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Smecticlike phase for modulatedXY spins in two dimensions
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The row model for frustratedXY spins on a triangular lattice in two dimensions~2D! is used to study
incommensurate~IC! spiral and commensurate~C! antiferromagnetic phases, in the regime where a C-IC
transition occurs. Using fluctuating boundary conditions and specific histogram techniques, a detailed Monte
Carlo ~MC! study reveals more structure in the phase diagram than found in previous MC simulations of the
full parameter space. On the C side, equilibrium configurations consist of alternating stripes of spiral phases of
opposite chirality separated by walls of the C phase. For this same parameter regime, thermodynamic quantities
are computed analytically using the NSCHA, a generalization of the self-consistent harmonic approximation
appropriate for chiral systems. On the commensurate side of the C-IC boundary, NSCHA predicts an instability
of the C phase. This suggests that the state is spatially inhomogeneous, consistent with the present MC result:
it resembles the smectic-A phase of liquid crystals, and its existence implies that the Lifshitz point is atT
50 for modulatedXY spins in 2D. The connection between frustratedXY systems and the vortex state of
strong type-II superconductors suggests that the smectic phase may correspond to a vortex liquid phase of
superconducting layers.@S0163-1829~98!09217-0#
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I. INTRODUCTION

Frustration is an ubiquitous phenomenon in condens
matter physics. It occurs whenever several ground states
system compete at different length scales. Examples of s
a situation are noninteracting electrons in a tight-binding
tential subjected to a uniform magnetic field,1 networks of
superconducting wires2 or of Josephson junctions3 in a field
and spins with competing interactions.4 In particular, frus-
trated magnetic systems have been used in the quantum
as realizations of the spin-liquid state5 ~advocated in the con
text of high-Tc superconductors!. In the classical case,XY
@O(2)# spins model the vortex state of layered, strong type
superconductors.6,7 Frustration manifests itself by the exis
tence of chiral variables. The effect of this additional (Z2)
symmetry on phase transitions is still an open debate.
fully frustrated models there remains to establish whether
Z2 and theO(2) symmetries are broken at different tempe
tures or at the same temperature.8–12 In the context of two-
dimensional~2D! helimagnets this issue comes up when o
studies the commensurate-incommensurate~C-IC!
transition:4 on the C side, the state is nonchiral whereas
the IC side chirality is coupled to theXY variables. Insight
into this particular problem can be gained by studying
phase diagram of the row model, an anisotropic frustra
2D XY model on a triangular lattice: it is a generalization
the fully frustrated XY model on the triangular lattice
~FFTXY) where all the bonds strengthsJ are multiplied byh
in the horizontal direction13–15 ~the FFTXY model corre-
sponds toh51).
570163-1829/98/57~18!/11421~8!/$15.00
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In order to study this system16 and other IC structures,17 a
Monte Carlo~MC! algorithm with ‘‘self-determined~fluctu-
ating! boundary conditions’’~FBC! was developed. The re
sulting h versusT phase diagram indicated a continuo
C-IC transition line starting ath50.5 forT50 and ending at
a Lifshitz point18 ~LP! for hL.0.62 andTL.0.42J. Besides,
increasingT at fixedh (0.5,h,hL) produced the follow-
ing sequence of phases: an IC state at lowT; then, across the
C-IC transition, atTC-IC , one moves into the C phase; last
one reaches the paramagnetic~P! boundary atTP. In this
process one of the eigenvalues of the spin-wave stiffn
matrix decreases uniformly asT varies from zero toTC-IC ,
vanishes atTC-IC , increases again in the C phase and b
comes zero aboveTP.

These MC results raise an issue, because they yie
thermodynamically stable commensurate state forT*TC-IC
and also because they predict a finite temperature LP: f
the standpoint of critical phenomena, the C phase is in
same universality class as the ferromagneticXY model; in
the vicinity of the LP one may analytically compute the ba
~unrenormalized! stiffness constant and one finds that it
very small. In this regime, the Kosterlitz-Thouless~KT!
renormalization-group equations19,20 show that vortex-
antivortex pairs are unbound, implying that the C phase
thermodynamically unstable near the C-IC transition; so
renormalization group predicts a reentrant P phase and th
zero-temperature Lifshitz point, at variance with the Mon
Carlo results. Another indication that the LP may occur
T50 comes from the study of 2D modulatedO(N) spin
systems exhibiting a C-IC transition; renormalization-gro
11 421 © 1998 The American Physical Society
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11 422 57M. GABAY, M. BENAKLI, AND W. M. SASLOW
analysis predicts21 that the LP is atT50 wheneverN.2;
numerical studies show that this also holds ifN51 ~axial
next-nearest-neighbor Ising model!.22 Interpolating to the
caseN52 one might have then expected a zero-tempera
LP for 2D XY systems: using a phase-only Hamiltonia
Garel and Doniach indeed reached this conclusion for
so-calledJ12J2 model.23

The present paper reconciles thesea priori conflicting re-
sults: In Sec. II, we present a MC algorithm allowing us
study incommensurate and spatially inhomogeneous stat24

it combines FBC and specific boundary condition histogra
designed for FBC. This approach allows us to analyze
data near the C-IC transition. Section III presents a MC st
of the row model for 0.5,h,hL , for variousT andh near
the C-IC transition. Special attention is devoted to the
phase forT>TC-IC . Our results suggest that the equilibriu
structure is spatially inhomogeneous: Fig. 6 shows a stri
structure, corresponding to the coexistence of domains
opposite chirality separated by walls of the collinear pha
Such a state resembles the smectic-A phase of liquid crys
In this regime, we find thatgxx—the spin rigidity in the
horizontal (h-bond! direction—is zero, whereasgyy—the
spin rigidity in the vertical direction—is strictly positive
~Fig. 7!. Stripes exist because the coupling between ph
and chiral variables is relevant at allT when h.0.5. This
coupling helps explain why domains of the chiral phase
present forT>TC-IC . Moreover, fluctuations between a sp
tially homogeneous state~the incommensurate phase! and a
spatially inhomogeneous spiral domain state~the striped
phase! do not allow simple scaling analysis of critical qua
tities atTC-IC ~Fig. 8!.

These observations allow us to conclude that, in the ph
diagram, the C and IC phases are separated by a smect
phase, and only come in contact atT50 andh50.5, so that
the LP is indeed atT50 for the 2DXY model. On the other
hand, there is no re-entrant P phase between the C an
regions.

Our numerical findings are further supported by analy
calculations, presented in Sec. IV. These use the new
consistent harmonic approximation~NSCHA! method, a re-
cently developed variational approach for frustrat
systems.10

II. MONTE CARLO

A. Fluctuating boundary conditions

For incommensurate phases, the choice of perio
boundary conditions~PBC! in a MC simulation is not suit-
able, since these break the magnetic symmetry of the sys
Instead, self-consistent boundary conditions, using FB
have been proposed to overcome the problem.16,25 The main
feature of FBC is to add new dynamical variablesDa (a
51,2, . . . ,D, whereD is the dimensionality of the lattice!
corresponding to a shift at the boundaries. In equilibrium
new ‘‘boundary variables’’Da will fluctuate around their
most probable valueDa

0 . For anL3L system ofXY spins on
a lattice, the FBC method amounts to imposing the follow
constraint on the phasesu(rW) of the spins, at the boundary

u~rW1nLuW x1mLuW y!5u~rW !1nLDx1mLDy . ~1!
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Using FBC allows us to preserve translational invarian
performing a change of variables

u~rW !5w~rW !1DW •rW, ~2!

the constraint onw becomes

w~rW1nLuW x1mLuW y!5w~rW !. ~3!

In terms of the new variablew the partition function of the
L3L system with FBC is

ZFBC5L2E
2p/L

p/L

d2DS E •••E
2p

p

3)
i

dw ie
2b[ 2 ~1/2!( i , j Ji j cos„w i2w j 2DW •~rW i2rW j !…] D .

~4!

ZFBC can be factorized as a product of a set of partiti
functions,Z(DW ), each one corresponding to a fixed shiftDW at
the boundaries:

ZFBC5L2E
2p/L

p/L

Z~DW !d2D5L2E
2p/L

p/L

d2De2bL2f ~DW !, ~5!

wheref (DW ) is the 2p/L periodic free-energy density assoc
ated with the shift DW at the boundary: f (DW )5

2Tln„Z(DW )…/L2.
For a system with a helical phase at low temperatu

f (DW ) displays a minimum forDW 5DW 0 and for a spiral phase
the pitch QW 0, is the 2p/L determination ofDW 0 such that
w(rW).0 in equilibrium@see Eq.~2!#. Since the main contri-
bution to the integral@Eq. ~5!# comes fromDW 5DW 0, the com-
ponentsgxx,gyy of the spin rigidity20 are given by

gxx5r
d2f ~DW !

dDx
2 UDW 0, gyy5r

d2f ~DW !

dDy
2 U

DW 0

, ~6!

wherer is a ~lattice-dependent! geometrical factor.
At low T and far from the C-IC boundary~where gxx

50), bgxx@1 and bgyy@1. Using Eqs.~5! and ~6! then
gives16,24

gxx5
r

L2xDx

, gyy5
r

L2xDy

, ~7!

where xDx
5b^(Dx2Dx

0)2& @respectively, xDy
5b^(Dy

2Dy
0)2&# is the susceptibility forDx ~respectively,Dy).

B. Boundary condition histograms: D-histograms

In the previous section we showed that the partition fu
tion with FBC is a sum over partition functionsZ(DW ). A
practical way to perform this sum is to count the number
configurations obtained for each of the allowed values ofDx
andDy . SinceDx andDy are defined modulo 2p/L , this can
be easily done by histograms inDx andDy , which we callD
histograms.
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57 11 423SMECTICLIKE PHASE FOR MODULATEDXY SPINS IN . . .
Denoting byP(DW )[P(Dx ,Dy) the probability distribu-
tion for DW , the D-histogram free-energy density is obtain
from

f ~DW !52
1

bL2
ln„P~DW !…1const. ~8!

If f (DW ) has a deep minimum forDW 5DW 0, the zeroes of the
first derivative of the free energy yield the value ofDW 0. The
second derivatives of the free energy computed forDW 5DW 0

give the components of the spin-wave stiffnessg, by Eq.~6!.
But even if P(DW ) is not sharply peaked~see below!, the
histograms allow us to compute any thermodynamic obs
able as an average overP(DW ).

This algorithm is especially useful when~i! one ap-
proaches a critical C-IC transition:DW undergoes large fluc
tuations and Eq.~7! breaks down; histograms give muc
more accurate results and are well suited to scaling anal
~ii ! equilibrium configurations correspond to inhomogeneo
structures: in that case, histograms yield multipeak str
tures. For instance, if domains of the C and IC phases coe
nearTC-IC the free energy will display minima atDW 50W and
at 6DW 0.

III. NUMERICAL ANALYSIS OF THE ROW MODEL
NEAR THE C-IC TRANSITION

Since the incommensurability is only present in thex (h
bonds! direction we used hybrid boundary condition
PBC in they direction and FBC in thex direction. A stan-
dard Metropolis algorithm was applied to the spin angles
to the boundary shift in thex direction. Lattices sizes range
from 182 to 482 and the number of MCS/spin was of ord
1052106. Typically the first 104 steps were discarded fo
equilibration. In contrast to our previous study of th
system,16 D histograms were included here. These were u
to determineQ0 ~the x component of the wave vector! as
well as the spin-wave stiffnesses alongx andy. In addition,
we monitored~i! the staggered chiralitiesS5^s& with

s5
1

NP
(
$P%

(^kl&PPskl

(^kl&PPskl~T50!
, ~9!

where P refers to plaquettes in the same chiral state aT
50 and

skl5
1

2p
~uk2u l ! ~10!

@for Eq. ~10!, the angular determination of the term in pare
thesis is taken in the interval@2p,1p# ~see Ref. 10!#. ~ii !
The chiral susceptibility

xs5
1

T
^s22S2&, ~11!

~iii ! The Binder order parameter for chiralities

gs5
1

2F32S ^s4&

^s2& D G . ~12!
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A. Study of the C-IC line at fixed h

In the phase diagram of Fig. 1,AL is a line separating the
spiral incommensurate phase from the commensurate lay
antiferromagnetic C phase. It is characterized by a div
gence of the chiral susceptibility and by thecontinuous van-
ishing of the x component of the spin stiffness~Fig. 2!. The
y component of the spin stiffness, on the other hand, d
not show any nonanalyticity nearAL. In this part, we keep
the valueh fixed and we vary the temperature. Typically w
chose h50.575 and h50.55. Starting from the low-
temperature phase, we observe thatgxx→0 and that simul-

FIG. 1. MC phase diagram for the row model, in the (h,T)
plane.

FIG. 2. Monte Carlo stiffnesses in thex andy ~inset! directions
versusT for the row model whenh50.575. Triangles represen
MC data, solid lines are the NSCHA predictions.
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11 424 57M. GABAY, M. BENAKLI, AND W. M. SASLOW
taneously the chiral susceptibility diverges as one approa
AL, Fig. 2. This behavior can be understood as follows: T
Coulomb-gas analysis by Eikmanset al. of the generalized
Villain model,26 when generalized to the row model, gives27

gxx}
1

xs
. ~13!

Chiral variables and spin-angle variables are coupled in
IC phase; thusgxx can go to zero in a continuous fashio
rather than jump, on crossingAL. Similarly from the same
Coulomb-gas analysis, one expects thatgyy is well behaved
acrossAL ~Fig. 2!. Figure 3 shows thatQ0 also goes to zero
~mod 2p) at TC-IC . At first sight, the system appears to sim
ply evolve from a homogeneous IC phase into a homo
neous C phase asT→TC-IC from below. If this picture were
correct, here is what histograms would yield: at lowT, P(DW )
would display two maxima at6DW 0 ~corresponding to the
two possible handedness of the spiral in the IC state!. As T
→TC-IC , the two peaks would merge into a single peak, a
for T.TC-IC , P(DW ) would be a Gaussian, centered atDx
50. By Eqs. ~6! and ~8!, we would expectgxx.0 for T
.TC-IC .

By contrast, here is what our simulation yields: at lowT

we do get the two maxima at6DW 0 and asT→TC-IC they
move closer to each other. However, they do not merge:
peaks at6DW 0 remain sharp and in addition a third pea
develops atDx50, such thatD histograms show a three
peak structure forT.TC-IC . There is a central peak atDx
50 and two side peaks centered atT dependent, finite value
6D0. For sizes 482 and for simulations using large enoug
MCS/spin the relative weight of the lateral peaks compa
to the central peak is roughly one. Furthermore, this struc

FIG. 3. Q0(T) versusT for h50.55. Filled circles represen
MC data and the solid line is the NSCHA prediction.
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of the D histogram is observed in a wide range of tempe
tures aboveTC-IC . For instance we show the histogram f
T*TC-IC ~Fig. 4!. The structure ofP(DW ) could have two
origins: it could be associated with a first-order transitio
and the fact that the multipeak structure survives forT
.TC-IC could be linked to hysteresis effects, or it could
due to the occurrence of a nonhomogeneous thermodyna
phase.

The first-order scenario is at variance with the observ
temperature dependence ofgxx in two respects:~i! For T
→TC-IC from below, bothgxx and xs

21 go continuouslyto
zero, as indicated by Eq.~13!. ~ii ! For T.TC-IC up to the
paramagnetic boundary, we find thatgxx50 ~see Fig. 2!; if
we tried to explain this property in the framework of a firs
order transition, this would mean that the system is in
spinodal state over a wide range of temperature, which
rather unlikely.

Instead, we suggest that these data can be consist
interpreted if one considers the possibility of a thermod
namically inhomogeneous phase forT.TC-IC . We men-
tioned in the introduction that systems with competing int
actions may lead to inhomogeneous ground states consi
of ordered domains separated by domain walls.28–32 Our
simulations reveal that the commensurate phase of the
model may well be such an example of stripe phases.

From the shape ofP(Qx) we see that a measure of~the
equilibrium value of! Qx at any point of the lattice gives 0
with probability 1

2, 1Q0 with probability 1
4 and 2Q0 with

probability 1
4 @1Q0 and2Q0 are the secondary maxima o

P(Qx), see Fig. 4#. The connection between the equilibriu
value ofQx and the plaquette chirality@Eq. ~10!# implies that
the chirality of any site of a given sublattice will be positiv
negative, and zero with probability14,

1
4, and 1

2, respectively:
indeed, if we had a homogeneous phase characterize

FIG. 4. P(Qx) versusQx for h50.55 andT50.19J.
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57 11 425SMECTICLIKE PHASE FOR MODULATEDXY SPINS IN . . .
Qx51Q0 over the entire system, the chiralities of th
plaquettes of a given sublattice—denoted byA—would all
have the same sign, say positive; similarly, if we hadQx5
2Q0 over the entire system, the chirality ofA would be
negative for all the plaquettes; lastly, ifQx50 over the entire
system, the chirality ofA would be zero for all the
plaquettes. Since the values ofQx are distributed according
to P(Qx), we deduce the above-mentioned distribution
the chiralities of any site ofA.

Figure 5 precisely confirms this analysis. It is a plot~as a
function ofT) of the staggered chirality@Eq. ~10!# and of the
absolute value of the chiralities@where we replace
(^kl&PPskl by Abs((^kl&PPskl) in Eq. ~9!#, for h50.575.
These two quantities give access to the number of plaque
with positive, negative, and zero chirality one each sublat
~see Ref. 10!. We see that, forT50.4J, well above the C-IC
transition temperature, in what should be the commensu
phase, i.e., a state with zero chirality, 25% of the plaque
have a positive chirality, 25% of the plaquettes have a ne
tive chirality, and 50% of the plaquettes have no chirali
With these weights, averagingQx over the system yields
Qx50.

The shape ofP(Qx) also signals the breakdown of th
fluctuation-dissipation theorem. The correct procedure
quired to extract the value ofgxx is to averaged2f (DW )/dDx

2

over the distributionP(DW ). If the dominant contribution to
P(DW ) comes from a single value,DW 5DW 0, this yields Eq.~6!,
which gives the most probable value ofgxx. If P(DW ) has a
multipeak structure, as is the case here, Eq.~6! is not valid:
choosing forDW 0 the value ofDW corresponding toQx51Q0,
or to Qx52Q0, or to Qx50 which is the mean value o

FIG. 5. MC determination of the plaquette chirality(^kl&PPskl

~filled diamonds! and of the absolute value of the plaquette chiral
Abs((^kl&PPskl) ~open circles! versusT for h50.575.
r

es
e

te
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-

P(DW ), would give different values forgxx but such that
gxx.0 . By contrast, the average ofd2f (DW )/dDx

2 over P(DW )
leads togxx50 ~see Fig. 2!. So averages and most probab
values do not coincide.

The picture that emerges from the previous results is
of an inhomogeneous structure forT.TC-IC : domains of the
spiral phase with pitch1Q0 coexist with domains of the
spiral phase with pitch2Q0, and the two types are separate
by domain walls of the collinear phase. It is known that t
transition from a homogeneous phase~the IC state! to a do-
main structure can be continuous,33 which is consistent with
our results. The spatial configuration of the domains is vi
alized in Fig. 6, which is a snapshot of the chiralities forh
50.575 andT50.4J. The morphology of the state is that o
a striped phase. Note that the normal to the direction of
stripes correlates withx ~the direction of theh bonds!. We
dub this structure a smecticlike phase: it is solidlike alongy
(gyy.0) but has no rigidity alongx (gxx50); its effective
free energy in the hydrodynamic limit is similar to that of
smectic system~Ref. 34!.

B. Study of the C-IC line at fixed T

To map out the domain of stability of the striped phase
the (h,T) plane, we keepT fixed and we varyh. Figure 7
showsgxx versush for T50.2J andT50.4J; in the region
delimited by linesAC (h50.5) andAL we getgxx50 and
one expects a striped phase there. In other wordsAL sepa-
rates an incommensurate phase from an inhomogene
noncollinear state.

We have also sought for an analytical evidence of
inhomogeneous state in regionALC of the phase diagram

FIG. 6. Snapshot of chiralities on each plaquette of a 362 trian-
gular lattice. h50.575 and T50.4J. Filled circles represent
plaquettes with the correct sign, i.e., in the same chiral state a
T50. Open circles correspond to plaquettes with the wrong s
that is such that the chirality has changed compared toT50.
Plaquettes with zero chirality~no symbol! are obtained in-between
the two. One clearly sees a stripe structure of filled circles and o
circles separated by domain walls of zero chirality.
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Fig. 1. The next section presents results using NSCHA
variational technique appropriate for frustrated systems
one seeks a uniform collinear solution in regionALC, one
finds thatgxx,0; this behavior stems from the fact that th
system is thermodynamically unstable with respect to
formation of domains having eitherQx51Q0 or Qx5
2Q0, the two types connecting via domain walls of the c
linear (Qx50) phase. The breakdown of linear response a
the properties ofgxx are hallmarks of the physics of dipola
magnets and of spin glasses.28–30

IV. NSCHA FOR THE COMMENSURATE
AND INCOMMENSURATE REGIMES

In a previous paper we introduced the new self-consis
harmonic approximation~NSCHA!,10 a variational technique
appropriate for frustrated systems. The main feature of
approach is that it preserves the coupling between the c
ground states of the system, and that it takes lo
wavelength chiral fluctuations into account. Chiral and ph
~spin-angle! variables remain coupled at all temperaturesT.
We now apply this method to the row model.

A. The NSCHA variational method

The Hamiltonian for XY spins characterized by spi
angles$u i%, reads

H52(̂
i j &

Ji j cos~u i2u j !, ~14!

where theJi j are nearest-neighbor interactions. For frustra
systems the sign of the product of theJi j over the links of a
plaquetteP is negative and this may lead to noncolline
configurations in thermal equilibrium. The variation
method seeks to approximateH @Eq. ~14!# by a harmonic
HamiltonianH0. We rewrite theu i in Eq. ~14! as

FIG. 7. MC data forgxx, versush. The lattice size is 482. gxx is
obtained from the histogram inD modulo 2p/L. The region where
gxx50 corresponds to the domain of stability of the stripe phaseT
is fixed: T50.4J ~insetT50.2J).
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u i5u i
01w i ~15!

with u i
05^u i&H0

and

H05
1

2(̂i j &
J̃ i j ~w i2w j !

2. ~16!

Hamiltonian Eq.~14! is then mapped onto the NSCHA e
fective HamiltonianHNSCHA,10

HNSCHA52(̂
i j &

Ji j cos~u i
02u j

0!cos~w i2w j !

2
1

2T(̂
i j &

(̂
kl&

Ji j Jklsin~u i
02u j

0!sin~uk
02u l

0!

3sin~w i2w j !sin~wk2w l !. ~17!

We then average Eq.~17! over H0 @Eq. ~16!# and mini-
mize with respect to the variational parameters10 u i

0 and J̃ i j

to obtain the NSCHA variational equations.
In this ensemble we can compute the spin-wave stiffn

matrix. Its eigenvalues aregNSCHA
xx andgNSCHA

yy :

gNSCHA
xx 5

1

N(̂
i j &

Ji j cos~u i
02u j

0!~uW i j •uW x!
2e2yi j /2

2
1

N

1

T(̂
i j &

(̂
kl&

Ji j Jkl~uW i j •uW x!~uW kl•uW x!

3e2~yi j 1ykl1yik1yjl 2yil 2yjk!/2

3@cos~u i
02u j

0!cos~uk
02u l

0!

1sin~u i
02u j

0!sin~uk
02u l

0!#, ~18!

whereuW x is the unit vector in the horizontal direction,uW i j is
the vector connecting nearest-neighbor sitesi and j , and
yi j 5^(w i2w j )

2&H0
. ForgNSCHA

yy we replaceuW x by uW y the unit
vector in the vertical direction.

B. NSCHA for the row model

Applying NSCHA to the row model gives two types o
solutions.

~a! Commensurate solutions: They are characterized b

u i
02u j

05QW 0
•uW i j ~mod2p! ~19!

with

Qx
050; Qy

05
2p

A3
~mod2p! ~20!

and by nearest-neighbor couplingsJ̃ i j . There are only two
independent interactions namelyJ̃ i j 5h̃ J̃ for i and j along
the horizontal direction, andJ̃ i j 5 J̃ otherwise. These satisfy
the following equations:

J̃5Je2~T/p J̃ !tan21[ ~112h̃ !21/2] , ~21!

h̃ J̃52hJe2~T/ph̃ J̃ !tan21[ h̃~112h̃ !21/2] . ~22!



d

p

lly

he

n-

on

A
,

a

hi
t

t
l-
te

c

c
e

ou
fo
.

ec
th

nsu-

the

in

ied
di-
s

ase
pa-
ar
uid
the

riped
Ana-

t to
ime
per-

ace

98
m

57 11 427SMECTICLIKE PHASE FOR MODULATEDXY SPINS IN . . .
Equations~21! and ~22! can be self-consistently satisfie
without restriction forh<1/2. However, ifh.1/2 Eqs.~21!
and~22! have no solution whenT<(J/h)ln(2h); this was to
be expected, since the stable state of the system is a s
structure at lowT, for h.1/2.

~b! Incommensurate solutions: They correspond to

u i
02u j

05QW 0
•uW i j ~mod2p! ~23!

with

Qx
05Q0~T!; Qy

05
2p

A3
~mod2p!. ~24!

The variational equations can only be solved numerica
Just as for the FFTXY model, theJ̃ i j are no longer short-
range interactions~for largeR, J̃ i j ;1/urW i2rW j u6 see Ref. 10!
and the sign ofJ̃ i j varies with the relative orientation ofi
and j . Knowledge of theJ̃ i j allows us10 to compute the free
energy,Q0(T), gNSCHA

xx , gNSCHA
yy @Eq. ~18!#, and the stag-

gered chiralitysNSCHA as a function ofT for all h.
For all h,0.5 the lowest free energy is obtained for t

commensurate solution and up to the C-P boundary~line CD
in Fig. 1! gNSCHA

xx .0.
For 0.5,h,hL , the IC solution has the lowest free e

ergy at lowT (T,TC-IC). As seen in Figs. 2 and 3, NSCHA
and MC results agree closely except in the vicinity ofTC-IC ,
where defects are expected to play an important role~see our
previous paper, Ref. 10!. In that regimegNSCHA

xx .0. For T
.TC-IC the variational equations favor a commensurate c
figuration, but we find thatgNSCHA

xx ,0: the solution is ther-
modynamically unstable. By this we mean that NSCH
yields a C solution in the regionALC of the phase diagram
but that fluctuations around the solution~given by gNSCHA

xx )
generate an instability.

We summarize our results as follows.
~1! In the h,T plane, the transition between the spir

phase and the C phase is only seen at pointA ~that is, at zero
temperature!. Consequently, the Lifshitz point is atT50 for
the 2DXY model.

~2! The existence of the striped phase suggests that c
variables and phase variables remain strongly coupled a
T. This may explain why, despite the fact thatgxx50 in the
striped phase, vortices do not unbind~leading to a reentran
paramagnetic phase!. The relevance of this coupling had a
ready been emphasized in our study of the fully frustra
case (h51).

~3! The existence of the inhomogeneous state affects s
ing analyses near the IC-stripe phase boundary~line AL):
Fig. 8 shows the Binder order parameter Eq.~12! as a func-
tion of T for h50.575. We do not observe a clear interse
tion at the critical temperature. A similar feature had be
pointed out by Olsson in his study of fully frustratedXY
spins on a 2D square lattice~Ref. 12!.

~4! Because the striped phase is spatially inhomogene
it is not easy to define appropriate boundary conditions
the MC simulation. Uniform twists will produce frustration

The present work has revealed the existence of a sm
clike phase. This raises the question of the nature of
transition between the striped phase and the P phase~line
iral

.

-

l

ral
all

d

al-

-
n

s,
r

ti-
e

LC) and also between the striped phase and the comme
rate phase~line AC); for instance, if the transition lineLC is
not KT like, one also needs to understand the nature of
critical regime alongCD: for h!0.5 one recovers a KT
transition so there has to be some crossover. Work is
progress to clarify that issue.

V. CONCLUSION

Using detailed Monte Carlo simulations we have stud
the commensurate-incommensurate transition of the two
mensionalXY model on a triangular lattice. Our study show
that this transition only occurs atT50. At finite temperature,
the incommensurate structure evolves into a striped ph
made up of domains of left- and right-handed spirals se
rated by walls. The domain walls consist of the colline
structure. This state resembles the smectic-A phase of liq
crystals. The nature of the phase transitions between
striped phase and the ordered phases or between the st
phase and the paramagnetic phase is an open problem.
lytical calculations using NSCHA~a variational approach
well suited for noncollinear structures! support the MC re-
sults. The connection between frustratedXY models and the
vortex state of layered type-II superconductors sugges
view the smectic phase as a vortex liquid state. This reg
would appear to be an intermediate phase between the su
conducting and the metallic states, critical in one subsp
and quasiordered in the other.
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FIG. 8. Binder order parametergs versusT for various sizes
@Eq. ~12!#.
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