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The row model for frustratecKY spins on a triangular lattice in two dimensiofD) is used to study
incommensuratélC) spiral and commensurat&) antiferromagnetic phases, in the regime where a C-IC
transition occurs. Using fluctuating boundary conditions and specific histogram techniques, a detailed Monte
Carlo (MC) study reveals more structure in the phase diagram than found in previous MC simulations of the
full parameter space. On the C side, equilibrium configurations consist of alternating stripes of spiral phases of
opposite chirality separated by walls of the C phase. For this same parameter regime, thermodynamic quantities
are computed analytically using the NSCHA, a generalization of the self-consistent harmonic approximation
appropriate for chiral systems. On the commensurate side of the C-IC boundary, NSCHA predicts an instability
of the C phase. This suggests that the state is spatially inhomogeneous, consistent with the present MC result:
it resembles the smectic-A phase of liquid crystals, and its existence implies that the Lifshitz poirit is at
=0 for modulatedXY spins in 2D. The connection between frustraked systems and the vortex state of
strong type-1l superconductors suggests that the smectic phase may correspond to a vortex liquid phase of
superconducting layer§S0163-18268)09217-7

. INTRODUCTION In order to study this systefhand other IC structures,a
Monte Carlo(MC) algorithm with “self-determinedfluctu-
Frustration is an ubiquitous phenomenon in condensedating) boundary conditions’(FBC) was developed. The re-
matter physics. It occurs whenever several ground states ofsulting » versusT phase diagram indicated a continuous
system compete at different length scales. Examples of sudB-IC transition line starting ay=0.5 forT=0 and ending at
a situation are noninteracting electrons in a tight-binding poa Lifshitz point® (LP) for 7 =0.62 andT, =0.42J. Besides,
tential subjected to a uniform magnetic fi¢laietworks of increasingT at fixed 7 (0.5< < #,) produced the follow-
superconducting wiréor of Josephson junctiohén a field  ing sequence of phases: an IC state at Tgwhen, across the
and spins with competing interactiohdn particular, frus-  C-IC transition, affcc, one moves into the C phase; lastly
trated magnetic systems have been used in the quantum casge reaches the paramagnefi®) boundary atTp. In this
as realizations of the spin-liquid stat@dvocated in the con- process one of the eigenvalues of the spin-wave stiffness
text of highT. superconductojs In the classical cas&Y  matrix decreases uniformly 8 varies from zero tolc ¢,
[O(2)] spins model the vortex state of layered, strong type-livanishes aff- ¢, increases again in the C phase and be-
superconductord’ Frustration manifests itself by the exis- comes zero abov&p.
tence of chiral variables. The effect of this additionZh) These MC results raise an issue, because they yield a
symmetry on phase transitions is still an open debate. Fahermodynamically stable commensurate stateTarT. ¢
fully frustrated models there remains to establish whether thend also because they predict a finite temperature LP: from
Z, and theO(2) symmetries are broken at different tempera-the standpoint of critical phenomena, the C phase is in the
tures or at the same temperatfif& In the context of two-  same universality class as the ferromagn&t model; in
dimensional2D) helimagnets this issue comes up when onethe vicinity of the LP one may analytically compute the bare
studies the  commensurate-incommensurat¢C-IC)  (unrenormalizey stiffness constant and one finds that it is
transition? on the C side, the state is nonchiral whereas orvery small. In this regime, the Kosterlitz-Thouleg&T)
the IC side chirality is coupled to théY variables. Insight renormalization-group equatioli€® show that vortex-
into this particular problem can be gained by studying theantivortex pairs are unbound, implying that the C phase is
phase diagram of the row model, an anisotropic frustratethermodynamically unstable near the C-IC transition; so the
2D XY model on a triangular lattice: it is a generalization of renormalization group predicts a reentrant P phase and thus a
the fully frustrated XY model on the triangular lattice zero-temperature Lifshitz point, at variance with the Monte
(FFTXY) where all the bonds strengtiisare multiplied byz Carlo results. Another indication that the LP may occur at
in the horizontal directioli~° (the FFTXY model corre- T=0 comes from the study of 2D modulat€(N) spin
sponds top=1). systems exhibiting a C-IC transition; renormalization-group
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analysis predicfé that the LP is aff=0 wheneveN>2;  Using FBC allows us to preserve translational invariance:
numerical studies show that this also holdNit=1 (axial  performing a change of variables

next-nearest-neighbor Ising moyé Interpolating to the _ o

caseN =2 one might have then expected a zero-temperature o(r)y=¢(r)+A-r, (2

LP for 2D XY systems: using a phase-only Hamiltonian, )

Garel and Doniach indeed reached this conclusion for thd1€ constraint orp becomes

so-calledJ; —J, model?® R . . .

The present paper reconciles thespriori conflicting re- e(r+nLuctmlu)=e(r). ©)
sults: In Sec. Il, we present a MC algorithm allowing US 10| terms of the new variable the partition function of the
study incommensurate and spatially inhomogeneous §t”ate5'1_>< L system with FBC is
it combines FBC and specific boundary condition histograms
designed for FBC. This approach allows us to analyze the all w
data near the C-IC transition. Section Ill presents a MC study Zggc= sz dzA( f e f
of the row model for 0.5 <7, , for variousT and  near it o
the C-IC transition. Special attention is devoted to the C Lo
phase forT=T¢,c. Our results suggest that the equilibrium X[ dgie Pl (1/2>2i’ijii°°5(‘p‘¢iA'<riri))])-
structure is spatially inhomogeneous: Fig. 6 shows a striped !
structure, corresponding to the coexistence of domains of (4)
opposite chirality separated by walls of the collinear phase. . "
Such a state resembles the smectic-A phase of liquid crystaléFsc €an be factorized as a product of a set of partition
In this regime, we find that*—the spin rigidity in the functions,Z(_A), each one corresponding to a fixed shifat
horizontal (7-bond direction—is zero, whereag?Y—the  the boundaries:
spin rigidity in the vertical direction—is strictly positive L L )
(Fig. 7).. Stnpe; exus? because the coupling between 'phase Zesc= sz Z(&)dZA:LZJ der—ﬁszm)’ (5)
and chiral variables is relevant at dll when »>0.5. This /L — L
coupling helps explain why domains of the chiral phase are .
present folT=T.,c. Moreover, fluctuations between a spa- wheref(A) is the 2n/L periodic free-energy density associ-
tially homogeneous staghe incommensurate phaseand a  ated with the shift A at the boundary: f(A)=
spatially inhomogeneous spiral domain stdtee striped _Tin(z(A))/L2.

?thase S‘I(') not('zi!lovg)smple scaling analysis of critical quan-  For a system with a helical phase at low temperature,
ities atTc,c (Fig. 8. e\ o v_ R0 .

These observations allow us to conclude that, in the phasf(A) Qsplgys .a minimum fOA_A_ an_d for aﬁsplral phase,
diagram, the C and IC phases are separated by a smecticlika® Pitch Qo is the 2m/L determination ofA, such that
phase, and only come in contactlat 0 and5=0.5, so that #(r)=0 in equilibrium[see Eq(2)]. Since the main contri-
the LP is indeed aT =0 for the 2DXY model. On the other bution to the integralEq. (5)] comes fromA = A, the com-
hand, there is no re-entrant P phase between the C and Ibnentsy*, y¥Y of the spin rigidity’® are given by
regions.

— T

Y )

Our numerical findings are further supported by analytic 2f(A) 52(A)
calculations, presented in Sec. IV. These use the new self- Y=p SAZ f, ¥=p SAZ ; (6)
consistent harmonic approximatigNSCHA) method, a re- x y 140

cently developed variational approach for frustratedwherep is a (lattice-dependeitgeometrical factor.

0
systems. At low T and far from the C-IC boundargwhere v**
=0), By”>1 and 8y¥Y>1. Using Egs.(5) and (6) then
Il. MONTE CARLO gives %2
A. Fluctuating boundary conditions
. . . . XX __ P yy_— P
For incommensurate phases, the choice of periodic YES s YR @)
boundary condition§PBC) in a MC simulation is not suit- L Xa, LXa,
able, since these break the magnetic symmetry of the system 0 .
Instead, self-consistent bouncgi]ary co);lditions)j using )I/:BC\,N‘nere XAx:B<(AX_Ax)2> [respectively, XAy:'B«Ay
have been proposed to overcome the probl&fiThe main  —AJ)?)]is the susceptibility for, (respectivelyA,).
feature of FBC is to add new dynamical variableg («
=1,2,...D, whereD is the dimensionality of the lattige B. Boundary condition histograms: A-histograms

corresponding to a shift at the boundaries. In equilibrium the
new “boundary variables”A, will fluctuate around their
most probable valueg . ForanL X L system ofXY spins on
a lattice, the FBC method amounts to imposing the following

constraint on the phaswf) of the spins, at the boundary:

In the previous section we showed that the partition func-

tion with FBC is a sum over partition functio@(&). A
practical way to perform this sum is to count the number of
configurations obtained for each of the allowed valuea pf
andA, . SinceA, andA, are defined modulo2/L , this can

) R R ) be easily done by histograms &y, andA, , which we callA
o(r+nLu,+mLu)=6(r)+nLA,+mLA, . (1) histograms.
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Denoting byP(E)EP(AX,Ay) the probability distribu-
tion for A, the A-histogram free-energy density is obtained
from

N 1 .
f(A)z—[PIn(P(A))chonst. (8
(P) 1

If f(A) has a deep minimum fok =A°, the zeroes of the
first derivative of the free energy yield the valueit. The

second derivatives of the free energy computedﬁm&o

give the components of the spin-wave stiffnesdy Eq.(6).

But even if P(A) is not sharply peakedsee below, the
histograms allow us to compute any thermodynamic observ-
able as an average ovB(A).

This algorithm is especially useful whefl) one ap-
proaches a critical C-IC transitionk undergoes large fluc- (SMECTIC-LIKE)
tuations and Eq(7) breaks down; histograms give much A
more accurate results and are well suited to scaling analysis,

(i) equilibrium configurations correspond to inhomogeneous (C)
structures: in that case, histograms yield multipeak struc-
tures. For instance, if domains of the C and IC phases coexist %% 02 0.4 06 0.8

nearTcc the free energy will display minima a@=0 and r

at +A°. FIG. 1. MC phase diagram for the row model, in the,T)
plane.

0.60 -

IIl. NUMERICAL ANALYSIS OF THE ROW MODEL ) ]
NEAR THE C-IC TRANSITION A. Study of the C-IC line at fixed n

In the phase diagram of Fig. AL is a line separating the
spiral incommensurate phase from the commensurate layered
antiferromagnetic C phase. It is characterized by a diver-
gence of the chiral susceptibility and by tbentinuous van-
ishing of the x component of the spin stiffnegEig. 2). The
y component of the spin stiffness, on the other hand, does

not show any nonanalyticity ne#L. In this part, we keep

Since the incommensurability is only present in thézn
bondg direction we used hybrid boundary conditions:
PBC in they direction and FBC in the direction. A stan-
dard Metropolis algorithm was applied to the spin angles an
to the boundary shift in thg direction. Lattices sizes ranged
from 18 to 48 and the number of MCS/spin was of order

10°—10°. Typically the first 10 steps were discarded for . .
equilibration. In contrast to our previous study of this the value, fixed and we vary the temperature. Typically we

system'® A histograms were included here. These were use<§hose 77_0'57h5 and 77_8'55' St%gun% frodmhthe . Iov:/-
to determineQ, (the x component of the wave vecjoas emperature phase, we observe that—0 and that simul-
well as the spin-wave stiffnesses alongndy. In addition, 0.20
we monitored(i) the staggered chiralities = (o) with

1 2kl e PO
oo (hePTh ©
Np{F} Z(kyepou(T=0) 0.15

where P refers to plaquettes in the same chiral statel at
=0 and

PO

(M

1 % 0.10
ok=5 (0= 6) (10) 255 I
=
[for Eq. (10), the angular determination of the term in paren- *=

thesis is taken in the interval 7, + 7] (see Ref. 1§). (ii) 0.05
The chiral susceptibility

1
Xo=7(0? =27, (11)
0.00 . 1 . 1 . v Yvv¥ Y v
0.00 0.10 0.20 0.30 0.40
(i) The Binder order parameter for chiralities

FIG. 2. Monte Carlo stiffnesses in tixeandy (inse) directions

4
9 :1 3 (o) (12) versusT for the row model whenp=0.575. Triangles represent
72 (%] | MC data, solid lines are the NSCHA predictions.
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FIG. 3. Qq(T) versusT for »=0.55. Filled circles represent FIG. 4. P(Q,) versusQ, for 7=0.55 andT =0.19.

MC data and the solid line is the NSCHA prediction.

taneously the chiral susceptibility diverges as one approach 0sf the Abhlstogram IS Qbserved ina \a”de rﬁn%e. of temp?ra-
AL, Fig. 2. This behavior can be understood as follows: The- <> & OVeTc.ic. Forinstance we show the histogram for
Coulomb-gas analysis by Eikmaes al. of the generalized = Tcic (Fig. 4. The structure of°(A) could have two

Villain model?® when generalized to the row model, gites origins: it could be associa'ged with a first-order.transition,
and the fact that the multipeak structure survives Tor

1 >Tc,c could be linked to hysteresis effects, or it could be
y e X_ (13 due to the occurrence of a nonhomogeneous thermodynamic
7 phase.

Chiral variables and spin-angle variables are coupled in the The first-order scenario is at variance with the observed
IC phase; thusy** can go to zero in a continuous fashion, temperature dependence gf, in two respects(i) For T
rather than jump, on crossimgL. Similarly from the same —T.,c from below, bothy,, and X;l go continuouslyto
Coulomb-gas analysis, one expects th#ét is well behaved  zero, as indicated by Eq13). (i) For T>Tc,c up to the
acrossAL (Fig. 2). Figure 3 shows tha, also goes to zero paramagnetic boundary, we find that,=0 (see Fig. 2, if
(mod 2r) at T, c. At first sight, the system appears to sim- we tried to explain this property in the framework of a first-
ply evolve from a homogeneous IC phase into a homogeerder transition, this would mean that the system is in a
neous C phase &— T¢ ¢ from below. If this picture were spinodal state over a wide range of temperature, which is
correct, here is what histograms would yield: at [fwP(A)  rather unlikely. _
would display two maxima at=A° (corresponding to the Instead, we suggest that these da_ta_ can be consistently
two possible handedness of the spiral in the IC 3tate T mter'preted. if one considers the possibility of a thermody-
—Tcuc, the two peaks would merge into a single peak, andn""m'c""_IIy mhomogen_eous phase WDT.C"C' We men-

o . tioned in the introduction that systems with competing inter-
for T>Tc c, P(A) would be a Gaussian, centered &t

= o actions may lead to inhomogeneous ground states consisting
;g By Egs.(6) and (8), we would expecty”>0 for T o ordered domains separated by domain wAit€2 Our
c-IC-

. . . i simulations reveal that the commensurate phase of the row
By contrast, here is what ouraS|muIat|on yields: at Iow  ,04el may well be such an example of stripe phases.
we do get the two maxima at A° and asT—Tc,c they From the shape oP(Q,) we see that a measure (he
move closer to each other. However, they do not merge: thequilibrium value of Q, at any point of the lattice gives 0
peaks at=A° remain sharp and in addition a third peak with probability 3, +Q, with probability 7 and —Q, with
develops atA,=0, such thatA histograms show a three- probability ; [ + Qo and — Q, are the secondary maxima of
peak structure folf >Tc,c. There is a central peak at, P(Q,), see Fig. 4 The connection between the equilibrium
=0 and two side peaks centeredlalependent, finite values value ofQ, and the plaquette chiralif\{eq. (10)] implies that
+A,. For sizes 48 and for simulations using large enough the chirality of any site of a given sublattice will be positive,
MCS/spin the relative weight of the lateral peaks comparediegative, and zero with probability 7, and3, respectively:
to the central peak is roughly one. Furthermore, this structurendeed, if we had a homogeneous phase characterized by
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FIG. 6. Snapshot of chiralities on each plaquette of 4t8én-
0.0 s s s ‘ gular lattice. »=0.575 and T=0.4). Filled circles represent

0.0 0.1 0.2 0.3 0.4 0.5 plaquettes with the correct sign, i.e., in the same chiral state as at
T=0. Open circles correspond to plaguettes with the wrong sign,

FIG. 5. MC determination of the plaquette chiraliyy, . poq that is such that the chirality has changed compared 0.

(filled diamonds and of the absolute value of the plaquette chirality Plaguettes with zero chiralittno symbo} are obtained in-between
AbS(Z ) .po) (0pen circles versusT for 7=0.575. the two. One clearly sees a stripe structure of filled circles and open
circles separated by domain walls of zero chirality.

lea: +et(tgeos %\;e; theener;tir;:lats?éseten;,ert:;?e;hiralit:;asldo;Ithe P(&), would give different values fory* but such that
plaqu gV u lce— Aby-wou v**>0 . By contrast, the average 6?1‘(5)/(%)2( over P(A)

have the same sign, say positive; S'm"a_”y’ if we HQg= leads toy,,=0 (see Fig. 2 So averages and most probable
— Qo over the entire system, the chirality éf would be S
values do not coincide.

negative for all the plaquettes; lastly.Qh=0 over the entire The picture that emerges from the previous results is that

s;l/stem, theS.chlraIr;ty O];A would b:. Z.ebro fdor al (;he of an inhomogeneous structure for- T c: domains of the
B e st Soa prase Wi pich Qp coeit wih comains of th
the chirxaiities of any site oA spiral phgse with pitch- Qy, _and the two typ_es are separated
Figure 5 precisely confirrﬁs this analysis. It is a plas a by do_r_naln walls of the collinear phase. It is known that the
function of T) of the staggered chiralityeq (1.0)] and of the transition from a homogeneous phatiee IC statgto a do-
L ' main structure can be continuotiswhich is consistent with
absolute value of the chiralitegwhere we replace our results. The spatial configuration of the domains is visu-

2y epia BY ADS(Z ) cpoia) in EQ. (9)], for #=0575. ou 045y Fig. 6, which is a snapshot of the chiralities pr
These two quantities give access to the number of plaquette:sO 575 andT = 0.4J. The morphology of the state is that of
with positive, negative, and zero chirality one each sublattice, _; N

(see Ref. 10 We see that, fof = 0.4], well above the C-IC % striped phase. Note that the normal to the direction of the

transition temperature, in what should be the commensuratsmlm:}S correlates with (the direction of they bonds. We

phase, i.e., a state with zero chirality, 25% of the plaquette&b this structure a smecticlike phase: it is solidlike algng

L - %yyy> 0) but has no rigidity along (y*=0); its effective
0, L
have a positive chirality, 25% of the plaquettes have anega e energy in the hydrodynamic limit is similar to that of a
tive chirality, and 50% of the plaquettes have no Ch'ra“ty'smectic systenfRef. 34
With these weights, averagin@, over the system yields Y e
Qx=0. _ :
The shape ofP(Q,) also signals the breakdown of the B. Study of the C-IC line at fixed T

fluctuation-dissipation theorem. The correct procedure re- To map out the domain of stability of the striped phase in
quired to extract the value of* is to averages*f(A)/sA2  the (,T) plane, we keef fixed and we varyy. Figure 7

ety R : - showsy,, versusy for T=0.2] and T=0.4J; in the region
over the d|str|but|orP.(A). If theédor;nmar?t cpntr|but|on to delimited by linesAC (7=0.5) andAL we gety,,—0 and
P(A) comes from a single valug,= Ay, this yleld§ Eq(6), one expects a striped phase there. In other wédssepa-
which gives the most probable value ¢f*. If P(A) has a rates an incommensurate phase from an inhomogeneous,
multipeak structure, as is the case here, ®gis not valid:  noncollinear state.
choosing for&o the value ofA corresponding t@,= + Q, We have also sought for an analytical evidence of the
or to Q,=—Qy, or to Q,=0 which is the mean value of inhomogeneous state in regidlL C of the phase diagram
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R = 0=67+¢ (19

Y . with 67=(6;)y, and

g 1
0.30 4 ~
Ho=32 Jij(ei—ep)” (16)
ij
Hamiltonian Eq.(14) is then mapped onto the NSCHA ef-
. oz fective HamiltonianH ygcpa,t°
E i

Hnscha= _<Z> Jjjcog 00— 9?)005(%_ ®j)
ij

> — o= 2 Jydasin( 60— 67)sin( 63— 6f)
1 0k . 0 060 2T<Ij> (kl)
X sin( @i — @;)sin(ex— @) (17)
009 20 0.30 TR ¥ Y- We then average Eq17) over H, [Eq. (16)] and mini-

mize with respect to the variational parametém andJ;;

FIG. 7. MC data fory®, versusy. The lattice size is 48 y*is ~ t0 obtain the NSCHA variational equations. _
obtained from the histogram it modulo 2x/L. The region where In this ensemble we can compute the spin-wave stiffness
¥*=0 corresponds to the domain of stability of the stripe ph@ise. matrix. Its eigenvalues arg\scua and Yscua:
is fixed: T=0.4J (insetT=0.27).

XX 1 0 O\ v ot —Vii
Fig. 1. The next section presents results using NSCHA, a VNSCHA:N% Jijco8 67— 67) (U - u) %€ i'?
variational technique appropriate for frustrated systems: if
one seeks a uniform collinear solution in regidh.C, one _ EEE S 3 (G- ) (G- Gy)
finds thaty*<0; this behavior stems from the fact that the N TE ) Tk kX
system is thermodynamically unstable with respect to the

. . . . = (Yij Ykt YiktYj i Y2
formation of domains having eithe®,=+Q, or Q,= XTIk

—Qo, the two types connecting via domain walls of the col- x[cog 82— 6%)cog °— 6°
linear (Q,=0) phase. The breakdown of linear response and [cos 6~ 67)cos 6= 61)
the properties ofy** are hallmarks of the physics of dipolar +sin( 60— 67)sin( 63— D)1, (18)

magnets and of spin glass&s ) )
whereu, is the unit vector in the horizontal direction;; is
IV. NSCHA FOR THE COMMENSURATE the vector connecting nearest-neighbor siteand j, and

AND INCOMMENSURATE REGIMES Yii = (@i~ 1) ®m,- For e We replacal, by uy the unit

. . . \{ector in the vertical direction.
In a previous paper we introduced the new self-consisten

harmonic approximatiofNSCHA),'° a variational technique
appropriate for frustrated systems. The main feature of this
approach is that it preserves the coupling between the chiral Applying NSCHA to the row model gives two types of
ground states of the system, and that it takes longsolutions.

wavelength chiral fluctuations into account. Chiral and phase (a) Commensurate solutions: They are characterized by
(spin-angle variables remain coupled at all temperatufes

B. NSCHA for the row model

We now apply this method to the row model. 00— 69=Q° u;; (mod2m) (19
A. The NSCHA variational method with
The Hamiltonian for XY spins characterized by spin 0 0 2m
angles{ 6}, reads Qx=0; Qy:ﬁ (mod2m) (20)
H= —E Ji.cog 6,— 6) (14) and by nearest-neighbor couplin@g . There are only two
I I ’ ~ ~—~
(i) J : independent interactions namely; = »J for i andj along

where theJ;; are nearest-neighbor interactions. For frustratedhe horizontal direction, and;; = J otherwise. These satisfy
systems the sign of the product of thg over the links of a the following equations:

plaguetteP is negative and this may lead to noncollinear
configurations in thermal equilibrium. The variational
method seeks to approximake [Eq. (14)] by a harmonic e — e
HamiltonianH,. We rewrite thed; in Eq. (14) as 73 =— ple (Tmndan "[n(1+2y "4 (22)

'j:Je—(T/wﬁ)tan‘l[(uz?;)‘l’z], (21)
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Equations(21) and (22) can be self-consistently satisfied
without restriction forp<1/2. However, ifyp>1/2 Eqgs.(21)
and(22) have no solution whef< (J/ 7)In(27); this was to '
be expected, since the stable state of the system is a spiral N
structure at lowT, for n>1/2. 0.8 \i\
(b) Incommensurate solutions: They correspond to ’

00— 6"=Q° u;;  (mod2m) (23)
with

0_ . 02T o
Q=Qu(M: Qf=" (modzm). (24)
The variational equations can only be solved numerically.
Just as for the FEXY model, thejij are no longer short-
range interactionéfor largeR, J;;~1/r;—r;|° see Ref. 1p
and the sign oﬁij varies with the relative orientation of
andj. Knowledge of theJ;; allows us®to compute the free

energy,Qo(T), ¥NscHa: YXscha [EQ. (18)], and the stag-

gered chiralityoyscha @s a function ofT for all . 04 N
For all <<0.5 the lowest free energy is obtained for the "0.27 0.32

commensurate solution and up to the C-P boundarg CD T

06

in Fig. 1) 7’,§,’§CHA>O. ) FIG. 8. Binder order parametey, versusT for various sizes
For 0.5<7<7_, the IC solution has the lowest free en- [gq. (12)].

ergy at lowT (T<Tc,c). As seen in Figs. 2 and 3, NSCHA

and MC results agree closely except in the vicinityTefic,  |.C) and also between the striped phase and the commensu-
where defects are expected to play an important(sse our  rate phaséline AC); for instance, if the transition lineC is
previous paper, Ref. 30In that regimeyyscua™>0. FOrT  not KT like, one also needs to understand the nature of the
>Tc.c the variational equations favor a commensurate congritical regime alongCD: for 7<0.5 one recovers a KT
figuration, but we find thatysca<O: the solution is ther-  transition so there has to be some crossover. Work is in
modynamically unstable. By this we mean that NSCHAprogress to clarify that issue.
yields a C solution in the regioALC of the phase diagram,
but that fluctuations around the solutiégiven by yscua)
generate an instability.
We summarize our results as follows. Using detailed Monte Carlo simulations we have studied
(1) In the »,T plane, the transition between the spiral the commensurate-incommensurate transition of the two di-
phase and the C phase is only seen at phifthat is, at zero  mensionaXY model on a triangular lattice. Our study shows
temperaturg Consequently, the Lifshitz point is &=0 for  that this transition only occurs at=0. At finite temperature,
the 2D XY model. the incommensurate structure evolves into a striped phase
(2) The existence of the striped phase suggests that chirahade up of domains of left- and right-handed spirals sepa-
variables and phase variables remain strongly coupled at alated by walls. The domain walls consist of the collinear
T. This may explain why, despite the fact thgt,=0 in the  structure. This state resembles the smectic-A phase of liquid
striped phase, vortices do not unbifidading to a reentrant crystals. The nature of the phase transitions between the
paramagnetic phaseThe relevance of this coupling had al- striped phase and the ordered phases or between the striped
ready been emphasized in our study of the fully frustrate¢phase and the paramagnetic phase is an open problem. Ana-
case (p=1). lytical calculations using NSCHAa variational approach
(3) The existence of the inhomogeneous state affects scalvell suited for noncollinear structuresupport the MC re-
ing analyses near the IC-stripe phase boundémg AL):  sults. The connection between frustrabdéd models and the
Fig. 8 shows the Binder order parameter Etf) as a func- vortex state of layered type-ll superconductors suggest to
tion of T for =0.575. We do not observe a clear intersec-view the smectic phase as a vortex liquid state. This regime
tion at the critical temperature. A similar feature had beerwould appear to be an intermediate phase between the super-
pointed out by Olsson in his study of fully frustratédy = conducting and the metallic states, critical in one subspace

V. CONCLUSION

spins on a 2D square latti¢Ref. 12. and quasiordered in the other.
(4) Because the striped phase is spatially inhomogeneous,
it is not easy to define appropriate boundary conditions for ACKNOWLEDGMENTS

the MC simulation. Uniform twists will produce frustration.

The present work has revealed the existence of a smecti- Monte Carlo calculations were performed on a Cray C98
clike phase. This raises the question of the nature of théhanks to Contract No. 960162 from IDRIS. Support from
transition between the striped phase and the P pllase  NATO Grant No. 930988 is acknowledged.
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