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Two-chain spin ladder with frustrating second-neighbor interactions

Zheng Weihong,* V. Kotov,† and J. Oitmaa‡

School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
~Received 31 October 1997!

The Heisenberg model on a two-chain spin-1
2 ladder with frustrating second-neighbor interactions is studied

by using series expansions about the Ising and dimer limits, numerical diagonalization, and by Abelian
bosonization analysis. The phase diagram is determined, and pair correlations and the complete dispersion
relations for the triplet spin-wave excitations are also computed.@S0163-1829~98!11617-X#
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I. INTRODUCTION

Heisenberg spin ladders have been the subject of inte
theoretical and experimental research in recent years. It i
now well established that single chain Heisenberg antife
magnets with integer spin have a gap in the excitation sp
trum, whereas those with half-integer spin have gapless
citations. The former have a finite correlation length, wh
for the latter it is infinite with the spin-spin correlation fun
tion decaying as a power law. ForS5 1

2 Heisenberg spin
ladders,1–3 the systems with an even number of legs have
energy gap, short-range correlations, and a ‘‘spin-liqui
ground state. On the other hand, the systems with odd n
ber of legs have gapless excitations, quasi-long-range o
and a power-law falloff of spin-spin correlations, similar
single chains.

In this paper, we study the Heisenberg model on a tw
chain ladder with second-neighbor interactions, via Ising a
dimer expansions, diagonalization of finite systems, a
Abelian bosonization. All of the work is atT50. The moti-
vation for studying such a system is twofold. First we wi
to explore the effect of frustration on the properties of tw
leg s5 1

2 ladders. Weak frustration is not expected to chan
the physics of the gapped system qualitatively. Howe
strong frustration may change the nature of the ground s
at some critical coupling ratio, corresponding to aT50
phase transition. Furthermore in other systems, such as
J1-J2 chain, frustration itself leads to the creation of
gapped dimer phase, and thus in the present case there
possibility of observing the competition between two ind
pendent gap yielding perturbations. The second reason
studying such a generalized ladder system is the possib
that in real two-leg ladder materials significant secon
neighbor interactions will be present.

We write the Hamiltonian of our system as

H~Ji,J' ,J2!5(
i

@Ji~S1,i•S1,i 111S2,i•S2,i 11!1J'S1,i•S2,i

1J2~S1,i•S2,i 111S2,i•S1,i 11!#, ~1!

whereSl ,i denotes theS51/2 spin at sitei of the l th chain.Ji

is the interaction between nearest-neighbor spins along
chain,J' is the interactions between nearest-neighbor sp
along the rungs,J2 is the interactions between the secon
neighbor spins. This is shown in Fig. 1~a!. We denote the
570163-1829/98/57~18!/11439~7!/$15.00
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ratio of couplings asy1[J' /Ji and y2[J2 /Ji. In the
present paper all couplings are taken to be antiferromagn
~that is,Ji, J' , J2.0).

The system has an interesting symmetry property: If o
exchanges the couplingsJi andJ2, one can recover the origi
nal Hamiltonian by exchanging two spins along the rungs
even sites, that is, the Hamiltonian will be invariant und
exchanging the couplingsJi andJ2:

H~Ji,J' ,J2!5H~J2 ,J' ,Ji!. ~2!

Therefore we only need to study the case ofy2<1, and the
system withy2.1 can be mapped into system withy2<1
through the identity in Eq.~2!.

There has been some previous work on this system.
course forJ250 we recover the usual two-leg ladders,1–3

which has gapless excitations only whenJ'50. The case
y251 has special properties. Bose and Gayen4 pointed out
that this system has an exact dimer state: a state in w

FIG. 1. ~a! Three different couplings considered:Ji ~the dotted
lines!, J' ~the dashed lines!, and J2 ~the solid lines!. ~b! Three
different spin orders for the system at the Ising limit: the Ne´el state
~N!, the ferromagnetic chain state~F!, and the ferromagnetic rung
state~R!.
11 439 © 1998 The American Physical Society
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every pair of spins along the rungs form a singlet, and t
perfect dimer state is the ground state for large enough
ues ofy1. Xian5 performed a systematic study of this syste
via a microscopic approach based on a proper set of com
ite operators, and found that the Hamiltonian consists of
commuting parts:

H5(
i

J'S1,i•S2,i1JiPi•Pi 11 , ~3!

where Pi represents the effective spin-1 operator at sitei .
The first part,J'S1,i•S2,i , is trivial, with no interaction be-
tween different rungs and with a gapJ' between the single
and triplet states. The second part,JiPi•Pi 11, is similar to
the spin-1 Heisenberg chain with each rung in the lad
corresponding to each site in the spin-1 chain. Because
two parts ofH commute it follows that there is an eigensta
of H with eigenvalue:

Eg5~Jie01J'/4!N/2, ~4!

wheree0521.401 484 038 97(4) is the ground-state ene
per site of the spin-1 Heisenberg chain.6 The eigenvalue for
the state with singlets on all of the rungs is

Eg5~23J'/4!N/2. ~5!

Therefore one can easily determine the transition pointyc
51.401 484 038 97(4). At this crossing point the singlet
singlet gap is zero. Kitatani and Oguchi7 had independently
considered the existence of a state of singlet dimers for
system for y251, and had obtained the same results
above.

This paper studies the general case where exact result
not known. In Sec. II we report results obtained by Ising a
dimer expansions atT50. We compute the ground-state e
ergy and the complete spin-wave excitation spectra, as
as obtaining more accurate estimates for various quant
for the simple caseJ250. We also carry out finite-lattice
diagonalization studies for systems of 16 and 24 spins, p
ing particular attention to the behavior of spin-spin corre
tions. Section III describes an analytic approach, based
Abelian bosonization. When comparisons are possible
various methods all provide a consistent picture. Finally
Sec. IV we provide a summary and draw some conclusio

II. NUMERICAL RESULTS

We report here the results of numerical studies, using b
series expansions and diagonalizations. These methods
vide results over the whole phase diagram, and give the m
detailed picture of the behavior of this system for gene
values of the couplings. Our previous series work on
ladder system3 used expansions about both the Ising lim
and about a fully dimerized state, and we refer to that pa
and references therein for technical details.

A. Ising expansions

To construct an expansion about the Ising limit for th
system, one has to introduce an anisotropy parameterx, and
write the Hamiltonian as

H5H01xV, ~6!
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H05(
i

@Ji~S1,i
z S1,i 11

z 1S2,i
z S2,i 11

z !1J'S1,i
z S2,i

z

1J2~S1,i
z S2,i 11

z 1S2,i
z S1,i 11

z !#, ~7a!

V5(
i

@Ji~S1,i
x S1,i 11

x 1S1,i
y S1,i 11

y 1S2,i
x S2,i 11

x 1S2,i
y S2,i 11

y !

1J'~S1,i
x S2,i

x 1S1,i
y S2,i

y !

1J2~S1,i
x S2,i 11

x 1S1,i
y S2,i 11

y 1S2,i
x S1,i 11

x 1S2,i
y S1,i 11

y !#.

~7b!

The limits x50 and x51 correspond, respectively, to th
Ising and isotropic Heisenberg limit, the latter being the ca
of primary interest.

Since H0 is taken as the unperturbed Hamiltonian w
need to identify the ground states. There are three of th
shown in Fig. 1~b!. We refer to these as the Ne´el state~N!,
the ferromagnetic chain state~F!, and the ferromagnetic rung
state~R!. Their regions of stability are indicated in Fig. 2
The liney251, y1>2 is a boundary between N and F state
The operatorV is treated as a perturbation: it flips pairs
spins on neighboring sites. The quantum fluctuations rep
sented byV will of course result in much more comple
ground states. Since the system is effectively o
dimensional no true long-range order can exist, even aT
50.

As in our earlier paper,3 to overcome a possible singula
ity at x,1, and to get a better convergent series in
Heisenberg limit, we add to the Hamiltonian the followin
staggered field term:

FIG. 2. Phase diagram in the (y1 ,y2) plane. The dashed line
show the phase boundary for the three different spin orders of
system at the Ising limit. The solid line shows the phase bound
between the dimerized phase~right side! and Haldane-type phas
~left side! for the isotropic system. Along this line there is a va
ishing singlet-singlet gap. The ‘‘3 ’’ line ( y251, y1>1.401 484) is
the location of the exact dimer ground states.
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DH5t~12x!(
i ,l

~21! i 1 lSl ,i
z ~8!

for the expansion about the Ne´el state, or the following field
term:

DH5t~12x!(
i ,l

~21! iSl ,i
z ~9!

for the expansion about the ferromagnetic rung state.DH
vanishes at the isotropic limitx51. We adjust the coefficien
t to get the most smooth terms in the series, with a typ
value beingt52.

The series-expansion method has been previously
scribed in several articles,8–10 and will not be repeated here
We have developed Ising expansions about both the N´el
and ferromagnetic rung states for the ground-state energy
site E0 /N and the triplet spin-wave excitation spectrum f
different ratios of couplingsy1 andy2 and ~simultaneously!
for several values oft up to orderx13. The resulting series
are available on request. These series have been analyz
using integrated first-order inhomogeneous differential
proximants and Pade´ approximants.11 We will discuss these
results later in this section.

B. Dimer expansions

In the limit that the exchange coupling along the rungsJ'

is much larger than the couplingsJi andJ2, the rungs inter-
act only weakly with each other, and the dominant config
ration in the ground state is the product state with the sp
on each rung forming a spin singlet. The Hamiltonian in E
~1! can then be rewritten as

H/J'5H01~1/y1!V, ~10!

where

H05(
i

S1,i•S2,i ,

V5(
i

@~S1,i•S1,i 111S2,i•S2,i 11!

1y2~S1,i•S2,i 111S2,i•S1,i 11!#. ~11!

We can obtain an expansion in (1/y1) by treating the opera
tor H0 as the unperturbed Hamiltonian, and the operatorV as
a perturbation.

We have carried out the dimer expansions for the grou
state energy up to order (1/y1)23 and for the triplet excitation
spectrum up to order (1/y1)13 for different values ofy2. The
resulting series for some particular values ofy2 are listed in
Table I. The rest of the series are available on request. In
previous paper,3 the series for the casey250 were computed
up to order (1/y1)9 for the ground-state energy and up
order (1/y1)8 for the triplet excitation spectrum. Our prese
results agree with and considerably extend these prev
results. Again, we use integrated first-order inhomogene
differential approximants and Pade´ approximants11 to ex-
trapolate the series.

The ground-state energy per siteE0 /N is shown in Fig. 3,
where curves fory250,0.2,0.4,0.6,0.8,1 are shown as fun
l
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tions of y15J' /Ji. The curves~connecting the full point
symbols! emanating from the left side~small y1) are ob-
tained from Ising expansion about the R state. Those e
nating from the right side are from the dimer expansion. T
estimates from the Ising expansion about the N state a
very well with these and are not shown separately~except for
the case ofy250 which are shown by open point symbo
with error bars!. These curves, for any giveny2, cross at a
transition point y1c . This corresponds to a first-orde
ground-state phase transition, resulting from a level cross
The numerical estimate fory251 of y1c51.40 is in good
agreement with the exact result of Xian5 and Kitatani and
Oguchi7 discussed above. The locus of the transition poi
is shown in Fig. 2, and represents a ‘‘gapless line’’ where
gap between the two lowest energies, both of which are
glets, vanishes. Everywhere else the ground state is a no
generate singlet. However this is not a gapless line in
usual sense of a vanishing gap for elementary excitation

There are two branches of triplet spin excitations wh
we denoteeg(k), eu(k) corresponding to symmetric and an
tisymmetric states with respect to interchange of the t
chains.k is the wave number along the chain direction. O
the left side of the gapless line in Fig. 2, which can be cal
a ‘‘Haldane’’ phase, these two branches are independent
each has the appearance of a simple cosine dispersion c
symmetric aboutk5p/2 and having a finite gap at the min
mum energy points. However on the right side of the gapl
line, the ‘‘dimerized region,’’ the branches are no long
independent, being related by

eg~k!5eu~p2k! ~12!

and having a complex form, without the symmetry abouk
5p/2 found in the Haldane region. This relation can be u
derstood as follows. Consider an initial down spin at sitej
flipped to create an excitation. To form a Bloch state t
excitation will couple to other downs spins. In the Ne´el or
small y2 region this involves even sites on the upper ch
and odd sites on the lower chain leading to a shift ofp in the
wave number. The dispersion curves are shown in Figs
and 5 fory151 for particular values ofy2. The triplet gap
appears to be nonzero throughout the phase diagram, ex
at y15y250.

Since the dimer expansion carried out here is much lon
than our previous calculations,3 we can make more accurat
estimates for the normal two-leg ladder without frustrati
(J250). The ground-state energy is estimated to be

E0 /~NJi!520.578 043~2! at Ji5J' . ~13!

In Fig. 6 we show the dependence of the triplet excitat
gapeu(p) on J' /(J'1Ji), in particular, they are estimate
to be

eu~p!/Ji50.5028~8! at Ji5J' ; ~14!

eu~p!/J'50.405~15! at Ji@J' . ~15!

These results agree very well with the recent quantum Mo
Carlo results of Frischmuthet al.12 and Greven, Birgeneau
and Wiese.2
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TABLE I. Series coefficients for the dimer expansion of the ground-state energy per siteE0 /(NJ'), and the energy gapeu(p)/J' .
Coefficients ofy1

2n are listed fory250,0.2,0.4,0.6,0.8.

n y250 y250.2 y250.4 y250.6 y250.8

Ground-state energyE0 /(NJ')
0 23.75000000031021 23.75000000031021 23.75000000031021 23.75000000031021 23.75000000031021

1 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
2 21.87500000031021 21.20000000031021 26.75000000031022 23.00000000031022 27.50000000031023

3 29.37500000031022 27.20000000031022 24.72500000031022 22.40000000031022 26.75000000031023

4 1.17187500031022 21.92000000031022 22.54812500031022 21.77000000031022 25.98125000031023

5 8.78906250031022 2.88000000031022 22.95312500031023 21.08000000031022 25.14687500031023

6 7.76367187531022 4.77120000031022 1.31734687531022 24.45200000031023 24.29253125031023

7 22.68249511731022 2.53656000031022 1.77709464831022 3.55200000031024 23.46330898431023

8 21.38153076231021 22.34566400031022 1.04565072731022 3.01491000031023 22.69978179731023

9 21.18442058631021 25.93205660031022 23.35150769931023 3.49126200031023 22.03370273431023

10 8.02342891731022 24.40195388031022 21.47672681031022 2.29267880031023 21.48615324931023

11 2.92660293531021 2.35266875631022 21.61686092031022 2.87286343331024 21.06698359031023

12 2.17470242331021 9.15858499331022 25.94206290331023 21.58537240631023 27.75422475731024

13 22.51329567531021 8.61197376531022 9.81179057531023 22.60776445431023 26.01603558131024

14 27.07967782431021 22.06219193431022 2.03444142531022 22.48702597031023 25.28739285031024

15 24.22072046831021 21.56743867931021 1.70202631731022 21.40217909931023 25.35652193031024

16 8.04850608931021 21.79437139031021 21.14501265731024 1.13683059031024 25.99362574131024

17 1.836906814 1.63156065531024 22.06490472531022 1.40760493631023 26.97481363931024

18 7.87328722831021 2.82770674131021 22.93619163931022 1.96800917931023 28.10190477331024

19 22.609038806 3.87621545931021 21.66724037731022 1.61575612731023 29.21672262431024

20 24.952285110 7.85720846831022 1.26077620231022 5.56091847131024 21.02092292431023

21 21.190569396 25.22247767331021 3.93319715131022 27.23315566931024 21.10195015531023

22 8.511630761 28.55333867931021 4.12547107331022 21.66350982431023 21.16343674431023

23 1.3608327563101 23.29082944331021 9.85297527731023 21.86781592931023 21.20797539531023

Energy gapeu(p)/J'

0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
1 21.000000000 28.00000000031021 26.00000000031021 24.00000000031021 22.00000000031021

2 5.00000000031021 3.20000000031021 1.80000000031021 8.00000000031022 2.00000000031022

3 2.50000000031021 1.60000000031021 9.00000000031022 4.00000000031022 1.00000000031022

4 21.25000000031021 26.08000000031022 23.78000000031022 22.48000000031022 29.80000000031023

5 22.73437500031021 21.59680000031021 21.09822500031021 27.62400000031022 23.20075000031022

6 21.53320312531021 21.28288000031021 21.21079812531021 21.11472000031021 25.73708125031022

7 2.45605468831021 5.98496000031022 24.93916062531022 21.18932800031021 28.54636312531022

8 4.81338501031021 2.33513760031021 5.90033984831022 29.91934400031022 21.16261382831021

9 1.32226944031021 2.14736688031021 1.43210537531021 25.70152560031022 21.49633723331021

10 26.96226278931021 27.39765240031022 1.36395134931021 25.15214866731023 21.85593664531021

11 21.056785534 24.26282411731021 2.67376058631022 4.22112050931022 22.24109235231021

12 5.05036075631022 24.59200872031021 21.31797609631021 7.16969780231022 22.65120817331021

13 2.122963428 6.45848212531022 22.32039912931021 7.58601663631022 23.08407435731021
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C. Exact diagonalizations

In order to obtain a more complete picture of the ene
spectrum, the correct assignment of spin quantum numbS
to different levels, and the variation of spin-spin correlatio
throughout the phase diagram, we have carried out e
Lanczos diagonalizations for ladders withN516 and N
524 spins. The finite-lattice corrections appear to be qu
small and the results are believed to be representative o
thermodynamic limit.

In Fig. 7 we show the energies of low-lying energies f
N524, for a scan through the phase diagram~Fig. 2! at y2
50.8. The solid lines represent singlets (S50), while triplet
y

s
ct

e
he

r

levels (S51) are shown as dashed lines. The existence
the transition point discussed above, the finite singlet-trip
gap, and other level crossings can be seen. There is a re
around the transition point where the lowest triplet lies abo
the lowest two singlets. The location of the transition poi
while less accurately resolvable, is totally consistent with
series results given above. In Fig. 8 we show some pair
relations for the same scan through the phase diagram ay2
50.8. The correlations show large discontinuities at the tr
sition pointy1.1.24. The sign of various correlations is co
sistent with ferromagnetic rung~R!-type order fory1,1.24
and Néel-type order fory1.1.24, in accordance with the
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classical ground states in Fig. 1. We note also that furth
neighbor correlations become very small for increasingy1,
consistent with a dimerized phase.

III. WEAK-COUPLING ANALYSIS

In this section we present analysis, based on Abe
bosonization, which can determine the phase boundary
tween the ferromagnetic rung~Haldane-type! and Néel
ground states. Our considerations are valid in the limit
smallJ' andJ2. Since the procedure is well described in t
literature,13–15 we will give only the basic steps here.

The spin operators for each chain are transformed,
using the Jordan-Wigner transformation, into a system
spinless fermionsan ~chain 1! andbn ~chain 2! at half filling.
Next, since we are interested in the low-energy propertie
the model, we pass to a continuum description, which w
developed for a single chain by Luther and Peschel.13 The
spectrum of the Jordan-Wigner fermions is linearized in
vicinity of the two Fermi points6kF56p/2:

an5Aa@eikFnc1R~x5na!1e2 ikFnc1L~x5na!#, ~16!

wherea is the lattice spacing, andc1R , c1L are slowly vary-
ing on the scale of the lattice. An analogous transformatio
applied to the second chain~with corresponding fieldsc2R ,
c2L). In order to write the ladder Hamiltonian~1! in bosonic
form, we make use of the Abelian bosonization rules:

FIG. 3. The ground-state energy per siteE0 /(NJi) as a function
of y15J' /Ji for y250,0.2,0.4,0.6,0.8,1. The lines in the largey1

region are the extrapolations of integrated differential approxima
to the dimer series, the full point symbols connected by a line
estimates from Ising expansions about the ferromagnetic rung s
and the open point symbols~for y250 only! are estimates from
Ising expansions about the Ne´el state. The position of crossing in
dicates a transition point with vanishing singlet-singlet gap.
r-

n
e-

f

y
f

of
s

e

is

c1R,1L5
1

A2pa
exp@6 iA4pf1R,1L~x!#, ~17!

wherea21;a21 is a large momentum cutoff, and

f1R,1L~x!5
1

2
@f1~x!6u1~x!#. ~18!

Here u1(x) is defined as the field, dual tof1(x), i.e.,
]xu1(x)5P1(x), andP1(x) is the momentum field, conju
gate tof1(x). Similar equations describe the second cha
Using the above formulas the interchain interactions can
bosonized, with the result

H5 (
s51,2

vs

2 E dxF 1

Ks
~]xfs!

21Ks~]xus!
2G1H̃, ~19!

H̃5
C

a2E dx@g1cos~A8pf1!1g2cos~A8pf2!

12g3cos~A2pu2!#. ~20!

In the above equations, the symmetric and antisymme
combinations of the fields are introduced viaA2f65f1
6f2, and similarly for the dual fields. The~bare! values of
the coupling constants in Eq.~20! are gi5y122y2 ,i
51,2,3, and C is a cutoff independent constant. Th
Luttinger-liquid parameters in Eq.~19! depend on the bare
couplings:

ts
e
te,

FIG. 4. The dispersionseu(k) of the spin-triplet excitated state
of the two-chain ladder with interchain couplingy151 and y2

50,0.2,0.4,0.6,0.7,0.8,1. The results fory2,0.6 are estimated from
the dimer expansions, and results fory2>0.6 are estimated from the
Ising expansions about the ferromagnetic rung order.
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FIG. 5. The dispersionseg(k) of the spin-triplet excitated state
of the two-chain ladder with interchain couplingy151 and y2

51,0.8,0.7~shown in the figure from the top to the bottom, respe
tively!. The results are estimated from the Ising expansion abou
ferromagnetic rung order.

FIG. 6. The minimum triplet energy gapeu(p)/Ji for the sys-
tem with J250 as a function ofJ' /(J'1Ji). The results are esti
mated from the several different integrated differential appro
mants to the dimer series.
v6511
d

p
6

y112y2

2p
1higher order, ~21!

K65122
d

p
7

y112y2

2p
1higher order. ~22!

Without they2 terms our equations are similar to the on
obtained by Strong and Millis for the simple ladder.15 In
order to emphasize that the second terms in Eqs.~21! and
~22! come from the Ising interactions in the two chains, w
have introduced the anisotropy parameterd ~i.e., Ji

z→Jid,

-
e

-

FIG. 7. Low-lying energies for a system ofN524 spins, for
fixed y250.8. Solid~dashed! lines represent singlet~triplet! levels,
respectively.

FIG. 8. Pair correlationsCn54^S0
zSn

z& in the ground state for
N524 at fixedy250.8. Note the discontinuities in correlations
the transition pointsy1c.1.24 ~which decrease slightly as the la
tice sizeN increases!.
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and we should setd51 at the isotropic point!. In the limit
y1 ,y2→0 the exact form of the above functions are know
from the Bethe ansatz solution of the chain problem, and
particular for d51 we havev65p/2, K651/2.13 Away
from this exactly solvable limit, expressions~21! and ~22!
should be viewed as valid only to lowest order ind, y1, and
y2, since all lattice renormalization effects have been
glected in passing to the continuum limit. We have display
in Eq. ~20! only the relevant@in renormalization-group~RG!
sense14# operators and have neglected all potentially irr
evant and marginal ones. The latter contain terms that
the symmetric and antisymmetric sectors, as well as com
nations of field derivatives and cosines.

The scaling dimensions of the three cosine operators
Eq. ~20! are 2K1 , 2K2 , and (2K2)21 ~corresponding to
g1, g2, andg3, respectively!. A cosine operators is relevant i
its scaling dimension is less than two. Thus, in the limity1
5y250, all operators have dimension one and are relev
For nonzero values of the interchain couplings, one can e
ily see that the most relevant operators areg1 andg3. These
two couplings thus flow to infinity which signals formatio
of a gap. This strong-coupling regime corresponds to a n
zero expectation value of̂SW 1•SW 2&.

15 Whether a ferromag-
netic rung~Haldane! or antiferromagnetic ladder~Néel! state
is realized, depends on the sign ofg1 andg3. The equations,
governing the RG flow forg1 and g3 are the usual
Kosterlitz-Thouless equations.15 Thus, if initially
g1(0),g3(0).0, then g1( l ),g3( l )→`, where l is the RG
iteration parameter. This is the Ne´el state, characterized by
gap to triplet excitations. In the opposite limitg1(0),g3(0)
,0 the couplings flow to minus infinity, which is interprete
as a ladder with an effective ferromagnetic interchain co
pling. Thus we conclude that the transition line between
two states is given by the equationg15g35y122y250.

Let us note that asy1 andy2 increase one should includ
higher-order terms in the operator product expansion, wh
leads to Eq.~20!. The additional terms are still less releva
than the ones in Eq.~20! but they typically couple the sym
metric and antisymmetric sectors. Thus, the renormaliza
of g1 affectsg3 and vice versa. The location of the transitio
line, however, is not affected by this coupling. On the oth
hand, we expect that lattice renormalization effects, i.e.,
in

-
d
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in

t.
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n-

-
e

h

n

r
-

clusion of higher-order terms in the lattice spacing, mig
lead to a change of the shape of the transition line, as s
gested by numerical simulations~see Fig. 2!.

IV. CONCLUSIONS

We have studied the two-chain antiferromagnetic sp
ladder with frustrating second-neighbor interactions, usin
variety of numerical and analytic methods. When the int
chain nearest-neighbor couplingJ' is dominant the system is
in a gapped ‘‘dimerized phase,’’ whereas for domina
second-neighbor couplingJ2 the system is in a gapped
‘‘Haldane’’ phase, which can be mapped onto anS51 chain.
These phases have the same physical origin within the l
energy field theoretic framework but are distinguished
different behavior of correlations and are separated by a fi
order transition line where there is a vanishing singlet-sing
gap. The system has a trivial ‘‘valence-bond-solid’’ groun
state along a line in the phase diagram which separates
types of classical Ising ground state. A symmetry of t
Hamiltonian allows these states to be mapped onto e
other.

Using series expansions, about both Ising and dimeri
unperturbed states, we have computed the ground-state
ergy and dispersion curves for singlet-triplet excitations. T
latter show a qualitative change in form as the seco
neighbor interaction changes. Our series in dimer expans
are substantially longer than in our previous study forJ2
50, and we obtain very accurate estimates for the grou
state and excitation gap, which agree very well with rec
quantum Monte Carlo results. We have also compu
ground-state energies and correlations using exact diago
izations forN516, 24. These give a further physical of th
nature of the ground state in different regions of phase d
gram.

Finally we present an analytical study, valid for smallJ'

and J2, using the technique of Abelian bosonization. Th
gives a picture consistent with the numerical work.
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