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Two-chain spin ladder with frustrating second-neighbor interactions
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The Heisenberg model on a two-chain séil&dder with frustrating second-neighbor interactions is studied
by using series expansions about the Ising and dimer limits, numerical diagonalization, and by Abelian
bosonization analysis. The phase diagram is determined, and pair correlations and the complete dispersion
relations for the triplet spin-wave excitations are also compy®0163-18208)11617-X]

I. INTRODUCTION ratio of couplings asy;=J,/J;, and y,=J,/J;. In the
present paper all couplings are taken to be antiferromagnetic

Heisenberg spin ladders have been the subject of intengéhat is,J;, J, , J,>0).
theoretical and experimental research in recent years. It is by The system has an interesting symmetry property: If one
now well established that single chain Heisenberg antiferroexchanges the couplindg andJ,, one can recover the origi-
magnets with integer spin have a gap in the excitation speaal Hamiltonian by exchanging two spins along the rungs at
trum, whereas those with half-integer spin have gapless exven sites, that is, the Hamiltonian will be invariant under
citations. The former have a finite correlation length, whileexchanging the coupling, and J:
for the latter it is infinite with the spin-spin correlation func-
tion decaying as a power law. F@=31 Heisenberg spin
ladderst—® the systems with an even number of legs have an
energy gap, short-range correlations, and a “spin-liquid”
ground state. On the other hand, the systems with odd nunf-herefore we only need to study the caseypt1, and the
ber of legs have gapless excitations, quasi-long-range ordesystem withy,>1 can be mapped into system wih<1
and a power-law falloff of spin-spin correlations, similar to through the identity in Eq(2).
single chains. There has been some previous work on this system. Of

In this paper, we study the Heisenberg model on a twocourse forJ,=0 we recover the usual two-leg laddérs,
chain ladder with second-neighbor interactions, via Ising andvhich has gapless excitations only whapn=0. The case
dimer expansions, diagonalization of finite systems, and/>=1 has special properties. Bose and Géyesinted out
Abelian bosonization. All of the work is &=0. The moti- that this system has an exact dimer state: a state in which
vation for studying such a system is twofold. First we wish
to explore the effect of frustration on the properties of two-
leg s= 3 ladders. Weak frustration is not expected to change ()
the physics of the gapped system qualitatively. However
strong frustration may change the nature of the ground state
at some critical coupling ratio, corresponding toTa0

H(Jy, 1 ,Jd2)=H(J2,J, ,J)). 2

phase transition. Furthermore in other systems, such as the 3 3 3

J1-J, chain, frustration itself leads to the creation of a \ t t ' (N)
gapped dimer phase, and thus in the present case there is th 4 4 4 4
possibility of observing the competition between two inde- 1 1 1

pendent gap vielding perturbations. The second reason for
studying such a generalized ladder system is the possibility
that in real two-leg ladder materials significant second- Y Y Y Y Y Y Y )
neighbor interactions will be present.

We write the Hamiltonian of our system as

H(J,,J, ,Jz):Z [J(S1j-S1jr1T S Sj+1) 3.5 - S5 . 1 : 1 . 1 . ®)
+32(S1- Sj+1+ S-S+ ] (N t 1 : I . 1 4
where§ ; denotes th&=1/2 spin at site of thelth chain.J, FIG. 1. (a) Three different couplings considered: (the dotted

is the interaction between nearest-neighbor spins along thines), J, (the dashed lings and J, (the solid lines. (b) Three
chain,J, is the interactions between nearest-neighbor spingifferent spin orders for the system at the Ising limit: theeNstate
along the rungsJ, is the interactions between the second-(N), the ferromagnetic chain stat€), and the ferromagnetic rung
neighbor spins. This is shown in Fig(al. We denote the state(R).
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every pair of spins along the rungs form a singlet, and this 37T ———T
perfect dimer state is the ground state for large enough val- |
. 5 . . |
ues ofy,. Xian® performed a systematic study of this system |
via a microscopic approach based on a proper set of compos L !
ite operators, and found that the Hamiltonian consists of two 2 ! —
commuting parts: r |
|
|
|
|

N i (R) (F) ]

H=2 3,81 S+ P Pisy, 3 L S

where P; represents the effective spin-1 operator at &ite I //’/ |

The first part,J, S;;- S,;, Is trivial, with no interaction be- - 2 () q

tween different rungs and with a gdp between the singlet 0 Pl
and triplet states. The second palfP;- P, .1, is similar to 0 1 2 )

the spin-1 Heisenberg chain with each rung in the ladder y
corresponding to each site in the spin-1 chain. Because the !
two parts ofH commute it follows that there is an eigenstate  FIG. 2. Phase diagram in thg,y,) plane. The dashed lines

of H with eigenvalue: show the phase boundary for the three different spin orders of the
system at the Ising limit. The solid line shows the phase boundary
Eg=(J”eo+JL/4)N/2, 4 between the dimerized phageght side and Haldane-type phase

whereey= — 1.401 484 038 97(4) is the ground-state energy!/Sft sid® for the isotropic system. Along this "rf there is a van-
per site of the spin-1 Heisenberg chifihe eigenvalue for 'tf]h'rl‘g S|?glet-f3|tr;]glet gai).dThe% I|neéy2t—t1,y1/1.401 484) is
the state with singlets on all of the rungs is € location ot the exact dimer ground states.

Eq=(—3J, /4N/2. 5)  where

Therefore one can easily determine the transition pgjnt

=1.401 484 038 94 ). At this crossing point the singlet-

singlet gap is zero. Kitatani and Oguttiad independently H.= (S22 +S2 S )4+ SE.E.

considered the existence of a state of singlet dimers for this 0 Z [Ii(SLiStiea® S2iSi00) 4151,

system fory,=1, and had obtained the same results as y s ) s

above. +32(51;55i 411 55815+ 0) 1, (7a)
This paper studies the general case where exact results are

not known. In Sec. Il we report results obtained by Ising and

dimer expansions at=0. We compute the ground-state en- X ox y X ox Vo

ergy and the complete spin-wave excitation spectra, as well V_Z [I(SLSLi+ 1SSt 1t S5 41t $2iSi40)

as obtaining more accurate estimates for various quantities

for the simple casel,=0. We also carry out finite-lattice +J3,(S1;S5+919)

diagonalization studies for systems of 16 and 24 spins, pay- - v oy X ox v oy

ing particular attention to the behavior of spin-spin correla- +32(81iSi 111 513411 2S840+ 92815+ |-
tions. Section Ill describes an analytic approach, based on (7b)

Abelian bosonization. When comparisons are possible the
various methods all provide a consistent picture. Finally in
Sec. IV we provide a summary and draw some conclusionsThe limits x=0 andx=1 correspond, respectively, to the
Ising and isotropic Heisenberg limit, the latter being the case
Il. NUMERICAL RESULTS of primary interest.
Since Hy is taken as the unperturbed Hamiltonian we
We report here the results of numerical studies, using botReed to identify the ground states. There are three of these,
series expansions and diagonalizations. These methods prfghown in Fig. 1b). We refer to these as the Blestate(N),
vide results over the whole phase diagram, and give the moge ferromagnetic chain statg), and the ferromagnetic rung
detailed picture of the behavior of this system for generaktate (R). Their regions of stability are indicated in Fig. 2.
values of the couplings. Our previous series work on therpe liney,=1,y,=2 is a boundary between N and F states.
ladder systerhused expansions about both the Ising limit The operatoi is treated as a perturbation: it flips pairs of
and about a fully dimerized state, and we refer to that papegpins on neighboring sites. The quantum fluctuations repre-

and references therein for technical details. sented byV will of course result in much more complex
ground states. Since the system is effectively one-
A. Ising expansions dimensional no true long-range order can exist, eveil at
To construct an expansion about the Ising limit for this =0- ) ) . i
system, one has to introduce an anisotropy parametand As in our earlier papet,to overcome a possible §|ngylar-
write the Hamiltonian as ity at x<1, and to get a better convergent series in the

Heisenberg limit, we add to the Hamiltonian the following
H=Ho+xV, (6)  staggered field term:
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. tions of y;,=J, /J;. The curves(connecting the full point
AH=t(1—x)Z| (—D's; (8)  symbolg emanating from the left sidésmall y,) are ob-

" tained from Ising expansion about the R state. Those ema-
for the expansion about the Blestate, or the following field nating from the right side are from the dimer expansion. The
term: estimates from the Ising expansion about the N state agree

very well with these and are not shown separatekcept for
(1 _ ez the case ofy,=0 which are shown by open point symbols
AH=t(1 X)iE,I (=1's; © with error bar$. These curves, for any giveyy, cross at a
transition point y;.. This corresponds to a first-order

I/cgnitzr?e:);qatlﬁzl?sr:)t?g;gtlim;irr\c/)vrgafdr}sgtctr:znc%:ftfziacﬂ?ént ground-state phase transition, resulting from a level crossing.
' The numerical estimate foy,=1 of y,.=1.40 is in good

t to get the most smooth terms in the series, with a typica!agreement with the exact result of Xfaand Kitatani and

Val#ﬁ belng_t=2. . thod has b iously d Oguch{ discussed above. The locus of the transition points
€ series-expansion method has been Previously g gnonn in Fig. 2, and represents a “gapless line” where the

. . . ~10 .
scribed in several articlés,"® and will not be repeated here. gap between the two lowest energies, both of which are sin-

We have develqped Ising expansions about both thel Ne lets, vanishes. Everywhere else the ground state is a nonde-
and ferromagnetic rung states for the ground-state energy pé&r

X . . o enerate singlet. However this is not a gapless line in the
s!te Eo/N and the trlplgt Spin-wave excnat.|on spectrum for usual sense of a vanishing gap for elementary excitations.
different ratios of couplingy, andy123 and (S|multa}ne0usly There are two branches of triplet spin excitations which
for sevgral values of up to orderx . The resulting series e denotee,(k), e,(k) corresponding to symmetric and an-
are aV?‘"ab'e on request, Thc_ase series have be_en anquzed mmetric states with respect to interchange of the two
using integrated first-order inhomogeneous differential apyp,

- . . 1 O ains.k is the wave number along the chain direction. On
proximants qnd I_Dadepp_rommanté. We will discuss these the left side of the gapless line in Fig. 2, which can be called
results later in this section.

a “Haldane” phase, these two branches are independent and
each has the appearance of a simple cosine dispersion curve,
symmetric abouk= 7r/2 and having a finite gap at the mini-

In the limit that the exchange coupling along the rudgs ~mum energy points. However on the right side of the gapless
is much larger than the couplinds andJ,, the rungs inter- line, the “dimerized region,” the branches are no longer
act only weakly with each other, and the dominant configuindependent, being related by
ration in the ground state is the product state with the spins
on each rung forming a spin singlet. The Hamiltonian in Eq. €4(K)=€y(m—K) (12
(1) can then be rewritten as

B. Dimer expansions

and having a complex form, without the symmetry abkut
H/J, =Hy+(1lq)V, (10 = /2 found in the Haldane region. This relation can be un-
derstood as follows. Consider an initial down spin at §ite
flipped to create an excitation. To form a Bloch state this
excitation will couple to other downs spins. In the ler
Hozz SRR small y, region this involves even sites on the upper chain
! and odd sites on the lower chain leading to a shiftrah the
wave number. The dispersion curves are shown in Figs. 4

where

V:E [(S1i-Sii1+ S Sojs1) and 5 fory,;=1 for particular values of,. The triplet gap
i appears to be nonzero throughout the phase diagram, except
aty,=y,=0.
+Y2(S1i- Sj 1+ Sy St )] ap RV

Since the dimer expansion carried out here is much longer
We can obtain an expansion in y1J by treating the opera- than our previous calculatiofiaye can make more accurate
tor Hy as the unperturbed Hamiltonian, and the operdtas  estimates for the normal two-leg ladder without frustration

a perturbation. (J,=0). The ground-state energy is estimated to be
We have carried out the dimer expansions for the ground-
state energy up to order )% and for the triplet excitation Eo/(NJ))=—-0.5780482) at J;=J,. (13

spectrum up to order (%) for different values ofy,. The

resulting series for some particular valuesyefare listed in  In Fig. 6 we show the dependence of the triplet excitation
Table I. The rest of the series are available on request. In o@ap e () onJ, /(J, +J;), in particular, they are estimated
previous papet the series for the casg=0 were computed 10 be

up to order (1y,)° for the ground-state energy and up to

order (1¥,)8 for the triplet excitation spectrum. Our present €y(m)/3,=0.50288) at J;=J,; (14
results agree with and considerably extend these previous

results. Again, we use integrateq first-order inhomogeneous e, ()], =0.40515 at J;>J, . (15)
differential approximants and Padepproximants' to ex-

trapolate the series. These results agree very well with the recent quantum Monte

The ground-state energy per siig/N is shown in Fig. 3, Carlo results of Frischmutkt all? and Greven, Birgeneau,
where curves foy,=0,0.2,0.4,0.6,0.8,1 are shown as func-and Wies€.
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TABLE I. Series coefficients for the dimer expansion of the ground-state energy pdfy3it8J, ), and the energy gap,(m)/J, .
Coefficients ofy; " are listed fory,=0,0.2,0.4,0.6,0.8.

n y2:O y2=02 YZ:O4 y2:06 y2208

Ground-state energiq/(NJ,)

0 —3.75000000610°*  —3.75000000610 %  —3.75000000&10 '  —3.75000000610 '  —3.750000008 10 *
1 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
2  —1.87500000610° !  —1.200000008 10" '  —6.75000000810 2  —3.00000000810 2  —7.500000008 10 3
3  —9.37500000610°2  —7.20000000610°2  —4.72500000610°2  —2.400000006 102  —6.750000006 102
4 1.171875008 1072  —1.920000006 1072  —2.54812500810°2 —1.77000000& 102  —5.981250008 10 2
5 8.789062508 102 2.88000000& 1072  —2.95312500&10°°  —1.08000000& 102  —5.14687500& 10 3
6 7.76367187% 10?2 4.771200006 102 1.31734687% 1072  —4.452000006x10 %  —4.292531256 10 3
7  —2.68249511X10 2 2.536560008 102 1.777094648& 102 3.55200000& 10" 4  —3.46330898% 10 3
8 —1.38153076X10 %1  —2.345664008 10 2 1.04565072% 102 3.01491000& 102  —2.69978179% 10 2
9  —1.18442058& 10 %1  —5.93205660610 2  —3.35150769% 10 3 3.49126200& 102  —2.03370273% 102
10 8.02342891% 1072  —4.40195388%10°2  —1.476726816 10 2 2.29267880&10°°  —1.48615324% 102
11 2.92660293%5 107! 2.352668756 1072  —1.616860926:10 2 2.87286343%10°%  —1.066983596 10 2
12 2.174702428 1071 9.15858499% 1072  —5.94206290% 10 °  —1.58537240& 10 °  —7.75422475%10 *
13  —2.51329567%10°* 8.61197376% 10 2 9.81179057%10°°  —2.60776445%10°° —6.01603558k 10 *
14 —7.07967782%10° ' —2.06219193%10 2 2.03444142% 1072  —2.48702597&10°°  —5.28739285& 10 *
15 —4.22072046% 10" —1.56743867% 10! 1.70202631%10°2  —1.40217909%10 %  —5.35652193¢10 *
16 8.048506088 101  —1.79437139& 10!  —1.14501265%X 10 * 1.13683059610 %4  —5.99362574% 104
17 1.836906814 1.6315606830 4  —2.06490472% 10 2 1.40760493610°°  —6.97481363%10 *
18 7.873287228 1071 2.82770674k 10"t  —2.93619163% 10 2 1.96800917% 10 %  —8.10190477% 10 *
19  —2.609038806 3.8762154590° 1  —1.66724037%X 10 2 1.61575612% 10"  —9.21672262%10"*
20 —4.952285110 7.857208488.0°2 1.26077620X 102 5.56091847k10°*  —1.02092292% 103
21  —1.190569396 —5.22247767%10°* 3.93319715% 1072  —7.23315566%10°*  —1.10195015% 102
22 8.511630761 —8.55333867% 10 * 4.12547107%10°%2  —1.66350982%10 %  —1.16343674%10 °
23 1.360832758 10 —3.29082944% 1071 9.85297527%10° %  —1.86781592%10°°  —1.20797539% 10 °
Energy gape,(m)/J,
0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
1 —1.000000000 —8.000000006¢10° 1  —6.000000006¢10°*  —4.00000000610°*  —2.000000006 10 *
2 5.000000008 10 * 3.200000006 10 * 1.800000006 10 * 8.000000006x 102 2.000000006 102
3 2.500000008 10 * 1.600000006 10~ * 9.000000006x 102 4.000000006 10" 2 1.000000006 102
4  —1.2500000010°' —6.080000006¢102  —3.78000000610°2>  —2.48000000610°2  —9.800000006& 10 3
5  —2.73437500610 ' —1.59680000810 ! —1.09822500610 ! —7.62400000610 2  —3.200750008 10 2
6 —1.53320312%10° % —1.28288000&10° %1 —1.21079812%10° % —1.11472000&10° % —5.737081256 10 2
7 2.456054688 101 5.984960008 1072  —4.93916062% 102  —1.18932800& 10 ' —8.54636312% 10 2
8 4.813385018 101 2.33513760& 1071 5.900339848 1072  —9.91934400&10 2  —1.16261382& 10 *
9 1.322269448 101 2.14736688& 1071 1.43210537% 101  —5.70152560610 2  —1.49633723% 10 *
10 —6.96226278% 10"  —7.397652408 102 1.36395134% 10!  —5.15214866%10° %  —1.85593664% 10 !
11  —1.056785534 —4.26282411%10°* 2.67376058& 102 4.22112050% 1072  —2.24109235% 10 *
12 5.050360758 102  —4.592008726¢10° '  —1.31797609& 10 * 7.16969780%x 102  —2.65120817% 107!
13 2.122963428 6.4584821290 2  —2.32039912% 10 * 7.58601663610°2  —3.08407435% 1071
C. Exact diagonalizations levels (§=1) are shown as dashed lines. The existence of

In order to obtain a more complete picture of the energyfne transition point discus_sed above, the finite sing_let—triplgt
spectrum, the correct assignment of spin quantum nur@ber 9ap, and other level crossings can be seen. There is a region
to different levels, and the variation of spin-spin correlationsround the transition point where the lowest triplet lies above
throughout the phase diagram, we have carried out exadhe lowest two singlets. The location of the transition point,
Lanczos diagonalizations for ladders with=16 and N while less accurately resolvable, is totally consistent with the
=24 spins. The finite-lattice corrections appear to be quiteseries results given above. In Fig. 8 we show some pair cor-
small and the results are believed to be representative of thelations for the same scan through the phase diagram at
thermodynamic limit. =0.8. The correlations show large discontinuities at the tran-

In Fig. 7 we show the energies of low-lying energies for sition pointy,;=1.24. The sign of various correlations is con-
N=24, for a scan through the phase diagréig. 2 aty,  sistent with ferromagnetic run@R)-type order fory,;<1.24
=0.8. The solid lines represent single®&<0), while triplet  and Nel-type order fory,>1.24, in accordance with the
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EO/(NJ//)
eu(k)/I,/

0
0 0.5 5/ 1 15 0 /4 /2 3m/4 -
AY: Kk
FIG. 3. The ground-state energy per diig/(NJ;) as a function FIG. 4. The dispersions,(k) of the spin-triplet excitated states

of y;=J, /3, for y,=0,0.2,0.4,0.6,0.8,1. The lines in the lange  of the two-chain ladder with interchain coupling=1 andy,
region are the extrapolations of integrated differential approximants- 0.2,0.4,0.6,0.7,0.8,1. The results §gr< 0.6 are estimated from
to the dimer series, the full point symbols connected by a line argne dimer expansions, and results yge= 0.6 are estimated from the
estimates from Ising expansions about the ferromagnetic rung statgyng expansions about the ferromagnetic rung order.

and the open point symbolgor y,=0 only) are estimates from

Ising expansions about the”Blestate. The position of crossing in- 1

dicates a transition point with vanishing singlet-singlet gap. .

P g sing giet gap wlR,lL:\/2=eXF[i|\/47T¢1R,1L(X)]1 (17
yes

classical ground states in Fig. 1. We note also that further-

neighbor correlations become very small for increasipg wherea™

consistent with a dimerized phase.

1~a lis a large momentum cutoff, and

1
= — —+
lll. WEAK-COUPLING ANALYSIS $1ra(X)= 516200 62(x)] 18

In this section we present analysis, based on AbeliaHere 6,(x) is defined as the field, dual te,(x), i.e.,
bosonization, which can determine the phase boundary be, 6,(x)=1I1,(x), andII,(x) is the momentum field, conju-
tween the ferromagnetic rungHaldane-type and Nel  gate tog,(x). Similar equations describe the second chain.
ground states. Our considerations are valid in the limit ofUsing the above formulas the interchain interactions can be
smallJ, andJ,. Since the procedure is well described in thebosonized, with the result
literature'*~*®we will give only the basic steps here.

The spin operators for each chain are transformed, by Vs
using the Jordan-Wigner transformation, into a system of H= 72 ff dx
spinless fermiong,, (chain ) andb,, (chain 2 at half filling. T
Next, since we are interested in the low-energy properties of

1 ~
K_(ax(ﬁs)z"_Ks(axas)z +H, (19)

the model, we pass to a continuum description, which was = 3 e o
developed for a single chain by Luther and Peséhdlhe H= o2 dx[g,co8 V87 ¢.,)+g.co8 VBT H-)
spectrum of the Jordan-Wigner fermions is linearized in the

vicinity of the two Fermi pointst kg= = 7/2: +2gscoq y27H_)]. (20

- iken — —ikgn — In the above equations, the symmetric and antisymmetric
o \/E[e Yir(x=na)te valx=na)] (19 combinations of the fields are introduced W&2¢. = ¢,
wherea is the lattice spacing, angl, g, ¢, are slowly vary- = ¢,, and similarly for the dual fields. Thiarg values of
ing on the scale of the lattice. An analogous transformation ishe coupling constants in Eq20) are g;=y;—2Y,,i
applied to the second chaiwith corresponding fieldg,g, =1,2,3, andC is a cutoff independent constant. The
¥5.). In order to write the ladder Hamiltonigd) in bosonic  Luttinger-liquid parameters in Eq19) depend on the bare
form, we make use of the Abelian bosonization rules: couplings:
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E/N

yi=1
from top to bottom:
- ye=1, 0.8, 0.7 , , N .
FIG. 7. Low-lying energies for a system &f=24 spins, for
ol v o L L fixed y,=0.8. Solid(dashedl lines represent singlétriplet) levels,
0 n/4 /2 3n/4 m respectively.
k
+
FIG. 5. The dispersiongy(k) of the spin-triplet excitated states ve=1+ E iyl—zyz + higher order, (21)
of the two-chain ladder with interchain coupling=1 andy, B ™ 27
=1,0.8,0.7(shown in the figure from the top to the bottom, respec-
tively). The results are estimated from the Ising expansion about the o _yit+2y, .
ferromagnetic rung order. Kt:1_2;+ o +higher order. (22)
Without they, terms our equations are similar to the ones
obtained by Strong and Millis for the simple ladderin
1 order to emphasize that the second terms in E2%. and
(22) come from the Ising interactions in the two chains, we
r 1 have introduced the anisotropy paramefefi.e., Jf—J,3,
i T o T C'l T T T
B ] p==-—- g e P 1) 1‘ C3
0.8 J,=0 — e
}4 ] C4
= 0 3 e ——
~2 L 1 | Cs
PamnY !
E I ] | Co s
J e
(&)
0.6 - I |
i
‘ | TN L S 1
L | 1 3 5
04 — — | o 5 4 A‘“m.é _____ - ‘917
1 1 1 | 1 1 1 | 1 1 1 I 1 1 1 I 1 1 1 BB Bemennnans -
0 0.2 0.4 0.6 0.8 1 T
1.1 1.2 1.3 1.4
JJ./(J//+JJ.) Y1
FIG. 6. The minimum triplet energy gag,(7)/J, for the sys- FIG. 8. Pair correlation€,,=4(S{S?) in the ground state for

tem withJ,=0 as a function o), /(J, +J,). The results are esti- N=24 at fixedy,=0.8. Note the discontinuities in correlations at
mated from the several different integrated differential approxi-the transition pointsy,.=1.24 (which decrease slightly as the lat-
mants to the dimer series. tice sizeN increases
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and we should sef=1 at the isotropic point In the limit  clusion of higher-order terms in the lattice spacing, might
y1,Y>—0 the exact form of the above functions are knownlead to a change of the shape of the transition line, as sug-
from the Bethe ansatz solution of the chain problem, and, ilgested by numerical simulatiorisee Fig. 2

particular for 5=1 we havev.=m/2, K.=1/213 Away

from this exactly solvable limit, expressiorigl) and (22) IV. CONCLUSIONS

should be viewed as valid only to lowest orderdny,, and . . . . .
Y, since all lattice renormalization effects have been ne- We hgve StUd'E_’d the two-ch(_';un ant_ﬁerromggnetlc Spin
glected in passing to the continuum limit. We have displayedadfjer with frustr_atlng second-n_e|ghbor Interactions, using a
in Eq. (20) only the relevantin renormalization-grougRG) varlgty of numerl'cal and anallyt|c. methc_)ds. When the m}er-
sens&] operators and have neglected all potentially irrel-Cnain nearest-neighbor couplidg is dominant the system is
evant and marginal ones. The latter contain terms that mi{! @ 9apped “dimerized phase,” whereas for dominant
the symmetric and antisymmetric sectors, as well as combgecond-neighbor coupling, the system is in a gapped
nations of field derivatives and cosines. “Haldane” phase, which can be mapped ontoSn1 chain.

The scaling dimensions of the three cosine operators irf '€S€ phases have the same physical origin within the low-
Eq. (20) are K, , 2K_, and (K _)~* (corresponding to energy field th.eoretlc framgwork but are distinguished _by
91, 05, andgs, respectively. A cosine operators is relevant if different beh_awo_r of correlatlons_and are sgparqted by a first-
its scaling dimension is less than two. Thus, in the lignit order transition line Where.therﬁ is a vanishing smg!'et-smglet
=y,=0, all operators have dimension one and are relevanf@P: The system has a trivial Valence'bond'SO“d ground
For nonzero values of the interchain couplings, one can eadtate along a I|_ne in t_he phase diagram which separates two
ily see that the most relevant operators ggyeandgs;. These types of.classmal Ising ground state. A symmetry of the
two couplings thus flow to infinity which signals formation Hamiltonian allows these states to be mapped onto each

. : : other.
of a gap. Thls.strong couplmg»reglgéme corresponds to a non Using series expansions, about both Ising and dimerized
Z€ero expectation value c(_fSl~Sz>. Whether a ferromag- unperturbed states, we have computed the ground-state en-
pehc rpng(HaIdane or antlferr_omagnenc laddeNeel) s_tate ergy and dispersion curves for singlet-triplet excitations. The
is realized, depends on the signgfandgs. The equations, |ater show a qualitative change in form as the second-
governing the RG flow forg, and g; are the usual paighnor interaction changes. Our series in dimer expansions
Kosterlitz-Thouless  equatiot3. Thus, if initially

) are substantially longer than in our previous study Jer
91(0).'93(0)>0’ theng?(l_),gg(l,)eoo, wherel is the RG =0, and we obtain very accurate estimates for the ground
iteration parameter. This is the Blestate, characterized by a state and excitation gap, which agree very well with recent
gap to triplet excitations. In the opposite lingi(0),g5(0)

. . P N guantum Monte Carlo results. We have also computed
<0 the couplings flow to minus infinity, which is interpreted .6, n4.state energies and correlations using exact diagonal-

as a ladder with an effective ferromagnetic interchain cousy;4tions forN=16. 24. These give a further physical of the

pling. Thus we conclude that the transition line between the,,¢,re of the ground state in different regions of phase dia-
two states is given by the equatign=g;=y;—2y,=0. ram

_ Let us note that ag; andy, increase one should_lncludg Finally we present an analytical study, valid for small
higher-order terms in the operator product expansion, whicliq 3. “ysing the technique of Abelian bosonization. This
leads to Eq(ZO). The additional terms are still less relevant gives a picture consistent with the numerical work.
than the ones in Eq20) but they typically couple the sym-
metric and antisymmetric sectors. Thus, the renormalization
of g, affectsg; and vice versa. The location of the transition
line, however, is not affected by this coupling. On the other This work forms part of a research project supported by a
hand, we expect that lattice renormalization effects, i.e., ingrant from the Australian Research Council.
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