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Numerical study of the two-dimensional Heisenberg model
using a Green function Monte Carlo technique with a fixed number of walkers
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We describe in detail a simple and efficient Green function Monte Carlo technique for computing both the
ground state energy and the ground state properties by the “forward walking” scheme. The simplicity of our
reconfiguration process, used to maintain the walker population constant, allows us to control any source of
systematic error in a rigorous and systematic way. We apply this method to the Heisenberg model and obtain
accurate and reliable estimates of the ground state energy, the order parameter, and the static spin structure
factor S(q) for several momenta. For the latter quantity we also find very good agreement with available
experimental data on the L@uQO, antiferromagnet{S0163-18208)04418-X

I. INTRODUCTION this function behaves a8(q) = xc|q|, wherey is the mag-
netic spin susceptibility and the spin-wave velocity of the
After almost one decade since the discovery of high- HM. This relation is particularly important as this function is
superconductivity we have certainly understood much mor@xperimentally detectable in neutron scattering experintents.
about magnetism rather than superconductivity. In particular, |et us discuss now the technical part of our work, which
since almost all the stoichiometric compounds of high- is based on the GFMC technique, as we have mentioned
superconductors are good antiferromagnets, well describagkfore. As is well known this technique allows one to sample
by the two-dimensional Heisenberg modéiM), from the  gpaistically the ground state of a many-body Hamiltortan
very l_Jeglnn_mg a strong numgrlcal effort_has b_een devoted tBy a set of walkersw; ,x;) which represent vectorsx of a
the simulation of this modet? The HM is defined by the large (or even infinitg Hilbert space. The set of all configu-

following Hamiltonian: rationsx spans a normalized and complete basis. The aim of
o this approach is to sample statistically the ground state,of
HJ=JZ S-S, (1) by a large population of walkefsAs it will be described

() later on, in the finite-dimensional case, the GFMC on a lat-

where the spin one-half vecto® satisfy $?=3/4 andJ is  tice is based on a statistical application of the Hamiltonian
the nearest-neighbor antiferromagnetic superexchange comatrix-vector productv;x{ —(—H)w;x; to the walker con-
pling, connecting nearest-neighbor paiiisj). Henceforth  figurations{wx};, thus filtering out, after many iterations,
periodic boundary conditions are assumed in a finite squarthe desired population distribution for the ground state. In
lattice with N,=1X1 sites. this statistical iteration, however, the walker weighisin-
Although a rigorous proof that this model has long-rangecrease or decrease exponentially so that after a few iterations
antiferromagnetic order in two spatial dimensions is stillmost of the walkers have negligible weights and some kind
lacking, there is a general consensus that long-range ordef reconfiguration becomes necessary to avoid large statisti-
exists even in this interesting case. In other words its propeal errors. The process to eliminate the irrelevant walkers or
erties should be very well understood by the simple spingenerate copies of the important ones is called “branching.”
wave theory, which assumes long-range antiferromagneti€his scheme is in principle exact only if the population of
order in the ground stafe. walkers is let to increase or decrease without any limitation.
In this work we give accurate ground state properties ofAny reconfiguration of the population size may in fact intro-
the HM using a new and more efficient version of the Greerduce some spurious correlation between the walkers that
function Monte Carlo(GFMC) technique, applied on a lat- may affect the statistical sampling of the ground state. In
tice by Trivedi and Ceperley, some years &go. practice for a long simulation it is always necessary to con-
With the present scheme we also estimate the ground statenl the population size, as, otherwise, one easily exceeds the
energy of the HM on the square lattice to be.669 442 maximum allowed computer memory. This control of the
+0.000 028 slightly different, but more accurate than the walker population size may introduce some kind of bias that
previous GFMC estimates. Analogously we obtain for thevanishes quite slowly for an infinite number of walkérsin
antiferromagnetic order parameter the valoe=0.3077 this case only by performing several runs with different num-
+0.0004, consistent with other numerical estimates but wittbers of walkers may one in principle estimate the size of the
a very accurate control of the finite-size effects. We discussesidual bias.
also our results for the static spin structure factor in view of ~Following the Hetherington’s work: we define here an
the recently proposed theory for the finite-size scaling in eefficient reconfiguration process at a fixed numiér of
quantum antiferromagnétln particular we verify that, as a walkers, with a rigorous control of the bias and without need
remarkable prediction of the theory, the smglbehavior of  of the conventional branching scheme.
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In the last sections we present the results obtained for the . SINGLE-WALKER FORMULATION

HM up to anN,=16X16 lattice size, together with some . T .

numercal et on sl 4x 4 fice where an ace_ 1 %8 DI Ve sebuier | samhed b
rate numerical solution is available by exact diagonalization.caselvI —1.In order to defi.ne o statistical im Iementatiorr: of
Previous calculations on this model, using the Green func: o P

tion Monte Carlo technique, were performed either without.the matrix multiplication|x) — H|x), the standard approach

correcting the bigsand controlling it for small lattices with a IS first ';oddtetermhl_ni the ';_"’]}fm'lto?'?n matrix e_:_ime'h{ﬁx
large number of walkers or by correcting the bias in a Wayconnec ed tx-which aré difierent from zero. 1hen a new

which is probably correct, but is not possible to prove'nde?( X' Is chosen fo'r.the walke_r among the indideac-
rigorously® cording to the probability determined by

pi,x:Hi,x/va 3
Il. GFMC TECHNIQUE
) _ o ) whereb,=Z;H; , has been introduced in order to satisfy the
In the following sections we describe in detail how 10 normalization condition¥;p; ,=1. This simple iteration
evaluate the maximum eigenvector of a mattiix  with all  scheme to go from a configurationto a new configuration
positive definite matrix elements, using a stochastic apy’ js easily implemented but is not sufficient to determine
proach. Clearly in any physical problem, described by astochastically the matrix-vector produdtx. The full matrix
HamiltonianH, the most interesting eigenvalue is the lowestis 5 product of a stochastic matrix , and a diagonal one
one: the ground state energy. This is, however, just a mattegx: '

of notation, as the ground statetdfrepresents the maximum

excited state of—H. In the following, for simplicity, we Hi = DPi xby. (4)
assume a change in the signtbfso that the physical ground ' '

state is, in this notation, the maximum eigenvectorthf  As is intuitively clear the diagonal matrl,, not included in
More important instead is the restriction of positive definitethe stochastic process, is very easily determined by a scaling
matrix element#,. ,, which drastically constrains the class of the weightw of the walker:

of Hamiltonians that can be treated with this method, without

facing the old but still unsolved “sign problem.” Whenever w'—b,w. 6)
the Hamiltonian has matrix elements with arbitrary sign, , )

schemes like the “fixed node approximation,” and their re- "€ tWo previous updates, the stochastic ¢8eand the
cent developments to finite lattices, are possible within théleterministic onés), define a new walkew’,x" in place of
GFMC method1° Of course, if negative signs occur only in the “old” walker w,Xx; i.e., they determine a Markov pro-

the diagonal elements ¢1, a simple change of the Hamil- ¢€ss- .
tonianH—H., .+ A5 will not change the ground state At this point it is important to understand the evolution of
x',X YUR'E)

but the Hamiltonian will satisfy the conditiod,. =0 fora e Probability distributionP(w,x) after such process. A

large enough shifi. For instance, the Heisenberg Hamil- subscriptn to this functionP will indicate the number of
tonian can be easily cast in the previous form as had beelffrations of the Markov process. The probability evolution
previously showrf. P.— Pn.1 is easily determined by

From a general point of view the ground statd+€an be

obtained by applying the well-known power method: Poia(W X)) =2 Pur xPa(W' 1Dy ,X)/by. (6)
. ,
| o) = lim HY ), ) . . . L
L—oo Equation(6) allows us to determine, by simple iteration,

_ o o what is the probability to find a walker in a given configu-
where the equality holds up tnfinite) normalization, and  rationw,x after many steps. However the evolutiBg from
|¢s7) is a trial state nonorthogonal to the ground statg).  the initial distributionP, is more clear and transparent in

In the following a simple stochastic approach is describederms of its momenta over the weight variakle
for evaluating the statel™|y+). To this purpose we define a

basic element of this stochastic approach: the so-called
walker. A walker is determined by an indexcorresponding Gk,n(X):J' dw WP (W,X). (7)
to a given elemenfx) of the chosen basis and a weight
The walker “walks” in the Hilbert space of the matrid In fact it is straightforward to verify, using E¢6), that
and assumes a configuratiarx according to a given prob-
ability distribution P(w,Xx). =3 b

The task of the Green function Monte Carlo approach is Cion+a(X)= = Pxr xDxGin(X)- (8)
to define a Markov process, yielding after a large number
of iterations a probability distributionP,(w,x) for the In particular fork=1 the first momentum oP determines
walker which determines the ground state wave funclign  the full quantum mechanical information, aG;,(x’)
To be specific in the most simple formulation one has =(H") xG1«X), implying that G, ,(x), by Eq. (2), con-

verges to the ground state of the Hamiltontdn
By iterating several times even a single walker, the result-

J dwwPR(W,x) = (x| ¢o). ing configurationw,x will be distributed according to the
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ground state oH and by sampling a large number of inde- mum eigenvalue of the Hamiltonian matrbt=pb. It is
pendent configurations we can evaluate, for instance, thelear therefore that we get an exponential increase of the
ground state energy: fluctuations,

~(wby) (8GH)2~(N5—\%),
EO_Wv 9

as in generah,>\2 and the equality sign holds only if the
matrix b is a constant times the identity matrix.

In order to overcome the problem of an exponentially
increasing variance, in the following section we will discuss

the weightw of the walker grows exponentially with (sim- & Way t0 propagate a set & walkers simultaneously. By
ply as a result oh independent produdtaind can assume evolving them independently, clearly no improvement is ob-

very large values, implying a diverging variance in the abovd@ined for the aforementioned large fluctuations, as for this
averages. purpose it is equivalent to iterating longer a single walker.

In the next sections we describe in detail this problem angnstead, before the variance of the weighisbecomes too

a way to solve it with dixed number of walkers. large, it is bette_r to redejine thg set of walkers by dropping
out the ones with a weight which is too small, and corre-

spondingly generate copies of the more important ones, so
that after this reconfiguration all the walkers have approxi-
mately the same weight. By iterating this process the weights
The configurations,, that are generated in the Markov Of all the walkers are kept approximately equal during the
process are distributed after a long time according to thgimulation. This property yields a considerable reduction of
maximum right eigenstat®(x) of the matrixp,. , [simply the statistical errors, as the variance of the average weight
becauseG, o(X) =2, (P")xx GooX')—R(x) for large n]  w=(1/M)Z,w; is reduced by a factor of/M. This allows
which, as we have seen, is in general different from theherefore a more stable propagation even for ldrge
ground state/y(x) we are interested in, due to the weights

where the bracket§ ) indicate the usual stochastic average,
namely, averaging over the independent configurations.
This in principle concludes the GFMC scheme. However,

IV. STATISTICAL AVERAGE
DURING THE MARKOV PROCESS

w,, that weight differently the various configuratiorsdis- V. CARRYING MANY CONFIGURATIONS
tributed according tdR(x). We are allowed to consider this SIMULTANEOUSLY
stateR(x) as the initial trial statg+) used in the power ] o ) .
method(2), and that, at any Markov iteratiom, the walker GivenM walkers we indicate the corresponding configu-
had weightw=1 . . .L iterations backward, when it was at rations and weights with a couple of vectors k), with
equilibrium according to the distributioR(x), described be- €ach vector component ,x;,i=1, ... M, corresponding to
fore. In this way it is simple to compute the global weight of the ith walker. It is then easy to generalize Ef) to many
the walker withL power method correcting factors: independent walkers:
= P (wx)= S P.(w/b, w,/b Wy /
L_ n+1\VW,A)— nUW1 Fx, VW2 T X, - e sV
Gn_]l;[l bXn—j' (10) - X1 Xg, o Xy ' z
Therefore, for instance, in order to compute the energy with be'Xi'Xé' coX'wm)
a single Markov chain of many iterations, the following
quantity is usually sampled: X(Pxy xPxgoxy ™ Py x( ) (Bx By, - - by ).
(12
L
En: by Gn If the evolution ofP is done without further restriction, each
Eo= , (11)  walker is uncorrelated from any other one and

> G
n

with L fixed!! The reason for taking as small as possible =P(wy, X)) P(Wp,Xp) - - P(Wy ,Xy).
is that for largel the weight factorsG_,L] diverge exponen- - gimilarly to the previous case we can define the momenta
tially, leading to uncontrolled fluctuations. In order to com- gyer the weight variable:
pute the variance of th@h factors we can simply apply what
we have derived in the previous section and prove in a few
Grn(¥)=| dw; | dwy--- | dwy>,
X

P(Wq,Ws, ... Wy, X1,X2, ... Xpm)

lines the exponential growth of the fluctuations of the
weights. Using Eq(7) it is easily found that

L\2 2 Wl:l<.5x,x1+wl§5x,x2+ o 'WK/I 5x,xM
(6G1)2=Go ()~ Gy (%) X v P(W,X).
AccordirL1g to Eq.(8) G, for IgrgeL d_iverges exponentiall){ (13)
fast ash; where\ , is the maximum eigenvalue of the matrix
pb? (b is here a diagonal matrik= 4, ,/b,), whereas the Since we are interested only in the first momentuniPof

first momentunG,, diverges a:Gl'L~)\"-, with A the maxi- we can define a reconfiguration process that changes the
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probability distributionP,, without changing its first momen- w, =W 8y x.
in thi follow Ref. 11: = 1> s, | ——
tum, and in this we follow Re [Ginlk J[dﬂ]f [de]X% v 5x,xk S,
2%k
P,@(W’,x’)=f > Gw X w,x)P(w,x)[dw], (14) R
— X —_— - == = X 8| Wy — ———| P(W,X).
- M '
M (Wi x, =W Then by integrating simply imw, and summing ovex, in
cw x":wx) =1 IR Y VWl M y Integrating simply imw, and 9 k
AN =5 =W, | M | the previous integrand we easily get thdiG, I
(15) =(1/M)G,,, independent ok. Finally by summing ovek

we prove the statemeiii6).
Hereafter the multiple integrals over all thg variables are
expressed conventionally in shorthand fydw]. Note that
the defined Green functio@® is normalized,/[dw’]Z,.G
=1. Using the previous result it is easy to generalize EfS)

In practice this reconfiguration process amounts to gener@nd (11) to many configurations. It is assumed that the re-
ate a new set ofl walkers Wj' ,Xj') in terms of the giverM configuration process described in the previous section is
walkers (;,x;) in the following way. Each new walker applied iteratively eack, step of independent walker propa-
w/ X! will have the same weighﬂ=2jwj /M and an arbi- ?at;on. The index appearing in the old expressiofif) and

) . L ; 11) now labels thenth reconfiguration process. The mea-
trary configurationx; among the possible old oneg, k . !

y 9 ! 9 b ok surement of the energy can be done after the reconfiguration

=1,... M, chosen with a probability,=w, /Z;w;. It is o )
clear that after this reconfiguration the névwalkers have when all the walkers have the same weight; thus, in(&@),

by definition the same weights and most of the irrelevant

walkers with small weights are dropped out. This is just the

desired reconfiguration which plays the same stabilization

effect of the conventional branching schefmor an effi-

cient im-plementation of this reconﬁguration scheme see thgr, for a better Statistica| error, the energy can be Samp'ed

Appendix. just before the reconfiguration, taking properly into account
the weight of each single walker:

VII. GFMC SCHEME WITH BIAS CONTROL

1 M
by, =Dy, — Mg& by a7

VI. BIAS CONTROL
M
EizlwibX}‘

It is well known that control of the population sizd
by (18)

introduces some bias in the simulation simply because some Xn EJM: 1W;
kind of correlation between the walkers is introduced. How-

ever, for high-accuracy calculations this bias often becomes is important, after each reconfiguration, to save the quan-
the most difficult part to control. In this section we can in- st v7=(1/M)2-M:1wj and reset to 1 the weights of each
stead prove that the reconfiguration of Mewalkers defined |, = ker. Thus th]e total weight correspond to the applica-

in Eq. (14) does a better job. Though this reconfigurationy; = Lk, power method iternationéas in Eq.(2)] to the
clearly introduces some kind of correlation among the walk-equilibrium distribution ¢r(X) = Go,,_ L (X), Which at equi-
ers, it can be rigorously proved that the first momentu ibrium is independent oh. The vé?ue of ,the factoBL can
G1n(x) of the distribution ofP is exactly equal to the one be easily recovered by f.ollowing the evolution o? the

1 , : ) : .
Gyn(x) of _P ' obtalned_after re_conﬁgurauon. T_h|s means,alkers in the previoud. reconfiguration processes and
that there is no loss of information in the described recon;iaads

figuration process and

L-1
G n(X)=Gin(X). (16 Gt=I1 w,_;. (19)
j=0

Proof. By definition using Eqs(13) and(14), .
where the average weight of the walkershas been defined
Zjwi 5x,x!) previously.

- An example of how the method works for the calculation
M of the ground state energy of the HM in ax4 lattice is
shown in Fig. 1. Remarkably our method converges very fast
to the exact result with few correcting factors and with

The first term in the integrand contains a sum. It is simpler tosmaller error bars as compared with the original Hethering-

sinale out each term of the suw.s. .- /M and to intearate ton scheme. Our method does not require the population con-
9 UM O 9 trol reconfiguration at each step, and the resulting bias is

over all the possible variableg’,x" butw, andxy . Itisthen  considerably reduced, in the sense that, without any correct-
easily obtained that this contribution ®;, conventionally ing factor, our value is 5 times closer to the exact result, for
indicated ag G; ] is given by the example shown in Fig. 1.

Sin00= [ taw | 1aw ]S

XG(W X ;W X)P(W,X).
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T T T T T T T T Namely, if the guiding wave function approaches an exact
] eigenstate oH, the method is free of statistical fluctuations.

[ T ] Of course one is never in such a fortunate situation, but by
07 h 07014 - i . improving the guiding wave function one is able to consid-

i £ 1 1 erably decrease the error bars of the energy. This property,
1 B ] ] rather obviously, is very important and nontrivial.

L 07016 [ : ] For the application of the method to the HM we have used
07005 [} [ 1A a Jastrow-like guiding function

=TT

. L \ _ II'II-I»-T:r~~T~--'r--T~:r--T-f E y
= ! I |Y6) =2 sM(x>exp(§2 v(R-R')SiSg | %),
\ P B ST ST 7] X ’

0701 + \ 0 5 10 15 RR

(21)

where|x) indicates in this case all possible spin configura-
tions with S;= * 3 defined on each sitR of thel x| square
lattice and with the restriction of total vanishing spin projec-
tion ZgSt=0; su(x) represents the so-called Marshall
3 sign, depending on the numbN'\r](x) of spin up in one of
Y S B the two sublatticesy,(x)=(—1)N1™®, while the long-range

07015 [

0 10 . 2 % potential is given by
FIG. 1. Energy per site in ax4 Heisenberg cluster. The solid v(R) = 322 idR[ 1 \/1+ (cosqy+cosqy)/2 ,
line is the exact result and the dott@hshed line connects GFMC 1670 1—(cosqy+cosqy)/2

data as a function of the numbkrof correcting factors within our . . I
schemegHetherington’s onedescribed at the end of the Appendix. with |q><|$7_7 and |qy|$ﬂ' b_elong_lng to the Brillouin zone
The number of walkers in this case wisls= 10 and the reconfigu- and assuming t,he appropriate dlls.crete values of a finite sys-
ration scheme was applied to each of fokg#4 in the text itera- (€M with periodic boundary conditions. The constgris the
tions, while in the Hetherington’s scherkg=1. The guiding wave ~Only variational parameter in the wave function, which for
function is given in Eq.(21) with y=1.2, and all the data are ¥=1/2Sis consistent with the spin-wave theory solution of
obtained with the same amount of computer time. The inset is athe HM for large spirS.*2
expansion of the bottom-left part of the picture.
IX. FORWARD WALKING
VIII. IMPORTANCE SAMPLING
The Green function Monte Carlo technique can be used
One of the most important advantages of the Green funawith success to compute also correlation functions on the
tion Monte Carlo technique is the possibility to reduce theground state oH. In fact it is simple to compute expectation
variance of the energy by exploiting some information on thevalues of operators that are diagonal in the chosen basis, so
ground state wave function, sometimes knowipriori on  that to a given element of the basis corresponds a well-
physical grounds. In order to understand how to reduce thigefined valueD(x)=(x|O|x) of the operator. By the Green
variance, we just note that the method, as described in thginction Monte Carlo technique, as we have seen, configu-
previous sections, is not restricted to symmetric matricessationsw,x distributed according to the desired wave func-
simply because we never used this property of the Hamiltion y,(x), or y(x) g(x) if importance sampling is imple-
tonian matrices. Following Ref. 7 we consider not the origi-mented, are generated stochastically. However in order to

nal matrix, but the nonsymmetric one compute(O) = (|0 ) a little further work is necessary
, , as the square of the wave function is required to perform the
Hy x= ¥e(X ) Hy x/a(X), quantum average. To this purpose the desired expectation

where ¢ is the so-calledyuiding wave functionwhich has value is written in the following form:

to be as simple as possible to be efficiently implemented in (W |HNkhOHN"‘h|¢ )
the calculation of the matrix elements and, as we will see, as (O)="lim ¢ : e/
close as possible to the ground stateHof NN (WG| HN VK] )
In order to evaluate the maximum eigenvalud-df, cor- - . . )
responding obviously to the ground state Hf the coeffi- From the stat|§t|cal point of V'e,W Eq22) amounts f|r§t to
cientb, is now given byH’ as indicated in Eg(11); in this sample a configuration aﬁ?f N' GFMC re;conﬂguraﬂons,
caseb, reads then to measure the quantitx|O|x), and finally to let the

walker propagate forward for furthé reconfigurations.
In order to evaluate the stochastic average an approach
bxn=2 ¢G(X')Hx',xn/l/le(xn)- (20 similar to that done for the energy is clearly possible. The
x! only change to expressiofil) is to replacebxj with the

Thus, if g is exactly equal to the ground state ldf then, average measured quantﬁ}gNz(llM)EjO? at the genera-

by definition, b, =Eo, independent ok,. This is the so- tjon n and change the corresponding weight factors in Eq.
called zero variance propertysatisfied by the method. (19) as

(22
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'-_1_ 0.34‘|||||||||||||||||
Gr=IT wy (23

where henceforth we denote withJn the value of the diag- 0.32
onal operatoiO on the configuratior; of the jth walker, at

the iterationn. Indeed these new factof&3) contain a fur-

ther propagation olN reconfiguration processes as comparedNE~
to the previous expression. It is important that bbthcor-
recting the bias, andll, correcting the quantum average of 0.28
the operator, are finite, due to the exponential growths of the
fluctuations adN andL increase. On the other hand, these
fluctuations can be controlled by enlarging the population 0.26
sizeM, and the method foM large enough remains stable. ' | | |

A further condition is, however, necessary in order to S —
control the bias in the forward walking technique. The set of 10 20 30
measured value®! with weight factorg23) has to be modi- N
fied after each reconfiguration process occurring in the for-
ward direction. In practice after each reconfiguration it is FIG. 2. Plot of the squared antiferromagnetic order parameter
important to bookkeep only the valu€s of the observables m?, in a 4x4 Heisenberg cluster as a function of the numieof
that survive after the reconfiguratigwe omit in the follow-  forward walking reconfigurations. The solid line indicates the exact
ing the superscriph for simplicity). In other words, after result. The number of walkers was fixedNb=20 withk,=5. The
each reconfiguratio® = O for i=1, ... M with the in- guidir!g function was the one referenced in Fig. 1. With the present
teger functionj(i) describing the reconfiguration process in technique the component ofm, can Zbe measured on each sampled
our schemdatfter any reconfiguration the walker with index configuration:m :(12/’2'61)%(_ 1)"Sg and spin isotropy is used to
i assumes the configuration with indi) before the recon- determinemi=3((m)<).
figuration).

In order to implement recursively the forward walking it
is useful to store at each reconfiguration process the integ(glp
function j (i) for each reconfiguration and the value®;
of the operatorO for each walker. Then it is possible to Pn=o(W, y,X) = Po(W,X) H 8(yi—0O),
compute the relevant configurations contributing to the op- I=1M
erator O after N reconfiguration processes by a recursiveyherep, is the equilibrium distribution of the previous Mar-
application of the integer functiong,, namely, O  kov procesg6), which samples the ground statg(x).
:OjN[jN71~-~j1(i)-~-] . With this initial condition furtherN forward walking

It is extremely important to perform the reconfiguration steps are implemented to the probability distributnde-
process as rarely as possible since after each reconfiguratifined with the iterations in Eq(6) and in Eq.(12). Then in
in the forward direction the number of different configura- order to determine the quanti{22) the following ratio is
tions representing an operatordecays quickly, yielding of evaluated:
course a larger variance. Contrary to the Hetherinftait
gorithm our scheme allows bias control without requiring the _ (Wy)

L (0)= 57, (24)
reconfiguration at each step. (w)

An example on how this scheme works is shown in Fig. 2. . e
As is seen it is simple to reach the exact ground state aveyyhere the brackets |nd|qate the average over the distribution
age. EdewfdyP(w_,y,x). It is ur_lderstood that in Ec(.6) and

Eq. (12) the variablesy; remain unchanged. For instance the
analogy of Eq.6) will be

0.3

X

“H

&K
|

- A A 4

Illllllllllwllllr'

O
N
o

fori=1,... M. In a probabilistic sense this is equivalent to
nsidering the initial probability distribution

X. FORMAL PROOF OF THE BIAS CONTROL
IN THE FORWARD WALKING SCHEME

P w',y' x")= r Pa(W' /by, vy, x) by, (25
In order to implement stochastically E(2) we need to nea(WH "X ; P <Pl 'y (29

apply the operatoD, diagonal in configuration space, in a _ . _
stochastic sense, and then follow the standard stochastic it- However, in order to satisfy the bias control property de-
eration(6) to the walker distributiorP for N steps. To this scribed in Sec. VI it is necessary to update theariables at

purpose a walker from now on is identified by the triad any reconfiguration process.
Analogously to the previous case it is easier to work with

W, y,X, wy momenta of ordek of the distributionP for fixed con-

figurationx [see Eq(7)]:
wherevy represents the actual value of the measured operat0|g [ a7

O for the walker. Its value can change, as we will see later

on in the reconfiguration process, and in general due to the GZ,n(X)=f de dy(wy)*Pn(w,,X), (26)
forward walking y# (x| O|x). Indeed only at the beginning,

n=0, of the forward walking iterationy;=O;=(x;|O|x;),  which for M#1 corresponds to



11 452 MATTEO CALANDRA BUONAURA AND SANDRO SORELLA 57

the first simulation for the evaluation of the denominator we
Pn(W,y,X), take an equilibrated walker configuratiom,k) and apply
T the operato©. Whenever the operat@ is off diagonal this

27) is not simply equivalent to scale the weight-wO,. In
where, as usual, underlined variables represent vectofact we need a stochastic approach to select only one of the

2 (w; 3’1)k5><,><j

oo [ouf 3 [ 27

whose components refer to the single-walker inglex configurationsx’ among the possible ones connectedxto
With a proof exactly analogous to the one of Sec. VI it iswith nonzero matrix elemer®,, ,. WheneverO,, ,>0 this
possible to show the following. stochastic approach can be implemented with a two-step

(i) The value of the first{y) momentumG} (x), at the  technique analogous to the one for the Hamiltonian as fol-
initial iteration of the forward walkingy=0, is equivalentto  lows.

applying the operato® to the initial distributionPy(w,Xx), (i) We first scalew by the mixed average estimate
namely, 2y he(X)Oxr il h(X).
(i) Then we select a random new configuratidnwith a
Gin=0(X)=0xG1p=0(X). probability proportional tajg(x") Oy ! tr(X)-

. ] . . ] Then the same reconfiguration proc€$4) to work with
(ii) The following reconfiguration process, which does notj fixed number of walkers during the forward walking propa-
c_hang.e the Markov cha_ln of configurations,k) but modi- gation can be efficiently applied.
fies slightly y, has the bias control property also for tver Finally we comment that the general operat@swith
averages: arbitrary signs in the matrix elements can be always cast as a
differenceO=0"—0" of two operators with positive defi-
PL(W,y X")= f f 2 G(W',y" X" :W,y,X) P(W, y,X) nite matrix elements; the above method can be appli€‘to
- T X - - T andO~ separately.
X[dw][dy],
- = XIl. DISCUSSION AND RESULTS
" > W,y Sy In the previous sections we have described how to obtain
— WiYio% x . : ;
R , ground state energies and correlation functions of some class
G(VL'V_’X_'W'Z'K):LL of vim——— of Hamiltonians on a finite lattice size. In this section we
2 W 5xif % describe a successful application of this method to the HM.
! We are interested in thermodynamically converged physi-
S Wi S cal quantities characterizing the quantum antiferromagnet,
Vi x L 2w, for i . e
) 5( ! ) ) or instance, the energy per siég, the staggered magnetiza
tion m, the spin-wave velocitg, and the spin susceptibility
(28)  x- Use of a finite-size scaling analysis is required to obtain
the infinite-volume limit of our data.

The first factors in the Green functida, inyolving the'y's, ' We compute with our method the ground state energy per
represent the only difference to the previous reconflguratlorgite, e, and the ground state expectation value of the spin-
process14). Thus obviously the momentay ,, not involv- spin structure factos(q):

ing the v variables satisfy the same bias control property of
the previous reconfiguration proceds). 1 a(RR)

As far as the Wy) momenta are concerned, it is possible S(A)=xo Yol 2, € Sr-Srltho ), (30
to prove as before the mentioned bias control property a RR'

X

'y Y which for g equal to the antiferromagnetic momentugn
G1 (%) =G{n(x). (29 = () allows a finite size estimate of the order parameter
m, = S(Q)/N,. The known finite-size scaling thedfy*in a

To this purpose, analogously to the previous case, it is . ;
convenientpto IZingle out agterq'rgk in the F:jefinition of the quantum antiferromagnet predicts thal the ground state

first wy momentum in Eq.(27), and following the same energy per sitegy, has the following leading size correc-

route of Sec. VI integrate easily the Green function over a"tlons:

possible variablesv’, y’, andx’, but the variables, eo(L)=ey—1.4372/1%+ - - -, (31)
7w, andw, . These remaining integrations can be also per- . o . .
formed analytically by first integrating im,, then in y, which allows an indirect evaluation of the spin-wave veloc-

and finally summing ovex, . The assertioii29) is therefore ity. (b) Further the finite-size estimate of the order parameter
proved rigorously. m, a_pproaches its convergeq value_als 1/ S
Finally Neuberger and Zimahusing a relativistic pion

physics analogy, derived very powerful constraints on the
spin-spin structure facto(q), namely, that forg—Q it

A simpler method to compute averages of general operadiverges as 14— Q| with a prefactor equal tev’/ yc. Using
tors is obtained by Eq(24), performing two independent their arguments it also follows immediately that
simulations for the numerator and the denominator in Eqg.
(24). The remarkable advantage of this technique is the pos- S(a)~xclq|
sibility to measure also off-diagonal operatds: ,. After  for |q|—0.

XI. “STRAIGHT"-FORWARD WALKING

(32
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TABLE I. Energy per site of the HM in the square lattice| .
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titative agreement with spin-wave theory, also for this next

In this work the infinite-size extrapolation is obtained with a para-leading contribution to the energy per site.

bolic fit Eq(1)=Eq()+a/l*+b/I* for all size with|=8. (a=

—2.275:£0.12 andb=1.64+0.9). The numbers in parentheses rep-

resent error bars in the last digits.

[ Eo? Eo Eo°
6 -0.6788718) -0.6788734) -0.678872128)
8 -0.67348614)  -0.6734874) -0.67348%9)
10 -0.67149R27)  -0.6715494) -0.6715546)
12 -0.67058149)  -0.67068%5) -0.6706785)
14 = -0.6702227) -0.67022%9)
16 -0.6698728)  -0.6699767) -0.6699778)
% -0.669343) -0.6694375)  -0.66944226)

8Reference 8.
bReference 14.
“This work.

By a simple Fourier transform of the finite-size spin-wave

results for(Sg- So) we obtainS(q)=0 for g=0, consistent
with a singlet ground state and

2
2. on

S(Q)= Na[s—c’(l)]z—llNa+
€k

>
2N, k%00
1— Yq

q

1
S(q)= [s—C’(I)]—N—+

4N,

1- YkYq-k— €k€q—k

X
k#0,Q,9,9+Q

g+ Q,0. (40

After a simple inspection the leading behavi@(q)
«|q|(S(q)=1/g—Ql|) for g—0(q—Q) is in agreement

€k€q_k

In spin-wave theory results for the constants appearing ifith the Neuberger-Ziman predictions, with an exactly

Eq. (31) are given by
m=s—c’, (33
c=2Js\2(1+cy/2s), (34)
s
Xc=m(1—c’/s), (35

wherec, andc’ can be estimated onl& | finite size lattice,

1
co(HN=1— >, €—0.1579 (36)
N, %
and
(1) 1 t ! 0.1966 (37)
c'(h)= ——5—0. ,
( 2Nak#O,Q €y 2

and are expressed in terms of the spin-wave enengy
=41- yzk, where y, = (cosk,+cosk)/2.

consistent prefactor  yc=(s/2y2)(1—c'/s)[m?/ xc
=2./2s(1—c'/s)] within 1/s expansion.

Now we discuss the finite-size results obtained with the
GFMC technique described in this paper.

First we compute the ground state energy per gjtand
report all the data in Table I. According to E@1) we make
a parabolic fit in 1/ and obtain for the energy per site in the
thermodynamic limit the value reported in Table I. This
value differs from a previous GFMC estim&tayithout a
population control error, which is exactly removed in our
method. This error seems to affect significantly the large size
estimate of the energy as shown in the Table I. A recent
paper by Sandvik? using a completely different path inte-
gral method, reports energy values perfectly consistent with
ours and with similar error bars. The spin-wave velocity is
then evaluated by looking at the finite-size correctionsyf
Then according to Eq:31) we obtain

c/cgy=1.12+0.086, (42)

with cgyw=+/2J the zero-order spin-wave velocity. We have

In order to improve the accuracy of the finite-size scaling'®@ched a very poor accuracy for this quantity, as it is deter-

calculation we have systematically compared our finite-siz

data with the spin-wave expansion on the same latticé

sizes™® This technique allows us to compute explicitly the
finite-size corrections using theS expansion, yielding re-

sults consistent with the previous theory for the finite-size
corrections. The advantage of using finite-size spin-wave
theory is that it also implicitly determines all the subleading

corrections in 1/ In this approach, the energy per site is
given by

[s—co(D]*—1

e()=-23 N2 , (38

dnined by the subleading corrections of the energy, which in

urn are also quite size dependent. For this quantity it is not
possible to find significant differences from the second-order
spin-wave result/cgy=1.1579[Eq. (35)], which is prob-
ably a more realistic and accurate value.

The order parameter is evaluated by the forward walking
technique with(Sec. IX or without (Sec. X)) bookkeeping

of the branching matrix. In the latter case the spin isotropic
square order paramet8fQ)/N, is directly evaluated, as the
method is not restricted to diagonal operators. As discussed
in this paper the only source of systematic errors is given by
the length of the forward walking propagatidt and the
number of bias-correcting factoksfor the ground state. It is

which correctly reproduces the predicted finite-size scalinginderstood that foN,L—o our method provides the exact

(31) with the spin-wave velocity given by Ed35) and a
finite-size next leading contribution 2J/14, appearing in the

finite-size value form,. The finiteL error is negligible, as
we have used a large enough number of walkers to eliminate

second-order spin-wave expansion. The latter term is incorthe bias with few correcting factors.

sistent with a claim by Fisher, which probably omitted
higher-order contributions in his analysisOn the other

The most important systematic error is due to the fiNite
Its drastic and controlled reduction as a function Mfis

hand, the fit of the data reported in Table | is also in quandisplayed in Fig. 3 which shows that we have achieved con-
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FIG. 4. Plot of the ratio between staggered magnetization, com-
puted by the forward walking GFMC technique, and the spin-wave
staggered magnetization as a function of The circles refer to the
“straight”-forward walking techniqugSec. X)) and the squares to
the data reported in Ref. 14. The lines are a weighted linear least
squares fit of the data. The extrapolationslfer~ are displayed in
Tables Il and III.

056 ———r———F———+———— 71—

0.45
size effects, obtained with this analysis, is remarkably good

(see Table I\

Finally we have computed the structure factor with the
forward walking techniquéSec. 1X) for several momenta.
Analogously to the previous case for the order parameter, we
have studied the ratio of the quantum Monte Cd@MC)
data with the spin-wave prediction given by E&9). This
calculation shows that the spin-wave expressi8®) is par-
ticularly accurate close tq~Q but there is some deviation
for small momenta. From Ed39) the smallg limit of the
structure factor can be computed analytically in a spin-wave
expansionS(q) =|q|/2y2(s—c’)=0.1073q|. The ratio be-
tween our QMC data and the second-order spin-wave predic-
tion is shown in Fig. 5 and for smali it approaches the
value 1.045:-0.01, rather independently of the system size.

o ) i ) _Thisyields, by Eq(32), a direct determination of the product
FIG. 3. Staggered magnetization for increasing lattice sizes

(from top curve to bottom curyes a function of the forward walk-
ing iteration numbeiN computed with the method of Sec. 18
and with the method of Sec. Xb). The number of walkers for each
lattice size and figuré€a) is M =1000, 2000, 3000, 30003000
with k,=30, 50, 60, 80, 80 and=6, 8, 10, 12, 16, respec-
tively, while the guiding wave function is given by E1) with
vy=1.125. In (b) the number of walkers isM=1000, 2000, I

0.4

0.35

03 1 1 1 1 | 1 1 1 1 | 1 1 1 1
30

TABLE Il. Staggered magnetization of the HM in the square
lattice | X1 with sidel computed with the forward walking tech-
nigue. The numbers in parentheses represent error bars in the last
digits. The extrapolated values of our GFMC data fpf— are
obtained by the fit shown in Fig. 4.

a b c d

m, m, m m,

2000, 2000, 2000 andk,=10, 20, 20, 20, 25.

6 045812  0.4580743) 0.45833)  0.45791)
verged values fom, within the error bars even for the largest g 0.4241) 0.4217099) 0.421736) 0.42171)
system sizeN,= 16X 16. Note also that the “straight”- for- 10  0.3973) 0.3992149)  0.39888) 0.39916)
ward method converges much more quickly as the total spini2  .37814) 0.384001) 0.3802) 0.38346)
is conserved in this method and the convergence to theig = 0.36471) 0.3619) 0.36426)
ground state is determined by the much larger gap in the .. 307525  0.307a3) 0.305812)  0.30774)

same singlet subspace. Our data figrare again in perfect

agreement with Sandvik's, who was able to obtain muchReference 8.

smaller error bars. With the available data we have extrapc®Reference 14.
lated m, by displaying the ratio of this quantity with the C°This work, Sec. IX.
spin-wave prediction in Fig. 4. The suppression of the finite-“This work, Sec. XI.
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FIG. 6. Comparison between QMC ddsolid squaresand ex-

. s perimental datdsolid circles for the static magnetic structure fac-

01—\ M Y 1—\ tor. The solid line connecting the QMC data is the second-order

spin-wave predictior{see Eg.(40)], almost exact in this scale,

FIG. 5. Plot of the ratio between the spin-spin structure factorWhereas th_e Iin_e connectipg the experimental data represents the

S(q), computed by the forward walking GFMC technique, and thecorresponding fit reported in Ref. 5.

second-order spin-wave estim&g,(q) [see Eq(40)]. The struc-

ture factor has been evaluated for=6,8,10,12 over the path XIll. CONCLUSIONS

=(0,00-»M=(7,0)—-Y=(m,7)—1=(0,0). The large circle at

the Y point is the expected— Y limit of S(q)/Ssw(qd). by using

the values form? and yc reported in Table III.

We have described in detail a straightforward implemen-
tation of the Green function Monte Carlo scheme on a lattice
Hamiltonian without the need of the standard branching pro-
cess. The extension of such a scheme to continuum systems
of the spin-wave velocity and the susceptibilitygc  such as*He is straightforward. Indeed the present algorithm
=0.1122+0.001. This value is very much in disagreementworks at a fixed number of walkers and we have shown that
with Sandvik's* who predictedyc=0.1046=0.002, about all sources of systematic error can be controlled with a rig-
four error bars out from our direct and more accurate resultorous approach both for computing the ground state energy
This discrepancy is probably due to a very difficult infinite- and for computing ground state correlation functions. The
size extrapo|ation oj( (Ref 16 andC, whereas the product pOSSlblllty to work with a limited number of Wc?cllkers iS-ex-
xc calculated by means d@(q) for small momenta seems tremely important for high-accuracy calculations. This in
rather well behaved, as shown in Fig. 5. In the same figuréaCt requires quite long simulations to decrease the statistical

the prefactor around~Q is in quite reasonable agreement €'70rs and, with the standard approdame easily exceeds
with the expected onéarge solid circlé m? yc obtained the maximum number of walkers for the available computer

: ) memory.

\;V:g rc:é'[r Sl?g)e/ijendig: r:;ia(;l reso}gﬁ iézlrci)r?ge Sglsfgr tﬂ; Ot)his Our reconfiguration scheme is not restricted to work at a
. a X . ixed number of walkers. In fact our proofs in Secs. VI and X

function, according to the Neuberger-Ziman theory, shoul : ; :

jump discontinuou%ly a—0 wherg it assUMes a vglue do- an be readily generalized when the numlEr of outgoing

Ik ! (with unit weigh is diff tf th bew
termined only by the the order parametef. The shape of WaKETSX; (with unit weighy s different from the num

h displaved in Fia. 5 is clearl : th th of the incoming onesv;, X;. Thus a standard branching
the curve displayed in Fig. 5 Is clearly consistent with theg.pome petween two consecutive reconfigurations can be
predicted singularity.

) i _ also applied, and the method can be used only each time the
Our results therefore represent a direct confirmation of th%opulation of walkers reaches an exceedingly large or small
internal consistency of the Neuberger-Ziman theory. size. At each stochastic reconfiguration the simple factor
The values for the physical quantities extrapolated in thezj!vl= W, /M’ correctsexactlythe bias of the described size
thermodynamic limit are summarized in Table III. population control. This maybe a more efficient implemen-
tation of our method, with, however, a rather more involved
TABLE IIl. Infinite-size estimates of the various ground state algorithm.

quantities of the HM discussed in the paper. The valuenois This scheme represents a more practical implementation
obtained by fitting the more accurate data of Ref. 14 as shown i@f the Hetherington idea to work at fixed number of walkers

Fig. 4. The value ofc is computed from the data of Fig. 5, corre- @s(i) it is not required to apply the reconfiguration process at

sponding to the largest size and smallest momentum. each Markov iteration. Indeed our scheme coincides with the
Hetherington one in this limit(ii) The same idea to control
€y -0.66944226) the bias at fixed number of walkers was extended to the
m 0.3075+.0002 “forward walking technique” which is important to calcu-
XC 0.1122+0.001 late efficiently correlation functions on the ground staiie)

Contrary to the conventional belief we have shown that there
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are no basic difficulties to compute “off diagonal” correla- APPENDIX: PRACTICAL
tion functions with the Green function Monte Carlo tech- RECONFIGURATION PROCESS

nique, using a simple forward walking technig(&ec. X), In this appendix we follow the notation of Sec. VI to
which turned out to be very efficient for determining the gescribe an efficient implementation of the reconfiguration
order parameter In the HM. process needed to stabilize the proposed GFMC method.
We have applied these methods to compute very accu- The new walkersx; after reconfiguration are chosen
rately the ground state energy per site of the HM, the spinamong the old ones,, with probability p,. We divide the
spin structure factor, and the antiferromagnetic order paraminterval (0,1) inM subintervals with lengthp, from the
eter, whose infinite-size values are shown in Table lIl. leftmost to the rightmost ak increases from 1 tdé1. Then
We have obtained very good agreement with finite-sizeve generateM pseudorandom numbers for i=1,... M
spin-wave theory, which allows a very well-controlled finite- and sort them, bearing in mind that the indelabels the
size scalingsee Fig. 5. We believe that the reported accu- Walker x; after the reconfiguration. We save therefore the
racy gives a very robust confirmation of the existence of@andom permutation(k), k=1,... M, corresponding to
antiferromagneti¢AF) long-range order in the 2D HM. the described sorting, the permutation that determines
We finally show in Fig 6 a comparison of our QMC Zik+1)>Zig - An efficient sorting algorithm takes the order
L . . . of MInM operations, and thus is not time consuming.
prediction forS(q) with the available experimental data on ; ;
the stechiometric LaCuO, Mott insulator for momenta close The next step is to make a loop over the sorted inklex
o the AF 2:: 4 Th ‘i y giving a monotonically increasing,, and to select as a
0 the AF wave vectorg (77’77.)' € agreementis remark- ., configuratiorxi’(k) the onex;, among the old configu-
ably good considering also th@j the experiments have been rations, such that;, belongs to the interval of length
performed at a temperature above theeNemperature, so ’ (k) g gm; -

that ¢ | d ists. despite th | Note that the index function(i), i=1,... M, contains
at no frue long-range order exists, despite the very 1ong yhe information required for the forward walking tech-
correlation lengti. As a consequence, for a good compari-

) __nique described in Sec. IX.
son between experiments and theory, one should take into agter the described process some of the old configurations
account the smearing of thé function contribution atQ may appear in many copies, while others disappear. This
= (77,_77'), to be added tq 'ghe theorethical ground state predichappens also if the distributiqm) is uniformp;~1/M, yield-
tion. (ii) There are no fitting parameters in the present cOMjng clearly some loss of information in the statistical process.
parison. A better way to implement the reconfiguration, without los-
Therefore the copper-oxygen planes o5Ca0,, planes  jng information and without introducing any source of sys-
which become high-temperature superconductors upon finitgymatic error, is obtained by the following simple change.
hole doping, are well described by the nearest-neighbojsier the generation of the random permutatigk) a new

Heisenberg model. set of numbers uniformly distributed in the interval (0,1) is
defined:
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