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The exact two-spinon part of the dynamic spin structure faB{ofQ, ) for the one-dimensionad=1/2,
XXZ model atT=0 in the antiferromagnetically ordered phase is calculated using recent advances in the
algebraic analysis based d@imfinite-dimensional quantum group symmetries of this model and the related
vertex models. The two-spinon excitations form a two-parameter continuum consisting of two partly overlap-
ping sheets in Q,w) space. The spectral threshold has a smooth maximum at the Brillouin zone boundary
(Q=m/2) and a smooth minimum with a gap at the zone cer@er Q). The two-spinon density of states has
square-root divergences at the lower and upper continuum boundaries. For the two-spinon transition rates, the
two regimes 6sQ<Q, (near the zone centeand Q,<Q=<=/2 (near the zone boundarynust be distin-
guished, wher®,— 0 in the Heisenberg limit an@,— 7/2 in the Ising limit. In the regim&, < Q< =/2, the
two-spinon transition rates relevant f8,(Q,) are finite at the lower boundary of each sheet, decrease
monotonically with increasing, and approach zero linearly at the upper boundary. The resulting two-spinon
part of S,,(Q,w) is then square-root divergent at the spectral threshold and vanishes in a square-root cusp at
the upper boundary. In the regime<@ < /2, in contrast, the two-spinon transition rates have a smooth
maximum inside the continuum and vanish linearly at either boundary. In the associated two-spinon line shapes
of S.x(Q,w), the linear cusps at the continuum boundaries are replaced by square-root cusps. Existing pertur-
bation studies have been unable to capture the physics of the r€nim@= w/2. However, their line-shape
predictions for the regime€9Q<Q, are in good agreement with the exact results if the anisotropy is very
strong. For weak anisotropies, the exact line shapes are more asymh&(i63-18208)04717-1

I. INTRODUCTION lent to a system of free lattice fermidfisand the dynamic
spin correlation functions can be expressed as fermion den-
Among all the spin-chain models that are directly relevantsity correlations £2) (Ref. 19 or as infinite determinants or
for the description of real quasi-one-dimensional magneti®faffians §x).2%%! In the surrounding spin-fluid phase-@

insulators, thes=1/2 XXZ model, <A<1), exact results for the infrared singularities of dy-
o namic structure factors were obtained by field-theoretic
H J approache&??

== XoX  +alo) ,+Adio? 1.1
n;m(UnUnH Tn0ns1 T AT ) (1 A different avenue for the study of tfie=0 dynamics of

is the one whose physical properties have been studied motgte XXZ model on a rigorous basis was opened up by im-

comprehensively. Today there exist more exact results foportant advancgs in the study of this model and_the relatgd
vertex models in the framework of the algebraic analysis

this model than for any other model of comparable impor- : X e
based on quantum group symmetries. A detailed description

tance.
The early demonstratidn® that theXXZ model is ame- of this method with all the results that our calculations build

nable to the Bethe ansatz led to a steady stream of advanc@@ can be found in a recent book by Jimbo and _I\/_I?\ﬁ/a.
in our understanding of many of its ground—stateun“ke the Bethe ansatz, this approach considerinfinite
properties’® its thermodynamic properti€s® and the struc- chain from the outset and exploits the higher symmetry of
ture of its excitation spectrufit’® The T=0 phase diagram the infinite systentcompared to the finite systgrdescribed
of the XXZ model, which was rigorously established by by the quantum group) 4(sl,).?*?°
these advances, consists of a ferromagnetic phase=dt, a The algebraic analysis of the€XZ model for the purpose
critical phasegspin-fluid, Luttinger liquid at —1<A<1,and of calculating correlation functions and transition ratesm
an antiferromagnetic phase&& — 1. The mapping between factorg of local spin operators requires the execution of the
the XXZ model and the exactly solvable six-vertex andfollowing program:(i) Span the infinite-dimensional physi-
eight-vertex models yielded additional ground-state propereally relevant Hilbert space in the form of a separable Fock
ties of the former on a rigorous basis, notably the spontanespace of multiple spinon excitations and generateXXeZ
ous staggered magnetization in the antiferromagnetic phasggenvectors in this Fock space by products of spinon cre-
and some critical exponents in the spin-fluid ph¥s'’ ation operatorgso-called vertex operatgr§rom the XXZ
Until recently, exact results for tHe=0 spin dynamics of ground statgphysical vacuury (ii) determine the spectral
the XXZ model were limited to a single nontrivial case, the propertiesenergy and momentunof the spinon excitations,
XX model (A=0). For this case, the spin system is equiva-(iii) express the local spin operators in terms of vertex op-
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erators, andiv) evaluate matrix elements of products of ver- Il. SPECTRUM
tex operators in th's. spinon e|g§r1_ba5|s. The 2N-dimensional Hilbert space of thXZ model for a
There exist two similar yet distinct programs that operate

der diff t Ci ; f tallv th chain of N sites becomes nonseparable in the litdit .
under difierent circumstances for essentially the same puly,eyer, for the infinite chain, a separable subspaaan

pose. Qne is the fermion representation _Of the onepe constructed and all physical properties of ¥¥Z model
dimensional(1D) s=1/2 XY model or the equivalent 2D ¢4 in principle, be derived exactly from it. The classifica-

Ising modef®*® and the other is conformal field theory for tjon of the XXZ spectrum in terms ofn-spinon excitations,
critical (massless continuum model$! Quantum inverse \hich is instrumental in the guantum group analysis, had
scattering theory provides yet different ways of calculatingaiready been established by Faddeev and TakHfajafor
some correlation functions and matrix elements for massive, = — 1 in the framework of the algebraic Bethe ansatz.
relativistic continuum modet& and for the XXX model®® The (infinite-dimensiongl spaceF is spanned by vectors
The algebraic analysidoperates in the massive phase stabi-| £, €m;...;€1,€1); with m=0,1,... andj=0,1, which rep-
lized by Neel long-range order ak <—1, but the isotropic resent multiple spinon excitations. In the regime of interest
limit A——1" can be performed meaningfully at various here, the twofold degenerate vacuum state is represented by
stages of the calculation and thus yields equivalent results fdhe two vectors|0),,|0),. These states break the transla-
the (masslessHeisenberg antiferromagnét tional symmetry ofH. The translation operatdF (shift by
In this paper we infer from the diverse ingredients nowone lattice sitgtransforms the two vectors into each other:
accessible via the Bethe ansatz and the algebraic analysis an _ .
explicit expression for the exact two-spinon part of the dy- T[0);=10)1-j, j=0.1. 2.1
namic spin structure factor In the Ising limit (A— —<), they become the pure 'Kk
Each spinon excitation is characterized bycamplex
1 e _ spectral parameteg, and a spin orientatiore;=*=1. The
Su(Qw)=7 > f dt €@ (oX(t)op) (1.2)  subspaces af with even and odd numbers of spinon exci-
n=oeJee tations are disconnected in all matters of concern here. They
describe the physics of chains with even and bddsymp-

i 10,15 H
at T=0 andA<—1. The line shapes thus obtained are oftOt.'CaIIy for. N—ce. 3The completeness relation for the
spinon basis inF read$

direct relevance for the interpretation of existing spectro-

scopic data obtained via inelastic neutron scattéfinfjand » 1 " g
Raman scatteririg on the quasi-1D magnetic compounds 1=> > > = %H —
CsCoC} and CsCoBy. 1501 m=01... e, . em=x1 M J =1 2mi§

In Sec. Il we discuss thm-spinon eigenbasis and infer a X |&mo€miei€1,€0) (€1 €03 iEm s €nl. 2.2

suitable parametric representation of the energy-momentum ) . .
relation for spinon excitations from it. In Sec. Il a closed- These basis vectors are in fact eigenvectors of XheZ
form expression for the two-spinon density of stald®), w) HamiltonianH and of the translation operatd®,
is derived from this spectral information. In Sec. IV we ana- m 1
lyze the matrix element§orm factors betvv_een the _twqfold T|§m16m;---;§1161>j:1_[ @Em,em; GE1€)1-)
degenerate ground state and the two-spinon excitations and 1 708
derive from them(in Sec. V), after having solved the two- (2.39
spinon energy-momentum relations in the appropriate pa- m
rametrization(Sec. V}, a functionM (Q,w) that, when mul- . _ .o
tiplied by D(Q, ), yields the two-spinon dynamic structure ngm’em""’gl’eﬁj_;l S(&)|Em.€my--i€1.€0))
factor S2(Q,w). (2.3b

A related study was previously undertaken by Weston an
Bougourzi*® In that study the goal was to calculate the two-
spinon part of the dynamic structure fac®(Q,w) defined » _, 04987
as the Fourier transform dfor(t) - 0y). The result was ex- (§=e PO=¢ 1m, (2.4a
pressed as an expansion about the Ising lidhit{ — ) car- a
ried out explicitly to 12th order. It is much more difficult to
calculate this quantity than to calculs8&)(Q, »), where no e(¢)=1J
expansion is necessary to obtain explicit results.

Finally, it is interesting to note that the exact result for thein terms of the spectral parameté&rand the anisotropy pa-
frequency-dependent spin autocorrelation functibp(w) rameter
=[7 _(dQ/27)S(Q,w) of the caseA =0, which was cal- B
culated in the fermion representatith,represents all A=(g+q H/2, -1<q<0. (2.9
m-spinon contributions fom=2,4,... simultaneously. There Here q is the deformation parameter of the quantum group
them-spinon structure of the excitation spectrum is reﬂectequ(S|2) (Ref. 24 and
in ®,,(w) by an infinite sequence of singularities at the
band-edge frequencies/J=0,1,2,... . 0,(y)=(x;x)(y;x)(xy” 1:x), (2.6a

Gith the respective eigenvalues determined by

1-g®> d
a9 fd_g'” 7(§) (2.4b
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(y:X)Enl;[0 (1—yx"). (2.6b

For most of the analysis to be carried out later, it is con-
venient to expresg in terms of the alternative spectral pa-

rameterg:

£=iel AR oK< pB<2K. 2.7

The energy and momentum of a spinon are then expressed ir

terms of Jacobian elliptic functions

e(§)=e(p)=I1dnpg, (2.83
— T
p(§)=p(B)=amp+ o (2.8b
with
_ JK @K’
|=7S|nhT. (29)

The anisotropy parameté2.5) is related to the nome
—g=exp — 7K'/K) (2.10

and thus determines the modklk’=\/1—k? of the elliptic
integrals K=K(k) and K'=K(k’). The spinon energy-
momentum relation resulting from E¢R.9),

e(p)=1I J1—KZ cod p, (2.11

O=p=m,

11431

(r-Q/m 1

0 o/m 0.5
om

FIG. 1. Two-spinon excitation spectrufB.1) for k=0.99 (A
=—2.305). It consists of two partly overlapping she@tsandC, .
SheetC. lies betweenwy(Q) and w_(Q) in the rangeQ,<Q
=7—Q, and betweernw,(Q) and w_(Q) for m—Q,<Q=.
SheetC_ is obtained fromC, by reflection about the lineQ
= /2. The interval(0,7) represents one-half of the extended Bril-
louin zone, in which one ground-state vectoy is assigned the
wave numbeQ=0 and the other ground-state vecfo} the wave
numberQ= .

E(&,6)=E(B1,Ba)=e(é)+e(&) (219

are independent of the spin orientatianse,= * 1, all two-
spinon states at fixeB will be at least fourfold degenerate.
In the isotropic limit, this degeneracy involves a singlet state

is equivalent to the corresponding relation obtained via théSt=S;=0) and the three vectors wit;=0,*1 of a trip-

Bethe ansatZ1>38
For the calculation ofS)((i)(Q,w) from the two-spinon

let state G;=1).
The four sets of two-spinon excitations are readily identi-

density of states and the two_spinon matrix elements we infied in the framework of the Bethe ansatz. In a finite system

troduce here translationally invariant vacuum states

_ [0)o+1]0)4 _[0)o—10)4
O)=—"—F7—, |m=""—F7—,
V2 V2
which have wave numbefotal momenta mod2) 0 and,
respectively, in the extended Brillouin zone ¢, + 7). In
the isotropic limit, the stat¢0) is a singlet 6;=0) and the
state|) is the vector withS7=0 of a triplet (S;=1). The
corresponding linear combinations of two-spinon states

(2.12

g ' i§ y + f , ;g ,
|§2,62;§1,el;0>5| 2:€2:61 €1>o‘/2| 2,€2;¢1 €1>1,

|€2,€2:61.€1)0— |€2,€2; 61, €)1
V2

|€2,€2: 61 €1,m)=
(2.13
are then also translationally invariant,

TE;,€0:€1,€0;0)=e PP g, 6514 €4;0),

T|§2,€2§51,61;7T>:ei[p(§l)+p(§2)+w]|§2,62;51,61377')-

(2.19

Since the two-spinon momenta and energies

P(£1,6,)=P(B1,B2)=p (&) +p(&y),

(N<®), the singlet-triplet degeneracy is removed and for
anisotropic coupling4 <—1), the triplet levels are split up
as well. The fourfold degeneracy emerges only asymptoti-
cally for N—co and thus reflects the highe,(sl,) symme-

try of the infinite system, which is used in the algebraic
analysis.

Ill. DENSITY OF STATES

Here we consider any one of the four sets of two-spinon
excitations(2.13 with fixed spin orientationg,,e, and ex-
press their energieB(&1,£,) =e1(p1) +e1(p2) in terms of
the wave numbeQ=p;+p, (0<Q<27) and the variable
A=21(p1—p,) (—72<\</2):%°

e,(Q,\)=e;(Q2—\)+e,(Q/2+\). (3.9

These states form a continuum iI® (w) space, which is
depicted in Fig. 1. It consists of two partly overlapping
sheet<.. with boundaries

21
wo(Q) = m sin Q, (326)

21
0=(Q)= 1= V1+k?*2k cosQ, (3.2b

where
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1-k’

ey 33

k=c0sQ,=

is the natural anisotropy parameter in most of the results
presented here. The excitation gaf=2lk’ approaches

zero exponentially in the isotropic limft:

AE —— 47d exp(— 72/ —8(1+A)). (3.9

A—-1

The two-spinon density of stafts

1 2
DQw=5 | d\sw-e Qr) @9
—ml2
was evaluated before in closed form
D(Q,0)=D,(Q,w)+D _(Q,w),
Di(Qlw):ni(Qlw)/dt(Q!w)

for (Q,w) e C.., respectively, where

(3.69

(3.6b

20°— (1+ k?) w5+ 2T cosQ

nt(Qlw): 4S|n2 Q [
T[(1+ k%) 03— w?(1+cog Q)+ 2T cosQ]*?
d+(Q,w)= 2 Sir? Q )
T(Q,w)z\/wz—szS\/wz—wg. (3.7

With the auxiliary quantity

7
Yo o
7 K

w

2
Wi (Q,w)= —icosQ) (3.8

the result(3.6b can be written more compactly:

o[sif Q—W3(Q,w)]
2T(Q,w)W-(Q,w)

Note the reflection symmetnD . (Q,w)=D+(7—

D.(Q,w)=

(3.9

Q,w).
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ID.(Qm)

ID,(Q®)

o/l

FIG. 2. Normalized two-spinon density of stafes (Q,w) as a
function of frequency for wave numbeg, < Q= 7 and anisotropy
parametek=0.7435 (A= —10) andk=0.99 (A=—2.305).

D_(Ow)= (3.10

w
Va12— 2 \Jw?— 412’2
The functionD , (Q,w) is plotted in Fig. 2 for two values of
anisotropy.

IV. MATRIX ELEMENTS

Them-spinon eigenbasis provides a useful framework for
the separate analysis of th@-spinon contributions rf
=0,2,4,..) to anyzero-temperature dynamical quantity of
interest if a means of calculating the relevant matrix ele-
ments can be found. Here we focus on tive-spinonmatrix
elements of the dynamispin structure factorS,,(Q,) at

The two-spinon density of state has square-root divergencegs=0.
all along the lower and upper boundaries of each sheet. At With Eq. (2.2) the two-spinon part of Eq(1.2) has the

the zone center, expressi@ 9 turns into

EZE

]] = r‘l——OC El 627

S§i><Q,w>— f dt e ‘””Q'”

le I§J<0|

form

(t)|§2a52§§1a€1>j1<§1v€1§§2,€2|‘73|0>j’ .
(4.1

The evaluation of this expression requires that we know all transition matrix elements of the spin opegat:o%saé
*ioY) between the vacuum stathﬁs)j and the two-spinon statégz,ez;gl,q)j . All nonvanishing matrix elements of this

type turn out to be related to each other,

j<0|0'§|§211;51,I>j:171<0|0'g|§2,i§§17i>1—j,

j<§11i;521i|0-6_r|0>j:j<0|0-0i|_q§111;_q§211>jy

and can be expressed by a single function

(4.23

(4.2b
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XI(&,61)=(0log [&,—:é1,-); 4.3
which was determined by Jimbo and Mi:
: - (q%0%2 (—aé162) " 1 y(E11E5) Ogp(— €128, 7q")
j =XI =02
X!(&2,61)=XN(B2,B1)=0 (D) Bgt(— £ 20 bga(— & °0) (4.9
|
where 0=E(B1,B82), —Q=P(B1.,82), (5.49
~(@*&a9%aY (¢ hatah = =
(&)= (P& %99 (9%E La5qY) (4.59 w—E(ﬁlyﬂz), 7T. Q= P(,3-1u32) (5.4b
for o= =, respectively. Equation$.4) with (2.15 and(2.8)
. 2 (@ha%gt) are combined into
e=(9%9°) CTarul (4.5b
T wl/l=dnB;+dngB,, (5.59
(X,y,Z)E H (1_Xyan). (450 —o sin Q=sr}810n,82+ Cnﬁlsngz (55b)

n,m=0

for future analysis.

Carrying out the space-time Fourier transform and the sum For fixedo and at a generic point{, ) within the range

over the spin orientations in E¢4.1) yields

1 2 rok 2K _
(i)(Qaw):E(&) JLZKd'BlJ' 2Kdﬂ25(w_E(,31152))

X{8(Q+P(B1,82)|X% B2, B1)
+XY(B2,B1)|2+ 8(Q—m+P(B1,82))
X |Y0(52 B1)— Y1(,32 1,31)|2},

where we have also substituted Ef.7).

(4.6

V. ENERGY-MOMENTUM RELATIONS

Performing the integrals over the spectral parameters in

expression(4.6) brings the two-spinon dynamic structure
factor into the form

1 B (Q,w)
(2) — e’
YQe=32 X e 6
where the numerator
BZ(Q.w)=|X%(85.89) —oXX(B5.8D1° (5.2

is governed by the two-spinon transition rates and the de-

nominator

JE 9P  GE 9P

2K)2
dB1 By  IB2 9B, B5S

JC(Q,w)EZ(—
a

2kK\?
21| =] [snBfenpsdngs - snasenssdngs|
(5.3

by the two-spinon density of states. In these expressions, the

spectral parameters now have fixed valug§,35). These

of the two-spinon continuum, there exists exactly one dis-
tinct solution per sheef. . Every such solution has multi-
plicity 8, accounted for by the permutation symmetry
B1< B, of Egs. (5.5 (factor 2 and the periodicity of the
elliptic functions(factor 4. Now we use addition theorefifs

to convert Egs(5.5) into

o 2dng.dng_
1 1-K3%srfB,srtp_" (5.69
. 2sm3.cnB,.dng_
with B.=(B1* B2)/2. From the ratio
osinQ snB.cnB.
o/l dng. .7
we obtain
1 wg T
snB.=—o 5 1+KF 5| (5.89
1 wyg T
Cn,8+= E 1 K?'F 5 (58b)
These solutions yield
d /wz— ng-f-T Eg
= w2+Kw02+T ©9

and effectively reduce Eq5.63 into a quadratic equation
for dnB_ with o-independent solutions
1*cosQ

/wz—KwS-i-T -
sin Q w2+Kw§—T’ (510

wherewy(Q) andT(Q,w) are given in Eqs(3.23 and(3.7),

dng_=

values are the solutions of the two-spinon energy-momentunespectively. Finally, a Landen transformatida— «) con-

relations arising from the two products éffunctions in Eq.
(4.6):

verts Eqgs.(5.9 and (5.10 into more explicit solutions in
terms of incomplete elliptic integrals,



11434

0 2k 1 2
o/l

FIG. 3. Explicit solution8”(Q,w) of the two-spinon energy-

momentum equations as functions of frequency for wave numbers

Q.<Q=m and anisotropy parameteks=0.7435 A=—-10) and
k=0.99 (A= —2.305).

c 1+« . wo
,8+(Q,cu)=—chF arcsmz,x ,  (5.113
. 14k 2l W,
ﬁ,(Q,w)—TF arcsi K(1+—K)w0 JK |,
(5.11bh

where W,(Q,w) is given in Eq.(3.8) and the new labet
== indicates that Q,w) e C-. .
The functionB’ (Q,w)=B-(7—Q,w), which alone en-

ters the final result, is plotted in Fig. 3 for two values of

anisotropy. It is finite along the lower boundary ©f , de-
creases monotonically with increasingt fixedQ, and van-

ishes in a square-root cusp at the upper boundary. Note the

different behavior along the portions, (Q) and wy(Q) of
the lower boundary of, [87(Q,w.)=K and B8 (Q,w,)
<K], which will give rise to different singularities in
S&?(Q,w) in the two parts of the spectral threshold.

VI. DYNAMIC STRUCTURE FACTOR
A. Exact result for S2(Q, w)
The two-spinon dynamic structure fact@®.1) for both

sheet<L. of the two-spinon spectrum will now be evaluated

as a product of a density-of-state functibn. (Q,») and a
transition-rate functioM . (Q, ), in a generalization of the
representation used in Ref. 31 for teXX model and in
analogy to the representation used in Ref. 1236¢Q, w) of
the XY model®

BOUGOURZI, KARBACH, AND MULLER 57

1
SR(Qw)=3 2 D(QeM(Qu). (6.1
With the solutiong5.11) of the energy-momentum relations,
the numeratorf5.2) and the denominatdb.3) can be evalu-
ated in the forms

2K(k)]? 1+c cosQ |A_(B8%)|?
BI(Qw)=| =~ T I
1-x 2
+T]50++m[w +kwyt+T]6,-|, (6.2
4K(k)]? o TW,
Jo(Quw)=|—— =, (6.3
0

respectively, where

3 o sl yl(1-iB/K")] _
Af(ﬁ)ze"p(_.l I sini(2ly)costiy1) © yl)'
(6.4

with y=aK'/K, and 94(x) is a Neville theta functiof?
With the exact result$3.9), (6.2), and (6.3), the physically
motivated factorizatior(6.1) of S2(Q,w)=3.-.S:(Q,®)

can now be established:

4K (k)]? w?[sif Q—W2(Q,w)]

D(Q @)= 2023.(Qw)

(6.5

2 203B(Q,w)
w?[sif Q—-W5(Q,w)]’
(6.6)

The exact two-spinon transition-rate function thus obtained
from Eq. (6.2) substituted into Eq(6.6) is

MC(Q,w)=U;:l [4KT(FK)

0?— kK?w3+T 1+c cosQ 94(B8%)

Mc(Q.w)=

(1+K)w® sif Q—W2 93(8°)°
(6.7
where 93(B8)=|A_(B)|? is the function
“. e cosh2yl)coqtyl)—1
2 — — N
ﬁA(ﬂ)_eXI{ = 1 sinh(2ly)coshiyl) |’
(6.8

BC is given in Eq.(5.11b, andt=28/K’. The final result
for the exact two-spinon dynamic structure factor reads

2 2 2

w W —K W

(2) _ 0 0
S2(Q.w) —S,w[l T

s 2(B°) |tanQ/2)| ¢
93(B°) We(Qw)

(6.9

c==*

B. Line shapes and singularity structure

The functionM , (Q,w), which represents the two-spinon

transition rates forQ,w) e C, , is plotted in Fig. 4 for two
values of anisotropy. The product &f , (Q,w) with the
two-spinon density of stateB, (Q,w) (already shown in
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The transition rate functioM ,(Q,w) exhibits qualita-
tively different properties in the two regime,<Q<
—Q, and 7—Q,.<Q=, where the spectral threshold is
given bywy(Q) andw, (Q), respectively(see Fig. 1 In the
first regime,M . (Q, ) is nonzero at the lower boundary,
decreases monotonically with increasingand approaches
zero linearly at the upper boundary. In the second regime, in
% AN contrastM , (Q,w) approaches zero linearly at both bound-

‘ aries and has a smooth maximum in between. The transition
rates for Q,w)eC_ are the exact mirror imageM _(=
_Qr(‘)):M+(va)'

These properties dil .. (Q, ) imply that the two-spinon
dynamic structure factoBf(i)(Q,w) diverges all along the
portion wo(Q) of the spectral threshold and that the leading
singularity is the square-root divergence of the two-spinon
density of states. Here the functioB, (Q,w) decreases
monotonically from infinity at the lower boundary to zero at
the upper boundary. Along the portian, (Q) of the lower
boundary and along the entire upper boundanCof, the
linear behavior of the transition rates removes the square-
root divergence of the density of states in the product and
replaces it by a square-root cusp in the dynamic structure
factor. Here the spectral-weight distribution at fix@dhas a

FIG. 4. Two-spinon transition rated , (Q,®) as a function of ~SMooth maximum between the band edges. For strong an-
frequency for wave numbe3,<Q<= = and anisotropy parameters 1S0tropy, the line shapes are broad and featureless. At mod-
k=0.7435 A =—10) andk=0.99 (A=—2.305). erate to weak anisotropy, the line shapes are distinctly asym-

metric with the maximum positioned close to the spectral
Fig. 2 for the same two caseyields the spectral-weight threshold.
distribution S, (Q,w) of the two-spinon dynamic structure  The function S$2(Q,®), which is symmetric abou
factor for (Q,w) e C, . This function is plotted in Fig. 5 for =/2, is equal to one or the other of the two functions
four values of anisotropy, including the values chosen inS.(Q,w), except forQ,<Q=<m—Q, . Here the two sheets
Figs. 2—4. overlap and the two-spinon dynamic structure factor has two

M (Q,0)

o/l

10 10
k=0.7435 k=0.8279

157 Q,0)
a

10
e
o
RS
%
—
0
04
<%

FIG. 5. Two-spinon dynamic structure factﬁfx)(Q,w) for (Q,w) e C, as a function of frequency for wave numb&s<Q< and
anisotropy parameteks=0.7435 A=—10), k=0.8279 A=-7), k=0.8976 A=—5), andk=0.99 (A=—2.305).
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square-root cusp singularities, one at the upper boundary eépresents Eq6.4) with x= I in the limit y—0. The mag-
each sheet. The two upper boundaries coincide onl@ at nitude of the resulting two-spinon matrix element becdthes
=7/2.

T A_(a1— ay)
c. T |X0(§2151)|—>_ ; ;
. Isotropic limit 2v | o (im oaq\ . [T ay
, o , sinh — + — | sini — + —
When we take the isotropic limit— — 1~ in the results 4 2 4 2
for the two-spinon density of states, transition rates, and dy- (6.15

namic structure factor for the purpose of linking up with
results of calculations that were performed for the Heisen-
berg model in thgnondegenerajecritical ground state, we 1
must heed the fact that the size of the Brillouin zone changes M, (Q,w)==e"'®, (6.16
from (— w/2,+ 7/2) to (—,+ ) as the Nel long-range 2

order in the ground state of the infinite system vanishes. I heare

practice, this means that we switch our perspective from con-

Expression6.7) for M, (Q,w) reduces to

siderin? b<7th sh;ae)téi of twg—spinon :axcri:atiohns over the " wd cosh X cosxt—1 ) 6.17
range (—m/2,+ w/2) to considering only the sheét, over =f X—— e, .
the extended range—(m,+ 7). The term withc=— in all 0 X sinh  coshx

expressions that contain a sutg- . is then omitted. These 5 5
contributions are now accounted for in the term with mt 1 ~ cosfil wj(Q)—wi(Q)

c=+ over the extended range of physically distinct wave 7 gl a)=cos 02— 0?(Q)
numbers. (6.18

In the isotropic limit, the boundaries @f, turn into the

familiar sine curves In Ref. 31 this expression was evaluated and its implications

for the two-spinon dynamic structure factbr

ﬂ- .
0o(Q)—w (Q)=5J sinQ, % (Qw)=M.(Qu)D,(Quw), A=-1 (619
were discussed in considerable detail.
- Q
©-(Q)—=wy(Q)=mJ sin 2 (6.10 D. Ising limit
and the two-spinon density of states becomes When we analyze the exact two-spinon dynamic structure

factor for very strong anisotropyA(— —), a convenient

expansion parameter about the limiting Ising modek ias
D.(Qo)= 5. (6.11 defined in Eq.(3.3). Expressed in terms of this parameter,
Voi(Q) — the exchange anisotrof@.5) and the amplitude of the two-

. e : , . spinon dispersiori2.9) become
A major simplification occurs in the two-spinon matrix

elements, 2 1
|A|=—[1+0(x?)], 1= —[1+x+0(x)].

(6.20

ere we sef)=1. To lowest order in¢, the overlap region of

he two sheet€. that make up the two-spinon continuum
e(@_ee Fig. 1 collapses to a single point = 7/2. The con-
tinuum boundaries, as expressed in terms of the reduced fre-
guency

Xl(fzafl)ﬂ_xo(fzagl), (6-12‘

which implies that all terms witlr=—1 in Egs.(5.1) and
(6.2 disappear in the isotropic limit. The results presente
previously for the isotropic cad®®! can be recovered from
the more general result presented here if we replace the sp
tral parameteg in Eq. (2.7) by the scaled spectral parameter
a=—Bm/2K' and then take the limig——1". In this
limit, the auxiliary expression§4.5 can be simplified con-

siderably: QO=w/2l-1, (6.22)
are now described by the curves
(q%ah(1-gH™ 613 Y
= (ZDTBIN A, (im/2) (6.133 Q.(Q)— =« cosQ. (6.22
(q*q%)(1— g9 ¥ 4_(a) The regimeQ ,<Q=m—Q, of the two-spinon continuum is
y(§)— 1.4 g S (6.13h  thus squeezed to zero width §=m/2, where the two-
['(1/4)A_(im/2) spinon bandwidth is zero as well in lowest order.
where The expansion of the two-spinon dynamic structure factor

can be carried out in the final resy@.9) by using

e ex;{ J»w dx sinl’?[x(lﬁtia/w)]eIX R
+\a)= - - T
- o X sinh X coshx e S _
6.1 W, (Q,w)—« sif Q\/ 1 (K COSQ) . (6.23
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. 0 — K wj 1
. ] c 4l oW,
Fa(BZ)—2 S|r(2ﬁ,)zm, (6.29

yielding the closed-form expression

S2(Q.0)— 5oz \ 0 Q—(g>2 (6.26
XA 2cos Q K|’ '

which is identical(in lowest ordey to the result

V4 cog Q—(w—]|A])?
4 co¥ Q

S (Quw)—

X|1— %(cosQ+w—|A|)) (6.27

obtained by Ishimura and Shitfafrom a first-order pertur-
bation calculation about the Ising limit.
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sir?(28°)
2|sin(28% )cog26%)|’

S2(Qw)— X (6.33

B3 .85
from which Eq.(6.26) is recovered upon evaluation.

E. Experiments

Two of the most intensively studied physical realizations
of the 1D s=1/2 Heisenberg-Ising antiferromagnet are the
guasi-1D magnetic compounds CsCp@hd CsCoBy. A
very comprehensive set of spectroscopic data, which probe
diverse aspects of the low-temperature spin dynamics of
these materials, is now available from several inelastic neu-
tron scattering experiments performed over the course
of 15 years at the Brookhavéf, Chalk River®%®
Laue-Langevirf® and Rutherfortf' Laboratories.

The basis for the interpretation of all the experimental
data that involve the frequency range now known under the
name two-spinon continuum has been the perturbation calcu-
lation about the Ising limit of Eq(1.1) carried out to first

It is instructive to perform the expansion at an earlierorder by Ishimura and Shib& (see also Ref. 47 which

stage of the calculation, namely, in E@.6), which then
becomes

1 (= m —
S&?(Q,wwgf_ dﬁlf_ dp; sif(2B-)3(w—E)

X[8(Q+P)+8(Q—m+P)], (6.29
with
_ 2 ) )
E(B1.82)— ;[1+ k— K(SiM? B1+Sir? By)],
(6.293
P(B1,B2)— 7= B1— B2, (6.29H
where we have used
X%(B1,82)—0, (6.308
IXY(B1,B2)|>— 4 sirf(28_). (6.30

The asymptotic two-spinon energy-momentum relation

(5.5 are

—w+2+2/k=2(sir? B, +sir? B,),  (6.313
— o sinQ=sin(B,+ B5) (6.31bh

and the solutions
sin(2B%)=—o sinQ, (6.323

Q 2
sin(28%)= 1—( ) (6.32b
Kk cosQ

have multiplicity 8 for Q, w) within the boundarie§6.22) of

S

yielded the explicit expressiof6.27) for the T=0 dynamic
structure factorS,(Q,w). Whereas this calculation repro-
duces the two-spinon continuum boundaries correctly to first
order in the expansion parameter, the reliability of its line-
shape prediction, a broad peak with the maximum near the
center of the band and steep drops near both boundaries, has
remained very much in question.

The fact is that the line shapes observed in all experiments
turned out to be highly asymmetric with a high concentration
of intensity near the spectral threshold and a tail extending to
the upper continuum boundary. Various attempts have been
made at reconciling the discrepancy between theory and ex-
periment by considering a second-order perturbation
calculatiorf® for the pureXXZ model and by considering the
impact of biaxial anisotrop§? next-nearest-neighbor
coupling?® interchain coupling* and exchange mixintf. all
within the framework of a first-order perturbation treatment.

In the range—10<A=<-7 of anisotropies, which best
describes CsCogland CsCoBy according to some indica-
tors, the line-shape predictions obtained via perturbation cal-
culation are in fair agreement with the exact two-spinon re-
sult for wave numbers near the zone center. However, for
wave numbers near the zone boundary, the exact two-spinon
spectral-weight distribution is more asymmetric, consistent
with the experimental data. ForQ,<Q<w—Q,,
S2(Q,w) even diverges at the spectral threshold and de-
creases monotonically toward the upper continuum bound-
ary. The conspicuous line-shape asymmetry found in the ex-
perimental data near the zone center, which is not at all
reproduced by the perturbation calculation, also exists in

(i)(Q,w), but only for weaker exchange anisotrofsee

Fig. 5.
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