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Exact two-spinon dynamic structure factor of the one-dimensionals5 1
2

Heisenberg-Ising antiferromagnet
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The exact two-spinon part of the dynamic spin structure factorSxx(Q,v) for the one-dimensionals51/2,
XXZ model atT50 in the antiferromagnetically ordered phase is calculated using recent advances in the
algebraic analysis based on~infinite-dimensional! quantum group symmetries of this model and the related
vertex models. The two-spinon excitations form a two-parameter continuum consisting of two partly overlap-
ping sheets in (Q,v) space. The spectral threshold has a smooth maximum at the Brillouin zone boundary
(Q5p/2) and a smooth minimum with a gap at the zone center (Q50). The two-spinon density of states has
square-root divergences at the lower and upper continuum boundaries. For the two-spinon transition rates, the
two regimes 0<Q,Qk ~near the zone center! and Qk,Q<p/2 ~near the zone boundary! must be distin-
guished, whereQk→0 in the Heisenberg limit andQk→p/2 in the Ising limit. In the regimeQk,Q<p/2, the
two-spinon transition rates relevant forSxx(Q,v) are finite at the lower boundary of each sheet, decrease
monotonically with increasingv, and approach zero linearly at the upper boundary. The resulting two-spinon
part of Sxx(Q,v) is then square-root divergent at the spectral threshold and vanishes in a square-root cusp at
the upper boundary. In the regime 0,Qk<p/2, in contrast, the two-spinon transition rates have a smooth
maximum inside the continuum and vanish linearly at either boundary. In the associated two-spinon line shapes
of Sxx(Q,v), the linear cusps at the continuum boundaries are replaced by square-root cusps. Existing pertur-
bation studies have been unable to capture the physics of the regimeQk,Q<p/2. However, their line-shape
predictions for the regime 0<Q,Qk are in good agreement with the exact results if the anisotropy is very
strong. For weak anisotropies, the exact line shapes are more asymmetric.@S0163-1829~98!04717-1#
an
et

m
f

or

n
te

y

nd
e
n
a

e
a

en-
r

y-
tic

m-
ted
sis
tion
ild
.

of

he
i-
ck

re-

l
,
op-
I. INTRODUCTION

Among all the spin-chain models that are directly relev
for the description of real quasi-one-dimensional magn
insulators, thes51/2 XXZ model,

H52
J

4 (
n52`

`

~sn
xsn11

x 1sn
ysn11

y 1Dsn
zsn11

z ! ~1.1!

is the one whose physical properties have been studied
comprehensively. Today there exist more exact results
this model than for any other model of comparable imp
tance.

The early demonstration1–3 that theXXZ model is ame-
nable to the Bethe ansatz led to a steady stream of adva
in our understanding of many of its ground-sta
properties,4,5 its thermodynamic properties,6–8 and the struc-
ture of its excitation spectrum.9–15 The T50 phase diagram
of the XXZ model, which was rigorously established b
these advances, consists of a ferromagnetic phase atD>1, a
critical phase~spin-fluid, Luttinger liquid! at 21<D,1, and
an antiferromagnetic phase atD,21. The mapping between
the XXZ model and the exactly solvable six-vertex a
eight-vertex models yielded additional ground-state prop
ties of the former on a rigorous basis, notably the sponta
ous staggered magnetization in the antiferromagnetic ph
and some critical exponents in the spin-fluid phase.16,4,17

Until recently, exact results for theT50 spin dynamics of
the XXZ model were limited to a single nontrivial case, th
XX model (D50). For this case, the spin system is equiv
570163-1829/98/57~18!/11429~10!/$15.00
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lent to a system of free lattice fermions18 and the dynamic
spin correlation functions can be expressed as fermion d
sity correlations (zz) ~Ref. 19! or as infinite determinants o
Pfaffians (xx).20,21 In the surrounding spin-fluid phase (21
<D,1), exact results for the infrared singularities of d
namic structure factors were obtained by field-theore
approaches.4,22

A different avenue for the study of theT50 dynamics of
the XXZ model on a rigorous basis was opened up by i
portant advances in the study of this model and the rela
vertex models in the framework of the algebraic analy
based on quantum group symmetries. A detailed descrip
of this method with all the results that our calculations bu
on can be found in a recent book by Jimbo and Miwa23

Unlike the Bethe ansatz, this approach considers aninfinite
chain from the outset and exploits the higher symmetry
the infinite system~compared to the finite system! described
by the quantum groupUq(sl2).24,25

The algebraic analysis of theXXZ model for the purpose
of calculating correlation functions and transition rates~form
factors! of local spin operators requires the execution of t
following program:~i! Span the infinite-dimensional phys
cally relevant Hilbert space in the form of a separable Fo
space of multiple spinon excitations and generate theXXZ
eigenvectors in this Fock space by products of spinon c
ation operators~so-called vertex operators! from the XXZ
ground state~physical vacuum!, ~ii ! determine the spectra
properties~energy and momentum! of the spinon excitations
~iii ! express the local spin operators in terms of vertex
11 429 © 1998 The American Physical Society
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11 430 57BOUGOURZI, KARBACH, AND MÜLLER
erators, and~iv! evaluate matrix elements of products of ve
tex operators in this spinon eigenbasis.

There exist two similar yet distinct programs that oper
under different circumstances for essentially the same
pose. One is the fermion representation of the o
dimensional~1D! s51/2 XY model or the equivalent 2D
Ising model20,26 and the other is conformal field theory fo
critical ~massless! continuum models.27 Quantum inverse
scattering theory provides yet different ways of calculat
some correlation functions and matrix elements for mass
relativistic continuum models28 and for theXXX model.29

The algebraic analysis23 operates in the massive phase sta
lized by Néel long-range order atD,21, but the isotropic
limit D→212 can be performed meaningfully at variou
stages of the calculation and thus yields equivalent results
the ~massless! Heisenberg antiferromagnet.30,31

In this paper we infer from the diverse ingredients no
accessible via the Bethe ansatz and the algebraic analys
explicit expression for the exact two-spinon part of the d
namic spin structure factor

Sxx~Q,v!5
1

4 (
n52`

1` E
2`

`

dt ei ~vt1Qn!^sn
x~ t !s0

x& ~1.2!

at T50 andD,21. The line shapes thus obtained are
direct relevance for the interpretation of existing spect
scopic data obtained via inelastic neutron scattering32–34and
Raman scattering35 on the quasi-1D magnetic compoun
CsCoCl3 and CsCoBr3.

In Sec. II we discuss them-spinon eigenbasis and infer
suitable parametric representation of the energy-momen
relation for spinon excitations from it. In Sec. III a close
form expression for the two-spinon density of statesD(Q,v)
is derived from this spectral information. In Sec. IV we an
lyze the matrix elements~form factors! between the twofold
degenerate ground state and the two-spinon excitations
derive from them~in Sec. VI!, after having solved the two
spinon energy-momentum relations in the appropriate
rametrization~Sec. V!, a functionM (Q,v) that, when mul-
tiplied by D(Q,v), yields the two-spinon dynamic structur
factor Sxx

(2)(Q,v).
A related study was previously undertaken by Weston

Bougourzi.36 In that study the goal was to calculate the tw
spinon part of the dynamic structure factorS(Q,v) defined
as the Fourier transform of^sn(t)•s0&. The result was ex-
pressed as an expansion about the Ising limit (D→2`) car-
ried out explicitly to 12th order. It is much more difficult t
calculate this quantity than to calculateSxx

(2)(Q,v), where no
expansion is necessary to obtain explicit results.

Finally, it is interesting to note that the exact result for t
frequency-dependent spin autocorrelation functionFxx(v)
[*2p

p (dQ/2p)Sxx(Q,v) of the caseD50, which was cal-
culated in the fermion representation,37 represents all
m-spinon contributions form52,4,... simultaneously. Ther
them-spinon structure of the excitation spectrum is reflec
in Fxx(v) by an infinite sequence of singularities at t
band-edge frequenciesv/J50,1,2,... .
e
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II. SPECTRUM

The 2N-dimensional Hilbert space of theXXZ model for a
chain of N sites becomes nonseparable in the limitN→`.
However, for the infinite chain, a separable subspaceF can
be constructed and all physical properties of theXXZ model
can, in principle, be derived exactly from it. The classific
tion of theXXZ spectrum in terms ofm-spinon excitations,
which is instrumental in the quantum group analysis, h
already been established by Faddeev and Takhtajan10,15 for
D521 in the framework of the algebraic Bethe ansatz.

The ~infinite-dimensional! spaceF is spanned by vectors
ujm ,em ;...;j1 ,e1& j with m50,1,... andj 50,1, which rep-
resent multiple spinon excitations. In the regime of inter
here, the twofold degenerate vacuum state is represente
the two vectorsu0&0 ,u0&1 . These states break the transl
tional symmetry ofH. The translation operatorT ~shift by
one lattice site! transforms the two vectors into each othe

Tu0& j5u0&12 j , j 50,1. ~2.1!

In the Ising limit (D→2`), they become the pure Ne´el
statesu¯↑↓↑↓¯&,u¯↓↑↓↑¯&.

Each spinon excitation is characterized by a~complex!
spectral parameterj l and a spin orientatione l561. The
subspaces ofF with even and odd numbers of spinon exc
tations are disconnected in all matters of concern here. T
describe the physics of chains with even and oddN asymp-
totically for N→`.10,15 The completeness relation for th
spinon basis inF reads23

I5 (
j 50,1

(
m50,1,...

`

(
e1 ,...,em561

1

m! R )
i 51

m
dj i

2p i j i

3ujm ,em ;...;j1 ,e1& j j ^j1 ,e1 ;...;jm ,emu. ~2.2!

These basis vectors are in fact eigenvectors of theXXZ
HamiltonianH and of the translation operatorT2,

Tujm ,em ;...;j1 ,e1& j5)
i 51

m
1

t~j i !
ujm ,em ;...;j1 ,e1&12 j ,

~2.3a!

Hujm ,em ;...;j1 ,e1& j5(
i 51

m

e~j i !ujm ,em ;...;j1 ,e1& j ,

~2.3b!

with the respective eigenvalues determined by

t~j!5e2 ip~j!5j21
uq4~qj2!

uq4~qj22!
, ~2.4a!

e~j!5J
12q2

4q
j

d

dj
ln t~j! ~2.4b!

in terms of the spectral parameterj and the anisotropy pa
rameter

D5~q1q21!/2, 21,q,0. ~2.5!

Here q is the deformation parameter of the quantum gro
Uq(sl2) ~Ref. 24! and

ux~y![~x;x!~y;x!~xy21;x!, ~2.6a!
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~y;x![ )
n50

`

~12yxn!. ~2.6b!

For most of the analysis to be carried out later, it is co
venient to expressj in terms of the alternative spectral p
rameterb:

j[ ieipb/2K, 22K<b,2K. ~2.7!

The energy and momentum of a spinon are then express
terms of Jacobian elliptic functions

e~j!5 ē~b!5I dn b, ~2.8a!

p~j!5 p̄~b!5am b1
p

2
, ~2.8b!

with

I[
JK

p
sinh

pK8

K
. ~2.9!

The anisotropy parameter~2.5! is related to the nome

2q5exp~2pK8/K ! ~2.10!

and thus determines the modulik,k8[A12k2 of the elliptic
integrals K[K(k) and K8[K(k8). The spinon energy-
momentum relation resulting from Eq.~2.8!,

e1~p!5IA12k2 cos2 p, 0<p<p, ~2.11!

is equivalent to the corresponding relation obtained via
Bethe ansatz.7,15,38

For the calculation ofSxx
(2)(Q,v) from the two-spinon

density of states and the two-spinon matrix elements we
troduce here translationally invariant vacuum states

u0&[
u0&01u0&1

&
, up&[

u0&02u0&1

&
, ~2.12!

which have wave numbers~total momenta mod 2p! 0 andp,
respectively, in the extended Brillouin zone (2p,1p).39 In
the isotropic limit, the stateu0& is a singlet (ST50) and the
stateup& is the vector withST

z50 of a triplet (ST51). The
corresponding linear combinations of two-spinon states

uj2 ,e2 ;j1 ,e1 ;0&[
uj2 ,e2 ;j1 ,e1&01uj2 ,e2 ;j1 ,e1&1

&
,

uj2 ,e2 ;j1 ,e1 ;p&[
uj2 ,e2 ;j1 ,e1&02uj2 ,e2 ;j1 ,e1&1

&
~2.13!

are then also translationally invariant,

Tuj2 ,e2 ;j1 ,e1 ;0&5ei @p~j1!1p~j2!#uj2 ,e2 ;j1 ,e1 ;0&,

Tuj2 ,e2 ;j1 ,e1 ;p&5ei @p~j1!1p~j2!1p#uj2 ,e2 ;j1 ,e1 ;p&.
~2.14!

Since the two-spinon momenta and energies

P~j1 ,j2!5 P̄~b1 ,b2![p~j1!1p~j2!,
-

in

e

-

E~j1 ,j2!5Ē~b1 ,b2![e~j1!1e~j2! ~2.15!

are independent of the spin orientationse1 ,e2561, all two-
spinon states at fixedP will be at least fourfold degenerate
In the isotropic limit, this degeneracy involves a singlet st
(ST

z5ST50) and the three vectors withST
z50,61 of a trip-

let state (ST51).
The four sets of two-spinon excitations are readily iden

fied in the framework of the Bethe ansatz. In a finite syst
(N,`), the singlet-triplet degeneracy is removed and
anisotropic coupling (D,21), the triplet levels are split up
as well. The fourfold degeneracy emerges only asympt
cally for N→` and thus reflects the higherUq(sl2) symme-
try of the infinite system, which is used in the algebra
analysis.

III. DENSITY OF STATES

Here we consider any one of the four sets of two-spin
excitations~2.13! with fixed spin orientationse1 ,e2 and ex-
press their energiesE(j1 ,j2)5e1(p1)1e1(p2) in terms of
the wave numberQ5p11p2 (0<Q,2p) and the variable
l5 1

2 (p12p2) (2p/2<l,p/2):40

e2~Q,l![e1~Q/22l!1e1~Q/21l!. ~3.1!

These states form a continuum in (Q,v) space, which is
depicted in Fig. 1. It consists of two partly overlappin
sheetsC6 with boundaries

v0~Q!5
2I

11k
sin Q, ~3.2a!

v6~Q!5
2I

11k
A11k262k cosQ, ~3.2b!

where

FIG. 1. Two-spinon excitation spectrum~3.1! for k50.99 (D
.22.305). It consists of two partly overlapping sheetsC2 andC1 .
SheetC1 lies betweenv0(Q) and v2(Q) in the rangeQk<Q
<p2Qk and betweenv1(Q) and v2(Q) for p2Qk<Q<p.
Sheet C2 is obtained fromC1 by reflection about the lineQ
5p/2. The interval~0,p! represents one-half of the extended Br
louin zone, in which one ground-state vectoru0& is assigned the
wave numberQ50 and the other ground-state vectorup& the wave
numberQ5p.
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k[cosQk5
12k8

11k8
~3.3!

is the natural anisotropy parameter in most of the res
presented here. The excitation gapDE52Ik8 approaches
zero exponentially in the isotropic limit:2

DE ——→
D→21

4pJ exp„2p2/A28~11D!…. ~3.4!

The two-spinon density of states41

D~Q,v![
1

2 E
2p/2

p/2

dld„v2e2~Q,l!… ~3.5!

was evaluated before in closed form12

D~Q,v!5D1~Q,v!1D2~Q,v!, ~3.6a!

D6~Q,v!5n6~Q,v!/d6~Q,v! ~3.6b!

for (Q,v)PC6 , respectively, where

n6~Q,v!5
2v22~11k2!v0

262T cosQ

4 sin2 Q
,

d6~Q,v!5
T@~11k2!v0

22v2~11cos2 Q!72T cosQ#1/2

2 sin2 Q
,

T~Q,v!5Av22k2v0
2Av22v0

2. ~3.7!

With the auxiliary quantity

W6~Q,v!5Av0
4

v4 k22S T

v2 6cosQD 2

~3.8!

the result~3.6b! can be written more compactly:

D6~Q,v!5
v@sin2 Q2W6

2 ~Q,v!#

2T~Q,v!W6~Q,v!
. ~3.9!

Note the reflection symmetryD6(Q,v)5D7(p2Q,v).
The two-spinon density of state has square-root divergen
all along the lower and upper boundaries of each sheet
the zone center, expression~3.9! turns into
ts

es
At

D2~0,v!5
v

A4I 22v2Av224I 2k82
. ~3.10!

The functionD1(Q,v) is plotted in Fig. 2 for two values of
anisotropy.

IV. MATRIX ELEMENTS

Them-spinon eigenbasis provides a useful framework
the separate analysis of them-spinon contributions (m
50,2,4,...) to any zero-temperature dynamical quantity
interest if a means of calculating the relevant matrix e
ments can be found. Here we focus on thetwo-spinonmatrix
elements of the dynamicspin structure factorSxx(Q,v) at
T50.

With Eq. ~2.2! the two-spinon part of Eq.~1.2! has the
form

FIG. 2. Normalized two-spinon density of statesD1(Q,v) as a
function of frequency for wave numbersQk<Q<p and anisotropy
parameterk50.7435 (D.210) andk50.99 (D.22.305).
s

Sxx
~2!~Q,v!5

1

8 (
j , j 850,1

(
n52`

1`

(
e1 ,e256

E
2`

1`

dt ei ~vt1Qn!
1

2 R )
i 51

2
dj i

2p i j i
j 8^0usn

x~ t !uj2 ,e2 ;j1 ,e1& j j ^j1 ,e1 ;j2 ,e2us0
xu0& j 8 .

~4.1!

The evaluation of this expression requires that we know all transition matrix elements of the spin operatorss0
65 1

2 (s0
x

6 is0
y) between the vacuum statesu0& j and the two-spinon statesuj2 ,e2 ;j1 ,e1& j . All nonvanishing matrix elements of thi

type turn out to be related to each other,

j^0us0
6uj2 ,7;j1 ,7& j512 j^0us0

7uj2 ,6;j1 ,6&12 j , ~4.2a!

j^j1 ,6;j2 ,6us0
6u0& j5 j^0us0

6u2qj1 ,7;2qj2 ,7& j , ~4.2b!

and can be expressed by a single function
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Xj~j2 ,j1!5 j^0us0
1uj2 ,2;j1 ,2& j , ~4.3!

which was determined by Jimbo and Miwa:23

Xj~j2 ,j1!5X̄j~b2 ,b1!5%2
~q4;q4!2

~q2;q2!3

~2qj1j2!12 jj1g~j1
2/j2

2!uq8~2j1
22j2

22q4 j !

uq4~2j1
22q3!uq4~2j2

22q3!
, ~4.4!
u

s
re

d

, t

tu

is-
-
ry
where

g~j![
~q4j;q4;q4!~j21;q4;q4!

~q6j;q4;q4!~q2j21;q4;q4!
, ~4.5a!

%[~q2;q2!2
~q4;q4;q4!

~q6;q4;q4!
, ~4.5b!

~x;y;z![ )
n,m50

`

~12xynzm!. ~4.5c!

Carrying out the space-time Fourier transform and the s
over the spin orientations in Eq.~4.1! yields

Sxx
~2!~Q,v!5

1

2 S p

8K D 2E
22K

2K

db1E
22K

2K

db2d„v2Ē~b1 ,b2!…

3$d„Q1 P̄~b1 ,b2!…uX̄0~b2 ,b1!

1X̄1~b2 ,b1!u21d„Q2p1 P̄~b1 ,b2!…

3uX̄0~b2 ,b1!2X̄1~b2 ,b1!u2%, ~4.6!

where we have also substituted Eq.~2.7!.

V. ENERGY-MOMENTUM RELATIONS

Performing the integrals over the spectral parameter
expression~4.6! brings the two-spinon dynamic structu
factor into the form

Sxx
~2!~Q,v!5

1

2 (
c56

(
s56

Bc
s~Q,v!

Jc~Q,v!
, ~5.1!

where the numerator

Bc
s~Q,v![uX̄0~b2

c ,b1
c!2sX̄1~b2

c ,b1
c!u2 ~5.2!

is governed by the two-spinon transition rates and the
nominator

Jc~Q,v![2S 2K

p D 2U ]Ē

]b1

] P̄

]b2
2

]Ē

]b2

] P̄

]b1
U

b
1
cb

2
c

52I S 2kK

p D 2

usnb1
ccnb1

cdnb2
c2snb2

ccnb2
cdnb1

cu

~5.3!

by the two-spinon density of states. In these expressions
spectral parameters now have fixed values (b1

c ,b2
c). These

values are the solutions of the two-spinon energy-momen
relations arising from the two products ofd functions in Eq.
~4.6!:
m

in

e-

he

m

v5Ē~b1 ,b2!, 2Q5 P̄~b1 ,b2!, ~5.4a!

v5Ē~b1 ,b2!, p2Q5 P̄~b1 ,b2! ~5.4b!

for s57, respectively. Equations~5.4! with ~2.15! and~2.8!
are combined into

v/I 5dnb11dnb2 , ~5.5a!

2s sin Q5snb1cnb21cnb1snb2 ~5.5b!

for future analysis.
For fixeds and at a generic point (Q,v) within the range

of the two-spinon continuum, there exists exactly one d
tinct solution per sheetC6 . Every such solution has multi
plicity 8, accounted for by the permutation symmet
b1↔b2 of Eqs. ~5.5! ~factor 2! and the periodicity of the
elliptic functions~factor 4!. Now we use addition theorems42

to convert Eqs.~5.5! into

v

I
5

2 dnb1dnb2

12k2sn2b1sn2b2
, ~5.6a!

2s sin Q5
2 snb1cnb1dnb2

12k2sn2b1sn2b2
, ~5.6b!

with b6[(b16b2)/2. From the ratio

2
s sin Q

v/I
5

snb1cnb1

dnb1
, ~5.7!

we obtain

snb152sA1

2 S 11k
v0

2

v2 2
T

v2D , ~5.8a!

cnb15A1

2 S 12k
v0

2

v2 1
T

v2D . ~5.8b!

These solutions yield

dnb15Av22kv0
21T

v21kv0
21T

~5.9!

and effectively reduce Eq.~5.6a! into a quadratic equation
for dnb2 with s-independent solutions

dnb25
16cosQ

sin Q
Av22kv0

21T

v21kv0
22T

, ~5.10!

wherev0(Q) andT(Q,v) are given in Eqs.~3.2a! and~3.7!,
respectively. Finally, a Landen transformation (k→k) con-
verts Eqs.~5.9! and ~5.10! into more explicit solutions in
terms of incomplete elliptic integrals,
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b1
c ~Q,v!52s

11k

2
FFarcsin

v0

v
,kG , ~5.11a!

b2
c ~Q,v!5

11k

2
FFarcsinS 2IvWc

k~11k!v0
2D ,kG ,

~5.11b!

whereWc(Q,v) is given in Eq.~3.8! and the new labelc
56 indicates that (Q,v)PC6 .

The functionb2
1(Q,v)5b2

2(p2Q,v), which alone en-
ters the final result, is plotted in Fig. 3 for two values
anisotropy. It is finite along the lower boundary ofC1 , de-
creases monotonically with increasingv at fixedQ, and van-
ishes in a square-root cusp at the upper boundary. Note
different behavior along the portionsv1(Q) andv0(Q) of
the lower boundary ofC1 @b2

1(Q,v1)5K and b2
1(Q,v0)

,K#, which will give rise to different singularities in
Sxx

(2)(Q,v) in the two parts of the spectral threshold.

VI. DYNAMIC STRUCTURE FACTOR

A. Exact result for Sxx
„2…

„Q,v…

The two-spinon dynamic structure factor~5.1! for both
sheetsC6 of the two-spinon spectrum will now be evaluate
as a product of a density-of-state functionD6(Q,v) and a
transition-rate functionM 6(Q,v), in a generalization of the
representation used in Ref. 31 for theXXX model and in
analogy to the representation used in Ref. 12 forSzz(Q,v) of
the XY model:43

FIG. 3. Explicit solutionb2
1(Q,v) of the two-spinon energy-

momentum equations as functions of frequency for wave num
Qk<Q<p and anisotropy parametersk50.7435 (D.210) and
k50.99 (D.22.305).
he

Sxx
~2!~Q,v!5

1

2 (
c56

Dc~Q,v!Mc~Q,v!. ~6.1!

With the solutions~5.11! of the energy-momentum relations
the numerator~5.2! and the denominator~5.3! can be evalu-
ated in the forms

Bc
s~Q,v!5F2K~k!

p G2 11c cosQ

v0
2

uA2~b2
c !u2

qd
2~b2

c !
F @v22kv0

2

1T#ds11
12k

11k
@v21kv0

21T#ds2G , ~6.2!

Jc~Q,v!5F4K~k!

p G2 vTWc

v0
2 , ~6.3!

respectively, where

A6~b![expS 2(
l 51

`
sinh2@g l ~12 ib/K8!#

l sinh~2lg!cosh~g l !
e7g l D ,

~6.4!

with g5pK8/K, and qd(x) is a Neville theta function.42

With the exact results~3.9!, ~6.2!, and ~6.3!, the physically
motivated factorization~6.1! of Sxx

(2)(Q,v)5(c56Sc(Q,v)
can now be established:

Dc~Q,v!5F4K~k!

p G2 v2@sin2 Q2Wc
2~Q,v!#

2v0
2Jc~Q,v!

, ~6.5!

Mc~Q,v!5 (
s561

F p

4K~k!G
2 2v0

2Bc
s~Q,v!

v2@sin2 Q2Wc
2~Q,v!#

.

~6.6!

The exact two-spinon transition-rate function thus obtain
from Eq. ~6.2! substituted into Eq.~6.6! is

Mc~Q,v!5
v22k2v0

21T

~11k!v2

11c cosQ

sin2 Q2Wc
2

qA
2~b2

c !

qd
2~b2

c !
,

~6.7!

whereqA
2(b)[uA2(b)u2 is the function

qA
2~b!5expS 2(

l 51

`
eg l

l

cosh~2g l !cos~ tg l !21

sinh~2lg!cosh~g l ! D ,

~6.8!

b2
c is given in Eq.~5.11b!, and t[2b/K8. The final result

for the exact two-spinon dynamic structure factor reads

Sxx
~2!~Q,v!5

v0

8Iv F11Av22k2v0
2

v22v0
2 G

3 (
c56

qA
2~b2

c !

qd
2~b2

c !

utan~Q/2!u2c

Wc~Q,v!
. ~6.9!

B. Line shapes and singularity structure

The functionM 1(Q,v), which represents the two-spino
transition rates for (Q,v)PC1 , is plotted in Fig. 4 for two
values of anisotropy. The product ofM 1(Q,v) with the
two-spinon density of statesD1(Q,v) ~already shown in

rs
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Fig. 2 for the same two cases! yields the spectral-weigh
distribution S1(Q,v) of the two-spinon dynamic structur
factor for (Q,v)PC1 . This function is plotted in Fig. 5 for
four values of anisotropy, including the values chosen
Figs. 2–4.

FIG. 4. Two-spinon transition ratesM 1(Q,v) as a function of
frequency for wave numbersQk<Q<p and anisotropy parameter
k50.7435 (D.210) andk50.99 (D.22.305).
n

The transition rate functionM 1(Q,v) exhibits qualita-
tively different properties in the two regimesQk<Q,p
2Qk and p2Qk,Q<p, where the spectral threshold
given byv0(Q) andv1(Q), respectively~see Fig. 1!. In the
first regime,M 1(Q,v) is nonzero at the lower boundary
decreases monotonically with increasingv, and approaches
zero linearly at the upper boundary. In the second regime
contrast,M 1(Q,v) approaches zero linearly at both boun
aries and has a smooth maximum in between. The trans
rates for (Q,v)PC2 are the exact mirror image:M 2(p
2Q,v)5M 1(Q,v).

These properties ofM 6(Q,v) imply that the two-spinon
dynamic structure factorSxx

(2)(Q,v) diverges all along the
portion v0(Q) of the spectral threshold and that the leadi
singularity is the square-root divergence of the two-spin
density of states. Here the functionS1(Q,v) decreases
monotonically from infinity at the lower boundary to zero
the upper boundary. Along the portionv1(Q) of the lower
boundary and along the entire upper boundary ofC1 , the
linear behavior of the transition rates removes the squ
root divergence of the density of states in the product a
replaces it by a square-root cusp in the dynamic struc
factor. Here the spectral-weight distribution at fixedQ has a
smooth maximum between the band edges. For strong
isotropy, the line shapes are broad and featureless. At m
erate to weak anisotropy, the line shapes are distinctly as
metric with the maximum positioned close to the spect
threshold.

The function Sxx
(2)(Q,v), which is symmetric aboutQ

5p/2, is equal to one or the other of the two functio
S6(Q,v), except forQk<Q<p2Qk . Here the two sheets
overlap and the two-spinon dynamic structure factor has
FIG. 5. Two-spinon dynamic structure factorSxx
(2)(Q,v) for (Q,v)PC1 as a function of frequency for wave numbersQk<Q<p and

anisotropy parametersk50.7435 (D.210), k50.8279 (D.27), k50.8976 (D.25), andk50.99 (D.22.305).
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square-root cusp singularities, one at the upper boundar
each sheet. The two upper boundaries coincide only aQ
5p/2.

C. Isotropic limit

When we take the isotropic limitD→212 in the results
for the two-spinon density of states, transition rates, and
namic structure factor for the purpose of linking up wi
results of calculations that were performed for the Heis
berg model in the~nondegenerate! critical ground state, we
must heed the fact that the size of the Brillouin zone chan
from (2p/2,1p/2) to (2p,1p) as the Ne´el long-range
order in the ground state of the infinite system vanishes
practice, this means that we switch our perspective from c
sidering both sheetsC6 of two-spinon excitations over th
range (2p/2,1p/2) to considering only the sheetC1 over
the extended range (2p,1p). The term withc52 in all
expressions that contain a sum(c56 is then omitted. These
contributions are now accounted for in the term w
c51 over the extended range of physically distinct wa
numbers.

In the isotropic limit, the boundaries ofC1 turn into the
familiar sine curves

v0~Q!→vL~Q!5
p

2
J sin Q,

v2~Q!→vU~Q!5pJ sin
Q

2
~6.10!

and the two-spinon density of states becomes

D1~Q,v!5
1

AvU
2 ~Q!2v2

. ~6.11!

A major simplification occurs in the two-spinon matr
elements,

X1~j2 ,j1!→2X0~j2 ,j1!, ~6.12!

which implies that all terms withs521 in Eqs.~5.1! and
~6.2! disappear in the isotropic limit. The results presen
previously for the isotropic case30,31 can be recovered from
the more general result presented here if we replace the s
tral parameterb in Eq. ~2.7! by the scaled spectral paramet
a52bp/2K8 and then take the limitq→212. In this
limit, the auxiliary expressions~4.5! can be simplified con-
siderably:

%→
~q4;q4!~12q4!1/4

~q2;q2!2G~3/4!A1~ ip/2!
, ~6.13a!

g~j!→
~q4;q4!~12q4!3/4A2~a!

G~1/4!A2~ ip/2!
, ~6.13b!

where

A6~a!5expS 2E
0

` dx

x

sinh2@x~11 ia/p!#

sinh 2x coshx
e7xD

~6.14!
of

y-

-

s

In
n-

d

ec-

represents Eq.~6.4! with x5g l in the limit g→0. The mag-
nitude of the resulting two-spinon matrix element become44

uX0~j2 ,j1!u→
p

2g U A2~a12a2!

sinhS ip

4
1

a1

2 D sinhS ip

4
1

a2

2 DU .

~6.15!

Expression~6.7! for M 1(Q,v) reduces to

M 1~Q,v!5
1

2
e2I ~ t !, ~6.16!

where

I ~ t !5E
0

`

dx
cosh 2x cosxt21

x sinh 2x coshx
ex, ~6.17!

pt

4
5

1

2
~a12a2!5cosh21AvU

2 ~Q!2vL
2~Q!

v22vL
2~Q!

.

~6.18!

In Ref. 31 this expression was evaluated and its implicati
for the two-spinon dynamic structure factor43

Sxx
~2!~Q,v!5M 1~Q,v!D1~Q,v!, D521 ~6.19!

were discussed in considerable detail.

D. Ising limit

When we analyze the exact two-spinon dynamic struct
factor for very strong anisotropy (D→2`), a convenient
expansion parameter about the limiting Ising model isk as
defined in Eq.~3.3!. Expressed in terms of this paramete
the exchange anisotropy~2.5! and the amplitude of the two
spinon dispersion~2.9! become

uDu→
2

k
@11O~k2!#, I→

1

k
@11k1O~k2!#.

~6.20!

Here we setJ51. To lowest order ink, the overlap region of
the two sheetsC6 that make up the two-spinon continuu
~see Fig. 1! collapses to a single point atQ5p/2. The con-
tinuum boundaries, as expressed in terms of the reduced
quency

V[v/2I 21, ~6.21!

are now described by the curves

V6~Q!→6k cosQ. ~6.22!

The regimeQk<Q<p2Qk of the two-spinon continuum is
thus squeezed to zero width atQ5p/2, where the two-
spinon bandwidth is zero as well in lowest order.

The expansion of the two-spinon dynamic structure fac
can be carried out in the final result~6.9! by using

Wc~Q,v!→k sin2 QA12S V

k cosQ
D 2

, ~6.23!
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qd~b2
c !→1,

v22k2v0
2

v22v0
2 →

1

cos2 Q
, ~6.24!

qA~b2
c !→2 sin~2b2

c !.
4IvWc

~11k!kv0
2 , ~6.25!

yielding the closed-form expression

Sxx
~2!~Q,v!→

1

2 cos2 Q
Acos2 Q2S V

k D 2

, ~6.26!

which is identical~in lowest order! to the result

Sxx
~ IS!~Q,v!→

A4 cos2 Q2~v2uDu!2

4 cos2 Q

3S 12
2

uDu ~cosQ1v2uDu! D ~6.27!

obtained by Ishimura and Shiba13 from a first-order pertur-
bation calculation about the Ising limit.

It is instructive to perform the expansion at an earl
stage of the calculation, namely, in Eq.~4.6!, which then
becomes

Sxx
~2!~Q,v!→

1

8 E
2p

p

db1E
2p

p

db2 sin2~2b2!d~v2Ē!

3@d~Q1 P̄!1d~Q2p1 P̄!#, ~6.28!

with

Ē~b1 ,b2!→
2

k
@11k2k~sin2 b11sin2 b2!#,

~6.29a!

P̄~b1 ,b2!→p2b12b2 , ~6.29b!

where we have used

X̄0~b1 ,b2!→0, ~6.30a!

uX̄1~b1 ,b2!u2→4 sin2~2b2!. ~6.30b!

The asymptotic two-spinon energy-momentum relatio
~5.5! are

2v1212/k52~sin2 b11sin2 b2!, ~6.31a!

2s sin Q5sin~b11b2! ~6.31b!

and the solutions

sin~2b1
c !52s sin Q, ~6.32a!

sin~2b2
c !5A12S V

k cosQ
D 2

~6.32b!

have multiplicity 8 for (Q,v) within the boundaries~6.22! of
the asymptotic two-spinon continuum. Performing the in
grals in Eq.~6.28! then yields the asymptotic version of E
~5.1!:
r

s

-

Sxx
~2!~Q,v!→ (

b1
c ,b2

c

sin2~2b2
c !

2usin~2b2
c !cos~2b1

c !u
, ~6.33!

from which Eq.~6.26! is recovered upon evaluation.

E. Experiments

Two of the most intensively studied physical realizatio
of the 1D s51/2 Heisenberg-Ising antiferromagnet are t
quasi-1D magnetic compounds CsCoCl3 and CsCoBr3 . A
very comprehensive set of spectroscopic data, which pr
diverse aspects of the low-temperature spin dynamics
these materials, is now available from several inelastic n
tron scattering experiments performed over the cou
of 15 years at the Brookhaven,32 Chalk River,33,45

Laue-Langevin,46 and Rutherford34 Laboratories.
The basis for the interpretation of all the experimen

data that involve the frequency range now known under
name two-spinon continuum has been the perturbation ca
lation about the Ising limit of Eq.~1.1! carried out to first
order by Ishimura and Shiba13 ~see also Ref. 47!, which
yielded the explicit expression~6.27! for the T50 dynamic
structure factorSxx(Q,v). Whereas this calculation repro
duces the two-spinon continuum boundaries correctly to fi
order in the expansion parameter, the reliability of its lin
shape prediction, a broad peak with the maximum near
center of the band and steep drops near both boundaries
remained very much in question.

The fact is that the line shapes observed in all experime
turned out to be highly asymmetric with a high concentrat
of intensity near the spectral threshold and a tail extendin
the upper continuum boundary. Various attempts have b
made at reconciling the discrepancy between theory and
periment by considering a second-order perturbat
calculation48 for the pureXXZ model and by considering th
impact of biaxial anisotropy,49 next-nearest-neighbo
coupling,50 interchain coupling,51 and exchange mixing,34 all
within the framework of a first-order perturbation treatme

In the range210&D&27 of anisotropies, which bes
describes CsCoCl3 and CsCoBr3 according to some indica
tors, the line-shape predictions obtained via perturbation
culation are in fair agreement with the exact two-spinon
sult for wave numbers near the zone center. However,
wave numbers near the zone boundary, the exact two-sp
spectral-weight distribution is more asymmetric, consist
with the experimental data. ForQk,Q,p2Qk ,
Sxx

(2)(Q,v) even diverges at the spectral threshold and
creases monotonically toward the upper continuum bou
ary. The conspicuous line-shape asymmetry found in the
perimental data near the zone center, which is not at
reproduced by the perturbation calculation, also exists
Sxx

(2)(Q,v), but only for weaker exchange anisotropy~see
Fig. 5!.
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