/bx . ~6!

Equation~6! allows us to determine, by simple iteratio
what is the probability to find a walker in a given config
rationw,x after many steps. However the evolutionPn from
the initial distributionP0 is more clear and transparent
terms of its momenta over the weight variablew:

Gk,n~x!5E dw wkPn~w,x!. ~7!

In fact it is straightforward to verify, using Eq.~6!, that

Gk,n11~x8!5(
x

px8,xbx
kGk,n~x!. ~8!

In particular fork51 the first momentum ofP determines
the full quantum mechanical information, asG1,n(x8)
5(Hn)x8,xG1,0(x), implying that G1,n(x), by Eq. ~2!, con-
verges to the ground state of the HamiltonianH.

By iterating several times even a single walker, the res
ing configurationw,x will be distributed according to the
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ground state ofH and by sampling a large number of ind
pendent configurations we can evaluate, for instance,
ground state energy:

E05
^wbx&

^w&
, ~9!

where the bracketŝ & indicate the usual stochastic averag
namely, averaging over the independent configurations.

This in principle concludes the GFMC scheme. Howev
the weightw of the walker grows exponentially withn ~sim-
ply as a result ofn independent products! and can assume
very large values, implying a diverging variance in the abo
averages.

In the next sections we describe in detail this problem a
a way to solve it with afixednumber of walkers.

IV. STATISTICAL AVERAGE
DURING THE MARKOV PROCESS

The configurationsxn that are generated in the Marko
process are distributed after a long time according to
maximum right eigenstateR(x) of the matrixpx8,x @simply
becauseGn,0(x)5(x8(pn)x,x8G0,0(x8)→R(x) for large n]
which, as we have seen, is in general different from
ground statec0(x) we are interested in, due to the weigh
wn that weight differently the various configurationsx dis-
tributed according toR(x). We are allowed to consider thi
stateR(x) as the initial trial stateucT& used in the power
method~2!, and that, at any Markov iterationn, the walker
had weightw51 . . .L iterations backward, when it was a
equilibrium according to the distributionR(x), described be-
fore. In this way it is simple to compute the global weight
the walker withL power method correcting factors:

Gn
L5)

j 51

L

bxn2 j
. ~10!

Therefore, for instance, in order to compute the energy w
a single Markov chain of many iterations, the followin
quantity is usually sampled:

E05

(
n

bxn
Gn

L

(
n

Gn
L

, ~11!

with L fixed.11 The reason for takingL as small as possible
is that for largeL the weight factorsGn

L diverge exponen-
tially, leading to uncontrolled fluctuations. In order to com
pute the variance of theGn

L factors we can simply apply wha
we have derived in the previous section and prove in a
lines the exponential growth of the fluctuations of t
weights. Using Eq.~7! it is easily found that

~dGL!25G2,L~x!2G1,L~x!2.

According to Eq.~8! G2,L for largeL diverges exponentially
fast asl2

L wherel2 is the maximum eigenvalue of the matr
pb2 (b is here a diagonal matrixb5dx,x8bx), whereas the
first momentumG1,L diverges asG1,L;lL, with l the maxi-
e

,

,

e

d

e

e

h

w

mum eigenvalue of the Hamiltonian matrixH5pb. It is
clear therefore that we get an exponential increase of
fluctuations,

~dGL!2;~l2
L2l2L!,

as in generall2.l2 and the equality sign holds only if th
matrix b is a constant times the identity matrix.

In order to overcome the problem of an exponentia
increasing variance, in the following section we will discu
a way to propagate a set ofM walkers simultaneously. By
evolving them independently, clearly no improvement is o
tained for the aforementioned large fluctuations, as for t
purpose it is equivalent to iterating longer a single walk
Instead, before the variance of the weightswi becomes too
large, it is better to redefine the set of walkers by dropp
out the ones with a weight which is too small, and cor
spondingly generate copies of the more important ones
that after this reconfiguration all the walkers have appro
mately the same weight. By iterating this process the weig
of all the walkers are kept approximately equal during t
simulation. This property yields a considerable reduction
the statistical errors, as the variance of the average we
w̄5(1/M )( iwi is reduced by a factor ofAM . This allows
therefore a more stable propagation even for largeL.

V. CARRYING MANY CONFIGURATIONS
SIMULTANEOUSLY

Given M walkers we indicate the corresponding config
rations and weights with a couple of vectors (w,x), with
each vector componentwi ,xi ,i 51, . . . ,M , corresponding to
the i th walker. It is then easy to generalize Eq.~6! to many
independent walkers:

Pn11~w,x!5 (
x18 ,x28 , . . . ,xM8

Pn~w1 /bx1
,w2 /bx2

, . . . ,wM /

bxM
,x18 ,x28 , . . . ,x8M !

3~px1 ,x
18
px2 ,x

28
•••pxM ,x

M8
!/~bx1

bx2
•••bxM

!.

~12!

If the evolution ofP is done without further restriction, eac
walker is uncorrelated from any other one and

P~w1 ,w2 , . . . ,wM ,x1 ,x2 , . . .xM !

5P~w1 ,x1!P~w2 ,x2!•••P~wM ,xM !.

Similarly to the previous case we can define the mome
over the weight variable:

Gk,n~x!5E dw1E dw2•••E dwM(
x

3S w1
kdx,x1

1w2
kdx,x2

1•••wM
k dx,xM

M
D Pn~w,x!.

~13!

Since we are interested only in the first momentum ofP,
we can define a reconfiguration process that changes
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probability distributionPn without changing its first momen
tum, and in this we follow Ref. 11:

Pn8~w8,x8!5E (
x

G~w8,x8;w,x!P~w,x!@dw#, ~14!

G~w8,x8;w,x!5)
i 51

M S ( jwjdx
i8 ,xj

( jwj
D dS wi82

( jwj

M D .

~15!

Hereafter the multiple integrals over all thewj variables are
expressed conventionally in shorthand by*@dw#. Note that
the defined Green functionG is normalized,*@dw8#(x8G
51.

In practice this reconfiguration process amounts to ge
ate a new set ofM walkers (wj8 ,xj8) in terms of the givenM
walkers (wj ,xj ) in the following way. Each new walke
wj8 ,xj8 will have the same weightw̄5( jwj /M and an arbi-
trary configurationxj8 among the possible old onesxk , k
51, . . . ,M , chosen with a probabilitypk5wk /( jwj . It is
clear that after this reconfiguration the newM walkers have
by definition the same weights and most of the irrelev
walkers with small weights are dropped out. This is just
desired reconfiguration which plays the same stabiliza
effect of the conventional branching scheme.2 For an effi-
cient implementation of this reconfiguration scheme see
Appendix.

VI. BIAS CONTROL

It is well known that control of the population sizeM
introduces some bias in the simulation simply because s
kind of correlation between the walkers is introduced. Ho
ever, for high-accuracy calculations this bias often becom
the most difficult part to control. In this section we can i
stead prove that the reconfiguration of theM walkers defined
in Eq. ~14! does a better job. Though this reconfigurati
clearly introduces some kind of correlation among the wa
ers, it can be rigorously proved that the first moment
G1,n(x) of the distribution ofP is exactly equal to the one
G1,n8 (x) of P8, obtained after reconfiguration. This mea
that there is no loss of information in the described rec
figuration process and

G1,n8 ~x!5G1n~x!. ~16!

Proof. By definition using Eqs.~13! and ~14!,

G1n8 ~x!5E @dw#E @dw8#(
x,x8

S ( jwj8dx,x
j8

M
D

3G~w8,x8;w,x!P~w,x!.

The first term in the integrand contains a sum. It is simple
single out each term of the sumwk8dx,x

k8
/M and to integrate

over all the possible variablesw8,x8 but wk8 andxk8 . It is then
easily obtained that this contribution toG1n8 conventionally
indicated as@G1,n8 #k is given by
r-

t
e
n

e

e
-
s

-

-

o

@G1,n8 #k5E @dw#E @dwk8#(
x,xk8

wk8

M
dx,x

k8
S ( jwjdx

k8 ,xj

( jwj
D

3dS wk82
( jwj

M D P~w,x!.

Then by integrating simply indwk8 and summing overxk8 in
the previous integrand we easily get that@G1,n8 #k

5(1/M )G1,n , independent ofk. Finally by summing overk
we prove the statement~16!.

VII. GFMC SCHEME WITH BIAS CONTROL

Using the previous result it is easy to generalize Eqs.~10!
and ~11! to many configurations. It is assumed that the
configuration process described in the previous section
applied iteratively eachkb step of independent walker propa
gation. The indexn appearing in the old expressions~10! and
~11! now labels thenth reconfiguration process. The me
surement of the energy can be done after the reconfigura
when all the walkers have the same weight; thus, in Eq.~10!,

bxn
→bxn

→
1

M (
j 51

M

bx
j
n ~17!

or, for a better statistical error, the energy can be samp
just before the reconfiguration, taking properly into accou
the weight of each single walker:

bxn
5

( j 51
M wjbx

j
n

( j 51
M wj

. ~18!

It is important, after each reconfiguration, to save the qu
tity w̄5(1/M )( j 51

M wj and reset to 1 the weights of eac
walker. Thus the total weightsGn

L correspond to the applica
tion of Lkb power method iterations@as in Eq.~2!# to the
equilibrium distributioncT(x)5G0,n2L(x), which at equi-
librium is independent ofn. The value of the factorGn

L can
be easily recovered by following the evolution of theM
walkers in the previousL reconfiguration processes an
reads

Gn
L5 )

j 50

L21

w̄n2 j , ~19!

where the average weight of the walkersw̄ has been defined
previously.

An example of how the method works for the calculati
of the ground state energy of the HM in a 434 lattice is
shown in Fig. 1. Remarkably our method converges very
to the exact result with few correcting factors and w
smaller error bars as compared with the original Hetheri
ton scheme. Our method does not require the population c
trol reconfiguration at each step, and the resulting bias
considerably reduced, in the sense that, without any corr
ing factor, our value is 5 times closer to the exact result,
the example shown in Fig. 1.
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VIII. IMPORTANCE SAMPLING

One of the most important advantages of the Green fu
tion Monte Carlo technique is the possibility to reduce t
variance of the energy by exploiting some information on
ground state wave function, sometimes knowna priori on
physical grounds. In order to understand how to reduce
variance, we just note that the method, as described in
previous sections, is not restricted to symmetric matric
simply because we never used this property of the Ham
tonian matrices. Following Ref. 7 we consider not the ori
nal matrix, but the nonsymmetric one

Hx8,x
8 5cG~x8!Hx8,x /cG~x!,

wherecG is the so-calledguiding wave function, which has
to be as simple as possible to be efficiently implemented
the calculation of the matrix elements and, as we will see
close as possible to the ground state ofH.

In order to evaluate the maximum eigenvalue ofH8, cor-
responding obviously to the ground state ofH, the coeffi-
cient bx is now given byH8 as indicated in Eq.~11!; in this
casebx reads

bxn
5(

x8
cG~x8!Hx8,xn

/cG~xn!. ~20!

Thus, if cG is exactly equal to the ground state ofH, then,
by definition, bxn

5E0, independent ofxn . This is the so-
called zero variance propertysatisfied by the method

FIG. 1. Energy per site in a 434 Heisenberg cluster. The soli
line is the exact result and the dotted~dashed! line connects GFMC
data as a function of the numberL of correcting factors within our
scheme~Hetherington’s one! described at the end of the Appendi
The number of walkers in this case wasM510 and the reconfigu-
ration scheme was applied to each of four (kp54 in the text! itera-
tions, while in the Hetherington’s schemekp51. The guiding wave
function is given in Eq.~21! with g51.2, and all the data are
obtained with the same amount of computer time. The inset is
expansion of the bottom-left part of the picture.
c-

e

is
he
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l-
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Namely, if the guiding wave function approaches an ex
eigenstate ofH, the method is free of statistical fluctuation
Of course one is never in such a fortunate situation, but
improving the guiding wave function one is able to cons
erably decrease the error bars of the energy. This prope
rather obviously, is very important and nontrivial.

For the application of the method to the HM we have us
a Jastrow-like guiding function

ucG&5(
x

sM~x!expS g

2 (
R,R8

v~R2R8!SR
z SR8

z D ux&,

~21!

where ux& indicates in this case all possible spin configu
tions with SR

z 56 1
2 defined on each siteR of the l 3 l square

lattice and with the restriction of total vanishing spin proje
tion (RSR

z 50; sM(x) represents the so-called Marsha
sign, depending on the numberN↑(x) of spin up in one of
the two sublatticessM(x)5(21)N↑(x), while the long-range
potential is given by

v~R!5
2

l 2(
qÞ0

eiqRF12A11~cosqx1cosqy!/2

12~cosqx1cosqy!/2G ,
with uqxu<p and uqyu<p belonging to the Brillouin zone
and assuming the appropriate discrete values of a finite
tem with periodic boundary conditions. The constantg is the
only variational parameter in the wave function, which f
g51/2S is consistent with the spin-wave theory solution
the HM for large spinS.12

IX. FORWARD WALKING

The Green function Monte Carlo technique can be u
with success to compute also correlation functions on
ground state ofH. In fact it is simple to compute expectatio
values of operators that are diagonal in the chosen basis
that to a given elementx of the basis corresponds a wel
defined valueO(x)5^xuOux& of the operator. By the Green
function Monte Carlo technique, as we have seen, confi
rationsw,x distributed according to the desired wave fun
tion c0(x), or c0(x)cG(x) if importance sampling is imple-
mented, are generated stochastically. However in orde
compute^O&5^c0uOuc0& a little further work is necessary
as the square of the wave function is required to perform
quantum average. To this purpose the desired expecta
value is written in the following form:

^O&5 lim
N8,N→`

^cGuHNkhOHN8khucG&

^cGuH ~N81N!khucG&
. ~22!

From the statistical point of view Eq.~22! amounts first to
sample a configurationx after N8 GFMC reconfigurations,
then to measure the quantity^xuOux&, and finally to let the
walker propagate forward for furtherN reconfigurations.

In order to evaluate the stochastic average an appro
similar to that done for the energy is clearly possible. T
only change to expression~11! is to replacebxj

with the

average measured quantityOxN
5(1/M )( jOj

n at the genera-

tion n and change the corresponding weight factors in E
~19! as

n
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Gn
L5 )

j 52N

L21

w̄n2 j , ~23!

where henceforth we denote withOj
n the value of the diag-

onal operatorO on the configurationxj of the j th walker, at
the iterationn. Indeed these new factors~23! contain a fur-
ther propagation ofN reconfiguration processes as compa
to the previous expression. It is important that bothL, cor-
recting the bias, andN, correcting the quantum average
the operator, are finite, due to the exponential growths of
fluctuations asN and L increase. On the other hand, the
fluctuations can be controlled by enlarging the populat
sizeM , and the method forM large enough remains stabl

A further condition is, however, necessary in order
control the bias in the forward walking technique. The set
measured valuesOi

n with weight factors~23! has to be modi-
fied after each reconfiguration process occurring in the
ward direction. In practice after each reconfiguration it
important to bookkeep only the valuesOi of the observables
that survive after the reconfiguration~we omit in the follow-
ing the superscriptn for simplicity!. In other words, after
each reconfigurationOi85Oj ( i ) for i 51, . . . ,M with the in-
teger functionj ( i ) describing the reconfiguration process
our scheme@after any reconfiguration the walker with inde
i assumes the configuration with indexj ( i ) before the recon-
figuration#.

In order to implement recursively the forward walking
is useful to store at each reconfiguration process the int
function j n( i ) for each reconfigurationn and the valuesOi
of the operatorO for each walker. Then it is possible t
compute the relevant configurations contributing to the
erator O after N reconfiguration processes by a recurs
application of the integer functionsj n , namely, Oi8
5Oj N[ j N21••• j 1( i )•••] .

It is extremely important to perform the reconfiguratio
process as rarely as possible since after each reconfigur
in the forward direction the number of different configur
tions representing an operatorO decays quickly, yielding of
course a larger variance. Contrary to the Hetherington11 al-
gorithm our scheme allows bias control without requiring t
reconfiguration at each step.

An example on how this scheme works is shown in Fig
As is seen it is simple to reach the exact ground state a
age.

X. FORMAL PROOF OF THE BIAS CONTROL
IN THE FORWARD WALKING SCHEME

In order to implement stochastically Eq.~22! we need to
apply the operatorOx diagonal in configuration space, in
stochastic sense, and then follow the standard stochast
eration~6! to the walker distributionP for N steps. To this
purpose a walker from now on is identified by the triad

w,g,x,

whereg represents the actual value of the measured oper
O for the walker. Its value can change, as we will see la
on in the reconfiguration process, and in general due to
forward walkinggÞ^xuOux&. Indeed only at the beginning
n50, of the forward walking iterationg i5Oi5^xi uOuxi&,
d
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for i 51, . . . ,M . In a probabilistic sense this is equivalent
considering the initial probability distribution

Pn50~w,g,x!5P0~w,x! )
i 51,M

d~g i2Oi !,

whereP0 is the equilibrium distribution of the previous Mar
kov process~6!, which samples the ground statec0(x).

With this initial condition furtherN forward walking
steps are implemented to the probability distributionP, de-
fined with the iterations in Eq.~6! and in Eq.~12!. Then in
order to determine the quantity~22! the following ratio is
evaluated:

^O&5
^wg&

^w&
, ~24!

where the brackets indicate the average over the distribu
(x*dw*dgP(w,g,x). It is understood that in Eq.~6! and
Eq. ~12! the variablesg i remain unchanged. For instance th
analogy of Eq.~6! will be

Pn11~w8,g8,x8!5(
x

px8,xPn~w8/bx ,g8,x!/bx . ~25!

However, in order to satisfy the bias control property d
scribed in Sec. VI it is necessary to update theg variables at
any reconfiguration process.

Analogously to the previous case it is easier to work w
wg momenta of orderk of the distributionP for fixed con-
figurationx @see Eq.~7!#:

Gk,n
g ~x!5E dwE dg~wg!kPn~w,g,x!, ~26!

which for MÞ1 corresponds to

FIG. 2. Plot of the squared antiferromagnetic order param
ml

2 , in a 434 Heisenberg cluster as a function of the numberN of
forward walking reconfigurations. The solid line indicates the ex
result. The number of walkers was fixed toM520 with kp55. The
guiding function was the one referenced in Fig. 1. With the pres
technique thez component ofml can be measured on each sampl
configuration;ml

z5(1/Na)(R(21)RSR
z and spin isotropy is used to

determineml
253^(ml

z)2&.
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Gk,n
g ~x!5E dwE dg(

x
S ( j~wjg j !

kdx,xj

M
D Pn~w,g,x!,

~27!

where, as usual, underlined variables represent vec
whose components refer to the single-walker indexj .

With a proof exactly analogous to the one of Sec. VI it
possible to show the following.

~i! The value of the first (wg) momentumG1,n
g (x), at the

initial iteration of the forward walkingn50, is equivalent to
applying the operatorO to the initial distributionP0(w,x),
namely,

G1,n50
g ~x!5OxG1,n50~x!.

~ii ! The following reconfiguration process, which does n
change the Markov chain of configurations (w,x) but modi-
fies slightlyg, has the bias control property also for thewg
averages:

Pn8~w8,g8,x8!5E E (
x

G~w8,g8,x8;w,g,x!P~w,g,x!

3@dw#@dg#,

G~w8,g8,x8;w,g,x!5)
i 51

M

dS g i82

(
j

wjg jdx
i8 ,xj

(
j

wjdx
i8 ,xj

D
3S ( jwjdx

i8 ,xj

( jwj
D dS wi82

( jwj

M D .

~28!

The first factors in the Green functionG, involving theg ’s,
represent the only difference to the previous reconfigura
process~14!. Thus obviously the momentaGk,n not involv-
ing theg variables satisfy the same bias control property
the previous reconfiguration process~14!.

As far as the (wg) momenta are concerned, it is possib
to prove as before the mentioned bias control property

G1,n8g ~x!5G1,n
g ~x!. ~29!

To this purpose, analogously to the previous case, i
convenient to single out a termj 5k in the definition of the
first wg momentum in Eq.~27!, and following the same
route of Sec. VI integrate easily the Green function over
possible variablesw8, g8, and x8, but the variablesxk8 ,
gk8 , andwk8 . These remaining integrations can be also p
formed analytically by first integrating inwk , then in gk ,
and finally summing overxk . The assertion~29! is therefore
proved rigorously.

XI. ‘‘STRAIGHT’’-FORWARD WALKING

A simpler method to compute averages of general op
tors is obtained by Eq.~24!, performing two independen
simulations for the numerator and the denominator in
~24!. The remarkable advantage of this technique is the p
sibility to measure also off-diagonal operatorsOx8,x . After
rs

t

n

f

is

ll

r-

a-

.
s-

the first simulation for the evaluation of the denominator
take an equilibrated walker configuration (w,x) and apply
the operatorO. Whenever the operatorO is off diagonal this
is not simply equivalent to scale the weightw→wOx . In
fact we need a stochastic approach to select only one of
configurationsx8 among the possible ones connected tox
with nonzero matrix elementOx8,x . WheneverOx8,x.0 this
stochastic approach can be implemented with a two-s
technique analogous to the one for the Hamiltonian as
lows.

~i! We first scalew by the mixed average estimat
(x8cG(x8)Ox8,x /cG(x).

~ii ! Then we select a random new configurationx8 with a
probability proportional tocG(x8)Ox8,x /cG(x).

Then the same reconfiguration process~14! to work with
a fixed number of walkers during the forward walking prop
gation can be efficiently applied.

Finally we comment that the general operatorsO with
arbitrary signs in the matrix elements can be always cast
differenceO5O12O2 of two operators with positive defi
nite matrix elements; the above method can be applied toO1

andO2 separately.

XII. DISCUSSION AND RESULTS

In the previous sections we have described how to ob
ground state energies and correlation functions of some c
of Hamiltonians on a finite lattice size. In this section w
describe a successful application of this method to the H

We are interested in thermodynamically converged phy
cal quantities characterizing the quantum antiferromag
for instance, the energy per sitee0, the staggered magnetiza
tion m, the spin-wave velocityc, and the spin susceptibility
x. Use of a finite-size scaling analysis is required to obt
the infinite-volume limit of our data.

We compute with our method the ground state energy
site, e0, and the ground state expectation value of the sp
spin structure factorS(q):

S~q!5
1

Na
K c0u (

R,R8
eiq~R2R8!SR•SR8uc0L , ~30!

which for q equal to the antiferromagnetic momentumQ
5(p,p) allows a finite size estimate of the order parame
ml5AS(Q)/Na. The known finite-size scaling theory13,4 in a
quantum antiferromagnet predicts that~a! the ground state
energy per site,e0, has the following leading size correc
tions:

e0~L !5e021.4372c/ l 31•••, ~31!

which allows an indirect evaluation of the spin-wave velo
ity. ~b! Further the finite-size estimate of the order parame
ml approaches its converged value as 1/l .

Finally Neuberger and Ziman,4 using a relativistic pion
physics analogy, derived very powerful constraints on
spin-spin structure factorS(q), namely, that forq→Q it
diverges as 1/uq2Qu with a prefactor equal tom2/xc. Using
their arguments it also follows immediately that

S~q!;xcuqu ~32!

for uqu→0.
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In spin-wave theory results for the constants appearin
Eq. ~31! are given by

m5s2c8, ~33!

c52JsA2~11c0/2s!, ~34!

xc5
s

2A2
~12c8/s!, ~35!

wherec0 andc8 can be estimated on al 3 l finite size lattice,

c0~ l !512
1

Na
(

k
ek→0.1579 ~36!

and

c8~ l !5
1

2Na
(

kÞ0,Q

1

ek
2

1

2
→0.1966, ~37!

and are expressed in terms of the spin-wave energyek

5A12gk
2, wheregk5(coskx1cosky)/2.

In order to improve the accuracy of the finite-size scal
calculation we have systematically compared our finite-s
data with the spin-wave expansion on the same lat
sizes.15 This technique allows us to compute explicitly th
finite-size corrections using the 1/S expansion, yielding re-
sults consistent with the previous theory for the finite-s
corrections. The advantage of using finite-size spin-w
theory is that it also implicitly determines all the subleadi
corrections in 1/l . In this approach, the energy per site
given by

e~ l !522JF @s2c0~ l !#221

Na
2 G , ~38!

which correctly reproduces the predicted finite-size sca
~31! with the spin-wave velocity given by Eq.~35! and a
finite-size next leading contribution12J/ l 4, appearing in the
second-order spin-wave expansion. The latter term is inc
sistent with a claim by Fisher, which probably omitte
higher-order contributions in his analysis.13 On the other
hand, the fit of the data reported in Table I is also in qu

TABLE I. Energy per site of the HM in the square latticel 3 l .
In this work the infinite-size extrapolation is obtained with a pa
bolic fit E0( l )5E0(`)1a/ l 31b/ l 4 for all size with l>8. (a5
22.27560.12 andb51.6460.9). The numbers in parentheses re
resent error bars in the last digits.

l E0
a E0

b E0
c

6 -0.678871~8! -0.678873~4! -0.6788721~28!

8 -0.673486~14! -0.673487~4! -0.673483~8!

10 -0.671492~27! -0.671549~4! -0.671554~6!

12 -0.670581~49! -0.670685~5! -0.670678~5!

14 5 -0.670222~7! -0.670223~8!

16 -0.669872~28! -0.669976~7! -0.669977~8!

` -0.66934~3! -0.669437~5! -0.669442~26!

aReference 8.
bReference 14.
cThis work.
in
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titative agreement with spin-wave theory, also for this ne
leading contribution to the energy per site.

By a simple Fourier transform of the finite-size spin-wa
results for^SW R•SW 0& we obtainS(q)50 for q50, consistent
with a singlet ground state and

S~Q!5Na@s2c8~ l !#221/Na1
1

2Na
(

kÞ0,Q
S gk

ek
D 2

, ~39!

S~q!5
12gq

eq
@s2c8~ l !#2

1

Na
1

1

4Na

3 (
kÞ0,Q,q,q1Q

12gkgq2k2ekeq2k

ekeq2k
,

qÞQ,0. ~40!

After a simple inspection the leading behaviorS(q)
}uqu(S(q)}1/uq2Qu) for q→0(q→Q) is in agreement
with the Neuberger-Ziman predictions, with an exac
consistent prefactor xc5(s/2A2)(12c8/s)@m2/xc
52A2s(12c8/s)] within 1/s expansion.

Now we discuss the finite-size results obtained with
GFMC technique described in this paper.

First we compute the ground state energy per sitee0 and
report all the data in Table I. According to Eq.~31! we make
a parabolic fit in 1/l and obtain for the energy per site in th
thermodynamic limit the value reported in Table I. Th
value differs from a previous GFMC estimate,8 without a
population control error, which is exactly removed in o
method. This error seems to affect significantly the large s
estimate of the energy as shown in the Table I. A rec
paper by Sandvik,14 using a completely different path inte
gral method, reports energy values perfectly consistent w
ours and with similar error bars. The spin-wave velocity
then evaluated by looking at the finite-size corrections ofe0.
Then according to Eq.~31! we obtain

c/cSW51.1260.06, ~41!

with cSW5A2J the zero-order spin-wave velocity. We hav
reached a very poor accuracy for this quantity, as it is de
mined by the subleading corrections of the energy, which
turn are also quite size dependent. For this quantity it is
possible to find significant differences from the second-or
spin-wave resultc/cSW51.1579 @Eq. ~35!#, which is prob-
ably a more realistic and accurate value.

The order parameter is evaluated by the forward walk
technique with~Sec. IX! or without ~Sec. XI! bookkeeping
of the branching matrix. In the latter case the spin isotro
square order parameterS(Q)/Na is directly evaluated, as the
method is not restricted to diagonal operators. As discus
in this paper the only source of systematic errors is given
the length of the forward walking propagationN and the
number of bias-correcting factorsL for the ground state. It is
understood that forN,L→` our method provides the exac
finite-size value forml . The finiteL error is negligible, as
we have used a large enough number of walkers to elimin
the bias with few correcting factors.

The most important systematic error is due to the finiteN.
Its drastic and controlled reduction as a function ofN is
displayed in Fig. 3 which shows that we have achieved c

-

-
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verged values forml within the error bars even for the large
system sizeNa516316. Note also that the ‘‘straight’’- for-
ward method converges much more quickly as the total s
is conserved in this method and the convergence to
ground state is determined by the much larger gap in
same singlet subspace. Our data forml are again in perfec
agreement with Sandvik’s, who was able to obtain mu
smaller error bars. With the available data we have extra
lated ml by displaying the ratio of this quantity with th
spin-wave prediction in Fig. 4. The suppression of the fin

FIG. 3. Staggered magnetization for increasing lattice si
~from top curve to bottom curve! as a function of the forward walk
ing iteration numberN computed with the method of Sec. IX~a!
and with the method of Sec. XI~b!. The number of walkers for eac
lattice size and figure~a! is M51000, 2000, 3000, 3000,3000
with kp530, 50, 60, 80, 80 andl 56, 8, 10, 12, 16, respec
tively, while the guiding wave function is given by Eq.~21! with
g51.125. In ~b! the number of walkers isM51000, 2000,
2000, 2000, 2000 andkp510, 20, 20, 20, 25.
in
e
e

h
o-

-

size effects, obtained with this analysis, is remarkably go
~see Table II!.

Finally we have computed the structure factor with t
forward walking technique~Sec. IX! for several momenta
Analogously to the previous case for the order parameter
have studied the ratio of the quantum Monte Carlo~QMC!
data with the spin-wave prediction given by Eq.~39!. This
calculation shows that the spin-wave expression~39! is par-
ticularly accurate close toq;Q but there is some deviation
for small momenta. From Eq.~39! the small-q limit of the
structure factor can be computed analytically in a spin-wa
expansion:S(q)5uqu/2A2(s2c8)50.1073uqu. The ratio be-
tween our QMC data and the second-order spin-wave pre
tion is shown in Fig. 5 and for smallq it approaches the
value 1.04560.01, rather independently of the system siz
This yields, by Eq.~32!, a direct determination of the produc
s

FIG. 4. Plot of the ratio between staggered magnetization, c
puted by the forward walking GFMC technique, and the spin-wa
staggered magnetization as a function of 1/l . The circles refer to the
‘‘straight’’-forward walking technique~Sec. XI! and the squares to
the data reported in Ref. 14. The lines are a weighted linear l
squares fit of the data. The extrapolations forl→` are displayed in
Tables II and III.

TABLE II. Staggered magnetization of the HM in the squa
lattice l 3 l with side l computed with the forward walking tech
nique. The numbers in parentheses represent error bars in the
digits. The extrapolated values of our GFMC data forNa→` are
obtained by the fit shown in Fig. 4.

l ml
a ml

b ml
c ml

d

6 0.4581~2! 0.458074~3! 0.4583~3! 0.4579~1!

8 0.420~1! 0.421709~9! 0.4212~6! 0.4217~1!

10 0.397~3! 0.399214~9! 0.3988~8! 0.3991~6!

12 0.378~14! 0.38400~1! 0.380~2! 0.3834~6!

16 5 0.3647~1! 0.361~9! 0.3642~6!

` 0.3075~25! 0.3070~3! 0.3058~12! 0.3077~4!

aReference 8.
bReference 14.
cThis work, Sec. IX.
dThis work, Sec. XI.
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of the spin-wave velocity and the susceptibility:xc
50.112260.001. This value is very much in disagreeme
with Sandvik’s14 who predictedxc50.104660.002, about
four error bars out from our direct and more accurate res
This discrepancy is probably due to a very difficult infinit
size extrapolation ofx ~Ref. 16! andc, whereas the produc
xc calculated by means ofS(q) for small momenta seem
rather well behaved, as shown in Fig. 5. In the same fig
the prefactor aroundq;Q is in quite reasonable agreeme
with the expected one~large solid circle! m2/xc obtained
with our independent measures ofxc ~slopeSq for q→0)
and m2@S(q)/Na for q5Q#, considering also that this
function, according to the Neuberger-Ziman theory, sho
jump discontinuously atq5Q, where it assumes a value d
termined only by the the order parameterm2. The shape of
the curve displayed in Fig. 5 is clearly consistent with t
predicted singularity.

Our results therefore represent a direct confirmation of
internal consistency of the Neuberger-Ziman theory.

The values for the physical quantities extrapolated in
thermodynamic limit are summarized in Table III.

FIG. 5. Plot of the ratio between the spin-spin structure fac
S(q), computed by the forward walking GFMC technique, and
second-order spin-wave estimateSSW(q) @see Eq.~40!#. The struc-
ture factor has been evaluated forL56,8,10,12 over the pathG

5(0,0)→M̄5(p,0)→Y5(p,p)→G5(0,0). The large circle at
the Y point is the expectedq→Y limit of S(q)/SSW(q), by using
the values form2 andxc reported in Table III.

TABLE III. Infinite-size estimates of the various ground sta
quantities of the HM discussed in the paper. The value ofm is
obtained by fitting the more accurate data of Ref. 14 as show
Fig. 4. The value ofxc is computed from the data of Fig. 5, corre
sponding to the largest size and smallest momentum.

e0 -0.669442~26!

m 0.30756.0002
xc 0.112260.001
t
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re
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XIII. CONCLUSIONS

We have described in detail a straightforward impleme
tation of the Green function Monte Carlo scheme on a latt
Hamiltonian without the need of the standard branching p
cess. The extension of such a scheme to continuum sys
such as4He is straightforward. Indeed the present algorith
works at a fixed number of walkers and we have shown t
all sources of systematic error can be controlled with a r
orous approach both for computing the ground state ene
and for computing ground state correlation functions. T
possibility to work with a limited number of walkers is ex
tremely important for high-accuracy calculations. This
fact requires quite long simulations to decrease the statis
errors and, with the standard approach,2 one easily exceeds
the maximum number of walkers for the available compu
memory.

Our reconfiguration scheme is not restricted to work a
fixed number of walkers. In fact our proofs in Secs. VI and
can be readily generalized when the numberM 8 of outgoing
walkersxj8 ~with unit weight! is different from the numberM
of the incoming oneswj , xj . Thus a standard branchin
scheme between two consecutive reconfigurations can
also applied, and the method can be used only each time
population of walkers reaches an exceedingly large or sm
size. At each stochastic reconfiguration the simple fac
( j 51

M wj /M 8 correctsexactly the bias of the described siz
population control. This maybe a more efficient impleme
tation of our method, with, however, a rather more involv
algorithm.

This scheme represents a more practical implementa
of the Hetherington idea to work at fixed number of walke
as~i! it is not required to apply the reconfiguration process
each Markov iteration. Indeed our scheme coincides with
Hetherington one in this limit.~ii ! The same idea to contro
the bias at fixed number of walkers was extended to
‘‘forward walking technique’’ which is important to calcu
late efficiently correlation functions on the ground state.~iii !
Contrary to the conventional belief we have shown that th

FIG. 6. Comparison between QMC data~solid squares! and ex-
perimental data~solid circles! for the static magnetic structure fac
tor. The solid line connecting the QMC data is the second-or
spin-wave prediction@see Eq.~40!#, almost exact in this scale
whereas the line connecting the experimental data represent
corresponding fit reported in Ref. 5.
r
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are no basic difficulties to compute ‘‘off diagonal’’ correla
tion functions with the Green function Monte Carlo tec
nique, using a simple forward walking technique~Sec. XI!,
which turned out to be very efficient for determining th
order parameter in the HM.

We have applied these methods to compute very ac
rately the ground state energy per site of the HM, the sp
spin structure factor, and the antiferromagnetic order par
eter, whose infinite-size values are shown in Table III.

We have obtained very good agreement with finite-s
spin-wave theory, which allows a very well-controlled finit
size scaling~see Fig. 5!. We believe that the reported acc
racy gives a very robust confirmation of the existence
antiferromagnetic~AF! long-range order in the 2D HM.

We finally show in Fig. 6 a comparison of our QMC
prediction forS(q) with the available experimental data o
the stechiometric La2CuO4 Mott insulator for momenta close
to the AF wave vector:q;(p,p). The agreement is remark
ably good considering also that~i! the experiments have bee
performed at a temperature above the Ne´el temperature, so
that no true long-range order exists, despite the very l
correlation length.5 As a consequence, for a good compa
son between experiments and theory, one should take
account the smearing of thed function contribution atQ
5(p,p), to be added to the theorethical ground state pre
tion. ~ii ! There are no fitting parameters in the present co
parison.

Therefore the copper-oxygen planes of La2CuO4, planes
which become high-temperature superconductors upon fi
hole doping, are well described by the nearest-neigh
Heisenberg model.
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APPENDIX: PRACTICAL
RECONFIGURATION PROCESS

In this appendix we follow the notation of Sec. VI t
describe an efficient implementation of the reconfigurat
process needed to stabilize the proposed GFMC method

The new walkersxi8 after reconfiguration are chose
among the old onesxk , with probability pk . We divide the
interval (0,1) in M subintervals with lengthpk from the
leftmost to the rightmost ask increases from 1 toM . Then
we generateM pseudorandom numberszi for i 51, . . . ,M
and sort them, bearing in mind that the indexi labels the
walker xi8 after the reconfiguration. We save therefore t
random permutationi (k), k51, . . . ,M , corresponding to
the described sorting, the permutation that determi
zi (k11).zi (k) . An efficient sorting algorithm takes the orde
of M lnM operations, and thus is not time consuming.

The next step is to make a loop over the sorted indexk,
giving a monotonically increasingzi (k) , and to select as a
new configurationxi (k)8 the onexj , among the old configu-
rations, such thatzi (k) belongs to the interval of lengthpj .
Note that the index functionj ( i ), i 51, . . . ,M , contains
all the information required for the forward walking tech
nique described in Sec. IX.

After the described process some of the old configurati
may appear in many copies, while others disappear. T
happens also if the distributionpj is uniformpj;1/M , yield-
ing clearly some loss of information in the statistical proce
A better way to implement the reconfiguration, without lo
ing information and without introducing any source of sy
tematic error, is obtained by the following simple chang
After the generation of the random permutationi (k) a new
set of numbers uniformly distributed in the interval (0,1)
defined:

z̄i5@j1~ i 21!#/M

for i 51, . . . ,M , wherej is another pseudorandom numb
in (0,1). This set of numbersz̄i , now uniformly distributed
in the interval (0,1), is then used to select the new confi
rations, yielding a more efficient implementation of the d
scribed reconfiguration process.
M.
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