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Moving glass theory of driven lattices with disorder
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We study periodic structures, such as vortex lattices, moving in a random pinning potential under the action
of an external driving force. As predicted in T. Giamarchi and P. Le Doussal, Phys. Rev/6,&408(1996
the periodicity in the directiotransverseto motion leads to a different class of driven systems: the moving
glasses. We analyze using several renormalization-group techniques, the physical properties of such systems
both at zero and nonzero temperature. The moving glass has the following generic prdpedies3 for
uncorrelated disordgki) decay of translational long-range ordér) particles flow along static channelj)
the channel pattern is highly correlated along the direction transverse to motion through elastic compression
modes,(iv) there are barriers to transverse motion. We demonstrate the existencetdneerse critical
forceat T=0 and study the transverse depinning. A “static random force” both in longitudinal and transverse
directions is shown to be generated by motion. Displacements are found to grow logarithmically at large scale
in d=3 and as a power law id=2. The persistence of quasi-long-range translational orddr=8 at weak
disorder, or large velocity leads to the prediction of the topologically ordemeding Bragg glassThis
dynamical phase which is a continuation of the static Bragg glass studied previously, is shown to be stable to
a nonzero temperature. At finite but low temperature, the channels broaden and survive and strong nonlinear
effects still exist in the transverse response, though the asymptotic behavior is found to be lideaZ, lor
in d=3 at intermediate disorder, another moving glass state exists, which retains smectic order in the trans-
verse direction: thenoving transverse glasft is described by the moving glass equation introduced in our
previous work. The existence of channels allows us to naturally describe the transition towards plastic flow.
We propose a phase diagram in temperature, force, and disorder for the static and moving structures. For
correlated disorder we predict a “moving Bose glass” state with anisotropic transverse Meissner effect,
localization, and transverse pinning. We discuss the effect of additional linear and nonlinear terms generated at
large scale in the equation of motion. Generalizations of the moving glass equation to a larger class of
nonpotential glassy systems described by zero temperature and nonzero temperature disordered fixed points
(dissipative glassésare proposed. We discuss experimental consequences for several systems, such as the
anomalous Hall effect in the Wigner crystal, transverse critical current in the vortex lattice, and solid friction.
[S0163-18298)04514-1

. INTRODUCTION magnetic field which forms a Wigner crystai'? moving
under an applied voltage, lattices of magnetic bubff&s
Interacting systems which tend to form spontaneously pemoving under an applied magnetic-field gradient, charge-
riodic structures can exhibit a remarkable variety of complexdensity wave¥ (CDW) or colloids'® submitted to an electric
phenomena when they are driven by an external force over feld, driven Josephson-junction arra{s° etc. This prob-
disordered substrate. Many of these phenomena, which ari¢em may also be important in understanding tribology and
from the interplay between elasticity, periodicity, quenchedsolid friction phenomen& 2% surface growth of crystals
disorder, nonlinearities and driving, are still poorly under-with quenched bulk or substrate disord&édomain walls in
stood or even unexplored. For numerous such experimentalcommensurate solicé.One striking property exhibited by
systems, transport experiments are usually a convenient wal these systems is pinning, i.e., the fact that at low tempera-
to probe the physics¢and sometimes the only way when ture there is no macroscopic motion unless the applied force
more direct methods, e.g., imaging are not availadieis  f is larger than a threshold critical forég. Dynamic prop-
thus an important and challenging problem to obtain a quanrerties have thus been studied for some time, quite exten-
titative description of their driven dynamics. Vortex lattices sively near the depinning thresh6td?” but mostly in the
in type-1l superconductors are a prominent example of suclsontext of CDW (Refs. 28—-3D or for models based on
systems. The motion of the lattice under the action of the driven manifolds!*2and their relation to growth processés
Lorentz force(associated to a transport supercurréntthe  described by the Kardar-Parisi-Zhaitl§PZ) equatiort*3?
presence of pinning impurities has been studied in many refhey are, however, far from being fully understood. In addi-
cent experiment$:® There are other examples of well- tion, the full problem of a perioditattice (with additional
studied driven systems where quenched disorder is known tperiodicity transverse to the direction of motjowas not
be important, such as the two-dimensional electron gas in scrutinized until very recentlysee, e.g., Ref. 35 for a re-
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view). A crucial question in both the dynamics and the stat-ingly denser. Filamentary flow was proposed as an explana-
ics is whether topological defects in the periodic structure argion for the observed sharp dynamical transition observed in
generated by disorder, temperature and the driving force drloGe films° characterized by abrupt steps in the differen-
their combined effect. Another important issue is to charactial resistance. Interesting effects of synchronization of the
terize the degree of ordée.g., translational order, or tempo- flow in different channels were also obser\?éd)esplte the

ral orde) in the structure in presence of quenched disordernumber of experimental and numerical dafd a detailed

In the absence of topological defects it is sufficient in the’([ﬂ}e;tl)lree;ggleunderstandlng of plastic motion remains quite a

statics to consider only elastic deformations. In the dynamics  zq in the statics, one is in a better position to describe the
this leads teelastic flow On the other hand, if these defects g|astic flow regime, which is still an extremely difficult prob-
exist (e.g., unbound dislocation loopthe internal periodic-  |em. This is the situation on which we focus in this paper.
ity of the structure is lost and one must consider also plastiqThough elastic flow in some cases extends to all velocities, a
deformations. In the dynamics the flow is then not elastic buhatural idea is to start from the large velocity region and
turn into plastic flowwith a radically different behavior. carry perturbation theory in 4/ At large velocity one may
The statics of lattices with impurity disorder has been think at first that since the sliding system averages enough
much investigated recently, especially in the context ofover disorder one recovers a simple behavior, in fact much
type-ll superconductors. It was generally agreed that disordesimpler than in the statics. Indeed it was observed experi-
leads to aglass phasdoften called®>" a vortex glass with mentally, some time ago in neutron-diffraction
many metastable states, diverging barriers between thesxperiment$! and in more details recentf§,that at large
states®! pinning and loss of translational order. Indeed,velocity the vortex lattice is more translationally ordered
even if for the pure elastic theory various proposals existedhan at low velocity. This tendency tynamical reordering
for the translational ordet, 3 general argument€*® un-  has also been seen in numerical simulati$s:**The 16
challenged until recently, tended to show that disorder wouldxpansion has been fruitful to compute the corrections to the
always favor the presence of dislocations destroying theelocity itself in Refs. 70, 71, and 29. Recently it was ex-
Abrikosov lattice beyond some length scale. In a series ofended by Koshelev and Vinokur in Ref. 72 to compute the
recent works,*~*"we have obtained a different picture of the vortex displacementsi induced by disorder and led to a
statics of disordered latticegincluding vortex latticesand  description in term of an additional effective shaking tem-
predicted the existence of a new thermodynamic phase, thgerature induced by motion. This description suggests
Bragg glass The Bragg glass has the following properties: bounded displacements in the solid and thus a perfect mov-
(i) relative displacements grow only logarithmically at largeing crystal at large velocity. Recently we have investigted
scale(ii) translational order decays at most algebraically andhe effects of theperiodicity of the moving lattice in the
there are divergent Bragg peaks in the structure function imlirection transverse to motion, in the same spirit which led to
d=3 (i.e., quasi-long-range order surviye@ii) it is topo-  the prediction of the Bragg glass in the statics. It was still an
logically ordered (iv) it is nevertheless a true static glass open problem how much of the glassy properties remain
phase with diverging barriers. There has been severance the lattice is set in motion. We found that, contrary to
analyticaf®>° and numerical studis®* confirming this the naive expectation, some modes of the disorder are not
theory. The predicted consequences for the phase diagram affected by the motion even at large velocity. Thus, the large
superconductors compare well with the most recent expansion of Ref. 72 breaks down and the effects of non-
experiments’ linear static disorder persists at all velocities, leading to dif-
While some progress towards a consistent theoreticaferent physics. As a result the moving latticenist a perfect
treatment has been made in the statics, it is still further reerystal but amoving glass
moved in the dynamics. Determining the various phases of The aim of this paper is to provide a detailed description
driven systems is still a widely open question. Evidenceof the moving glass state predicted in Ref. 73 and to present
based mostly on experiments, numerical simulations andur approach to the general problem of moving lattices. A
qualitative arguments indicates that quite generally one exbrief account of some of the new results contained ke,
pects plastic motion for either strong disorder situations, highhe T=0 renormalization-group equatiorf®G) and fixed
temperature, or near the depinning threshold in low dimenpoints and random forcgéas already appeared in Refs. 74,
sions(for CDW see, e.g., Ref. 53Indeed there has been a 35. We use several RG approaches at zero and at nonzero
large number of studies on plastidefective flow.>*=>®In  temperature. Since several sections of this paper are rather
the context of superconductorstHaT phase diagram with technical we have chosen to expose all the results about the
regions of elastic flow and regions of plastic flow was physics of the moving glass in Secs. Il and Il in a self-
observed:® Several experimental effects have been attrib-contained manner, avoiding all technicalities. The reader can
uted to plastic flow, such as the peak efféct>®>unusual  find there the results for the existence of static chanigss.
broadband noi$8 and fingerprint phenomena in theV Il A) the transversé-V curves atT=0 and the dynamical
curve®1629 Steps in thel-V curve were also observed in Larkin length(Sec. Il B), the random force and the correla-
Y-Ba-Cu-O near melting. Close to the threshold and in tion functions(Sec. Ill O the various crossover lengths and
strong disorder situations the depinning is observed to prothe finite-temperature resul{&ec. Il F. Decoupling sce-
ceed through what can be called “plastic channé$®*be-  narios for the channels, which distinguish between two dif-
tween pinned regions. This type of filamentary flow has beerierent moving glass phases: the moving Bragg glass and the
found® in simulations of two-dimensiondRD) (strong dis- moving transverse glagSec. Il D) as well as predictions
ordep thin-film geometry(with c,;>cge). Depinning then for the dynamical phase diagrams are giver{Sec. 11l G.
proceeds via filamentary channels which become incread=inally we discuss how the moving glass theory stands pres-
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ently compared to numerical simulatioriSec. 11l H and Moving Bragg glass ed topological defetcs st flow
. . 3 3 Hamentar; oW
experimentgSec. Il ) and present some suggestions of fur-  “stw e W= Moving Transverse glass !
ther observables which would be interesting to measure. Moddl I fllelasie ————" Sm“ﬁ”f'rzﬂsve'fe‘"d“
. . . . . . i 5 of channels

The following sections contain the analytical derivation of ma::ill(PZ primsc e sig Jogs of order
the results discussed in Secs. Il and Il and more generally linear terms
aim at making progress towards an analytic description of Model II slastic limit stfctive desrpton
the moving state of interacting particles in a random poten- it corelated disorder ol fnsvere pysies
tial. Since this is a vastly difficult problem, it is potentially add “x\
dangerougand unfruitfu) to try to attack this problem by ‘11,6604 Model IIT
treating all the effects at the same tirftislocations, nonlin- moving glass equation u

L . . i . T=0 fixed point
earities, thermal effects, efcAlready within the simplifying 150 fined point

assumption of an elastic flow two main types of phenomena
are missed in a naive large approach. The first one is a FIG. 1. Various models studied here to describe with various
direct consequence of previous works on driven dynamics ofevels of approximation théi) fully elastic flow of a lattice,(ii)
CDW and elastic manifold&3! It is expected on symmetry intermediate phase with ordering transverse to mofiiin. plastic
ground$® that nonlinear KPZ termsWu)? are generated by flow.
motion, an effect which was studied in the driven ligéfid.
Another important effect, studied so far only within the (model II). It corresponds to considering the above full elas-
physics of CDW, is the generation of a statamdom force tic model in the continuum limit. It certainly gives a very
convincingly argued by Krug and explored in Ref. 78. If good approximation of the full model at least up to some
both effects are assumed to occur simultaneously, they mayery large scale. This model was discussed in Ref. 73 and is
lead to interesting interplays which have been explored onlptudied in detail here. It has both longitudinal degrees of
recently and only in simple CDW model8 However there freedom(along the direction of motigrand transverse ones.
is still no explicit RG derivation of those terms even in CDW Though it is quite difficult, it can be handled by perturbative
models. In the context of driven lattices, they have not everienormalization-group studies, as we show here. It has non-
been discussed yet. Our aim in this paper is to remedy thisivial fixed point which gives a detailed description of the
situation. We derive these terms explicitly and show thatnoving Bragg glass phase. It turns out that most of the phys-
other linear termsa priori even more relevant are generated.ics of the moving glass is contained in a further simplifica-
Though these additional linear, nonlinear and random forc&on of model Il which retains only the transverse degrees of
terms certainly complicate seriously the problem, focusingreedom (displacements This model, which here we call
exclusively on these terms only obscurs the physics of th&odel Ill, was introduced in Ref. 73 and is described by the
present problem. Indeed the second and as we show heguation of motion:
most important effect in the moving structure is the crucial
role of transverse periodicity to describe the dynamics. A 7oU~+ o du=cVu+FS&(r u(r,t)+(r,t), (1)
rigorous study of the problem of moving interacting particles
would be to first study the fully elastic flow of a lattice. Once which we callthe moving glass equatiof*?'is a nonlinear
the main elastic physics is understood a second step is thatatic pinning force and we have denoseds the direction of
to allow for topological excitationgvacancies, interstitials, motion,y as the transverse directi@) andr=(x,y). The
dislocation$. In principle the results obtained within the model retains only the transverse displaceensati, . Equa-
elastic only approach can, as in the staffise used to check tion (1) was obtained simply by considering the density
self-consistently the stability of the elastic flow itself. Clearly modes of the moving structure which awmgiform in the di-
understanding the elastic flow first is a necessary step beforection of motionIndeed, the key point of Ref. 73 is that the
going further. Here we carry most of the first step and proiransverse physics is to a large extent independent of the
pose an effective description of the second. details of the behavior of the structure along the direction of
Even the purely elastic model turns out to be difficult to motion. This is because the transverse density modes, which
treat when all sources of anisotropies, nonlinear elasticitycan be termed smectic modes, see an almost static disorder
and cutoff effects are included. There are no analogous termand thus are the most important ones to describe the physics
in the statics and thus in that sense the dynamics is moref moving structures with a periodicity in the direction trans-
difficult. Our strategy has thus been to simplify the problemverse to motion. Let us emphasize that this is explicitly con-
in several stages and resort to simplified models. The simplifirmed here by the detailed RG analysis of the properties of
fied models of moving glasses that we have obtained turn ounodel Il. Note that to obtain model Il one sdtFmally u,
to exhibit some new physics and become interesting in their-02° The hierarchy of models introduced here is repre-
own. They call for interesting generalizations to other mod-sented in Fig. 1.
els exhibiting dissipative glassy behavior, as we propose. We The outline of the paper is as follows. After Secs. Il and
call model | the full model of an elastic flow of a lattice Il where we give a nontechnical discussion of the physical
containing all the above-mentioned relevant linear and nonresults, we start in Sec. IV by deriving an equation of motion
linear terms. Such models can also be written for other elasand, carefully examining its symmetries, we introduce mod-
tic structures with related kind of ordé&uch as liquid crystal els I, I, Ill and explain the approximations leading to them.
orden. This model is discussed in Sec. VIII B. However its In Sec. V we perform perturbation theory on the full dynami-
complete study goes beyond the present paper. Fortunatelycal problem, focusing on model Il. In Sec. VI we use the
useful and further simplified model can be constructedunctional RG to study model Il and thus the transverse
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haved=3, n=2, r=(x,y,z), u=(uy,uy), wherez denotes
the direction of the magnetic field. Two-dimensional triangu-
lar lattices of point vortices haveé=2, n=2, r=(x,y).

At finite temperatures or in the presence of quenched sub-
strate disorder the structure is deformed. An important issue
is then to characterize the degree of order. This can be ex-
pressed in terms of displacements correlation functions. The
simplest one measures the relative displacements of two
points (e.g., two vorticesseparated by a distance

—~ [
B(n=_ ([u(n-u(0)1?, 2
d=3 n=2 D=3 where () denotes an average over thermal fluctuations
and—is an average over disorder. The growttBef) with
(a) (b) distance is a measure of how fast the lattice is distorted. For
FIG. 2. Two cases of a driven structur@ An interfaced  thermal fluctuations alone id>2, B(r) saturates at finite
=2,n=1, d=3, driven orthogonal to its internal spac®) A tri- values, indicating that the lattice is preserved. Intuitively it is
angular line latticeD=3, n=2, d=3 driven within its internal  obvious that in the presence of disord®fr) grows faster
space. and can become unboundégl(r) can directly be extracted

from direct imaging of the lattice, such as performed in deco-

physics ind=3 andd=3—e. We studyT=0 andT>0.1In 3451 experiments of flux lattices. Related &r) is the
Sec. VIl we study a two-dimensional version of the moving g cture factor of the lattice, obtained by computing the
glass equation model Ill. This allows us to obtain results iz rier transform of the density of objectgr)=3,6%(r

. . . I
d=2 atT>0 and ind=2+ €. Having obtained a good un- —R%—u,). The square of the modulup,|? of the Fourier

derstanding of the transverse physics. i_n the sections de\’Ot“atpanlsform of the density is measured directly in diffraction
to model lll, we aré now in good position to tackle the fL.‘" (neutrons, x raysexperiments. For a perfect lattice the dif-
groblilrﬂ.l \éVe treat in .Sec'hV”]!'?ithedR? of E]Odelhll alf‘d N fraction pattern consists of-function Bragg peaks at the
te?fﬁs and IX\IIDeZet)e(?rTsm:ré ee:erg'sgd Zt II,af g V;Icgl‘:'[s ?nedard{e-dprocal vectors. The shape and width of any single peak

9 ; 9 1d d%FoundK can be Fourier transformed to obtain the transla-
cuss some consequences. Conclusions can be found in S

IX and many technical details have been hidden in the si;ﬁ%hal order correlation function given by

Appendixes of the paper.

CK(r):<eiK~u(r)e—iK-u(0)>_ (3)

II. MOVING STRUCTURES AND MOVING GLASSES For simple Gaussian jluctuatior(and isotropic displace-
ments Cy(r)=e" K2B0) put such a relation holds only
qualitatively in generalas a lower bound C(r) is there-

All the structures we consider share the same basic fedore a direct measure of the degree of translational order that
tures. The static system in the absence of quenched substratgmains in the system. Three cases are poséikle Fig. 1 in
disorder consists of a network of interacting objects at equiRef. 39: (a) for thermal fluctuations alon€y(r)— Cste,
librium positionsR?, forming either a perfect latticgperi-  one keeps the perfe@&function Bragg peaks, albeit with a
odic case or elastic manifold{nonperiodic cage Depend- reduced weight(b) Cy(r) decays exponentially fast. The
ing on the system the objects can be either point(ég.,  structure factor has no divergent peak, translational order is
electrons in a Wigner crystabr lines(vortex lines in super- destroyed beyond lengfR,, although some degree of order
conductors Deformations away from equilibrium positions persists at short distande) C(r) decays as a power law.
are described by displacemenisor in a coarse-grained de- The structure factor still has divergent peaks but &ifiinc-
scriptionu(r,t) wherer is the internal coordinate. A com- tions. One retains quasi-long-range translational order. This
plete characterization of the structure in motion uses threes the case, e.g., inl=2 at low temperaturgKosterlitz-
parametergi) the internal dimensio®, (i) the number of Thoules$ or in the Bragg glass. Depending on how much
components of the displacement field,, and(iii) the em-  crystalline order remains in the system the structure factor
bedding space dimensiah Two examples are shown in Fig. has extremely different behaviors as depicted in Fig. 3.

2 and more details are given in Appendix E. Since we are Quite surprisingly, if one takes into account correctly the
mostly interested here in periodic structutd@sough not ex-  periodicity of the lattice, a thermodynamic phaséhout dis-
clusively) we can seD=d. We consider motion along one locations was predicted to exist ind=3 at weak
direction calledx, and we parametrize throughout all this disorder**#° This phase, named the Bragg glass, has quasi-
paper the space variable asr=(x,y,z) wherex is one long-range order with Bragg peaks diverging at least as
dimension,y hasa priori n—1 dimensions, ana@ hasd, q~ =" (with A;~1), similar to dashed lines in Fig. 3. At
=d—n dimensions, and the displacements along motion athe same time displacemer{r) grow logarithmically at

uy and transverse to motion as. Three-dimensional trian- large scale. Similar predictions hold for other elastic models
gular flux-line lattices driven along a lattice direction thus such as random-fieldY systems, and priori also for liquid

A. Moving structures: General considerations
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A S@ v LARGE VELOLITY
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FIG. 3. Depending on the translational order remaining in thetemperatures(dashed ling Three main regimes can be distin-

lattice the structure factor has different shapes. The thick line is thgu;sheq: the creedptrhegltrr?e f(r)]r Tgrcesdvxtlﬁll :)eIOW thlres_hold, Fhe leil
Sfunction Bragg peak of a perfect latti¢encluding thermal fluc- CE regltrkr:e arzoltén € threshold, and the large velocity regime we
tuations. The dashed line is the divergent Bragg peak of the Bragga ove threshold.

glass(which retains quasi-long-range order and has no topological o o ]
defects, the dotted line is the Lorentzian-like shape of a systemdime, near the depinning transitiér-f., has been intensely
losing its translational order exponentially fast. investigated in similarity with usual critical phenome(sae,

e.g., Refs. 25, 27, 26vhere the velocity plays the role of an
crystals. The Bragg glass theory has by now received corPrder parameter. A particularly important question in that
siderable numericat®? and analytical confirmatiorf§-° If regime is to determine whether plastic rather than elastic
disorder is increased above a threshold it is predicted thanotion occurs?® Close to the threshold in low dimensions
there is a transition at which topological defects proliferate.and in strong disorder situations the depinning is observed to
They destroy the translational long-range order exponentiallproceed through “plastic channel$***between pinned re-
fast beyond a lengtRp, leading to finite height diffractions gions as depicted in Fig. 5. This type of filamentary flow has
peaks. The height of the peak increases with the scale &een founff in simulations of 2D(strong disorderthin-film
which translational order is destroyed. This transition is thuggeometry(with c,,>ceg) Where depinning proceeds via fila-
characterized by the loss of the divergence in the Braggnentary channels which become increasingly denser.
peaks. In type-Il superconductors it implies that there is a The third regime is above the depinning threshbfef .
transition, upon increasing the magnetic field, predicted inThis is the situation on which we focus in this pagérough
Ref. 45 (see also Ref. 48 from the Bragg glasgat low some of our considerations have consequences in the other
fields) to another phase. The high-field phase is either théegimes as well An important phenomenon in this regime is
putative vortex glas§>" or is simply continuously related to that of dynamical reordering Indeed, it was observed ex-
the high-temperature phase. These predictions for the phagerimentally, some time ago in neutron-diffraction
diagrams of superconductors has received experimental supxperiment$/ and in more detail recentff, that atlarge
port (see Ref. 47 for a review velocitythe vortex lattice is more translationally ordered than

What happens when an external force is applied to such at low velocity. Intuitively the idea is that at large velocity
structure? One obviously important quantity to determine ighe pinning force on each vortex varies rapidly and disorder
the curve of velocity versus the applied force Through should produce little effect. This phenomenon was also
this v-f characteristic, three main regimes can be distin-
guished and are shown in Fig. 4.

Far below the depinning threshofd the system moves
through thermal activation. This is the so-called creep re-
gime. Since the motion is extremely slow in this regime, it
has been analyzed based on the properties ofsthéc
systente140 The resultingv-f curve crucially depends on
whether the static system is in a glass st@ech as the
Bragg glasy where the barrierdJ(f ) become very large
whenf—0, or a liquid where barriers remain finite at small
f, resulting in a linear resistivity. The general form expected
in the creep regime is

v~ pofe VT 4)
. ] o o FIG. 5. Plastic flow of a network of objects submitted to an
Let us emphasize that this “longitudinali-f characteristic  external forcer, shown for simplicity in two dimensions. The mo-
has mainly been used to determine whetherstiaéic system  tion occurs through plastic channels around pinned regions. Plastic
(i.e., the limitf =v =0) is or is not in a glass state. It may not flow might occur close to the depining threshold whereas at large
be enough though, if one wants to probe glassiness of theslocities one expects to recover elastic flow where the whole lat-
moving system itself, as discussed below. The second raice moves coherently.
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known in the context of CDW® The tendency to reorder has
also been seen in numerical simulaticfis>®°Since the ef-
fects of disorder were expected to vanish at high velocity
perturbation theory in 1/ was developed mainly to compute
the v-f characteristic$>’1?° Recently it was extended by
Koshelev and Vinokuf to compute the vortex displace-
mentsu induced by disorder in the moving lattice and in the
moving liquid. The effect of disorder on the moving liquid
was found to be equivalent toeatingto an effective tem-
peratureT’ =T+ T, with T4~ 1/v. Thus the moving liquid
was argued to survive at temperatures lower than the melting
temperatureT<T,,, and adynamical melting transitiorio
occur belowT,, from a moving liquid to a moving solid )
upon increase of the velocify,whenT'=T,,. These argu- -
ments were then extended to describe the moving solid itself,
and it was argued that there the effect of pinning could also
be describef by some effective shaking temperatufg,
~1h? defined by the relatiof|u(q)|?)=Tgn/Ceeq?. This
suggests bounded displacements in the solid and that at low
T and above a certain velocity the moving latticaiperfect (c) - —
crystal As is discussed in the remainder of this paper, the

(@)

picture of the movm%latnces emerging from the above bold
qualitative argument$ goes wrong in several ways. —
There are several other important questions to be an- ]

the question of the effect of the motion on the spatial corre-
lations and in particular whether translational order exists in
a moving system. This is related to the question of plastic FIG. 6. Three types of dynamical systenis) A manifold
versus e_Iastic flow. If plastic_flow occurs, the structure factordriven 'per'pendicular to itselfb) A single Q CDW system. Only
Shoqld signal SOme destruction _Of Iattlc_:e. However because &splacements in the direction of motion exist, but periodiaigng
moving system is inherently anisotropic dlff_erent effe_cts apfthe direction of motion can play a rolé) A periodic system with
pear and the decay of the structure factor is not as isotropigansyerse degrees of freedom driven along one of its symmetry
as in the static systerfthe Lorentzian in Fig. B This ques-  girections. The correct description of this last class of systems is the
tion thus remains to be investigated. A possibility, suggesteghoving glass fixed point where theansversedegrees of freedom
by the idea of a shaking temperatdfayould be that at large  are the important one as represented here.
velocity one should observé&function Bragg peaks charac-
teristic of a crystal at finite temperature. Such questions argular lattice(by contrast with a singl€ CDW), two routes
discussed in detail in Sec. Ill. Finally determining how mo- seem to be possible. The commonly followed Gri&®is to
tion affects the phase diagram of the statics has to be invesimply borrow from, or extend, the physics of single-
tigated and depends of course on the above issues. In patomponent CDWE~* or of elastic manifolds driveperpen-
ticular what remains of the glassy properties of the systemgijcularly to their internal directiori* In this case emphasis is
when in motion(slow relaxation, history dependence, non- put on the displacementdong the direction of motioru,
linear behaviorsneeds to be addressed. For moving periodicagnd on the proper way to model its dynamics. Such a prob-
systems, an equivalent question can be asked also abogin has turned out to be already quite complicated in par-
“temporal order” and its associated effects such as noisgjcular due to the generation of KPZ-type nonlinearities in
spectrum. In particular if one looks at a signal at a fixedthe equation of motion. Even if degrees of freedom trans-
position in space but as a function of time, one expects gerse to motioru, exist as in the cases depicted in Fig. 6
periodic signal with a periodicity o&/v, havingé peaks in  they constitute an extensitfof this “longitudinal” physics.
frequency at the multiples of the washboard frequesgy  Thus in this “CDW paradigm” it would seem necessary to
=2mvl/a. If the lattice becomes imperfect one could naively understand first Comp|ete|y the physics of |Ongitudina|
expect the Fourier peaks in frequency to broaden in a waynodesu, and then incorporata, as an extra complication.
that reflects the loss of translational order. Quite surprisinglyindeed there were a few attempts to describes the physics of
this is not so. Indeed it can be shown for a single-componendriven vortex lattices along those lin&s’®
displacement fieftt (CDW) that the perfect periodicity in  The second approach is based on the realization that the
time remains(in the absence of topological defectslow-  physics of periodic structures driven along one of their inter-
ever this result is not readily applicable to a moving lattice,na| direction is radically differeft from the above descrip-
and it is thus crucial to determine whether this remarkablgjons. This stems from the fact that due to the periodicity in
property holds in that case. the transverse direction, a static nonlinear pinning force
Fstatpersists even in a fast moving system. We want to stress
that this is a very general property ahy moving structure

To tackle the physics of a structure with a displacementvhich contains uniform density modés,=0 in the direc-
field with more than one compone(m>1), such as a trian- tion of motion(as can be seen on the Fourier decomposition

swered in addition to the-f characteristics. The first one is Iy
X

B. The moving glass
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of the density®). As illustrated in Fig. 6 the substructure  Finally, there are other simpler but interesting situations
formed by these modes can deform elastically indhedi-  such as disorder correlated along the direction of motion or
rection and sees essentially a static disorder. As is obviousttices moving in a periodic tin roof potential. F**'in Eq.

from Fig. 6c), this substructure has generically a liquid- (5) is independent ok one finds the interesting property that
crystal type of (topologica) order and can be termed a the steady-state measupPgu(r)] is identical (at anyT>0)
“smectic” (though wherd,=0, e.g., fod=3 andn=3,itis  to the one withv =0. This can be shown by studying the
rather a “line crystal,” see below In all cases the basic associated Fokker-Planck equation. Thus we see that the
starting point thus involves the#ansversedegrees of free- moving glass Eq(5) hides a whole class of interesting dis-
dom as shown in Fig. 6, and is quite different from thesipative models with glassy properties.

“CDW description.” The equation which captures the main
ingredients of such moving systems was derived in Ref. 73.
It leads to an interesting model for transverse components
u=uy, which has the general form in the laboratory frame: | this section we present all the physical results on the
moving glass that we have obtained in Refs. 73, 74, 35 and
in the present paper. We deliberately avoid technicalities and
Since this equatiorimodel 1l) captures glassy features of refer to the proper sections for details.

moving systems we call ithe moving glass equatiorAl-
though it looks like a standard pinning equation tumvec-
tion term nvd,u dissipates even in the static limia re-
minder that we are looking at a moving sysbeand doesiot One of the most striking properties of moving structures
derive from a potential. Thus we consider this problem andlescribed by Eq(5) is that the nonlinear static forde®®!

its generalizations as a prototype for a new class of physicaksults in the pinning of the transverse displacemeyp(s,t)
phenomena which are glassy and do not derive from a padnto preferred static configurations,(r) in the laboratory
tential (or from a Hamiltonian The first example is to frame. Thus the resulting flow can be described in terms of
chooseFs®(r,u) periodic in theu direction: static channelswhere the particles follow each other like
beads on a string. In the laboratory frame these channels are
determined by the static disorder and do not fluctuate in time.
They can be visualized in simulations or experiments by sim-

. o ] ] ply superposing images at different times. What makes the
and corresponds to latticesr to liquid crystal$ driven in a  proplem radically different compared to conventional sys-
random potential with a short-range correlad¢r)V(r’)  tems which exhibit pinning is that despite the static nature of
=g(r—r’) of ranger;. The study of this case in Ref. 73 these channels there is constant dissipation in the steady
gave the first hint that nonpotential dynamics can indeedtate. This can be seen in the moving frame where each
exhibit glassy properties and leaddissipative glasseShis  particle, being tied to a given chanr(ethich is then moving

is a rather delicate notion because the constant dissipatiafust wiggle alongy and dissipate. In fact the existence of
rate in the system would naturally tend to generate or inthe channels shows in a transparent way that the wiggling of
crease the effective temperature and kill the glassy propegifferent particles in the moving frame is highly correlated in
ties. However this type of competition between glassy bespace and time, thus leading to a radically different image as
havior and dissipation arises in other systems which are ghe one embodied in the “shaking temperature” based on
generalization of the above equation. Let us briefly indicatehermal-like incoherent motioff.

some of the generalizations that we are proposing which are The channels are thus the easiest paths followed by the
being studied here or in related works. An interesting generparticles. One can see that the “cost” of deforming a chan-
alization is the case of a periodic manifold witbrrelated  nel alongy is that dissipation is increased. Thus the channels
disorder® This is relevant to describe tmeoving Bose glass are determined by a subtle and novel competition between
state of driven vortex lattices in the presence of correlate@|astic energy, disorder, and dissipation. As a consequence
disorder. Another generalization is to extend KB to a  these channels amough This is a crucial difference be-
N-component vectou,, . It is easy to see in that case that a tween what would be observed for a perfect lattice as illus-
nonpotential nonlinear disorder is generated ¥#0 (which  trated in Fig. 7.

reduces to the “static random force” fdé=1). Thus in that By contrast the channels which are predicted in the mov-
model it is natural to look at a generic nonpotential disordeling glass are illustrated in Figs. 8 and 9. It is important to
F32{(r,u) from the start. The mean-field dynamical equationsstress that the moving glass equati@ does not assume

for largeN and the functional renormalization groUpRG) anything about the coupling of the particledifferentchan-
equations at an\ for a large class of such models are de-nels but only implies that the channels themselves are elas-
rived in Sec. VI and in Appendix F. A subclass of thesetically coupled alongy, and thus through compression
models is nonperiodi¢émanifold). They are relevant to de- modes’® Indeed on specific models such as model Il one can
scribe the random manifold crossover regime in the movingerify explicitly that although coupling between longitudinal
glass(see Sec. Il and Fig. 32 A further subclass is then and transverse degrees of freedom exasysiori, the longi-
obtained by setting =0. Interestingly the resulting model tudinal degrees of freedom, do not feed baclat all in the
describes polymer@nd manifoldsin random flows and can moving glass equatiofisee Sec. VIII A. The existence of

be studied both in the large-limit® and using RGRef. 85 channels naturally leads to seveaapriori possible regimes

for any N. for the coupling between particles in different channels. The

Ill. PHYSICAL RESULTS

ndu+ puad u=cVau+FS®(r u(r,t))+(r,t). (5

A. Channels

FStaYr,uy)=V(r)poK§O K, sin K,(u,—y) (6)
y



57 MOVING GLASS THEORY OF DRIVEN LATTICES WIH . .. 11 363

(b) T=0

() T>0 d=3 d T>0 d=2

FLN

FIG. 8. (8 The motion in the moving glass occurs through
rough static channels. Relative deformations grow with distance
and become of ordea at distanceRi~RY2. Only the channels

E themselves are elastically coupled along yhdirection. Depending

y F on the dimension, velocity, and disorder strength two main cases
4—»" can occuri(b) an elastic flow where the particle positions are elas-
tically coupled between channelsn d=3 and weak disorder or
large velocities In this regime the lattice is topologically ordered
(no dislocations and the rows of the lattice follow the channels.
This is a moving Bragg glas¢c) In d=2 or at stronger disorder in
d=3 the positions of particles in different channels may decouple.
Dislocations with Burgers vectors alomgindicated by the square
are then injected between some channels beyond the létgth
This situation describes a moving transverse g(@sth a smectic
or a line-crystal-type topological order

() T=0 F,>0

FIG. 7. (8 A snapshot of a perfe¢hondisorderedlattice mov-
ing along thex direction.(b) Upon superposing images at different
times one would see that dt=0 the particles follow perfectly
straight lines.(c) At 0<T<T,, in d=3 the channels remain per-
fectly straight with a finite width due to the thermal fluctuation of
the particles(d) In d=2 since thermal fluctuations are unbounded,
channels are completely blurred and cannot be defined even for
<T,,. () Even in situation(b), (c) applying an additional small
force alongy immediately results in tilted channels with angle B. Dynamical Larkin length and transverse critical force

FylFx. Another important property of the moving glass inti-

mately related to the existence of stable channels is the ex-
moving structur . nding to full elasti lina b istence of “transverse barriers.” Indeed it is natural physi-
oving structure correspo g to Tul elastic coupting e'cally that once the pattern of channels is established the

tween partlcle_s in different chan_nels. Since, remarkably, th'%ystem does not respond in the transverse direction along
structure retains perfect topological order despite the rough- hich it is pinned. Thus we have predicted in Ref. 73 that

ness of the channels, it is reminiscent of the properties of thﬁqe response to an additional small external ffgein the
static Bragg glass, and thus we call it a moving Bragg glas‘S’direction transverse to motion vanishe§at0. A truetrans-

A second case of a moving glass corresponds to deCOUplingerse critical force E, such that the transverse velocit
between the channels, by injections of dislocations beyond ¢ y

certain length scal®y and is called the moving transverse
glass. These two regimes are discussed in more detail in Sec.
I D. Finally note that in d=3 channels can be either
“sheets” (for line lattices or linear (for point lattices as
represented in Fig. 9. It is important to note that the channels
in the moving glass are fundamentally different in nature
from the one introduced previouff* to describe slow ¢
plastic motion between pinned islands, as illustrated in Fig. ¥
5. In the moving glass they form a manifold of almost par-
allel lines (or sheets for vortex lines in=3), elastically
coupled alongy. For that reason we call them generically
“elastic channels”(whether or not they are fully coupled or
decouplegi to distinguish them from the “plastic channels”
(even though some plastic flow may occur when elastic
channels decoupleNote that in the above discussion we G, 9. Different types of topological order for the manifold of
have concentrated on elastic channels which spatially  channels id=3. (a) For line lattices in motion the channels are
decouple It is possiblea priori that they may still remain  “sheets” and thus form an anisotropic type of smectic layeriiny,
temporally coupledi.e. synchronized. Indeed, examples of for 3d lattices of pointlike objects or for triply periodic structures
synchronization were observed even in extremely plastige.g., tripleQ CDW) they have instead the topology of a line crys-
filamentary flow?® tal.

first case, represented in Figh, is a topologically ordered

%
vy
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vY=0 for FY<FY, exists(and thus a transverse critical cur- 47 nuc
rentJY in superconductojsor a lattice driven along a prin- Ri~aexp A, ®)
cipal lattice directiorf® o _

The transverse critical force is a rather subtle effect, mor&vhile in d<2 it reads
so than the usual longitudinal critical force. It dosst exist N
for a sin i = ing i - - g, Ampuc(3—d)| MY

gle particle atT=0 moving in a short-range RY~| a3 d+
correlated random potential. By contrast even a single- ¢ A
particle experiences a nonzero longitudinal critical force. It . , , )
does not exist either for a single driven vortex line or anyWith @gainc=cy; in d=2 andc=yCy1C4y in dj3' These
manifold driven perpendicular to itself in a pointlike disor- esults are valid for large enough velocities-v; (see be-
dered environment. It does exist, however, even for a singléoW for the definition ofvy and results for all velocitigs
particle if the disorder is sufficiently correlatedong the ~ Note that forv>vg the dynamical Larkin length depends
direction of motion(such as a tin roof potential constant only oncy; (and ofcy,in d=3) as it should since the physics
alongx and periodic along). Such disorder breaks the ro- of the moving glass is controlled by the compression modes
tational symmetry in a drastic way. Still, in the case of aand thus largely independent of the detailed behavior along
lattice driven in an uncorrelated potential a nonzero transx.”®
verse critical force does seem to break the rotational symme- Another way to estimate the dynamical Larkin length is to
try of the problem. In some sense in the moving glass the€ompute the displacements in perturbation theory of the dis-
transverse topological order which persigiad the elasticity order. At very short distance one can treat the pinning force
of the manifold provide the necessary correlatiofisrough  in Eq. (5) to lowest order inu. This gives a model where
a spontaneous breaking of rotational symmetihus the disorder is described byrandom force F®{x) independent
transverse critical force is a dynamical effect due to barrier®f u whose correlator iFS?{(r)Fs@(r’))=A8%r—r").
preventing the channels to reorient. This regime is the equivalent of the short distance Larkin

Thus we have proposed the moving glass as a dynamicaégime for the statics. In the moving glass at very large ve-
phasea new RG fixed pointand the transverse critical force locity v>v? the displacement§2) alongy grow asB(r)
as its order parameter &t=0. The upper critical dimension =Bgg(r) (at T=0) with
of this phase isdl=3 instead ofd=4 for the static Bragg
glass. Aboved=3 weak disorder is irrelevant and the mov- dqxdqyddzqZ A[1—coqq,y)]
ing glass is a moving crystal. Fdr<3 disorder is relevant in BRF(y):f 2mT  (quay)?+(c2g2+c202)?
the moving crystal and leads to a breakdown of the éx- g Y ‘
pansion of Ref. 72. Divergences in perturbation theory caifhe scale alony at whichu, becomes of order; defines
be treated using a RG procedy&ec. V). One indeed finds the dynamical Larkin lengthRY, i.e., Br(y=RY,x=0)

a different fixed point which confirms the prediction that the~r$_ The resulting expression coincides with the one ob-
moving glass is a dynamical phase. Using RG and the propained within the RG approactup to nonuniversal prefac-
erties of this fixed point one can compute various physicators). Similarly one can define a Larkin length for transverse
quanti_ties_(Sec. VIB 3. We find that the transverse critical pinning along thex direction by the condition thatly(x
force is given by =R%,y=0)—u,(x=0y=0)~r;. Since what determines
this length is onlyu, (and notu,) it is independent of the
detailed behavior along. It is important to note that the
FyNAi ) moving glass is a very anisotropic object at large scale with
¢ T(RY)? a scalingx~y? of the internal coordinates. This implies that
at large velocity ¢ >v?) the Larkin length along is very
large (much larger tharRY), with R,=v(R¥)%/c,; (one has
with c=cy; in d=2, c=\C15C44 in d=3, andA is a nonuni-  gjso the more conventional behaviBf~ \/c44/c4RY. in d
versal constant. The length sc&§ is thedynamical Larkin -~ —3). Estimating the random force acting on a Larkin volume
length It is defined as the length scale aloggat which  for the transverse displacemefit®ne recovers the above
perturbation theory breaks down, nonanalyticity appears irstimate forFY .
the FRG and théscale-dependenmobility vanishes. Before  The resulting transverdeV characteristics af=0 is de-
we proceed further let us define now disorder strength papjcted in Fig. 10. The transverse depinning is studied in Sec.

rameters. For uncorrelated disorder the random potentia}; snd we find the behavior near the threshojg~||:y
V(r) which couples to the density of the structure has short-_ FY|% for FY>FY with 6=1 to lowest order ie=3—d. A
e STV ! 7 .

range correlations of rangery, V(r.z)V(r',2)=9(r  reasonable conjecture which would be interesting to verify is
—1')8%z—2') (see Sec. IY. As in Ref. 73 we denote by that it remainsg=1 to all order<” Thus the transverse ve-
[also denoted&(U=02), see Sec.2 IYthe bare static pinning oty v, starts linearly with a slope which depends on the
force correlatorA = ppZg  k -oKyGk Wherepg is the aver-  yelocity longitudinal velocityv. It is very large forv<uv¥

age density and is the Fourier transform of(r) at the and diverges in the limit — 0.

reciprocal-lattice vectors. Throughott denotes the second The existence of a transverse critical force in a moving
derivative of the nonlinear pinning force correlatadr, state raises interesting issues abduistory dependence

= —A”(O)%A/rf (see Sec. VL Our result is that id=3  These issues are largely open and should be explored in fur-
the dynamical Larkin length is given by ther numerical, experimental, and theoretical work. Let us,

€)

(10
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FIG. 11. Transverse critical force as a function of the longitudi-
nal velocity. At small velocities the transverse critical force satu-
rates to the isotropic ones°. For a relation betweenv and the
longitudinal critical force see the text.

FIG. 10. Transverse-f characteristics af =0: transverse ve-
locity v, as a function of the applied transverse foFgeat a fixed
longitudinal velocity. The behavior near threshold is found to be

) ) N
linear. The slope at the threshold is large foxv; - in experiments, namely that lattices tend to flow along their

. . ) i principle axis directions. Such a behavior near depinning was
for instance, consider two experiments. In the first one gserved in recent decoration experiméfitilote that a
force f,e,+f,€, is applied to the lattice at time=0 and  gmjlar locking would happen for a particle moving in a tin
then one waits until a steady state is reached. The velocity ig)o potential(but as a more trivial effeit
then[v,(f ),v,(f )]. In the second experiment one first ap-  apother important question for experiments is to deter-
plies a forcef along the directiox, waits for a steady state, mine the transverse critical force as a function of the longi-
and then appliies, alongy. One then measures the VeloCi- y,gina| velocityv. As v decreases increases but it is

: " " - e .
ties [vx(f ), vy (f )]. The question is, should one find the . itively clear thatFY cannot become larger than the lon-
same result in the two experiments or not. Of course thergiy,ging| critical curren{strictly speaking in the same direc-

are subtle issues which complicate the problem and needs Bn y). We neglect for now the dependence of the longitu-
be further investigatefuch as(i) the order of limits system 4. critical current in the orientation with respect to the

S|ﬁet\r/]ersttrj]s ‘;V?i,t'ng tlmt])e IlIJefo:eta steabdy sliat_e tls reacﬁthﬁ, lattice (which gives a numerical factor which can be incor-
whether the 1atlice globally rolates or breaks Into Crystalites, 5 ated. we call Fg° the critical current fow =0. Asv is

and (iii) some nonuniversality of =0 dynamics but one decreased below? the transverse critical force saturates at

should still be able to find awperational answer. If it is 50 . . A :
found that there are such history dependence effects then th%,t . This is depicted in Fig. 11the larges behavior was

would be a strong characteristic of a glassy stétshould given in Egs(7)—(9)]. There is thus a crossover towards the

not happen in the liquid where one expects both answers t8/tiC isotropic behaviofe.g., in the Bragg glagsassuming
be the same, but in the same trivial sense as for a singlg® dynamical phase transition asdecreases which would

particle). On the other hand, if no clear history dependence i£oMPlicate the analysis.
found it has interesting consequences. We assume in the fol-

lowing that the global orientation of the lattice is unchanged. R RZu(V)
T_hen the first consequence is th_at ther_e is a _well—defmed \‘RC{V)
history-independent global-f function. This function how- o B

ever is nonanalytic in a large region of tig,f, plane. . ;:‘;’;;w N dnamicalperiodic

vy(fy,fy) should remain zero at least in the regidp RISC

<FY(vy(fx ,fy)) and similar regions near each of the princi- a ‘ dynamical

pal symmetry axis of the crystal. This is clearly the result of :;me ot random manifold ¢
the FRG calculation presented here. But then one may also  gis° ~

guess that it may be nonanalytic too along other lattice di- T satc Larkin dymamical
rections(though it is possible that some of the higher sym- — | Tl Larkin
metry directions be screened by lower ondhe transverse a| | Bragg(lass 1;",
mobility as a function of the angle and the force should ¥ o L

exhibit a complexand rather strangdehavior which would
be interesting to investigate further. A second interesting 5 12 crossover as a function of the length scBl@nd

consequence would be that if in the above described firghgitdinal velocityv from the static Bragg glass behavicat
experiment one choosesfg>0 smaller thanFY(v,), the  smallv) to the moving glass behavigat largev). The dashed line
lattice would first glide in the direction of the applied force represents the crossover between these two regiReR s
(as small time perturbation theory would indigabeit would ~ =c/v. The dynamical Larkin lengtRY(v) as a function o) and
soon change its velocity to lock it along a symmetry axis. Itthe transverse translational order lenBi{{v) are indicated as plain
is quite possible that this locking effect exists and could be @urves. This is valid in the collective-pinning regirRE*>a where
possible explanation for the behavior ubiquitously observedRs® is the static Larkin length.
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This crossover can be explicitly estimated using the FRG 66 (RiCSO)Z
in Secs. VI, VIII A, and physical arguments. It is convenient T TR L
to discuss it using Fig. 1@lso useful for studying the cross- ¢ 11

over in the correlations—see the next sectidret us first  one finds that the ratio of the two crossover velocities is
discuss it for simplicity with isotropic elasticitg,;= Cgg v11/vgs= C11/Cgs (UP to logarithms ind=3). One sees from
=Cyq=C. There is a crossover length sc&g=c/v below  Eq.(13) that a measure of the transverse critical current may
which the moving glass looks very isotropic and very similarjead to interesting information about the elasticity of the lat-
to the Bragg glass. This length scale is represented in Fig. 1gce. To estimate the transverse critical force in all regimes
as a dashed line. Increasing the length s&akarting from  gne could compute the dynamical Larkin lengthgs-r,

a, at fixedv, one is first controlled by the static behavior ysing the complete formul@5) which contains botlesg and
until reaching that line R<R,) and then one is controlled ¢, contributions.

by the dynamical moving glass regime R R.,. Similarly Finally note that one can make a simple minded argument
one can also represent the Larkin length iat0 RZ°  showing directly in Eq(5) that the convective term should
=(c?r#/A)Y4=9 (in d<4). The crossover velocity? cor-  not change pinning much at small Indeed starting from the
responds to the velocity at whid®= R, when one has also casev =0, where one has a pinned staﬁgto(r) and treating

(13

RY=R°. One finds the convection term as a perturbatigvhich should be valid
at small scales one sees that this terms acts on the0
vy =(A/cr?)|n(c2rf/aA) (d=3), pinned state as an additional quenched random force. Since
there is a critical forcé (v =0) in that case, it is intuitively
v¥=c(AlcrHMA4-D  (d<3). (11)  clear that this term does not destroy completely the state

These results are valid wheR$*>a), i.e., in the collective- Uz (1) unti UrfiRCNfc' This argument gives back the
pinning regime for the statics. We denate= min(r; ,a), i.e., correct value foug .
if ri~a one can simply replace; by a in all the above

formulas. Thus fow<v} the transverse critical current be-
comes of order the longitudinal ori%lf":crf/(Rf")z. It is Due to the presence of the static disorder one expects

useful for the purpose of comparison with experiments tginbounded growth of displacements in the moving glass.
comparesuv* with the longitudinal critical forcé='*°. One The relative displacements induced by disorder in the mov-

C. Displacements and correlation functions

finds the general relation ing system can be first computed in naive perturbation theory
using Eq.(10). One finds
v* Riso
Z'SZ B r_c (12 B(x,y)~A 7 | <X (14)
© f VR oo T uy?

: - . : B *
with  logarithmic ~ corrections in d=3, 7vg where H(0)=cst andH(2)~z3 92 at large z. Thus x

_ isof piso iSO i ; . ol

=Fe (RC Ir)In(R;a). This result 'f remarkable. since for scales ay? and the displacements are very anisotropic. The
weak disorder one has usually R it shows that for  55ve formula, if taken seriously, leads to displacements
a system with isotropic elasticity, the transverse critical forcegrowing unboundedly fod<3. This is similar to the Larkin
should remain of the order of the longitudinal one up until 5 cylation for the static problem. As in the statics it indi-

very far above the longitudinal thresholdr,t>Fc) (very  cates that the crystal is unstable to weak disorde<ir8 and

high up in thev,-F, curve in Fig. 4. that perfect transverse long-range order is destroyed. Note
_ The situation is different whegge=<Cy;. In that case tWo  hat due to motion the upper critical dimension is ndw
distinct crossover velocities exist which we denoted@¢  —3 instead ofd=4 for the statics. As in the statics. the

andvy;. This is because the pinning properties of the largeypove formula and perturbation theory breaks down above
velocity moving glass are determined by the compressiofky ang an RG approach is absolutely necessary to compute
¢, while the pinning of the static Bragg glass are detery,e gigplacements. Using an RG calculation one finds that
mined by She‘i"écﬁg- The critical current in the statics is then e penavior of displacements is indeed controlled by a fixed
Fe :Ceerf/(lgc_o) with Re"=rfcggCaq/A in d=3 andR:™  hoint characteristic of the moving glass phase. One finds that
=TrCes/(A) " in d=2 (we have neglected the contribution the correlation function of displacemeraseraged over dis-

of compression modgsThis critical current is much larger order can be rigorously separated into two paBgr)
than the one which would be inferred from compression:m: Bre(r) + By, (r) whereBy, (r) comes

modes aloné ;;. Thus wherv <vg the transverse critical - grom thenonlinear partof the pinning force. While this part
force is of the order of the isotropic static of¢°. For  (computed in Ref. 4is dominant in the Bragg glass in the
vee<v<v1, the transverse critical force decrease® 8-  moying glass this contribution is subdominant at large scales
creases fronF:° to F¢ 15 whereF y; is given by the same  (although it can be dominant at intermediate sdatesl we
formulas as¢° but with cge— 44 and is thus much smaller neglect it for now. The main contribution comes from the
(with the correspondin& ;; also obtained froniRS° by sub-  static random forcavhich is generated both alongand x
stituting cgg—C44). Forv>wv, the transverse critical force is direction. The generation of such a random force, forbidden
given by the large velocity resulsee Eqgs(7)—(9)]. While in a static system, occurs here because of the nonpotentiality
v is still very large,vgg can be within experimentally ac- induced by the motion. The complete expression of the gen-
cessible order of magnitude: erated random force is given in Sec. VIl &ee also Sec.
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FIG. 13. Renormalized random force strength as a function of the vel@atyt) and resulting amplitude in displacement correlations
(left).

VI). This random force gives a contribution to the displace-The question of the divergences of peaks associated with

ment which at large scale has the same spatial dependenkg>0 is discussed in the next section. #=2 algebraic

than the one naively extrapolated from Larkin regime for-growth of displacements imply a stretched exponential decay

mula (10) and thus Eq(14). One thus finds of Cy(r) and thus that the peaks in the structure factor are
rounded(as the dotted line in Fig.)3

A d=3 The roughness of the channels define an additional length

Bre(r)~ 4mcnu Incy), scale at which the wandering becomes similar to the lattice

spacing. As in the statidBragg glaspit is possible to esti-
B C Ar o4 Ag -0 qe3 mate these lengths. At large velocity these lengths are large
RA()~ d47-rc,ﬂ, yu 4arcqu X ' <3. and at this scale the system is very anisotropic. A simple

argument a la Fukuyama-Lee, similar to the one in Ref. 45
gives

(19

At large scales the random force contributionB@r) domi-
nates. Although the formula resembles the perturbative one,
the amplitude of the random force is given by tle@ormal-
izedAg which has been extracted from the RG analysis andit largev one can also obtain these lengths by looking at the
is determined by the nonlinear pinning force. In genéval  displacements generated by the random force. For symall
can be different from the perturbativk. In particular Ag <uv} there is a long crossover since at small scales the sys-

RI~(avc/A)V3~9, Ri=u(RY)?/c. (18)

must vanish wherv—0. Although Ag is a nonuniversal
guantity(contrary to the behavior in the Bragg glasse can
still obtain a reliable estimate fakg by studying the cross-

tem looks more like the Bragg glass. As a consequence the
estimates forR, change. This illustrated in Fig. 12 is
determined roughly bR.,=RY.

over depicted in Fig. 12. If the velocity is smaller than the | et us summarize the main regimes as a function of the
crossover velocityvy the random force is renormalized velocity of the moving glass, as can be seen in Fig. 12. At
downwards according to the behavior in the Bragg glassarge velocityv>v¢ the system is already anisotropic at the
phase. ThusAgr will be smaller than the bard. This is  scaleR, and pinning and correlations are determined directly
illustrated in Fig. 13. by the asymptotic moving glass behavior. Rf<v<uv¥

The amplitude of the displacemeritsg., the prefactor of  the system is isotropic at the Larkin length and pinning is
the logarithmic growth in Eq(14)] generated by the renor- similar to the static, but the system is still very anisotropic at
malized random force is maximum around the veloeily.  scalesR). Finally for p<v?* the system is almost staticlike
Even at this velocity the displacements can be estimated %b to R, and isotropic. The random force is enormously
Bre(r)~rf IN(/RY) in d=3 and Bee(r)~r{(y/RY) in d  reduced, and transverse barriers are very large. Finally note
=2. At all other velocities the amplitude is much smaller. that in each configuration of the disorder the random force
Given the form of the displacement correlation function thealongy and the transverse critical force compete. The phys-

moving glass has quasi-long-range translational orded in ics of the moving glass is determined by this competition.
= 3. One finds for transverse translational order correlations:

RY A K2A D. Decoupling of channels and dislocations
R
Ck, k,=0(0y,2)~ \/ﬁ K=—87Tyvc77- Most of the properties of a moving structure discussed in
y“+2%(C11/Cad) the previous section were obtained from the moving glass

equation(5), which contains only the transverse displace-
In particularAg = ma®Ag/(2vcn). The dependence in the mentsu, . They thus rest only on the channel structure itself
coordinatex is CKy,KX:o(X,O,O)W(Rg/X)AKQ and thus one and not on the precise motion of _the individual particles
finds an anistropic divergence of the Bragg peaks correglong. these che_mnels. Let us now discuss the proplem O.f the
sponding tok.—0 of the form coupling of particles between different channels which is im-
P 9 1%« portant for the issues of topological, translational order, and
structure factor.
An outstanding problem in the statics is whether or not

topological defects are generated by disorder in an elastic

1 1
2 2N2-A2 T T 2—A(2-
(C1aly+Cag0;)" "K' g "%

S(g)~ (17)
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structure. Using energy arguments it was predicted that due Ky Ky
to the periodicity a lattice is stable to dislocations at weak

disorder ind= 3 giving rise to the Bragg glads.The similar

guestion of whether disorder generates dislocations arises o o
also for moving structures. At first sight the situation looks
even more complicated to tackle analytically and further-
more precise energy arguments cannot be used because the ® ®

system is out of equilibrium. However, as is becoming clear

from the discussion in the previous section the issue of the

creation of dislocations can now be discussed here in terms

of decoupling of channels. Even in the presence of disloca- (a) (b)

tions our picture of pinned channels should remain valid as

long as periodicity along is maintained. Before the channel  FIG. 14. Bragg peaks for the two realizations of the moving
structure was identified in Ref. 73 it was unclear how dislo-glass:(a) moving Bragg glass with quasi-long-range order and per-
cations could affect a moving structure. The existence ofect topological order(b) Moving transverse glass where channels
channels thematurally suggests a scenario by which dislo- have decoupled and quasi-long-range order in ytheirection is
cations appear. In fact the results of Ref. 73 naturally sugmaintained.

gests that transitions from elastic to plastic flow may now be

studied asordering transitionsin the structure of channels. In d=2 displacements grow algebraicallsee Eq(15)].

Let us examine first whether dislocations appear in thelhus, even at weak disorder or large velocities, it is much
moving Bragg glass inl= 3. The relative deformations due more likely that dislocations appear at large scale. Presum-
to disorder grow only logarithmically with distance, resulting ably this scale corresponds to the displacements being of
in quasi-long-range order. At weak disorder or large velocityorder a. One then easily sees that dislocations appear be-
(since the relevant parameter &dv) the prefactor of the tween the layers. Indeed
logarithmic displacements is very small. This suggests, by
analogy with the statics, that dislocatiod® not appear ([ug(LY) —u,(0)]?)~a? (20)
leading to a stable moving Bragg glass at weak disorder or
large velocity. In that case the structure factor exhibits Braggs controlled by the random force alongand by cgg (the
glass-type peakéat all the small reciprocal-lattice vectors  displacementsi, are down by a factoRY/Ri—see below
Note however that due to the anisotropy inherent to the moand Sec. V B. In this regime blocks of channels of variable
tion the shapeof each peak is highly anisotropic the length transverse size?, (depending on the strength of the disoider
RX being much larger thaRY . Upon increase of disorder the gre separated by dislocations.
first likely transition corresponds to a decoupling of the  The peaks at vectors with a nonzefg thus allow us to
channels, while the periodicity alongis maintained. This distinguish between the moving Bragg glass and the moving
corresponds to the loss of divergent Bragg peaks afransverse glass. This is illustrated in Fig. 14.
reciprocal-lattice vectors with nonzero components along the | systems with a small ratiogg/c,; and stronger disor-
direction of motion. The peaks at reciprocal-lattice vectorsyer the peaks with,>0 have a tendency to be smallend
alongy still exhibit divergencescomputed in the last sec- decoupling becomes easier ag becomes larger than,).
tion). This particular case of a moving glass was observegngeed the displacements at large scaéesl thus the decay
numerically ind=2 and called the moving transverse gfdss of translational long-range ordeare controlled by the ran-
(see next sectign This phase has also a smectic type ofgom forces alongy, A,, and alongx, A, (they remain
orr]der. (?n_e qtlrl]_GSti?]n is W_:jﬁ_thir particles can hOPI_ﬁeTWe‘t?n tgatistically uncorrelated—see Sec. VII).AThese random
channels in this phase. This however seems unlikely at zer i T
temperature prO\F/)ided the channels are well definegj/. In thfébrceS Z(SLdlfferently only andlux.dlndeedt; only(;PBX ((fhelar,
absence of such hops this decoupled phase can still be dﬁ?e) anayy _(compressmrcll) ead to unbounded disp ace-

ents(e.g., ind=3). They random force thus acts mainly

scribed by Eq(5) and has nonzero transverse critical current.On u, via compression, and therandom force mainly omi,

Increasing further the disorder should destroy even the chan- o
nel structure leading to a fully plastic flow. via shear. Though generally one hag <A, at weak dis

An estimate of the locus of the transition between thelrde" If the ratioces/cyy is small this could strongly favor

moving Bra lass and the moving transverse glass is ivethe weakening of th&,>0 peaks and channel decoupling,
9 999 9 9 9VER estimation ofA,, is performed in Sec. VIII A.

by a Lindemann criterion. For the statics such a criterion has The problem of the behavior of dislocations in the moving

been shown to accurately predict the positional decoupling in lass svstem is of course still op®Pland constitutes as for
a layered structur®4® Here we extend this criterion to the o y peT,

dvnamics the statics one of the most important issues to understand. It
y is noteworthy, however, that although these issues are of
<[ux(y=a)—ux(0)]2>=cfa2. (19 course important to obtain the structure factors and as such,

) _ they do notaffect the main physics of the moving glass.
Decoupling of channels comes from displacements along the

direction of motion. This scenario makes sense since dis-
placements along are likely to dominatésee the discussion
below and Sec. V B This is consistent with edge disloca-  Similar arguments also apply in the presence of correlated
tions appearing first. (columnard,= 1) disorder along the direction. We predict

Kx Kx

E. Moving Bose glass
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in that case the existence of a “moving Bose glass”din

=392 whose upper critical dimension i$=4. Indeed the Ay
same calculation as above, y

dg.dg,dq, S

Bre(y)=A “2n? /,,f
[-coga,y)] ¥
X 8(qy) N AY 'r’

() + (Cidy+ )’
now Yyields a fast growing displacement. Thus the disorder !
effects are stronger and one can expect thermal effects to be A Fy

weaker for correlated disorder. The situation resembles the
d=2 case aff=0. One can still predict a transverse critical
current. Full topological order is unlikely so one should
rather have a moving transverse glass type of order ajong
with a localization effect of the layers and thus a transvers
Meissner effect alony. A detailed study of this moving
Bose glass phase will be given elsewh& a similar way,

the effect of correlated disorder on another dissipative glasgnt for determining the dynamical phase diagramsdIn

FCy (apparent)

FIG. 15. Transverse critical force as a function of the veloc-
ity. v-f characteristics at finite temperature. The vertical dotted
fine is the crossover force below which the barriers saturaisee
text). Above f* the characteristics are highly nonlinear.

system(nonpotential was found to be quite strorfg. =2 the thermal displacements are lafgee Sec. V.
The main effect of temperature is to modify thef char-
F. Moving glass at finite temperature acteristics. One findéSec. V) that the asymptotic mobility

Thus the moving glass, in its different forms, described by“R Is nonzero. However at lO.W .temperaj[ure_s or at ve_Iocities
Eq. (5) is a new disordered fixed point &t=0. An important not too Iarge thef,'f cha}ra?,tensncs remain highly ”0”!"."“-‘&“
guestion is to understand what is the effect of thermal fluc- here '3 still an eﬁectlye (pr apparentiransverse critical
tuations. Indeed in moving systems, as can be seen by peie'c€ Fe(T) as shown in Fig. 15. At low temperature the
turbation theory, the fluctuation dissipation theorem is vio-MObility g is very small. If the velocity is not too large
lated and a generation of temperature by motion occurs. This-vc there are several regions in thef curve. Below the
corresponds to the physical effect of heating by motion. Notdransverse pinning force slow motion due to effective barri-
however that aff=0 a system in the absence of thermal€rs exist. They are a growing function off1hntil one
fluctuations retains perfect time order which implies that no'eaches the finite-temperature moving glass fixed point. In-
temperature can be generated. Thus the heating effect is n@géed reducing the transverse force probes larger and larger
well described by a “shaking temperature” as introduced inlength scales. As depicted in Fig. 12 one is dominated until
Ref. 72 which would be nonzero evenTat 0. Although the  the scaleR,, by the Bragg glass fixed point for which tem-
temperature grows due to motion, this effect competes witiperature is strongly renormalized downwards. In this regime
the fact that naive power counting in glassy systems suggest8ev-f curve is nearly similar to the one in the static Bragg
that the temperature is an irrelevant variable flowing to zeroglass and thus highly nonlinear. This corresponds to a creep
The competition between these two effects is highly nonf€gime. For smaller forceg.e., when probing scales larger
trivial and leads to physics which need to be investigated fothanR,) one crosses over to the moving Bragg glass fixed
the whole class of moving g|asses of Sec. Il B. Remarkab|yp0int. At that pOint the FRG calculation shows that the bar-
for this class of systems, different finite temperature fixediers saturate. Thus below the scéfeone recovers a linear
points exists. In the case of driven lattices, we find a fixed-f charactersitic, with an extremely small mobility. Note
point at finite temperature in d=3— ¢ expansion andl that the scalg* which corresponds to the crossover scale
=2+ e expansion. Similarly for randomly driven polymers R¢ can be much smaller than the critical transverse pinning
very similar fixed points are obtainédThus a large class of force if v<vg .
dissipative glasses exists at nonzero temperaturel=i3, In a realistic system wheregg<c,1, v} splits into two
the fixed point is slightly peculiar since both temperature andlifferent crossover velocities as discussed in Sec. Il B.
disorder flow to zero but can be analyzed along the sam@&/henv <uv; barriers are very high as in the static problem
lines. The properties of the finite-temperature phase are corand there is a noticeable transverse creep regime as shown in
tinously related to theT=0 one. In particular the finite- Fig. 15. Sincev 4 is very large in practice this regime applies
temperature moving glass exhibits the same type of rougto a large range of longitudinal velocities. Wher v ¢ one
channel structure. Channels are slightly broadened due tenters a regime where transverse creep becomes identical to
bounded thermal displacements around the average channgk isotropic one.
position. Thus the asymptotic behavior of the displacements These properties show that even at finite temperature the
and structure factor, still remains similar to thaffat 0 dis- moving Bragg glass remains different from a perfect crystal.
cussed in the previous sections. There is, in addition, a corFhe definition of what is “glassiness” in a moving structure
tribution of thermal displacements. b= 3 they are small, is a concept which has to be defined. In that respect too close
and one sees that the RG methods developed here allow usdoalogies with the statics can be misleading. A first obvious
estimate more precisely the thermal heating effect, and tglassy characteristic is the loss of translational order, con-
distinguish it clearly from the disorder effects. This is impor- trary to the crystal. Note however that a similar effect could
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be obtained by adding a random force by hand to a perfect . d=3
crystal. However the response of such a structure to an ex-
ternally applied force would bédentical to the one of a
perfect crystal. Thus the glassy properties of the moving
Bragg glass are necessarily stronger than such a state. The
same question of history dependence as discussed above at g Bragg

&1, [ Plastic
&4 flow

o Vortex glass
¥

T=0 can be asked. If these effects exist the question of the glass
finiteness of the barriers might not be as important an issue
as in the static case. Note however that in some other ex- .
. . ! : o0 Mgving F
amples of nonpotential dynamics barriers can indeed be R Bragg
infinite 2 Since the finite-temperature moving Bragg glass is 2 alass

described by a new fixed point which still contains nonlinear I 2
disorderA(u) the system remains obviously in a glassy re- S -~
gime. Some correlation functions of the system, such as four-
point correlgtio_n_functions, neces_sari_ly depend_ on the exis- FIG. 16. Schematic phase diagram in the temperafureisor-
tence of this finiteA (u) anq exhibit infrared divergences _der A, applied forcef variables. Ind=3 for very weak disorder,
leading to anomalous behavior. Others, such as the two-pOilgince the moving glass is likely to be topologically ordered, the
response functions, have these divergences cut by the finigssibility of a depinning without a plastic regime exists. Note that
velocity. This is reminiscent of what happens in the staticghe moving Bragg glass then should extend all the way down to
where the order parameter of the glassy phase is the fluctugmall f. We have not represented intermediate phabexatic,
tion of the susceptibility® whereas the averaged susceptibil- moving transverse glasor clarity. Note also that the lower plane
ity itself remain inocuous. A detailed investigation of higher corresponds to a small but nonzexoThe connections between the
order nonlinear response clearly deserves further studiesarious phase boundari¢sside the square regipiis schematic.
Note finally that for driven latticéand for experimental pur-
poses, the predicted existence of higleven if asymptoti- velocity, the system should reverse back to the moving
cally finite) barriers in a large regime of velocities is a totally Bragg glass(MBG), since the effective disorde/v de-
unanticipated property of disordered moving systems. creases. At strong disorder and finite drive the liquid extends
to zero temperature.
These different behaviors are also represented along each
G. Phase diagrams plane in Figs. 17—-19. In these figures we also have indicated
Having established the existence of the moving Bragghtermediate phases such as the Moving transverse glass. De-
glass ind=3 and of the moving transverse glasslin 3 and ~ t€rmining the exact shape of the various boundaries is still an
d=2 and having discussed their properties we now indicat€Pen and challenging problem, in particular in the square
in which region of the phase diagram these phases are ef&9ion in Fig. 16.
pected to exist. We study the phase diagram as a function of ©One of the strong features that emerges from these phase
disorder, temperature, and applied fotoe velocity). diagrams is the fact that the Bragg glass is able to survive
Let us first discuss the casle=3. We have represented in
Fig. 16 a schematic expected phase diagram as a function of T=O
temperature, disorder, and applied force. For clarity we have
not represented intermediate phagasthe various forms of A
the moving glass Let us now discuss the main features of A

Fig. 16. At zero external forcE =0, one recovers the static ’

phase diagrarf®*’ There is a transition at finite disorder ’ '
strength between the Bragg glass to an amorphous glass Amorphous /I Plastic
where dislocations proliferate. Upon applying a force the Glass P

Bragg glass phase becomes the moving Bragg glass in the - / \g“MOVng
AN ! . Transverse
hexatic?. ;- Glass

~

low velocity regime(creep regimgand continuously extend

to the moving Bragg glass at higher drives. At weak enough
disorder the continuity between the two phases suggests that
depinning should be elastic without an intermediate plastic
region. Upon raising the temperature the moving Bragg glass
melts to a liquid, presumably through a first-order dynamical
melting transition. Thél =0 plane contains a pinned region
for F<F.(A) and it is natural to expect the Bragg glass to
still exist even for a finite forcd=<F. until the depinning
transition. At higher disorder dislocations appear and the
Bragg glass is replaced by an amorphous glass. The nature of
this amorphous glass is still uncle@ee, e.g., Ref. 47but it FIG. 17. Schematic phase diagram in the fofcelisorderA in

is sure to contain topological defects. Thus the depinning ofi=3 at T=0. The behavior in the square region is unclear. An
this amorphous glass should be via a highly disordered filainteresting possibility would be a direct depinning of a hexatic into
mentary plastic flow. Upon increasing the force and thus thehe moving transverse glass, but other scenarios are possible.
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A A d=3

A A
Plastic i
Pinned
............ ' v>0 Amoroh Plastic
L orpho
Moving ® flow
Transverse glass T=0
Glass Moving
Transverse
glass F
Liquid
T q

-
T T
FIG. 20. Schematic phase diagram as a function of fdrce

FIG. 18. Schematic phase diagram in the temperafyreisor- ~ temperaturel, and disorded\ in d=2. There is a very long cross-
der A in d=3 for a fixed velocity(not too small. This phase dia- over not represented here.
gram is the dynamical version to the static of®ntaining the
Bragg glass, the vortex glass, and the field-driven trangitibhe  state is a moving transverse gldgsd=2 is above its lower
MBG can either thermally melt &t (via a first-order transitionor  critical dimension. At any finite temperature, one can use
decouple because of disorder. the RG flow of Sec. VII. Since the temperature renormalizes

abovethe melting temperature and disorder flows to zero the

motion by turning into the moving Bragg glass. On the otherresulting phase should be a driven liqui§ee Fig. 20.
hand other, more disordered phases such as the amorphous
glass(vortex glasgare likely to be immediately destroyed at
finite drive (and finite temperatujeand to be continuously
related to the liquid. Some of the predictions of the moving glass theory con-

In d=2, the static phase diagram is still unresolved. Atained in the short account of our wdikhave been later
reasonable assumption is that there is no topologically orverified in several numerical simulations dé=2 andd= 3.
dered phad&®21%although this is far from being firmly The static channels were clearly obseRfet T=0 ind =2,
established. Accepting this as a starting point for the stati@nd then in Ref. 95. Both Ref. 89 and Ref. 96 showed clear
phase diagram, we can now extend it to the dynamic casevidence of the transverse critical force B0 (see also
Most of the transitions then reduce to simple crossovers. ARef. 95. The transverse critical force was found to be a
F=0 and finite disorder dislocations are expected to bdraction of the longitudinal critical force which is a reason-
present. The resulting phase should thus be continuouskgble order of magnitude. The effect of a nonzero temperature
connected to the liquid, although it can retain good shorfl>0 weakened the effect of transverse barfeis d=2.
distance translational order. At=0 there is a pinned phase Some nonlinear effects still persisted for low enough trans-
until F., which should depin by a plastic flow. At larger verse force and temperatufe Such an observation is in
drive disorder effects become smaller and one expects thegreement with the discussion of Sec. Il F and can be inter-
system to revert to a moving glass state. As discussed earligereted as a long crossover.
due to the presence of disorder induced dislocations, this Sharp Bragg peaks were observed in the direction trans-

verse to motiof? at T=0. However the order along the
AL

H. Comparison with numerical simulations

direction was found to have fast decay. This is consistent
with a decoupling of the channels, and the resulting state was
termed the “moving transverse glas8”Such a decoupling
is in agreement with the expectations from the theory pre-
sented her¢Eq. (20)], as illustrated on the phase diagram.
This observed phase in the simulations is presumablyTthe
e =0 moving transverse glass fixed point analyzed in Sec.
Liquid Il D which does have a nonzero transverse critical force.
: This is in fact confirmed by the observation of Ref. 96 of a
smectic type of order where well separated dislocations exist
between the channéfs’! consistent with the expectations
- discussed in Secs. Il A and lll D and summarized in Fig. 8.
,];n T The absence of long-range order was also observed in Ref.

F Moving
C| Bra

b - (N

Glass ~

Bragg Glass

97 in a stronger disorder situation.
In d=3, a simulation of a driven discrete superconducting
FIG. 19. Schematic phase diagram as a function of féreed XY gauge modéP finds not perfect but still well defined
temperaturel in d=3. T,, is the melting temperature of the static Bragg peaks al>0 (near the melting a result which indi-
system. The Bragg glass phase also existB=a0 for f<F,. cates that the driven lattice is in a quasiordered moving
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Bragg glass state. The melting is found to occur at lowedeed, as suggested in Ref. 73, the transverse barriers may
temperature than in the pure system and the transition texplain the anomalies recently observed in the Hall effect in
remain first order up to higher fields. This is consistent witha Wigner crystal in a constant magnetic fiéfd! The quali-
the discussion in Sec. Il G. In another study on the simpletative analysis suggested by the moving glass theory is as
d=3 driven XY model atT=0,%° it was found that indeed follows. An electric fieldE, is applied in along thex direc-
there is a phase without topological defects at large enougtion. The Wigner crystal starts moving alongwhen the
drive. If it carries to the lattice problem it would indicate that applied field is larger than a “longitudinal” threshold,
indeed there is @=3 moving Bragg glass state. >E.. It produces a current alorg, |,=qu, which is di-
Finally note that there are also very recent simulations ofectly measured. Below the longitudinal threshold a highly
a lattice with a periodic substrat&®This is a simpler case nonlinear regime is observed where activated motion domi-
where a transverse critical current exi§itsdoes exist for a nates. Since it is moving in a high magnetic field, the moving
single particlg. It would be worthwhile to also investigate Wigner crystal is submitted to a transverse Lorentz force
this case in all details. FL=qu,B. The geometry of the experiment is such, how-
All the above numerically observed effects seem to be irever, that no transverse motion is permitted in the stationary
qualitative agreement with the predictions in Ref. 73. How-state(because of zero current boundary conditjpasd thus
ever, it would be very useful to be able to make a morey =0. Thus the transverse Lorentz force must be balanced
quantitativecomparison. This should now be possible, as weby a transverse electric field, which is thus generated, and is
give here more detailed predictions than the short accountheasured as the Hall voltagg, . In the absence of trans-
(Ref. 73. Among the various interesting topics to check areyerse pinning the Hall voltage i,=LBI,. Remarkably, it
the algebraic decay of translational orderis 3, a detailed is found in the experiment that the actual measured Hall
study of the dependence of the transverse critical force on thgoltage is indeed/, = LBI, for smalll,, then experiences a
velocity, the exponen# of the transverse depinning, a mea- plateau, and finally starts again growing linearly with a slope
sure of the barriers at low temperatures, a characterization Qf\/y/d|X~|_B_ We have interpreted the different behaviors
the history dependence, and zero and at low temperature. ypon increase of, as follows. For small, one is near the
longitudinal depinning and it is probably a plastic flow re-
I. Comparison with experiments gime with little transverse barriers. Then upon motion, a

The moving glass picture has also been confronted witiiransition to the moving glass occusee Fig. 11 The ex-
experiments. Since these experiments need the characterizgtence of a nonzero transverse critical fofgg>0 then im-
tion of a moving structure they are challenging. The transmediately implies that there are sliding states wifl=0 as
verse critical current can, in principle, be observed in transiong asF)L,< F§ and no Hall voltage is necessary.
port experimentgand may show up as an hysteretic effect Obviously more experiments are needed, to investigate in
These are difficult though because of dissipation in the londetail the properties of the moving glass phase. It would be
gitudinal direction. interesting to probe further the channel structure by direct

Decoration experiments on timovingvortex lattice have imaging techniques. In particular one may investigate the
been performed recently by Marchevskyall® In these degree of reproducibility of the channel pattern. In particular
experiments the external field is slowly varied and vorticesupon sudden reversal of the velocity the channels should be
are decorated while they move. The decoration particles thudifferent The question of order and quasiorder can be probed
accumulate on the regions where vortices are flowing prefin experiments such as neutron scattering, flux-lattice imag-
erentially. The lattice is observed to move in the symmetrying magnetic noise experiments, NMR experiments, and
axis direction and relatively large regions of highly corre-more indirectly in transport measurements. Other imaging
lated static channels are observed. These channels do rtechniques such 8-SR NMR electron holographyf® can
look like “plastic channels” but much more like the elastic also be used. Finally it would be interesting to check for
channels predicted in Ref. 73. Note however that some dissimilar effects in the presence of columnar defects since, as
locations alongy appear(defects in the layered structyre discussed in this paper we predict the formation of a moving
This may be due to strong disorder effects or to the geometripose glass.
of the experimentsince the advancing front geometry is in
the shape of a droplet some dislocations are unavoiglable
Another set of experiments in NBgealso exhibiting chan- IV. THE MODELS AND PHYSICAL CONTENT
nels, was reportet?? Note that there has also been several
decoration experiments performguist after the current is
turned off!® These can, in principle, probe the defect struc- Let us first derive the equation of motion for a lattice
ture of the flowing latticéthough one may worry about tran- submitted to external forcé. We work in thelaboratory
sient effectsbut cannot show the channel structure. Finally aframe This offers several advantages that will become obvi-
recent experimeft* on superconducting multilayers found ous later. We denote bi;(t) the true position of an indi-
that the flux-flow resistivity exhibit quasiperiodic oscillations vidual vortex in the laboratory frame. The lattice as a whole
as a function of the field. This was interpref®tin terms of ~moves with a velocityy. We thus introduce the displace-
dynamics matching of the moving vortex lattice with the mentsR;(t) =R+ vt+u;(t) where theR? denote the equi-
periodic substrate. This is compatible with the presence of &ibrium positions in the perfect lattice with no disorder.
quasiordered structure in motion. represent the displacements compared to a moving perfect

Other effects of the moving glass and transverse criticalattice (and corresponds to the position of tith particle in
force can be found in systems other than vortex lattices. Inthe moving framg The definition ofv imposesZ;u;(t)=0

A. Derivation of the equations of motion
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at all times. We furthermore assume that the motion is over-
damped. The exact equation of motion can then be obtained Hpin:f drV(r)p(r)= —PoJ drV(r)d,u,
from the HamiltoniarH by

+poj dr >, V(r)elK-tr-vt-urn] (25)
du(t)  oH K=o

e —E+f—ﬂv+§i(t), (22

where K spans the reciprocal lattice apg is the average
density. In Eq.(25 we have made the approximation
) o . _ ul ¢(r,t) +ot,t]~u(r,t). Such an approximation is exact up
where 7 is the friction coefficient and the thermal noise sat-4 higher powers obu, negligible in the elastic limit, as for
isfies £;(t) £;(t") =2T 56 6(t—t"). The Hamiltonian is the the static cas&> However the dynamic case is more subtle
standard Hamiltonian for periodic structure in a random PO-since such terms could generate relevant terms when com-
tential H=Hg+Hgs. He is the standard elastic Hamil- bined with a nonzero velocity. This is the case for example
tonian, andH s describes the interaction with the random of the so-called KPZ terms generated through cutoff effects.
potential Since it is hopeless to try to tackle from first principles all
such additional terms the only safe procedure is to assume
that every term allowed by symetry is generated, and has to
L _ _rpo _ be examined. We proceed with such a program in Sec.
Hais frV(r)p(r) 2." frV(r)ﬁ(r [Ri+vtru(®l), VIl B. For the moment we only retain the dominant terms of
(23 Eq. (25). If one then takes the derivative with respect to the
smooth fieldu(r,t) one obtains for the equation of motion in

. . ——— the laboratory frame
where the random potential has correlatiodér)V(r') 4

=g(r—r’) of ranger;.

In order to use the standard field description of the dis-  #ndui+ nv-Vui=— j 'd)aﬁ(r—r’)uf,tﬂt Foin(rt)
placemenu instead of focusing on the equation for one par- '
ticle, one rewrites Eq(22) as +f,— U tia, (26)

where® ,4(r—r’) is the elastic matrix. The termv-Vu,

du;(t) SHg 0 comes from the standard Euler representation when express-
L T A fr&V(I’)ﬁ(r—[Ri +tot+ui(t)]) ing the displacement field in the laboratory framezuv , is
the average friction and in the continuunis determined by
+f— v+ {(R(1),1). (24)  the condition that the average wfis zero. The thermal noise

satisfies in the continuum limit Z,(r,t){s(r",t")

In doing so one would get the same thermal noise for two 2T 76,581 —1") 5(t~1") and

particles being at the same place at the same time, instead of

the two independent noises of E@2). Since such a con- FPh(rt)=— 5Hpin/5ua(l’,t)=V(r)p02 iK,
figuration cannot happen, going from E@2) to Eq.(24) is K
essentially exact. % iK-Tr—pt— DD =pV .V

As for the static cadé*°the difficulty is to take the con- XK -[r=vt=u(r, O]~ poVaV(r)
tinuum limit of Eq. (24) since the disorder can vary at a (27)

much shorter scale than the lattice spa@ng o proceed one is the pinning force. Note the difference between our Eq
follows the same steps than for the static case, suitably mod 26) and the one der.ived in Ref. 70. which does not contaiﬁ
fied to take into account the fime dependence of the displac he convective term. This diffe}enc,e comes simply from a
ments. One first introduces aosmooth interpolating dISIOIaCedifferent definition of the displacement fields. They consider
ment fieldu(r,t) such thf';uu(Ri +vt,_t)=Ui(t) [see fOme'a displacement fields labeled by the original position of the
_(A2) of Ref. 49. The field u(r.1) |s_t_he smoothest f|_eld particle (i.e., the actual position of the particle ist+u)

interpolating between the actual positiangt). All coordi- =~y hereas for ug denotes the actual position of the vortex

natesr arr]e expressed in the Izboratorg frameh The field,,nsigeredi.e., in the presence of an external poteriahe
u(r.t), whose components we denote by(r,t) thus ex- potential acting on the vortex at pointis V(r) instead of

presses the displacement in the moving frame, as a functioO(HU) for Ref. 70. In Ref. 106 we give a more general
of the coordinates of the laboratory frame. As for the static g iyation of Eq'.(27). valid even for cases where the equa-

if one assumes the abs_ence qf dislocations at aII_ times the of motion isnot the derivative of a potential.

particles can be labeled in a unique way. One then introduces

the continuous labeling fielde(r,t)=r—vt—u[ ¢(r,t) _

+out,t]. Thusé(Ri(t),t)= RO+ vt +u;(t),t)=RC by defi- B. Models and symmetries

nition, and¢ numbers the particles by their initial positions.  Before we even attempt to solve E&6), let us examine

In the absence of dislocations the fieldr,t) can be single the various symmetries of the problem and define several
valued. To obtain the continuum limit of ER4) one first models which approximate the physical problem at various
performs the continuum limit in the Hamiltonian as in Ref. levels. The physical symmetry of the original equation of

45, to obtain for the disorder term motion (22) is the global inversion symmetry & —r,u—
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-up——uv,f——f). When the forcgand thusv) is along a this case one can absorb astatic change inu without af-
principal lattice direction, one has then two independent infecting the correlations of the pinning force. Finally note that
version symmetries |,=(X— —X,Uy— — Uy, v ——v,f— in the case of isotropic elasticity, the additional inversion
—f) and Iy=(y——y,uy——uy). These symmetries are symmetryy— —y holds.
exact and hold in all cases. They are the only symmetries of Though we study the complete model Il in Secs. V and
the original modek22). The proper continuum limit of Eq. VIII B its main physics can be understdGdy noticing that
(22) must thus include all terms which are relevant and conthe pinning force=P"(r,t) in Eq. (27) naturally splits into a
sistent with these exact symmetries. We define such a modstatic and a time-dependent part:
as model |, which is studied in more detail (8ec. VIII B).
The additional terms can originate from, e.g., anharmonic_ . .
elasticity, cutoff effects or higher-order terms Wu com-  Fa Yr,u)zV(r)poKzzo Ky expliK-(r=u))=poV,V(r),
bined with disorder, as is dicussed in Sec. VIII B.

If one drops in model | the terms which are small in the
elastic limit Vu<1, one obtains another model that we call ~ F®(r,t,u)=V(r)p, > iK, expliK-(r—vt—u)).
model II. (See Fig. 1.t corresponds to the continuum limit K.o#0
of the equation of motion to obtain E(R6) i.e., EQ.(26) in 31
the elastic limit. However this continuum limit is nontrivial The static part of the pinning force comes from the modes
and should be performed with care as the disorder can vary,cp that -v =0 which exist for any direction of the veloc-
at scales much shorter than the lattice Spaﬁ”@lthough ity commensurate with the lattice. The maximum effect is
model Il is slightly simpler than model I, it only misses gntained forv parallel to one principal lattice direction, the

terms which are small in the bare equation but would D&y ation we study now. This force originatesly from the
allowed by the above symmetries. Even if some of them aeriodicity alongy and the uniform density modes alomg

relevant, they would only be able to change the physics conye ' the smecticlike modes. Since this static pinning force
pared to model Il at very large length scales. One thus eXthatr,u) is along they direction, it is useful to consider

pects model Il to give in practice an extremely accurate debnly the transverse patalongy) of the equation of motion

scription of the physics. Model Il possesses a h_|gher26) droppingF®". This leads to introducing model Ill, de-
symmetry than model I. Let us examine the symmetries of; @

the pinning force(27). Using the correlator of the random fmed py the following equation of motion in the laboratory
, - . rame:
potentialV, the correlator of the pinning force is

— 2
Aaﬁz Fpin(l‘,t,urt)an(r,,t,,urrtr)ngg(l’—r/) nﬁtuy"’_ ﬂvﬁxuy—CV Uy+ FStaKr,uy(r,t))+§y(r,t),

X 2 iKaiKIBeiK-(rfvtfurt)+iK’,(rf,Ut',ur,lr). FStatX,y,uy):V(X'y)po z Ky sin Ky(uy_y)
K,K’#:O Ky#O

(28 ~podyV(r). (32

Sinceu is a smooth field it has no rapidly oscillating com- Thys model 11l only involves thdransversedisplacements
ponents and thus in E¢28) the terms that are rapidly oscil- , |t posesses the same symmetries as model Il with the

(28), one is left with and (x— —x,v— —v) and is also defined in the elastic limit.
It is to be emphasized that although the derivation of model
Aaﬁngz KoKgg(r—r")expliK - (r—r") Il was .given here syst_ematically stqrting from an elasti'c
K#0 description the only serious hypothesis behind model 111 is

K[ g+ 0 (=t ]) (09 the existence of transverse periodicily”"*As discussed

e Hrit ' in Sec. Il B Eq.(32) is the correct starting point to describe
The symmetries of Eq(29) thus a priori depend on the any kind of structure having such transverse periodicity
precise form of the correlatag(r). However in the elastic properties. Thus model Il is the generic equation containing
limit it is legitimate to replaceu,.;, by u, in the above the physics necessary to describe these structures.
expression. Integrating then over one obtains
V. PERTURBATION THEORY FOR THE COMPLETE

. TIME-DEPENDENT EQUATION
Aop=pa 2 K KyGk exp(—iK - [Uy— Uy +o(t—t)]), Q

K0 Let us start by a simple perturbation analysis of the equa-
(30) : . . .
tion of motion model Il. Such a large velocity or weak dis-
where g¢ is the Fourier coefficient of the correlatg(r). order expansion has a long history in various contexts such

Sincegy is essentially zero foK>1/r;, the error made in as vortex latticeS"° and charge-density wavé3The natu-

the above approximation is itself of ord€u and thus con- ral idea is that at large velocity the disorder term oscillates
sistent with the elastic limit approximation. This justifies the rapidly and averages to a small value and thati$/a good
choice of Eq(30) as the pinning force correlator in model Il. expansion parameter. As we will see such an idea is in fact
The disorder term then posseses the statistical tilt symmetipcorrect, albeit useful, since previously unnoticed diver-
(STS u,—u, +f(r) wheref(r) is an arbitrary function. In  gences appear in the perturbation theory.
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A. Analysis to first order zero. In the absence of disorder the action is simply quadratic
S=S,. The response and correlation function in the absence

We start from the initial equatiof26) defining model I - ! : »
of disorder are thugfor t>0) and introducing the mobility

that we rewrite as

pu=1n:
(RTYE U8 =f = mapuptFa(r,tuy), (33 |
aB_ pL —[ep(a) +ivay]ut
: ; Ryt=Pas(@)ue o(t)

where from now on we drop the pin subscript &n The ’

response kerndR is defined in Fourier space: + Plﬁ(q)lue_[CT(q)‘*'qux]Mta(t),

(Ril)gtéqltfz5tt’5q’,fq[77aﬁ(?t+inOUyqyﬁaﬂ T
ceB=plL e~ LeL(@ult| +ivayut]
+CrQ)PI4(a)+CL@PL ()], (34 at = Pas( D C )

wherePT andP" are the standard transverse and longitudi- T T ]+ gt
nal projectors and the elastic matrix €1(q)=Cged?, +Pos(a) o) © lert@uti+ivawmt] — (38)

CL(q)=cy,0% for a two-dimensional problem an€(q)

— 2 2 — 2 2

=Cosd T Caddy,  Cr(A)=C1@"+Ca; fOr a three- nNote that the fluctuation dissipation theorgfDT) TR
dimensional problem. The bare value of the friction coeffi- _ _ 0(t)3,C*# doesnot hold hereit holds only foro =0 or

. . . _ . rt
.C'eff‘t 7? LS iﬁﬁned a?o{b‘t_tiaﬁ@!r(‘) Eq' (ﬁ3) tdhe velocity  , the absence of disordersince we are studying a moving
is fixed by the constraint thqu”)=0 to all orders in per- system which does not derive from a Hamiltonian. It is easy

turbation theory. This is equivalent to enforce that the Iinealrto show that the disorder does not produce any correction to

term in the effective actiof® is exactly zero. Instead of H T~ 5  th : d thus that th
working directly with the equation of motion it is more con- (€ Partiu(cg+ivg,u, of the action, and thus that the

venient to use the de Dominicis-Janssen-Martin-Siggia-RosBarameters (1, andceg) and,ou are not renormalizetve

formalism (MSR).1®® The generic MSR functional is given consider here for simplicity the isotropic versia=cq;
by =Cgg but this property holds in genejalThus here and in

the following we often denoteyou simply by v. This is
N ~ _ui]+hutind similar to the property of nonrenormalization of connected
Z[h,h]=f DuDue % (35 correlations in the stati® (for v =0) due to the statistical
. tilt symmetry (STS. Here the exact relation WBA[hh,]
whereh, h are source fields. The MSR action corresponding qtt(ce?+ivqy) ~*h_,+In Z[0,i] where h is an arbi-
to th.e equation of motiort33) and the disorder correlator ary staticfield, holds because of the STS discussed in Sec.
(30) is S{u,u]=Sp[u,u]+ SpeLu,u] with IVB (as can be seen from a simple change of varjalte
implies that the static response functi(_;tildt’Rq'm,=(cq2

~ ~ ~ . 71 - .
u,0]= iGe(R-HB P ,_J' i0%(f,— 7,40 +ivQy) " is not renormalized. . . _
Solu.u] thr’t’ (R DU ft ilfo™ Mapvg) Let us now study the perturbation theory in the disorder

and compute the effective actidi{ u,u] to lowest order in

_ ,7-|—J' (02)(it%), (36)  the interacting par§,, using a standard cumulant expan-
rt sion
N 1 - A ~ ~ A
Sint[uiu]:—z frtt/(iuﬁ)(iuﬁ’) F[U,U]:So[u,u]‘f'(&m[U‘f‘5U,U+5U]>5u,5ﬂ, (39)
X A®B[Uy— Uy +o(t—t)]. (37)  Where the averages in E¢39) over du,du are taken with

) ) ) respect t0S,. The calculations are performed in Appendix
Note that Eq(37) corresponds to the action derived in Ref. oA One finds that the effective action has the same form as

106. ) ) the bare action, up to irrelevant higher-order derivative
The fundamental functions to compute are the disordererms, with the following modifications. First the full nonlin-
averaged displacements correlation functioﬁ‘,ﬁ’f,t, ear form of the correlator of the pinning force is corrected by

=<uf§u'r'3,t,> and the response function Rﬁ"f,t, thermal fluctuationg\ 2’— AP . In d>2 it reads

= 5@/%&, which measures the linear response to a per-

turbation applied at a previous time. They are obtained from Z;ﬂ:AEBe—WZ)KZBx (40)
the above functional a<y’,, =(ufu?,)s and RY,,,

=(uaiu® ,)s, respectively. Causality imposes th@g .,  or equivalently gy = gce~ V2K*B= where B..~(U2)pema:

=0 for t'>t and we use the Ito prescription for time dis- We have defined¢%=2(Cgf—C¢%). This amounts to a
cretization which imposes tha&,; ;,=0. We assume here smoothing out of the disorder by thermal fluctuations. Sec-
time and space translational invariander disorder aver- ondly, the friction coefficient matrix is corrected @y, z,
aged quantities and denote indifferently Ci and the temperature byT. Finally, the driving force is cor-
=C,_;r - andRy ;v =R,_/ ;¢ by the same symbol, as rected bydsf (we are working at fixed velocity, enforcing
well as their Fourier transforms when no confusion is pos-order by order thaf + 6f = nuv). Let us start by the correc-
sible. Note that in this probler€_, #C, ; whenv is non-  tions to the driving force. We find
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| mains diagonal. However the corrections to the friction is
of o(v)= —; IZLT J BZKa(K' P'(q)-K)gk clearly not the same along andy. Next we give the cor-
e rections to temperature:

v-(K+Q)
¢l (q)2+ [ mov - (K+q)]%

(41)

5(7’T)a/3:% > JAﬁée_iK'vt

This formula gives the lowest correction to the driving force Kot

at fixed velocity or, equivalently to the velocity at fixed driv- X (e~ (V2K-Boy K _ o= (12K B.. 'Ky (43)

ing force. It is identical to the formulé22) of Schmidt and

Hauger’* There are small differences, unimportant in the

elastic ||m|t, which come from the different definitions of the Contrary to the Ve|0city CorrectionS, corrections to the tem-

contin_uum limit of the mode(see discussion in Sec..IV)A perature(43) exhibit divergences for any already at the

A salient feature of the above formula was noticed byfirst order in the disorder. However these divergences are
Schmidt and Hauger, i.e., the velocity and the force are notye|| hidden and camnly appear if one looks at theonzero

in general, aligned. They are aligned however when the veemperatureperturbation theory, which wasot donein
locity is along one of the principal lattice directions, i.e., Refs. 70, 71. AT=0 one finds trivially thasT =0, showing
Ko-v=0, whereK, is one of the principal reciprocal-lattice that disorder alone cannot generate a finite temperature. Such
vectors(note that this is also the case for the median direCyorrections are thus nontrivial and there is in general no
tion r/6). Such a feature is reasonable on physical groundgimple relation betweeid( 7T)ap and 8(7) 5, due to the
and can be confirmed by higher-order analysis of the perturapsence of FDT theorem. Only in the particular case where
bation theory(see Sec. VI Furthermore, using the approxi- , = and of potential random forcea P =K K sgx the
mationov (K +q)~vK Schmidt and Hauger found that, 0 £pT theorem enforcedT=0 (see, e.g., Ref. 94 and belpw

=2, the transverse pinning force versus the amgl®tween  The way to treat these divergences is examined together with
the velocity and one principal direction of the lattice has aihe second order in perturbation in Sec. VI.

discontinuity ata=0. One could naively think that such a
discontinuity could be interpreted as the existence of a trans-
verse critical force. Indeed a natural interpretation of Fig. 1
of Ref. 71 would be that one needs to apply a finite force to  The last physical information that can be extracted from
the lattice (opposite to the transverse pinning forde tilt  the perturbation theory is about the correlation functions.
sightly its velocity from the principal axis direction. Notable The calculation is performed in Appendix A and the result at
confusion on this subject existed in the literatthé’ Such  T=0 is given in Eq.(A33) and atT>0 in Eq.(A33) (at T

an interpretation is in fact incorrect. First, as Schmidt and>0). The static component is

Hauger correctly pointed out such a discontinuity isaate-

fact of the approximatiorv (K +q)~vK, and disappears if

B. Correlation functions

the correct expressio@l) is used. Furthermore it is easy to (uiq,tugﬁz E E

check that even with the above approximation the disconti- KKo=0 - T1"=17

nuity exists only ind=2 and the function is continuous for P (q)
d>2. Thus the first-order perturbation does not exhibit any xf g ———>—
divergence andloes notgive rise to a transverse critical a8z C(Q)+ine-q

current. In order to have divergences in the perturbation [’
theory (and the associated effetrti is thus necessary to Pss(q)
examine the perturbation theory s®cond order We per- c/(q)—ing-q
form such a calculation in Sec. VI.

Before we do so it is interesting to examine the first-orderwhere the disorder is smoothed by the temperature as:
corrections to the friction coefficient and the temperature. Alg, D, 5= gy K K ;e (2% Bo= ‘K \We now focus on theT
T=0 and using the bare form of the disorder one finds =0 limit of Eq. (44). To lowest order in perturbation theory

the pinning force is only along, and corresponds to a ran-

dom force of strength,,. We now compute the mean-

5%[,:2 2 squared displacements alorgandy produced by this ran-
K=t dom force:

D,s, (44)

. I .
qu’BzKaK,xK P'(a)- K)gk i [ ok
yy yy qBZ[ 5(q )]

1
X - . 42 4
C@ 7 (Ko7 “ N I S
qL{U qx+[c66(QX+Qy)+C44QZ] }
More general expressions are given in Appendix A, Eq. q*
y

(A30). When the velocity is along a principal lattice direc- + 5> —— 5|,
tion one finds tha67,,=0 and thus the friction matrix re- di{vac+[ci(ay+ay) +cad;1%}
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A. Zero-temperature perturbation theory to second order

To avoid cumbersome expressions, and since in this

- whole section we only discuss transverse degrees of freedom
0xQy we skip the indexy for u,. We also discuss here for sim-

aH{v2gi+[cee( Q5+ qi) +¢44951%) plicity an n= 1 component model for t_he transverse displace-
mentu (which is appropriate for flux lines id=3 and point
vortices ind=2). Generalizations tm>1 are briefly men-
tioned in Appendix B.

We thus study the dynamical equation for model ¥il.

2_ .2, .2 : 2 . . Since we are dealing with an anisotropic fixed point it is
=qx+qc. ~ R
where g7 =q;+q;. Since gy~q; one immediately sees useful to distinguiste, andc, -

from Eg. (45) that the compression modes are the ones re-
sponsible for displacements growing unboundedhd#®3. B 5 5
The expression foB,, allows one to estimate the dynamical 79U = (C V5 +CyVi—vd)un +F(r,u) +4(r,1).
Larkin length for transverse pinning, as discussed in Sec. (47)
Il B.

On the other hand, in order to obtain a decoupling of th
channels one can use a simple Lindemann critefl® We
use Eq.(45 for B,, where we neglect all terms containing
Cq4 (i.e., the compression modegssuming as is reasonable
for most systems that,, is very large. The decoupling be- . . R
tween the channels is thus controlled by whereas the tl%rjc,se(ol\];lsElg).(g?t'gr??sg)e p.(;:-rr]formed using the Martin-Siggia-
roughness of the channels and the characteristics Ieng!ﬂ : Wi
scales of the moving glass directly depends on the compres-
sion modec,; (at large velocities Estimating the integral u.G :f i 700+ 0 d— V2= .V 2) U
one finds ind=3: Sofu,u] t S A A

&
Ce6

This gives back the Bragg glass estim@tethe simpler case

a=ry). The effect of thermal fluctuation can also be added 3%n this section we restrict ourselves Te=0. The corrections

in Ref. 47. The above perturbation expansion for the L'nde'coming from correlation function&su,su, )~T then van-

(rjnanr: ((:jrltelzrlontlrr]npgt_:ltlyt_supgl)osfestthat dthe randomllfort(_:e IS|sh, which simplify the analysis. This can be used to show
rected along Ihg direction. In fact, under renormalizalion v,y 1o g1 orders  the temperature remains zero. The first-

a.random fqrce along s of strengtmxx is also g_enerateq a5 order corrections where computed in Sec. V and Appendix
.dO:SCU.SS?d ":] Sec. (I)g TheE res;5lt|ng hezpreszlon mé? 'S" A, At T=0 there is no correction to the disorder teftm this

! edntlca tot er?”e dyy '”h q.(h ) with Ay — . Xxdan C11 dordet). There is a nontrivial correction to the kinetic term,
?nnostIC;Gb);ntfercshaenzgremb d-lt—asusl‘f ;naet ugggrglgtgir:sthe(i[ﬁlrénelrzz n\(/gvhich gives the following correction to the friction coeffi-

. — AN + oo H

criterion with a random force along it would contribute, ent», o=—4"(0)Jqfo "dttR(q,1). This leads to
providedcgg/cq4 is small enough to compensate for the fact qd-1 5
that A,,<A,,. This can be quantified using the estimates on_ —A”(O)f dq_yl gx )
given in Sec. VIII A forA,,. (2m)°* (4cee 0y +v2)%?

Bxx%Ayyfq‘Bz[l_ cogqr)]

X

2.2
N axdy
qt {v2a;+[ci(ag+ qs) +Ca02 %]’

(49)

The bare value of the friction coefficient aloggs denoted
et:)y 10, and for simplicity we denote by the quantitynqv
(which remains uncorrected to all orders in this mod€he
correlator of the static transverse pinning for€&2) is
F(r,u)F(r',u’)=A(u—u’)8%r—r"). Averages over solu-

312 — pT(iUy)(iUy),

(alv)¥?|. (46)

_ yy B
Bux(y=2a)~ 2172 MiN
aCyy

— 1 i i
Sim__zJ’rtt'(lurt)(mrt')A(urt_urt’)' (48)

(49

This is not a divergent integral, except when=0. To find
VI. RENORMALIZATION-GROUP STUDY divergences in the perturbation theoryTat 0 one has to go
OF THE TRANSVERSE PHYSICS (MOVING GLASS) to second order.
Up to now, we have studied the perturbation expansion ofa ng?ﬁussef:?ﬁéoéggis?rrrea(;zggSetoutgt?oiffgfmlstigﬂnsF‘;::ggrr:q’_
the full continuous model Il, keeping both theandy direc- 9 q X

tions. Doing the second-order perturbation on that full modered in Appendix B. To second order a correction to the full

is tedious. Since one knows on physical grounds that thgonllnear disorder correlator appears and reads

singularities in the perturbation theory comes from shettic

componentsf the disorder’? which as was discussed in Sec. 5A(u)=A”(u)[A(O)—A(u)]fG(r)G(r)

Il B originates from the transverse degrees of freedom, we r

now study the perturbation theory of the simplifigdns-

verse equation of motigmrmodel Ill. If, as we indeed find, _A/(U)ZJ G(r)G(—r), (50)
this perturbation theory is singular, this implies divergences r

in the full model Il as well. We thus study it here and come

back to the full model Il in Sec. VIII A. whereG(r) is the static response function
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o 1 space, time, and the fieldkeeping also an arbitrary) y
G(F)ZJO dtR(r,t), G(Q)ZC q2+C q2+ivq . :yrel X:Xreal,t:t/eZI, a:areal, u:u/efl_we now im-
e * (51) pose that the actio8 in Eq. (48) is unchanged, which yields
) ) ) ) redefinitions of the coefficients. Sincey=c>’, since this
At zero velocity both terms in EqS0) are infrared divergent  q,antity remains uncorrected to all orders, this fixes 3
for qls4, as is well known Ie.admg to the glassy effectsinthe _y_ ,_,_ ¢. One finds the rescaling:
statics. The key novelty with respect to the problemvat
=0 is that due to the assymetry introduced by moti&(r)
is different fromG(—r). As a consequence the second term
in Eg. (50) is now convergenfor v>0. Indeed the integral

n—n' =92 Dy iy =pe9

c.= 2720 T_ T =TeB-d-o-201

fG G —fG 2= d” q 2Cx (5—d—o—20)l
r (NG(—-r)= . (@)= (2w)d_l(4cxcyq§+v2)3/2 A—A'=A¢€ - (54

(52 In the casev=0 the natural choice igr=1, which yields
is convergenin all dimensions fow >0. On the other hand, A’=Ae( 9729 Power counting at the Gaussian fixed
one divergence remains from the first term: point (z=2, {=0) yields the upper critical dimensiod,

=4 below which disorder is relevafédnd ad=4— € expan-

B B sion can be performéd®2’ For v>0 sincev is uncorrected
er(r)G(r)— qu(q)G( @ to all orders a natural choice is=2. Power counting near
the Gaussian fixed poiriz=2, {=0) indicates that now the

dd‘lqy 1 upper critical dimension is thug,=3 (with A—A’

=Ae3~9720l "As a consequence disorder terms are rel-

IRARCZOLREPYY 21?2 ) A
Zquy\/4CXquy v evant for dimensiond<3, whereas the temperature appears

dd—lqy 1 to be formally irrelevantsee however Sec. VI)CThe elas-
~| o dI5 a2 (53 ticity term alongx (c,) now corresponds to an irrelevant
(2m) 2vceyqy

operator at the anisotropic fixed point. Note that the above
The integral(53) is divergent ford<3, even forv>0. Thus, rescaling(54) indicates that the proper dimensionless disor-
contrary to general beliét "2 originating mainly from the der parameter id/vA%"3, whereA is the momentum cut-
study of the first-order perturbation in uvl/ analysis to off. Here we are mostly interested in periodic systems for
second-order confirms the surprising conclusion that even avhich, as in the static, one must set=0. For complete-
large velocity infrared divergences occur in the perturbationness we give however the equations for nonperiodic systems
theory”311%Such divergences indicate the instability of the ({=0).

zero disorder fixed point and the breakdown of the large The standard RG method consists of two steps. First, one
expansion. They lead the system to a fixed point where thintegrates the modes betweerky< ae or equivalently
disorder plays a crucial role. The above divergence is the ke o>qy,> Aoe™! with Ag~7/a, which yields corrections to

to the physics of the moving glass. the bare quantities. The cutoff procedure we choose here for
convenience is to integrate over the following momentum
B. Renormalization-group study at zero temperature shell:

In order to handle these new divergences, and to find the A ddig + dq
) . . ; , y "
fixed point Whlch describes thg Iarge scale physics, we use a f dq:f e Er
dynamical functional renormalization-groyPFRG) proce- sh Ae -

dure on the effective action using a Wilson scheme. This_ . . . :
g iiI'hls results in the same theory but with a different cutoff and

allows us to keep track of the full functiofa(u), which is X
Forrected parameter. Second, one performs the length, time,

necessary since the full function is marginal at the uppe _ . .
critical dimension. This is equivalent to decomposing theand field rescaling54), as well as the corresponding change

. . ~A N of quantities(54), so as to leave the effective action invari-
fields into fast and slow components—>u+du andu—uU  ant" The cutoff has thus been brought back to its original
+6u and to integrate the fast fieldfu and su over a mo-  value. Scale-invariant theories thus correspond to fixed
mentum shell. This method is very similar to the methodpoints of this combined transformation. Using the above, the
introduced in Refs. 26, 27 for the=0 case, though it differs RG equation for the disorder can be established. The shell
in details. An alternative RG method of mode elimination by contribution of the integral53) is asymptotically:

hand yielding the same results is given in Ref. 106. It shows
in a direct way how nonpotential disorder forces are gener-

1
ated. fr5G(r)5G(r)~fShdqym~

1. Derivation of the RG equations

(59

1

d-3
ZvaAd_lA ’

(56)

The first task is to perform a dimensional analysis of thewhere Ay=Sq/(27) and S; is the surface of the
MSR action and to determine the appropriate rescaling transd-dimensional sphere. Id=3 one hasA,=1/(27). Using
formation. Since we want to describe both the 0 andv Egs.(50), (52), (56) we obtain after rescaling the following
>0 fixed points, we perform the following redefinition of FRG equation for the disorder correlator:



dA(u)
—gq = (3=d=20)A(u)+{ud’ (u)

1 2¢,(1)A2
27 [4c,(1)cyAZ+0v?]R

_AI(U)Z

1
+
4mvcy\1+4c,(l)cyAf/v?

XA"(W)[A(0)—A(w)]

(57)

2 In the large scale limit it reduces

where c,(l)=c,e”

t074,35
dA(u) , ,
g = (3=d=20)A(u)+{uA (u)+4mcyA (u)
X[A(0)—A(w)]. (58)

Equation(57) allows us, in principle, to examine the inter-
mediate scales crossover whenis not very large. Indeed
there is a characteristic crossover length scélgyss
=2@/(n0v) such that Eq.(58) becomes valid fore!
> 0sd@. Note that setting =0 in the above equatiof57)

leads back the FRG equation for the usual manifold

depinning®?” (up to numerical factors originating from
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+A)

u

0 1 2 3

FIG. 21. Solution of the FRG equation. Note the nonanalyticity
at all integers.

Note that physically one expeadqu)=0. This equation has
a fixed pointA* (u)=u(1—u)/2. It is shown in Appendix D
that this fixed point is stablélocally attractive. Equation
(60) shows thatA(0)(l) grows unboundedly aa (0)(l)
=A(0)e (restoring thee facton. Thus the full fixed-point
solution in ad=3— e expansion &%

choice of short distance cutoff, and different choices for reyyherec is an arbitrary constant and

scalings. The RG equation for the friction coefficief¢.g.,
for a periodic problem {=0)] can be obtained. Using Eg.
(49) and taking into account thah=Aqe™" and c,(l)
=ce 2, andA[(0)=A"(0)e® D' one finds the RG equa-
tion, after rescaling:

2c(HAS?

dzy B
B [4c(1)cyA5+v2]%2

ndl

2—-z—AV(0)A4_1 (59
thus except fow =0, » is corrected only by a finite amount
as long asA['(0) is finite (see below

2. Study of the FRG equation

We now study the FRG equatiofp8) for the periodic
problem ¢=0). Thus we impose\(u) to be periodic of
period 1 and study the intervf0,1]. One can easily restore
the perioda in the solution. Let us look for a perturbative
fixed point ind=3—¢€. Absorbing the factor 1/4vcye in
A(u) and redefining temporarilgl —1, the FRG equation
reads!?

dA(u)

—ar AW +A(WIA0)—A(W)]. (60)

No continuous solutions such thafA(u)/dl=0 exist!!?

This is due to the fact that the average valué\¢é) on the

A(u)=A*(u)—A*(0)+Ce, A*(u)"=1, (62
1 1
A*(u)zC*+(e4wucy)(§u2—Eu) (0<u<1)
(63

and the solution repeats periodically as shown in Fig. 21. We
have restored the factor 1/t#c,) ande=3—d. InK space
the fixed-point solution can be writtefi, = 1/K? for K+#0
(K=2wk with k integers andAx_o(1)=A,(u=0)+(1/12)
=Ao(u=0)e'+(1/12).

Thus there is an ever growing average to the correlator.
Remarkably, thigloes not spoithe above fixed point, since
one can always separatg0) and A(u)—A(0) in the start-
ing MSR action. In perturbation theory one sees théd)
has no feedback at all into the nonlinear part. It simply
means that there is an unrenormalized random force which
simply adds to a nonlinear pinning force, which is described
by A*(u). Note that this solution has cusp nonanalyticity at
all integersu. At the initial stages of the RA"(0) is nega-
tive [sinceA(u) is an analytic function with a maximum at
u=0]. However one easily sees thaf(0) becomes infinite
at a finite length scalénterpreted as the dynamical Larkin
length see Sec. VIB 3, the function becomes nonanalytic
andA”(0+) becomes positive.

Once the solution is known id=3— € it is straightfor-
ward to obtain it in the physically relevant dimensidr- 3.

interval[0,1] must increase unboundedly. Indeed integratingin d=3 defining A;(u)=(1/)A,(u) and introducingl’

inside the interval one finds dQI)fA(u):fA(u)
+ [A’(u)2. It is thus natural to defind (u)=A(0)—A(u)
which satisfies

u — —
=A(W[1+A"(W].

Y
ar 6D

=In 1 one finds that\|(u) satisfies again Eq60). Thus the
physics is controlled by the slow decrease to zero of disorder
at large scale with the following stable fixed-point behavior:

Aj(U)~A(0)+ —I(uz—u).

47rv Cy 64)
2
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The random force term does not grow by rescalingdin ‘ u
=3.

Finally, let us point out that Eq(58) presents several
differences and some remarkable similarities with the one
describing the statics FRG and the dynamical FRG wufor
=0 in ad=4- € expansion. Let us caR(u) the correlator
of the random potential. The statics FRG equation and its
periodic fixed point was given in Ref. 45ee Eqs(5.2) and
(5.5 with A denotingR). The dynamic FRG equation for
(v=0) is

dA(u)
dl

=A(u)+A"(W[A(0)—A(U)]-A'(u)?. (69 i

RY
Since one haa (u)=—R"(u) it yields the solution periodic ¢
in [0,1] (Ref. 45 A*(u)=35(1—6u+6u?). Remarkably FIG. 22. Scale-dependent mobility. It vanishes beyond the dy-
both the solution fow =0 and forv>0 are nonanalytic at namical Larkin lengthat T=0).

integeru, though the detailed form of these solutions is dif-

ferent. Since this nonanalyticity is related to glassiness angs9). The divergence ofA/(0) at L:e':RZ drives u(L)
pinning one can expect a certain continuity of properties be= 1/, (L) to zero for all larger scales. Beyond that scale pin-
tween the moving and nonmoving case. The main differenc@ing starts to play a role.

however is that in Eq(65) A(0)=A(0") starts growing at In d<3 one has A/(0)=—A,e/(1—A,(e

the initial RG stages as far>0 but is stopped at its fixed- —1)/4mvcye). Thus one obtains the dynamical Larkin
point valuess beyond the scale at which a nonanalycity de-jength as given in Eq9) where we have restored the proper
velops (L%rkln length. This effect is due to the term 4 and 4 dependencewith c=c,). Note that it is the second
—A’(0+) and physically means that in the case 0 dis-  gerivative A, of the force correlator which appears in the
placements grow much more slowly at larger scales. The arkin length. For a realistic disorder with a correlation
system remembers that it is a potential system and th“l%ngth r; one hasA2~A(0)/rf2. Using this relation, one

JA(u) remains zero if itis zero at the stdat least formally,  hacks that Eq(9) is the one obtain€d by estimating the
see however Ref. 27Thus no random force can be gener- length scale at whichige~r .

ated. By contrast for the moving system one has asymptoti- e can also determine the dynamical Larkin length when

cally A,(0)~Ae. As is discussed later this corresponds to4he velocity is not very large. Restoring the proper depen-
the generation of a random for¢éarhich cannot exist in the dence ofC(l) in | in Eq. (66) gives that 1A —f'CeE'C(I)
. 2= Jo

statics. . L .
Note that foro not very large one can see in B§7) that ~ With [c=In(R¢/a). This yields after some algebra @ 3:

there is a long crossover during which the term

—A’(0_+)2 acts. This is the static random manifold regime Ry:aezm,ovcy/AzE 1+ e 8mmovey /A,

as depicted in Fig. 12. Thus the actual valué\gfshould be ¢ 2

decreased compared to the value naively suggested by per- .

turbation theory, an effect studied in the next section. T (1— e8Iy /s /1+ Af(cxcy;\zo) 67)
7oV

3. Physical results at E0 . .
and ind=2 one finds

We now extract some of the physics of the moving glass

from the FRG analysis. From the equation for the second dmpec,\?  8myeve 4c,c, A3
derivative of the force correlator: (RY)2=a’+ y) +a Y +—2
Az Az (7]00)
(68)
dA”(0) 2 .
ai =(3—d)A”(0)—C(1)A”(0) (66)  where we recallAp~m/a. These formulas interpolate

smoothly between the Bragg glass and moving glass results.
, _ 5 ., . _ Finally, note that since the above equations are ejeitin

with 1/C(1)=4mvcy\1+4c.e “cyAg/v” it is possible 10 yhe 3 ¢ FRG approachthe calculations of the Larkin
extract the length scalg] at whichA”(0) becomes infinite. |engths are independent of whether there is an intermediate
We first estimate it in the large velocity regimg.ss<@  random manifold regime, i.e., it holds both fof<a and
where one can se€(l)=1/(4mvcy). In d=3 one has .3 Nonuniversal irrelevant operators of course change
A7(0)=—A,/(1—-A,l/Amvc,). whereA!(0)=—A; is the  the numerical values of the prefactors but the above expres-
bare value. ThuRY=ae*"7"%/22, This length scale, intro- sjons should be correct when all the Larkin lengths are large.
duced in Refs. 73, 35, and discussed in Sec. Ill B is analo- One of the remarkable properties of the moving state is
gous of the Larkin length for the statics. Inde@ficoincides  the existence of transverse pinnifigThis is demonstrated
with the scale at which the scale-dependent mobjityL) from the FRG fixed point, due to theonanalyticityof the
vanishes as depicted in Fig. 22. This can be seen from Edixed point Eq.(63). Adding an external forcdé, alongy
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[i.e., in the left hand side of Eq47)] generates a velocity e

vy . The naive perturbation theory results, form(#80), for Are{0)=A(0)— JO dle”“A{(0™)

of(vy) (the correction to the applied force at fixeg) reads

Of(vy)=J[iRi=oA" (v t). !n _the IiTit of vaynis_hingly small 1 2c,e 2A2

vy one gets a nonzero limiéf,(0")=—FY, i.e., a trans- Xo (4c,e B0 A0+ 072" (72

verse critical force only if the function is nonanalytic with

A’(07)<0. The critical force is thus given by summing up and one can simply set=0 to get the result il= 3.
the contributions of all the successive shells

C. RG study at finite temperature T>0

o Ad-1g—(d-1)
Fe~— f dIA{(0)Ag-1 9 > ze*(?’*d)', We now extend the analysis to finite temperature. In prin-
¢ Vac(l )eyAgtu ciple the FRG equations can also be written for any tempera-

(69  ture. We study both the case=0 andv >0 (since no such
] ] ) derivation exist in the litteratujeln thev =0 case the tem-
where quite logically only scales beyond the Larkin lengthperature is formally irrelevant. In fact it is dangerously so
give a nonvanishing contr|but|on.. Using the asymptotic(see pelowas it cuts off the properties of the fixed poittte
value forA’(0")* = e4mnouc, one finds nonanalyticity and thus modifies some observables leading
to barrier determination. Here as we see the temperature for
Fi~Ccja(RY) 2 (70)  v>0 is even more so, very dangerously irrelevant by power
counting. The dimensional rescaling E&§4) yields T—T’
and ind=3: =Tel179729! and thus thaf is irrelevant. This turns out to
be incorrect: if one adds a smdlt>0 onto theT =0 moving
. c,a glass fixed point, FRG indicates that it flows upwards very
FI~C R)ZIn(RVa)’ (71)  fast(while if T=0 to start with, it remains 0

. 1. Derivati f the RG ti
In Egs.(70) and (71) the prefactor<C andC’ are not uni- erivation ot the equations

versal(and ind=3 the additional logarithm correction will ~ Letting T>0 leads to several important modifications in
also be affected by higher orders in perturbation thedry  the perturbation theory. The general idea is that the disorder
the above formulas we have assumed a direct passage frofachanged everywhere roughly age™ (V2% Bor K (with t
the Larkin scale regime to the asymptotic periodic regime;—). Of course this has to be checked carefully which is
thusr;~a. If ry<a an intermediate random manifold re- done in detail in Appendix B and we give here only the main
gime is first reached where the typical value fof(0") is  results. Near the upper critical dimensié,=4 for v=0
rathera/r; . This yields to the replacement afby r; in the ~ andd,=3 for v>0) thermal displacements are bounded:
numerators of Eqs(70), (71). Remarkably this coincides
with the estimate obtainééiby balancing forces. Note that
this result can be obtained hendthout any referencéo a
Larkin length along thex direction. This illustrates that the
physics of the moving glass depends only on the periodicity
along they direction. Note that the fulb-f characteristics :ZTJ o2 T (v>0). (73
; q CxOx+Cydy+ivay
can also be computed from the FRG using E&30) (see
Ref. 1086. . . =

It is interesting also to study the behavior near the transw(.a resgaIeT by a nonumverial quintlty and deﬂﬁ'e.th(.a
verse depinning threshold. Because of the absence of IR didimensionless temperature’;B..=T. Remarkably it is
vergence in the integral fop Eq. (59) the exponent at the POssible to replace everywhesg by the smoothed disorder:
threshold remains uncorrected, i.e,~|f,~FY|? with ¢
=1 (to first order ine). The slope can easily be estimated o “TK2 R — iKu,—TK?
from A{(0) and the above results and becomes large at small Ak=Ake - AW ; AxeTre ' 74
velocities as shown in Fig. 10.

We now study the displacement correlations. The growthThe divergent part of the correction to the friction coefficient
of the average of 3A(u) implies that there is a static ran- is now Eq.(A17), thus the same as before, except one must
dom force generated. However, unlike in the O case, the Use the smoothed disorder.
critical force does not kill the random force in the FRG equa- L€t us now compute the renormalization of the tempera-
tion. In fact the moving glass is dominated by thempeti-  ture by disordexfor a related calculation see also Ref).85
tion between the random force and the critical force. A|_AS was mentionned earlier there is a nontrivial divergence in
though the existence of such a random force has no effect dfi¢ correction to the temperature. Using &4p) one finds
pinning it affects strongly the positional correlation func-
tions. In particular the relative displacements correlation _ n _ n
function (2) becomes, in the presence of the random force at 775T=; f OAK(e (UK Boy K — = (WAK-B K
large scale, identical to Eq&10) and (14) with a renormal-
ized disorderA,.(0) (as discussed in Sec. 1I)C —KATR _qe~ (V2K-Bor Ky, (75)

lim Bo;=B.,,=2T

t—o

1 2T A9°2
f (v=0)
q

@ cMa2
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2

When v =0 this integral can be simplified using the FDT ST . v
relation 2TR,_q,= 6(t)(d/dt) By, which givessT=0. This 7~; K AKJ 20, Ac,cult D) (78
yields the RG equation, after rescaling: Gy <-yHy(TextyHy

daT . . . o

ar (2—d-20)T (v=0). (76)  Note that it vanishes, as it should when-0. This yields the

following RG equation for the temperatuie
Forv >0 the second part does not diverge anymore, and the
divergence of the first one can be extracted as follows:

T Z/r(o)
7oT~ ; JDOAK(e‘<1’2>K'<Bovt‘B°°>'K— 1) Tqi 2T 4724 (4mc,v)(1+4c,c AZe 2 1v?)%2
(79)

1 too
~5 > f dtAcK?(B.—By,). (77
K Jo using rescaling54) and(73). We now look at the corrections

v>0 we use Egs(77), (38), and(49) to estimate the large Vergent contributions to the disorder correlator are, adding
time behavior of Eq(75) and obtain first and second order in perturbation

AR—e TP A+ > AKe—7K2AK,e-?K’2( Kzfe(r)e(r)+K’KfG(r)G(—r))
K.K'=P-K r r
—P2Ap > AK,e‘?KQJ G(r)G(r)} (80)
K’ r
|
The key point is that usink - K'=(P2—K2—K'?)/2 all ex- dA(u)
ponential factors rearrange and at the end everything can be  —g;— = €A(U) +TA"(u)+A"(W[A(0)—A(W)],
written only using the smoothed functiaky . This yields (82)
the RG equation for the disorder:
A daT
dA(u) —~ — _ —=—1+€e—A"(0). 83
d(l ) _FE(u)+ (3 d—20)K(u)+ uE (u) Tdl €470 ®3

= ~ ~ ~, We have absorbed the factor #dc, in A(u). Let us first
+H(DA"(WIA0) = A(W]=f2(DA" (W) search for a fixed point. We thus assume tiigtdl = 0 with
(81) T=T*, which implies thatA”(0)=—1+e€. Using T* we
now search for a fixed point fak(u) —A(0) as we did for
the T=0 fixed point. Let us seA (u)=A(0)—T*g(u) with
Ig(u)>0 and periodic. One gets

wheref, andf, are the same coefficients as in £§7). We
have used that the smoothed functibfu) itself has an ex-
plicit cutoff dependence. Note that this equation is correc
for any T and to second order in the disorder. Although it can e e—A"0) 1
also be obtained by a smadillexpansior(expanding the first- g =t ——— =
order correction in(S,) both inA and T, see Appendix A T T 1+g

such an expansion is potentially dangerous since it works

only if TA"<A. This happens to be the case here because &quation(84).is the classical equation of.mo'tion of a particle
the fixed pointTA”~eA. However it may not be true for N the potentiaM(g). It always has a periodic solution start-

other problems and does not allow us to treat larger temperd?9 from g=0. Thus the solution is
tures. In addition to Eq81) the RG equation for the friction
e—A"(0)

coefficient is identical to Eq(59) with A—A (and also u=fg dg V( ):i _ In(1+g)
yieldsz=2 for v>0). o V-2V(g)’ 9=39 T 9).
2. Analysis of FRG equations at ¥0 89
Let us now analyze the FRG equationsTat0 for the  This yield a condition since we have fixed the period to be

periodic case in are=3—d expansion and ird=3. We u=1:%:fgma>{dg/\/—2V(g)] where V(gma)=0, the other

write A instead of A and T instead of T everywhere for condition beingA”(0)=—1+ e. Both conditions determine
convenience. One has T* andA”(0). From this we get the fixed-point temperature:

—V'(9). (84
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2 2 - A7(0)
* =i

- 4(féma’b|y/\/2[In(1+y/e)—y])2 8 In(1/e)
(86)

Thus we find that there is a finite-temperature fixed point.
This is the moving glas$>0 fixed point. Though we have
not investigated in detail the stability of this fixed point it is
likely to be attractive. Indeed one sees clearly in 88) that
at high T one expectsA”(0) to be small(since A is
smoothed by temperatyrevhile at lowT A”(0) grows very 1=log(L/a)
fast therebyT increases. Note that similar finit€ fixed 0
points were found for other nonpotential systéth@©n the . o .
other hand, setting=0 in Eq. (82) shows that the random FIG. 23. Behavior of th_e second derivativeA”(0) of the dls_-
force A(0) is still generated, though it grows slower than for Order correlator asa function of the scale aroundTikd) dynami-
T=0. Thus there should be a reduction of the displacement& Larkin lengthR; . ALT=0 there is a divergence B which is
induced by the random force, due to nonzero temperaturé2unded af>0. However—A"(0) still passes through very large
. . . ” . values before eventually decaying slowly towards its fixed-point
There is an interesting crossover at ldwvhereA”(0) first i - : .
. . e .. value. This results in high barriers at low temperature as discussed
starts to increase violently before it finally decreases again 1 the text.
its fixed-point value. This crossover is discussed in the fol-
lowing section.
The case ofl=3 can be studied similarly. FGr=0 one
looks again for a solution decaying ad.1As we noticed

temperature(ii) for velocities not very largeo<vg . This
leads to they-f characteristics shown in Fig. 15. A complete
beforee and 1! plays the same role. Indeed the substitutionc"’lk:u""ltlon Of’fLR n aII.reg|mes can be made by examining .
- . S - ) the RG equations derived above. We give here a rough esti-
A(u)=A(u)/l'in d=3 and the substitutiod (u) =€A(u) In a6 of the barriers in these two cagsand (ii).
d=3— € leads to the same equation for the fixed pairti) Let us start by the low-temperature, high velocity behav-
in both cases. Thus the asymptotic fixed-point solutiod in jor (v>v., Ry<a). A key point is that at low temperature
=3 can be obtained from the solution &=3— € approxi-  uy is determined by the short scale contributions. Indeed
mately asA (u)~1NA[u,e=1/,T*(e=1/)] with the corre-  there must be some continuity with tiie=0 flow, where
sponding flow of temperature: — A7 (0) diverges after a finite length scale, the Larkin length
RY (as discussed aboneThus at low temperature A['(0)
first shoots up near the dynamic Larkin length, strongly
renormalizing the mobility downwards, before the tempera-

. o ) ture catches on and reduces it back to its fixed-point value
This solution is not exact now since temperature flows, how-_ A*"(0)~1. Note that this fixed-point value corresponds to

ever one can check that the flow of temperature is slow,aues of disordemuch largerthan the original disorder.
enough so that this is a consistent approximation. Thus gf,jeed restoring the factofin d=3) gives for the original
large scale temperature decays backTteO. Indeed the  isorder dimensionless parametes /(4 o) ~ In(a/R) <1

;ixedttpoint fun?[ti.on s V|?r|y similar to gﬁ?o fixlsd-potil?t at weak disorder, while asymptotically one h&%/(4mvc)
unction excep |n”sma_ ayers around integerivear the —_ 4 pq global behavior with length scale is illustrated in
origin the termTA"(0) is of same order asA(0) in d=3 the Fig. 23

—e. Thus the main effect of temperature is to round the" G "o\ | ohavior ind=3 can be estimated as fol-

1
T(|)~m. (87

nonanalyticity. lows. Let us denote by, the bare value. One has the exact
3. Physical results at finite temperature>I0 equations:
We now discuss the behavior of the mobilipg=1/7g dA”(0) )
and of thel -V characteristics. One can compute the mobil- gr - TA"(0)—A%(0)%, (89
ity from the RG equation by integrating tfie>0 version of
Eq. (59) over all scales: dA’"""(0)
————=—7A"(0)A""""(0)+TA®(0), (90
M(I) | ., ZCXe_2|A8_1 dl ( ) ( ) ( ) ( )
In| — :_f AI(O)Adfl(ArC e 2 A2+ 237 ) i
Mo 0 X yAoTV (88) and Eg. (83) with e=0. We roughly estimate the scale

RC(TO)zae'* at which the termTA’’’’(0) starts slowing
The asymptotic mobility as given byg=u(l==). Since  down the growth ofA”(0). Wedenote the bare values of the
asymptotically there are only finite corrections#cas soon derivatives of the disorder correlator ky,=—A"(0) and

as v>0 this integral converges. Thus there is a nonzerdA,=A'"'"(0). At T=0 higher and higher moments have
asymptotic mobilityug in the T>0 moving glasgby con-  more rapid growth:A,(1)~1/(1—A,l)" and Ag(1)~1/(1
trast with what one would have in the static Bragg glass at- A,l)*5, etc. A natural hypothesis is that the effects of tem-
T>0). However the renormalized mobility is very small  perature is to smooth out the highest moments first. Assum-
(for experimental purposg two important case€) at low  ing that only one length scale existsTat 0, this allows us to
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replaceA6—>CsteA§/A2 in the above equations. The equa-
tions can now be solved fak, andA, and T. The length
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In this section we first show that oh=2 the CO fixed line
is unstableto a finitev on the simplest case of the=1

scalel* at which a nonzero temperature modifies the flow ofcomponent moving glass equation. We derive the RG equa-

A, is given by (1-A,1*)8=Tye " A,/(A,)2. This length
scale is very close to the Larkin length and the end result i

A, RS

*:
4qvc a’

—A"(0)=1*)= (TO/—TZ*)lr (92)

The renormalized mobility can then be estimated from Eq
(88). Restoring all the dimensional factors one finds

pR~ o€ Ve, (92)
where ind=3 U, can be estimated as
U.~ R—Cr>2 ma{ 9
RY [(T/Tm) (a/RY)(Lig) ]
T al
XIn 1/(T_mR_¥a } (93

Ry=Cl/v has been defined in Sec. Il B ,=ca’ and g
=A,/(4mvcy). For simplicity we have assumed herg

tions for the case >0. We stress that this is a toy model

§ince it is clear that inl=2 additional instabilities to dislo-

cations occur at the temperatures where we can control the
behavior of the model. However it is instructive, and pro-
vides the first necessary step to introduce the other instabili-
ties.

A . d=2
1. RG equations in =2

We now study Eq(47) in d=2 splitting the pinning force
F=f.(r,uy)+fy(x) wheref(r,u,) is the random nonlin-
ear pinning force with fq(r,u,)f.(r’,u;¢)=A(Uy
—U;) 8(r—r") and f,(x) is the disorder originating from
long-wavelength disorder Eq(25 with f,(q)f,(—q)
=AQg?+A,. In addition such terms are generated in pertur-
bation theory(at least forv =0) and should thus be added
from the start.

We use everywhere the shorthand notatioe 7qv,
where 7, is the bare value of the friction coefficient. Since

~a. We stress that this estimate is a rough one, and thate are looking at a periodic system one hagu)
more work is needed to obtain better estimates by studying- 3 Ae'X". However ind =2 where temperature imar-

in more detail the solution of the FRG equation at all scalesginal the harmonics are relevant at different temperatures.
Also, ours is probably a lower bound. This estimate indicateShis remains true at>0. It is thus enough to consider the

that for very large velocities one has to go to very low tem-

peratures to experience significant barriers.

lowest harmonic A(u—u’)=g cos@i—u’). Perturbation
theory is carried in Appendix C using the MSR formalism.

Barriers are much larger when the velocity is not veryNote that the random forces can be eliminated by a shift
largev <v the case which we study now. It must be stressedind do not feedback in the RGee Appendix € In addition

that the crossover velocity, which determines the barriers
corresponds t@,; (or to ¢4 andcy,) and thus may be ex-
tremely large(see discussion in Sec. ll)BOne can use the
results for barriers in the Bragg glass, which growlas
=U(R/R,)?, whered is the energy exponef=d—2 as-
ymptotically in the Bragg glassUc=ARg/2 the barrier at
the pinning force and, is the isotropic Larkin length. These
barriers grow until the crossover lengRy, is reached, as

indicated in Fig. 12. Thus the asymptotic mobility can be

estimated as

nr pg” Rl R, (94

VII. MOVING GLASS EQUATIONIN D=2 ANDD=2+e€

due to the tilt symmetrygalilean invariancec,, c,, andv
have no corrections. One finds to first ordegitthe follow-

ing corrections to the friction coefficient, the temperature,
and the disorder:

+ o
on= gf dTTR(O,T)e_(l/Z)B(O’T),
0

+ o0
S(qT)= gf dT(e—(I/Z)B(O,T)_ e~ (U2B(O7=)y
0

sg=ge(12B(07=>), (95)
where B(r,t)=([ (U —Uoo]*)o and R(r,t)=(8uy/Shgo)o
are, respectively, the correlation and response functions in

As stressed in Sec. |, it is important to first study thethe theory without disorder. In the case=0 the FDT en-

elastic theory as a function of the dimensidn before at-

sureséT=0, as in the previous sections. This property does

tempting to include topological defects. Up to now we havenot hold any more when+# 0 andT renormalizes upward in

studied the moving glass equation irda 3— e expansion.

This study is of course mostly relevant for the physical di-

mensiond= 3. To study the other physically interesting di-

d=2. Similarly as for the statics, disorder is relevant below a
certain temperatur&,. To determineT, one computes the
mean-square displacements in the absence of disorder. Ac-

mensiond=2 another RG calcluation can be performed. Forcording to whethep =0 orv >0 one finds, using a regular-
the staticsv =0 the RG approach was constructed by Cardyization discussed in the Appendix C, two different large-time

and OstlundCO).1*3 It was later extended to study equilib-
rium dynamic$!* and, with some additional assumptions, to
study the problem id=2+e€. In the casey=0 it yields a
marginal glass phase h=2 for T<T. described by a line
of perturbative fixed points. Extensions to models with 1
components necessary to describe a lattice tomed far
from equilibrium*® were also studied.

behaviors:

4T
B(Ot,a)= T—(In[v,ut/a]+C/2) (v>0),

2T
B(O,t,a):T—(In[c,ut/az]JrC/Z) (v=0), (96
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2 8 aroundT/2, of equationg—go=3(73— 7%) (note that close
to T,=T./2 these trajectories are not modified by the higher-
order terms.
? As can be seen from Fig. 24 if one starts at small disorder
with temperaturel ./2— AT, both disorder and temperature
first increase pushing the system in a region where the dis-
order is irrelevant, ending up with a disorder free system at
aboutT./2+AT. This has several physical consequences.

* \1 T (i) At finite velocity the effect of disorder is weaker than
/)J N Syl in the statics, which manifests itself in the RG equation since
P 't. weak disorder becomes irrelevant for>T /2, a region

g which is already deep in the glass phase in the statics. This
FIG. 24. RG flow diagram ii=2. The flow is circular around  €ffect is analogous to the dimensional shift frag.=4 in
an instability temperature &t=T,=T./2. The Cardy-Ostlund line the statics tad,.=3.
of the fixed point of the staticglotted ling which starts af =T, is (i) However we still find a transition at=T./2 below
unstable whew >0. Ford=2+ € there is a finiteT moving glass  which disorder is relevant and grows under RG. That such a
fixed point(presumably attractiyeon the dashed line at~e€ (the  region where disorder is relevant existsdr2 is compat-
resulting spiraling flow is not shown Continuity with the FRG ible with the FRG findings ird=3—¢€ and clearly shows
result suggests that this fixed point moves upward toTth® axis  that even in motion one still has to consider the effect of the
asd goes fromd=2 tod=3. Ind=2 a zero-temperature moving random potential. However due to the importance of the
glass fixed point is expected at infinige=—A"(0) (if the lower  thermal effects id=2, at large enough scales the disorder
critical dimensiond, for the T=0 moving glass igl.<2). stops being relevant since the temperature also increases.
The length scale€ at which disorder becomes again negli-
where T.=4mc is the transition temperature of the static gible can be estimated from the RG and reads at small
system. Remarkably, as can be seen from(E6), T is half <72, £~(721g) Y40, £ becomes extremely large when the
of the Cardy-Ostlund glass temperatdigof the statics. disorder is weak or when one starts at low enough tempera-
Thus the CO line is unstable and both disorder and temyyres.
perature are generated. To obtain the RG equations we re- (jii) Finally, we find that disorder generates an additional
strict ourselves to the case when the Starting cutoff is |arg%mperature_ This renormalization of temperature is phys|_
enougha®v?/(4c?)>1 (or the velocity large enougtso that  cally very different from the “shaking temperature” of Ref.
one is already in the asymptotic regime. Of course at smaly2. |n particular the value of the generated temperature in
velocity there is a complicated crossover where the shorgur case does not depend on the strength of the disorder but
distance properties are dominated by the static SOlUtion, bl.gn the temperature itself and the distancé’&o In particu_
the large distance properties are again given by the presepdr and in a similar way as for the FRG, if one had started at
RG %uations. |ntr0dUCing the dimensionless COUpling CoONT=0 no temperature is generated, as can be seen from Eq
stantg=ga/(vT.) Egs.(95 and(96) allow us to obtain the (97).
correction tonT (see Appendix €and the RG equations Using the RG flow one can compute the displacements.
upon a change of cutofi’ =ae”. Note that the exponential For the connected correlations one finds
decay of the response function at large tias in Sec. V)
cuts all divergences im. One finds

C

([u()—u(0)]%) = (u(x) = u(0))*~Tg(7,g)In x. (98

d_g:(l_ E 9+0(9?) We have used the exponent at the fixed point, which is a
dl T, ’ correct procedure because the fixed point is approached fast
enough asr,— (1)~ e ™. These correlations are non-
dT _ _ monotonic as a function of with an almost cusgrounded
_I_—d|=2C19+O(gz), by g) at T./2, and increase beloW./2. Ty is given by the
above trajectory equation settingy=(2T—T.)/T, and 7
=(2Tr—T)/T..
d_7l —0 ©7) In d=2 thermal RG effects are obviously important. This
dl ' raises the issue of whether the moving glass phase exists at
finite T. Since at low-temperatures the disorder is renormal-
whereC,;=e %2 is a nonuniversal constant. Equatic@v) ized to nonperturbative values, one cannot rule out from the
can be compared with the Cardy-Ostlund RG equatitior ~ above calculations that a low-temperature moving glass
v=0 where the eigenvalue is 2¢1T/T.). phase exists. In that case an additional fixed point which
controls the transition is necessary. In the absence of such a
fixed point the moving glass would always be unstable at
finite temperature ird=2 due to temperature renormaliza-
Let us analyze the RG flows. We introduce the reducedion. This last scenario is supported by the FRG results in
temperaturer= (2T—T.)/T. andg=2C,g. The trajectories d=3—¢ and by the calculations id=2+ € of Sec. VII C.
are the arches of parabolaes represented in Fig. 24 center@d course this is separated from the issue of the existence of

C

B. Analysis of RG equations ind=2
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aT=0 moving glass phase =2 which is likely from the and the full time dependence of the pinning force. If one

zero-temperature FRG study of Sec. VI. describes the elastic flow of a solid, i.e., in a regime, or a
range of scales where there are no topological defects, this
C. Moving glass equation ind=2+¢€ model improves on model llisee Sec. | for a discussion of

. . the regimes where it is usejulAs discussed in Sec. IV it is
We now follow Goldschmidt and Schati and continue still an approximation, but a rather good one, of the thlit

the above RG equations tb=2+ . The e simply shifts the 1 taple model of the elastic flowmodel ).
dimensions of the operators. We stress that this is based on g; o model 11 is still quite difficult, our aim in this sec-

bedded in model IIl are also present when the degrees of
&Feedom u, along the motion are added. In fact we show
explicitly that in model 1l the RG equations for quantities
— involving uy, remainidentical to the one of model Ill. The

sions, one readily obtains using the same reduced variabl
to lowest order:

dg = —(e+71)g—bg? two important issues we discuss are the ones of the existence
dl or not of an extra temperature generated by motion, and of
the generation of a static “random force.” We perform per-
d_T: —26+g_ (99) turbation theory up to second order in the disorder and ex-
dl amine the terms generated as well as the divergences. We

develop an approach which allows to tresdt harmonics
AgP of the disorder correlator. First, we find that a static

X : - —  ‘“random force” is generated in the direction of motion. This
d7/dI=0. These equations now have a fixed pointgat ay seem surprising at first, because first-order perturbation
=2e and7=—(1+2Db)e. To lowest order the eigenvalues theory gives a pinning force alongwhich rapidly oscillates.
are\.=—bexi\2e. Thus without needing to compute the However, as our calculation shows, to second order the vari-
coefficientb we know that there is a fixed point, and we gus washboard frequency harmonics interfere to produce a
know the leading behavior of the eigenvalues~*iVe.  static random force. Second, we identify the divergences in
Such spiraling fixed points have been obtained in other probperturbation theory and follow the evolution of the full dis-
lems (e.g., Ref. 11Y. However to know whether the fixed order correlator under renormalization. We show that up to
point is attractive or repulsive, one needs to know the reasome details the resulting picture is close, if not identical, to
part, which is controlled by th@©(g? r%,g7) terms in the the one given by model Ill. We work & =0 but the ap-

RG equation. For instance, the RG equation contains at leagjroach can be extended To>0 along the lines of Sec. VI.

with b= B/(4Ci) being a universafregularization indepen-
dend number(by analogy with CQ.** Finally one has also

d - .
d_? — —(e+7)g-b@ 1. General propertles- |
Here we study Eqs(33), (34) keeping the time depen-
dr L dence. More specifically we are interested in the model for a
— =(—2e+g+cg)(1+1). (100  triangular latticeln=2 component modgkith the force ap-
dl plied along a symmetry direction. The equation of motion of
Inspection shows thdt actually controls the leading behay- Model Il reads for lines irl=3:
ior of the real part. So this is the only nonlinear term we need
to compute. Results from FRGee Appendix Band static Dux@iUx+ 700 Iy + (CaaV 2+ 044&§)ux+(cn— Ces)
CO lead us to expect that>0, but to settle the question and
obtain the universal value df an actual calculation along X dx( It dyUy)
the Iine; of Ref. 94 is needed. It is tempting to asspciate Fhis =f— g+ F)Ei”(r,t,u), (10D
fixed point to a finite temperature moving glass fixed point
(analogous to the finit& fixed points found in recent mani-
fold studie&®). Finally we note that at this fixed point one Tyydly+ 100 AUy + (CagV 2+ Caa97) Uy + (C11— Cop)
hasz=2 since we find that%»/dl=0 (thus there are large
but finite barriers X dy( Uyt dyly)
=FP"(r,t,u), (102
VIIl. TOWARDS A COMPLETE DESCRIPTION
OF ELASTIC FLOWS and settingc,,= 0 to describe lattices of points d~ 2. Note

. . _ at z,,=0 from the symmetry(u,— —u,, y——y). We
In this section we go beyond the transverse description or Xy : Y -y ]
the moving glass and study models Il and I, ave allowed for differenty,, and »,, since, even if they

start identicaland equal torg) they do not remain so under
renormalization. The statistical tilt symmetry ensures that the
elastic coefficients andyjqv remains uncorrected. Note that
in later calculations it is convenient to rescale girection,

In this section we come back to model Il which containssettingz= \/c44/Cgez’. The correlator of the pinning force
both degrees of freedom transverggand along motioru,  can be written as

A. Study of the complete dynamical equation
in elastic limit (model 1)
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Folr LU 4t u")=8%r—r" ) A [u—u'+v(t—t')] lattice. More details are contained in Appendix B using the
more rigorous MSR formalism.

zéd(r—r’)E AaB .The symmet_ries are as follows. First one can e>_<change
= K with t’ andu with u’ in Eq. (103 and relabel the disorder
term. This givesA“? (v)=A£*(v). This is by construction
x g K [umu+ut=tH] (103  and from the specific dependencetiandt’ of the disorder.

Second, the action must be real and thag”(v)

It contains all lattice harmonicK. Due to the modes with = A2A(y)*. Third, the symmetryT, (u,——u,, y——Yy
L .. .y . . . ! y y y !
K,# 0 it is an explicitperiodic function of timevith frequen-

0 — i yy =AY
cies all integer multiples of the washboard frequeney. Uy—-—u,) - yields  that AKx"Ky(U) AKx'Ky(v)’

=v/a. In addition it contains nonlineastatic components Aéi,—Ky(U):Aﬁxx,Ky(v)' Aﬁ{,—Ky(U): _AxKi,Ky(U)’
Ky=0, K,#0 (which lead to model Il treated in Sec. VI AVKXX',Ky(v): _A)r/();,Ky(U)- Similarly, because ofT, one
Finally it contains a static-independentomponentAx_o  finds A  (—v)=AY « (v), x (—v)
which, as we discuss below, is the static random force. This_, 4 Y Yy yx Y,
random force is strictly zero in the bare modgl_o(1=0) 2Kk, () A%k (F0)==AK ik (0), A% k (~V)
=0, but is generated in perturbation theory, as we show be= —Ai] « (v). Note that the global symmeti¥ T, implies
low. that A%? (v)=A2P(—v). Thus one finds that one can split

The idea behind the method presented here is thdt at the disorder correlator intcﬁgﬁ(v):Ag’K(U)jLAX’ﬁK(U),

=0 all the time dependenaemains strictly periodido all - \yhereA28 (v) is real, symmetric inB, even inK, and even
orders in perturbatipn theo_ry in the disordg@lus a static in v andA,‘i  (v) is imaginary, antisymmetric i3, odd in
pary. Only frequencies multiple ob, can be generated. In- o4 odd iny. This naturally leads to the decomposition
deed to lowest ordeF}"(x,y,t,u=0) is periodic in time,
and yields au periodic. Iterating perturbation theory thus AgK(v)zA'fvzﬁ +A§K K +A§v vs, (105
leads only to periodiei andF§"(x,y,t,u) with integer mul- ’ P «p «p
tiples of wgy. This property allows us to construct a closed
RG scheme of the above model with a renormalized disorder

which remains of the fornf103. where allAX are even irk andv and real. The bare disorder

An immediate consequence is theat temperature is gen- K
. ) has onlyA> nonzero and thus possesses the extra symmetr
eratedwhenT=0 at the start. Temperature is defined as the o P y y

aB _ AaB i _ _
zero-frequency limit of the incoherent noiger using the ~-k=Ak" or equivalently (I——u,v——v). Because of

MSR formalism the vertex functionpT=I";;(q=0,w thded_;:_onvrlectlon tetrm)gxu n t?i eigutatlﬁ_n hOf modt|on,_th|s
—0%)]. Thus here one has additional symmetry does not hold to higher orders in per-

turbation theory. It is natural to suppose that to any fixed
order in perturbation theory thAziK are regular whemw —0.

ﬂﬁ:f dr >, (AenPe Kvr=0, (104  Thusin the limitv =0 one recovers a strictly potential prob-

K#0 lem (all terms excepﬂg vanish.
Finally note that model 11l is a particular case of model Il

The static random forck =0 mode leads to &w) partinu  which corresponds to the following choice of bare param-
and thus is distinct from the temperature. The fact that ngyers: (i) isotropic responsec;;=Cg (i) AY=0. Then
temperature is generated B& 0 is a rather strong property clearly the equations along andy decouple. Another par-
of the elastic flow. In physical terms in thE=0 elastic  icylar case is to start fromﬁﬁ:gKKaKﬁ and use isotropic
Iamina_lr periodic floyv all particles strictly replace each Otherelasticity. Then the equations are only coupled through the
after time ro=alv, i.e., R; i (t+7)=R; +1; (t+7) where e dependent part of the nonlinear pinning force algng
i=i,,iy are integer labels for the particles. Although this which depends on, (one hasA}¥Y+0). It would be interest-
laminar periodic flow may becomenstableto chaotic mo-  jng to check whether this is enough to change the behavior
tion, we proceed here assuming that such instabilities t@ompared to model IlI.
chaos happen only at finite large enough disorder, or at large At T=0 the lowest-order corrections to the disorder come
enough scale. We reserve the study of the stability of thigrom second-order perturbation theory. The calculation of
flow (chaos, nonperturbative effects, etto future study. the effective action to second order for the most general
Finally note that this periodic flow is allowed by the assumedmodel is performed in Appendix B. The full correction to the

absence of topological defects in the system. Dislocations, iflisorder correlator is obtained @4 2 given in Eq.(B9).
present, may ruin periodicity and introduce a small addi-

tional temperaturéthough this is far from established
We start by establishing the possible form for the disorder

AR (0)=i1AL (v Kp—vgK,), (106

2. Generation of the static random force

correlator(at any order in perturbation thegrpased on the ~ SettingKk=0 in Eq.(B9) one gets the gene;rﬁal expression
symmetries of the problettmodel 1. This is necessary here for the static random force correlatosAq”, ie., a
because the bare disorder pstential Aﬁﬁ(o)ZgKKaKﬁy u-independent Gaussian random teFfr) in the original

but it does not remain of this form in perturbation theory. Weequation of motion. This random force has zero crossed cor-
are interested here in the case when the velocity is along tH€lations, i.e..8A5*(v) =0. Thus there are two independent
lattice direction. Our analysis here is very general, and wgandom forces one along of strengthA§* and one alongy

will specify when we apply it to the case of a triangular of strengthA¥”. This is consistent with formulé105 which
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givesAl(v) =iAfK,v and vanishes faK =0. It can also be  =S(4—d)/[8(2m)%sin(md/4)] and n=2 for triangular lat-
seen explicitly on the above expression which is found to bdices. This yields for ;<a:
symmetric inaB (using all the above symmetrjesSince we o ned
know thatA%Y(v) must be antisymmetric ixy (from the A 98 min
aboveK,— —K, transformationit must vanish. The expres- 0 (7701))2r§Hn
sion for the random force is still complicated as it does in- ) )
volve all disorder harmonicsOne must carefully distinguish N the cas&gs<cy; one can simply retain only the transverse
between: mode(thus settingc= cgg in the above formulasIn the case
(i) The static random force generated to lowest order irflz=1 (relevant for line latticeswe only give the large
the bare disorde®(A2) (i.e., at the initial stage of the RG ~ estimate(valid for v>v = cegm/a). It reads
To this order one can use thare disorderand the resulting

11

d/2
} . (110

Uerl ¢

perturbative expression of the random forfexaluated be- AXA 1 2 K4K |22 2

low) is found to be well behaved and without IR diver- 0 \/0_44( nov)¥2 K xI” Ok

gences. Of course once even a small finite random force is

generated, it is relevant by power counting and must be taken g’a"

into account(though it does not feedback in the RG for the ~ TRV ERT T (111
VCad( 700) ¥ |

nonlinear disorder
(ii) The static random force generated to higher orders in

perturbation theoryor at the next stages of the RGhere Let us stress again that we have defined the random force

cas AP, which is the correct definition based on the RG

we find IR divergences. This means that nontrivial corre . N h distinauish it
tions originating from the nonlinear disorder have to be alsodecomposnmn. ote that one must . istinguish it fraru
+=0). If one was to compute the displacements correlator

taken into account to estimate the random force generated. P .
This is done in the next subsection. uuy to orderA<, in order to show that the displacements

Thus we start by giving the expression of the random{€€! the random forcee.g., grow unboundedly in theory

force generated from the bare disord@). Setting A,%B girectior? (t)net \t/\r/]ould need&(lro%_ to seconoti (()jr(ileﬁand :to
— kKK, in Eq. (BY) one finds e consistent the response function corrected to akgle

would be thus tempting to attribute the random force to
A(u=0), but such a definition would not be carried out

5A35=Z fKaKBgﬁ{[KR(—ivK,—q)-K] beyond the simple perturbative approach. While it makes
K Ja little difference in order of magnitude estimates for the effect
X[K-R(ivK,q)-K]—-[K-R(ivK,q)-K]2. of the_x random force_, it is drastically diﬁererjt alonyg(one
guantityAx—, is IR divergent and the other is not, see Sec.
(107 wvi).

Note that it does vanish far=0 as it should since the prob-

lem becomes potential in that limit. One can first specify this 3. RG study of model Il

formula for the cas€;,=Cgg. We also sety,,= 7,y (which We now look for the divergences in perturbation theory
is consistent since we are just looking at the lowest-ordewhich appear in model Il. We address only the case0.
contribution in perturbation theoryThis yields® Let us look again at Eq(B9). It contains infrared diver-
) ) gences of the same type that was discussed in Sec. VI. These
AT f KK K a2 2(mov)“(Ky+0dx) divergences occur only faj-momentum integrals which are
0 2 Jqez R g9k [C20%+ (700)2(K, + 0212 both (i) zero-frequency integral$éK-v=0 terms, (ii) in-

(108  volveq and—q. These are of the form

A random force is indeed generated along bothxtendy 5

directions i.e., there is a positivag* and A}Y. The cross Dw,&x:f G (=q)G™(a), (112
terms vanismA¥=0. The integral forA¥ is infrared diver- ‘

gent, as discussed abo@ehich is natural from the analysis whereG*#(q) =R*?(w=0,9) is the static response function.

in Sec. V) and is examined in the next section. Here it has the form

Let us estimate the magnitude of the static random force
generated along. From the above expressidi09 one G(q) =3 P'(ay,ay) 113
finds in the cased,=0 relevant for point latticeqin d (@)= T c¢(q)+ivay’ (113
=1,2,3:

wherel =T,L index the transverse and longitudinal projec-
Cq 4.2 tors and elastic eigenenergies as defined in(88). The key
(700)2 K,\KX;BKm K*gk point (for n=2, e.g., triangular latticgdgs that one has here
0x—05~0Z. Thus all projector elements are subdominant

XX__
0

Ci Mo 22 for small g (i.e., kill the IR divergencesexcept the two

F o7 % 2y KRN0k (109 elementsPl, ~ P~ 2/ (q2+62)~ 1. Thus the only IR di-

vergent elements among Eq. (112 are

whereK ,=[Ko|max(1y/v). There is a crossover velocity Dyyyy,Dyxyy:Dyyxx: Dxxxx- EXplicit calculation of the diver-

nov~Cla. One has define@y=2Sy/[d(27)"] and Ci gent parts gives
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Y gy, 20(011Q§+ Casd)

1
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XXXX ay .0z 20(066q5+ C44q§)
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xxyy ™ Hyyxx qy,qzu[(011+Cee)q)2/+2044q§]'
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dA 5(u,v)
%=Aa,g(u,v)+[A1(0)—Al(U)]éﬁAaﬁ(u,v)

+9[A2(0) = Ap(U)]F2A 4p(U,0) (118

with ’y:AGG/All and Al(u):fdl)Ayy(u,U) and Az(u)
=[dvA,.(u,v). The functionA;(u) obeys the closed RG
equation(60), identical to the moving glass RG. This(u)
converges towards the moving glass fixed point of Sec. VI
A¥(u)—AF(0)=3u(u—1). Let us now examine the behav-
ior of the other components of the disorder with=0 (and
aB=xXx,Xy). They obey the equation

Let us now analyze the consequences of these diver-

gences. From EqB9) the relevant corrections to disorder
are

SARP=D,, s

P=(0,P,)

(—KyKﬁAQBAgML(K—P)y
y

(116

1
X (K—P) A28, E[AF,;MA@P )

Note that there is no componehfé,’;(oypy) in the bare

dA,5(u) .
i Aap(W) T AGEWIAL(0)— Ay (W] (119
By settingu=0 in this equation, one easily sees that;(u)
also becomesnonanalytic beyond the dynamical Larkin
length. Indeed the divergence 4f/(0)— —« at the Larkin
lengthl.=In R (see Sec. Vlimplies thatA7 ,(0) also di-
verges. Thus the fulk ,5(u) does become nonanalytic. Note
that the solution of Eq(119 for u=0 is simply A(l)
=(A,/A)A(l). It is then easy to show thah*f(u)
=CA7 (u) is a stable fixed-point solutiofup to the usual

action but that it is generated in perturbation theory. Thisgrowing constant Indeed, inserting the fixed-point value
expression simplifies because of the symmetries discussey,(u) in Eqg. (119 at u=0 one finds exactly the stability

above and the fact that only the terrtisl4) appear in Eq.

operator of the original fixed point which was discussed in

(116 (the termA’;,X always occurs in sums symmetrized over Appendix D. This proves the stability of the fixed point for

p\ and one can use thAl’;yy’Pfo: _A)%,Pfo to cancel all

crosse,,,, termg. From what remains one finally obtains
the following RG equations:

dagh
- AP+ P=%:P | {AuAp[ - KyKyAgP+(K=P)y

y

X(K=P)yAgf o]+ AgeA FKK(ARE p— ARP)}

(117

W|th A11: 1/(4’7TU \/C11C44) andA66: 1/(4771) \ C66C44) |f one
uses the same regularization as in Sec. VI.

The RG equationg117) are thus the generalization to
model Il of the RG equations of model Ill and contain bot
the physics ofu, andu,. They show that in the moving

Bragg glass, nontrivial, nonlinear effects also occur in th
direction of motion. A more detailed study of these equation

will be given elsewher& Here we give their salient fea-
tures. The RG equationd 17) exhibit remarkable features.
First, the subset of these equations m}ngy) closes onto
itself. Indeed setting{,=0 in Eq.(117) one recovers exactly
the RG equatiori58) (with {=0) of the moving glass model

€

the whole equatiori119. To determine the constaf we
use Eg. (119 to compute ngZﬁ(0+). One getsg
~f|>|cdl[1— 7(0*,1)]. The exponential convergence of
A, towards its fixed point implies thaf is a finite constant
which determine£. At the fixed point one can thus replace
A,(u)=CA;(u) in Eq.(118.

Thus we have shown that the RG equations in a moving
Bragg glass decouple completely alonggiving back one of
the generic moving glasses studied in Sec. VI. A complete
study of the systeni117) will be given elsewher&®

B. Full model for the elastic flow (model 1)

We now come back to the problem of establishing the

hcorrect long-wavelength hydrodynamic description of a

moving structure with some internal order described by a
displacement fieldi ,(r,t). The first step is to write an equa-
ion of motion which contains all terms which aji¢ allowed

y symmetry and(ii) a priori relevant in the long-
wavelength limit by power counting. We carry this step here,
check that all these terms are indeed generated in perturba-
tion theory from the original equation of motidi22), and
estimate their magnitude. The second step, which is to solve
the universal large distance physics of such an equation turns

ll. Thus we have shown that model Ill describes correctly + here to be a formidable task. which goes beyond this
the transverse physics, as announced, even if Iongitudinzﬂaper_ ’

degrees of freedom are preséne., within model 1).

As we have discussed in Sec. IV the problem of driven

One can also write the above RG equations as coupleflices possesses some additional “almost exact” symme-

differential equations for three periodic functions of two

variablesA “#(uy ,u,) with &, 8=xx,yy,xy. We temporarily
use the shorthand notatiam=u, and v=u,. We denote
A‘,nyzo(u) by A;(u) and absorb the factag/A,; in the A.

These coupled RG equations become

tries which allow us to simplify the hydrodynamic descrip-
tion and to extract some of the physics. This has led us to
study model 1I(Sec. VIII A) which possesses the statistical
tilt symmetry forbidding many terms, and the simpler model
Il (Sec. V) (the moving glass equatiprwhich contains
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most of the physics of moving structures, i.e., the physics ofWe have thus computed in Appendix A the corrections to
the transverse degrees of freedom. first order in perturbation theory with respect to disorder to
As discussed in Sec. IV the only exact symmetries of theall terms of Eq.(120. Though the above equatiofi20
problem, for motion along a symmetry direction of the mov-looks formidable many terms are zero from the exact inver-
ing structure(x axis), are the spatial inversions along the sion symmetry. We thus now explicitly specify the terms
directions transverse to the velocity. Power counting showsllowed in the equation of motion, for the case of an elastic
that the general form for the equation of motiondss3 is  structure described by ar=2 component displacement field
(model I): (uy,uy). In d=2 andd=3 the equation along should be
se odd under the inversiofu,— —uy, y— —y) and also under
apydolpdely (z— —2z), while the equation along must be even under
these transformations. This yields dr+ 3

S

=FIr,u)+ (1) +f = 7,505+ 8F,, (120

where the velocityv is fixed by the convention that TyydiUy T U 195Uy 020y Uy
d/dtf,ul=0 andf is the applied force. The KPZ terms are

2 2 2
. . . e =(Cq105 T Crdy,+ C305)Uy+ Cyqdyd Uyt (a195U
allowed becausei, is dimensionless at the upper critical (CadiF Cody+ Cadz)Uy+ CadudyUst (81Tl

dimensionduczgl ip a power counting ar=0. This can also +a,dyUy) Uy + (agdy Uyt 49, Uy ) dy Uy
be seen by writing a MSG formulation of E¢L20). The dis
above equation of motion is not fully complete unless one +a5d Uy Uy + F o(r,u,t) + £y(r,t),

specifies the relevant disorder and thermal noise correlators.
The thermal noise has a Gaussian correlafpft){(t")
=2(7;T)a55(t—t’)5d(r—r’), in general anisotropic. The
correlator of the pinning forc4S(r,u) (which has zero av- Nxx0tUxt U3dxUx T U 40Uy
erage is Gaussian and of the forfl03) for periodic struc-

2 2 2 2
. . . =(Cgdy + Cgd, + C-d5)U,+ Cgdyd\ U, + ag(dy U
tures. Note however that in general, 4(u) is not a potential (Cs0x+ Cody + C797) Ut Cadxdylly+p(duthy)

disorder. . +a7( dyUy) 2+ ag(dyUy) ?+ ag( dyUy) 2+ as0dyUydy Uy
Compared to model Il, cutoff effects which break the ex- ) )
act statistical tilt symmetry allow new terms to be generated, +a119xUydyUy+ a1 d7Uy) “+ a13(d;Uy)

such as linear terms which correct the original convection
termvdyu and nonlinear KPZ-type terms. The linear terms
are obviously relevant and the nonlinear KPZ terms, in pres-
ence of the disorder, are relevant 3. Thus once they 5nd the same =2 with C3=ag=C;=aj;,—a;s=0. The

are generated, even if their bare values are very small theyhysical interpretation of the linear terms is that now the
may grow under RG and become important at large g@le |ocal velocity explicitly depends on the local strain rates of
full solution of the RG equations for Eq120) would be the structure. The first possible effect of these terms would
needed in order to conclufieHowever one may guess that pe to generate instabilitiesee below In the absence of
since the statistical tilt symmetry is almost exact, the scale afy,ch instabilities, it is unlikely that these terms alter the
which these new terms are able to change the physics conansverse physics. Although the full analysis of EtR2)
pared to models Il and IIlif they do) may be very large. goes beyond the present paper, some arguments support this
Finally note that there are also small corrections to the e|aSti5icture. Indeed one can see that small additional linear terms
matrix. ) » _ do not remove the divergence in perturbation theory which
The above approach consists of writing a model indepenyas the hallmark of the moving glass. Let us write=v
dent equatiori120) based on symmetry arguments. It may be , ,, v,=aw, v3=v—W, v,=bw and considew as small
useful in proving the universality of the behaviors of Variouscompared tw. Also we choose for simplicity isotropic elas-
structures. However, in many cases it is much more instrucﬁcity C1=Cy=C4=Cs5=C;=C3=C, Cg=C4=0. Then the ei-
tive to start from a given simple model without disorder, genvalues of thas=0 (statid response matrix ar®=(q)

such as Eq(22), and to estimate the bare values of the new__; + 2 .
) . . e = +w+/g2+ c_ﬁ +
terms to first order in a perturbation theory in disorder. In- (g =wydy +abgy) +cq” and eigenvectorsdy, ouy)

deed, in the absence of disorder the above equation of ma= (Pdy .0, Va;+abgf). Note that one must havab>0
tion reduces to otherwise an instability develops. The perturbation theory

result shows that indeeb>0 at least to lowest order in the
disorder. One finds for instance that the integral which is the
70p(dUgF+vaug) =(C0) 203, 5us+f,— nogv s+ La(rt).  key of the FRG equation for the transverse modes E&@—
(121 (114 becomes

+F5in(ryuyt)+fx_ 77xxv+5fx+§x(r:t)' (122

c2q*+ (v —w)2q?
[c?q*+ (vay+wy/a;+abd) ][ c2q*+ (va,—wyai+aba))?]

f ny(Q)ny(_Q): f (123)
q q
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As is easily seen this integral is infrared divergent br terms ofstatic channelsvhich are the easiest paths in which
<3, logarithmically ind=3 and powerlike ird=2 (sincew  particles follow each other in their motion. We have intro-
is a small correction tw). The divergences occur in two duced here several degrees of approximation of the problem
hyperplanes, = + (abw/ \JvZ—w?) gy Which are tilted sym-  of moving periodic structures, embodied in several models.
metrically with respect of the direction of motion. Thus the The simplest one, model llI, introduced in Ref. 73 focuses
main conclusions of Sec. VI are unchanged. only on the transverse degrees of freedom. A more complex
Let us now reexamine the moving glass equation, i.e.one model Il also contains degrees of freedom along the
model Ill, and ask whether cutoff effectabsence of exact direction of motion. We have studied these models using
statistical tilt symmetry generate relevant terms. By defini- several renormalization-group techniques as well as physical
tion this equation involves only, and thus the only priori arguments. All our calculations and results confirm that fo-

relevant terms allowed by symmetry are cusing on the transverse degrees of freedgnodel IlI)
5 5 ) gives the main physics for this problem. Indeed we have
7yydiUy + v 195Uy = (C1d5 + C2dy + €497 ) Uy + adyUy dyUy shown explicitly that the more complete model Il leads to the

n Fpin+g (124) same transverse physics as model II.I..
y v At zero temperature we have explicitly demonstrated that
Now, we have shown in Sec. VI that at the moving glassthe physics of the moving glass is governed by a nontrivial
fixed pointdy~d; and thus the KPZ terra, is irrelevant by ~ attractive disordered fixed point. Using the RG, we have ex-
power counting. Note that a cubic KPZ termmy)zﬁxuy is plicitly der_nonst_rated the eX|s_ten_Ce of the transverse crltlc_al
allowed by symmetry but again irrelevant nede=3. The force pred|cted in Ref. 73, which is related to the nonanalytic
moving glass equation model 11l is thus stable to cutoff ef-behavior of the renormalized disorder correlator at the fixed
fects and perfectly consistent. This lead us to cfdithat  Point. Its actual value, computed from the RG coincides with
while previous descriptions of moving systems, such adhe estimate given in Ref. 73 based on the existence of a
manifolds driven in periodid® or disordered potentiafS;””  dynamical Larkin lengttRY. We have also found that at
focused on the generation of dissipative KPZ, such terms are 0 no temperature is generated because perfect time peri-
much less important in the moving glass equation, a problerfdicity is maintained. A static random force is also generated
which, because of periodicity, belongs to a universality classboth along and perpendicular to the directions of motion. As
Finally one can also reexamine model Il, the physics ofa consequence relative displacements in bothxtrend y
which is presumably very similar to model Il at least as fardirections grow logarithmically imd=3, but algebraically in
as the transverse degrees of freedom are concerned. Thils=2. Thus ind=3 at weak disorder or at large velocity, the
certainly holds below dlarge length scale max(,,,Lxpy).  Moving glass retains quasilong range order and divergent
Above one must worry about the new terms. Power countinddragg peaks. Since the decay of translational order is very
atd=3 (whereu, andu, are dimensionlesn the equation slow ind=3 we predict that a glassy moving structure with
for the transverse degrees of freedag(using thats,~g; ~ quasi-long-range order and perfect topological order in all
in the absence of the new termshows that the only KPZ directions existsthe moving Bragg glasS.he determination
term marginally relevant at the model Il fixed point ¢h  Of its physical properties is the main result of this paper. This
=3 (and thus the dangerous Oris the terma,d,Uyd, Uy . pha_se is the natural continuation to nonzero velocities of the
Note also that the linear teroy,dyu, also becomes relevant static Bragg glass. o
there and changes the counting. In the end it is probable that We have investigated the effect of a nonzero initial tem-
all terms in Eq.(122 have to be treated simultaneously to Perature. We found that the moving Bragg glass survives at
get the physics beyond max( ,Lxpy). finite temperature as a phgse distinct from a perfect crystal
Finally we note that the arguments given in the previous2nd With properties continuously related to the zero-
section about the fact that no temperature is generatdd at temperature moving Bragg glass. At low temperature the
=0 are unspoiled by the terms generated here in the equatidRoViNg Bragg glass still exhibits highly nonlinear transverse
of motion compared to model II. That these terms may leadyelocity-transverse force characteristics with an “effective
to other instabilities of the periodic time ordered flow result-fransverse critical currentin the same sense as for the lon-

ing in chaotic motion is clearly an interesting possibility de- ditudinal critical current At T>0 the FRG calculation in-
serving further investigations. dicates that the asymptotic behavior is linear but with a

strongly suppressed transverse mobility at low temperature.
The existence of elastic channels provides a precise way
to look at the problem of generation of dislocations in mov-
In this paper we have studied the problem of movinging structures. The natural transition is now a decoupling of
structures(such as vortex latticgsn a disordered medium the channels with dislocations decoupling the adjacent lay-
following the physical approach developed in Ref. 73. Theers. It is indeed easier to decouple the channels via shear
main emphasis in that approach is that because of degrees @éformations than to destroy the channel structure altogether.
freedom transverse to motion, periodic structures have #&his leads to expect another moving glass phase which keeps
radically different physics than more conventional drivena periodicity alongy, which has been termedoving trans-
manifolds. The main consequence of our study is that theerse glassSince it retains a periodicity along the direction
moving structures remain different from perfect structuresperpendicular to motion it shares the properties of moving
(e.g., a perfect crystpht all velocities(for d<3 for uncor-  glasses, and in particular it exhibits a nonzero transverse
related disorder In particular they still exhibit glassy behav- critical force atT=0.
ior. The moving configurations can be generally described in We have given predictions for the phase diagram of mov-

IX. CONCLUSION
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ing systems. It shows that the existence of the Bragg gladsand, the existence of elastic channels suggests a precise way
phase in the statics has profound implications on the dynamio look at the problem of generation of dislocations in mov-
cal phase diagram as well. Indeed it is natural to connedng structures and may provide a starting pdifitSolving
continuously the static Bragg glagast v =0) to the moving this issue starting from large velocity is already a formidable
Bragg glasgat v>0). Thus there should be a wide range of task, but could help us to understand what happens close to
velocities (down from the creep region to the fast moving the threshold. Indeed here again only simple cases, inspired
region where effects associated with transverse periodicityfrom the manifold or CDW with scalar displacements and no
(such as the transverse critical forshould be observed. We transverse periodicity, have been considered previously. As
have analyzed the crossovers between the Bragg glass prdp-the statics it is possible that the physics is modified in a
erties and the moving glass properties in the region wherguite surprising way, and certainly all the issues about criti-
the velocity is not large. cal behavior close to threshold, dynamics reordering, and

Further experimental consequences should be investigatedastic to plastic motion transitions, have to be reconsidered.
in details for vortex systems in motion. A direct measure-These issues are of major theoretical concern but also of
ment of the transverseV characteristics at low temperature large practical importance. Finally we note that though
would be of great interest. But consequences for the phaseodel | remains to be tackled in order to reach a complete
diagrams should be explored too. It was predittedat the  description of the lattice elastic flow, we have shown that the
static Bragg glass should undergo a transition into an amorextra linear terms do not seem to change drastically the main
phous glassy state upon increase of disorder. As discusséehtures of perturbation theory. The KPZ terms remain to be
previously’ the field-induced transition observed in many treated, but an interesting possibility would be that again
experiments is the likely candidate for such a transition. Abecause of periodicity their effect would be weaker than ex-
similar prediction can be made in the dynamics. At fixedpected.
velocity the moving Bragg glass should melt, upon increas- Another interesting issue is to understand to which extent
ing the temperature, into a moving liquid at a temperaturea moving, or more generally a nonpotential system can be
smaller than the static system. Since the moving Bragg glasglassy. This concept may seem doomed from the start since
is topologically ordered this transition is likely to be first one could conclude that the constant dissipation in the sys-
order. Upon an increase of the disorder equivalently the tem would tend to kill glassy properties. However there too
magnetic field for vortex systemsat fixed velocity, the the situation may be more subtle and leave room for unex-
moving Bragg glass should experience a transition into ampected behavior. We have proposed the moving glass as a
amorphous moving phase. However, unless the velocity ifirst physical realization of a “dissipative glass,” i.e., a glass
small, since the effective disorder is smaller in moving syswith a constant dissipation rate in the steady state. Other
tems this transition should occur at a higher value of disorderealizations of nonpotential glassy systems have been stud-
(or magnetic field than for the statics. A detailed investiga- ied, such as in spin systeM$ or for elastic manifolds in
tion of these transitions may help understand the nature agiindom flows such as polyméts®
the high-field pinned phase. Indeed the nature of the transi- It is important to characterize these glassy effects in
tion away from the Bragg glass may change once the systeuriven systems. Too close analogy with glassiness in the stat-
moves if the moving amorphous phase is different from thecs could be misleading. As we have discussed it is interest-
static amorphous phase. If the “vortex-glass” phséex-  ing to check whether the presence of a transverse critical
ists at all in the statics id=3, one may expect that it would force leads to history dependence effects. The role of the
not survive as smoothly as the Bragg glass once the systemtemperature in moving systems and its relation to entropy
set in motion. Finally, it would be interesting to investigate production remains puzzling. It is natural to expect, as in
whether the anomalous response to transverse forces coudther related nonpotential systertf*#that the absence of
have an impact on the anomalous Hall angle. As we havéhe fluctuation dissipation theorem leads to a generation of a
discussed, other experimental systems, such as Wigner crytemperature. This is of course what happens in the RG ap-
tals, seem to be a promising arena to investigate the physiggoach presented here. This heating effect however is very
presented here. The effects predicted here also provide different from the “shaking temperature(since it disap-
strong motivation to reexamine other moving systems suclpears aff =0 in the moving Bragg glagsnd rather is likely
as doubleQ or triple Q CDW's. to be related to the entropy production. Hopefully the meth-

Another direct experimental consequence, in the case afds introduced here should allow us to understand this rela-
correlated disorder is that one should observe a “movingion better. We have found within the FRG that at finite
Bose glass.” Static columnar disorder in vortex systems isemperature the physics is controlled by a nontrivial finite-
strong but at large velocity one should expect that the effectemperature moving glass fixed point. This result is strength-
tive disorder becomes weaker. Thus the Bose glass driven etied by the fact that another nonzdre-0 fixed point has
low temperature should have interesting properties such aaso been obtained in the problem of randomly driven poly-
discussed here. The resulting moving Bose glass should exrers, a problem which does have a dissipative glassy
hibit a transverse critical force and retain a transverse Meisphase® The problem of understanding dissipative glassy
ner effect in the direction perpendicular to motion. systems is also related to the study of geneoal-Hermitian

The properties of periodic driven systems discussed imandom operators. Indeed nonpotential dynamical problems
this paper also suggest many other directions of investigadncluding, e.g., the moving glagsare described by a Fokker-
tion. As for the statics one outstanding problem is to treaflanck operator whose spectrum is not necessarily (tBal
properly dislocations in the moving glass system. A con-contrast with potential problems which are purely relax-
trolled calculation may seem out of reach, but on the otheationa). These Fokker-Planck problems with complex spec-
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trum (which could be called “dynamical non-Hermitian This allows us to treat several problems. It allows us to treat
guantum mechanic9”are related to problems which have short-range correlated disorder keeping the cutoff depen-
received a renewed interest recentguch as vortex lines dence which allows to generate the extra linear and KPZ
with tilted columnar defect¥"® spin relaxation in random terms. It also allows to treat correlated disorder. The disorder
magnetic field$?2 and diffusion of particles and polymers in correlator is chosen as

random flows-2*1248%Exploring this connection, as well as

the very interesting question of the classification of these A*PLUp = UprpFo(t=t'),r=r']

glasses and the study of their physical properties is still

Iarg(_aly open. o _ _ => AZP(r—r")e K lun—uryot=th] - (AD)
Finally other fascinating open questions remain. The K

.:O moving Bragg glass fixed point, at Ieas.t within model I, where the symboEy denotes a discrete sum of lattice har-
is a time-periodic state. The general question of the stabilit

L . L . *monics for aperiodic problem and a continuous suli
of periodic attractors towards chaotic motion is still Very=fddk/(2 ) for a nonperiodic manifold. For the model
much open. It is related to problems of time coupling and _ ™ P :

af(y iKr e _
decoupling in nonlinear dynamics, such as synchronizatioﬁzg) one hash"(r) =K, Kgg(r)e™. This is thebare start

of oscillators in Josephson arrays, which has been studie'ﬁ,g c}orrelator(itl;s Iitsellf cor:rected ar}d dogslr;ot remain lﬁnder
extensively  recenth?®13® or  synchronization by this form, see beloyv In the case of model (30), i.e., the

disorder*11%2 |ndeed the existence of channels where parontinuum limit of the above model, one can replage
ticles follow each other may provide the equivalent of the—r")e"*""")—gys(r—r’). This is because the scale at
no-crossing property which allowed to demonstrate the temwhich the displacement field varies is Iarge compared to the
poral order for CDW'$! The relation between instability to correlation length of the disordeisee discussion of Sec.
chaos and possible nonperturbative generation of a temperf/ B). Since we know that nonpotential terms may be gen-
ture is also intriguing. Indeed one important issue is whethegrated under RGrom FDT violation we rather study from
dislocations when present do generate an additional temperte start the continuous model:
ture or chaos. Finally, the general question of dynamical
elastic instabilities is also related to recently investigated ARP(r=r")—AgPs(r—r"). (A3)
guestions about solid friction. It would be interesting to in-
vestigate in solid friction quantities a_n_alogous to the transs e work at finiteT and also specify tar=0. With these
verse response and the transverse critical force once the Soﬁfinitions one finds from Eq39):
is in motion. By analogy with the effects discussed here, one '
may expect the existence of a transverse threshold in some 1
regime of solid friction. F[u,ﬂ]=50+f (iﬁﬁ)Eﬂ[u]— > f (il]r“t)

Note added in proofRecently, G. D’annat al. (unpub- rt re'tt!
lished gave experimental evidence of a transverse critical ~p B
current in YBCO crystals. X(Upr ) Dy LU (A4)

with
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D[] =3 AF(r—r/)e oty ot
APPENDIX A: FIRST-ORDER PERTURBATION THEORY
) xXe~ (1/2) K'Brr’,tl"K_ (A6)
1. General analysis

~ Ba P eN— ACB 1 :
In this appendix we compute the effective actibpu,0] Ve have used thak % (r’—r)=Ai"(r—r’) which comes
to first order in the interacting pag,, using the standard from simple relabeling in Eq(Al). One can now use time

formula (39). We remain as general as possible, in order tofnd space translational in[;/ariance and express the above un-
treat several problems and cases simultaneously, and specider the form, e.g., Dy, [u]=D*(u—up t—t',r

ize only at the end to particular cases. We thus choose ther’). At T=0 it reads simply

following disorder term[as it appears in the MSR action

(37] r[u,a]:S[u,a]—frw(iaﬁ)Rﬁtﬁ,t,

1 n o XAB Uy~ Uy +o(t—t'),r—r']. (A7
$nt:_§f ,n,(mrt)('u'rg't/)Aaﬁ[Urt_Ur't' [Ur = Uprer o ) 1 AD
" Thus to this order the effect of temperature amounts to re-
+o(t—t'),r—r']. (A1) place everywhere formally:
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Azfs(r_r’)_)Aﬁ&(r_r’)e_(l/z)K'Br—r’,t—t"K. (A8) corrected response and correlation functions. For that, one

Temperature has thus two important effe@jst generates a simply has to expand EAd) in powers ofu andu up to

time dependence an() it smoothes out the disorder. One quadratic order. This yieldEl ahdrz, respectively, .the "An'
can already see that there are two important different case§&" and quadratic part. The linear term proportionaluto
Either (high enough dimensiorthere is a time persistent part 91Ves the correction to the for#f “= —2u=0].
to the correlator lim.., B, ,=B..<+, in which case the The linear term in the effective action in Eq®&6) and
disorder is smoothed out, or ljm.. B, ;= and the disorder (37) becomes
gets smaller at larger scaldsw dimension. Another inter- A
pretation of the above result is that the corrected equation of —f (D[ fa= mapv gt of 4(v)], (A11)
motion includes(i) a new, nonrandom, time retarded force rt
3 ,[u] [see Eg.(A5)] and (i) a corrected pinning force
which has an extra time dependence: . L

where the correction to the force is given by

(R_l)ﬁffﬂuf’t’: _Eﬁ[u]+ﬁa(rvtvurt)+fa_ Napl B

(A9 5fa<v>=f RIS (—iIK,)ARP(r)e K vtem (2K B K,
where the newtime-dependentpinning force correlator is rt K
D%A(u,r,t). We now separate the relevant contributions in (A12)
this complicated nonlinear, equation of motion. We also de- . .
fine: At T=0 this can also be written as
S B(Uy—Uprgr t—t"r—r’ _
(Ure= e ) 5fa(v)=f drdrRY(r,7)A**Y(v7,r).  (A13)
~ oxg[u]
aub,, The quadratic part of the effective action reads
=R adyB(y., — - -
th,r’t’(<A (Ure=Urrr)) Fz[u,u]:S§+f (iU8)SePOt—t',r—r"Hub,,
rr'tt’
3 asd; _ 1 S S
—5nrft,,th,rrw<A 7P (U Um")>>- (A10) -5 f (iU8)(i0?,)D A0t -t ,r—r").
rr’tt’
(Al4)
On the functional expressiofA1) we can identify the cor-
rections to various terms. The first thing to do is to obtain theThe correction to the response function is thus
(5R71)C’B(q,w)= _ th(l_ei(q-r+wt))R75(r,t)KyKBAzb‘(r)efiK-vtef (1/2) K-By t -K. (A15)

It is useful to perform the smadj, o expansion to obtain the 1 5 Kbt (U K.B. K
corrections to the friction coefficient, the linear terms, and 5CZ‘[;=§ f rProRICK K gAR (r)e K vte™ (KB K
the elastic matrix. From the general equation of motib20) "

(A19)
one has
This is a very general expression which we particularize to
(SR H*(q,0)=(iw) 39,5+ (iq,) 6L 4 +0,0,0C5% special cases below. At=0 one has
+h.ot. (A16)
. 577“5(11)=—f drdrrR?%(r, 1) A*%"P(v 1,r). (A20)
One finds

Note thatd 5f ,(v)/dv = — 871,4(v). In the limitv —0 one
577aﬂzf thyt(‘)‘KyKBAﬁé(r)e—iKmte— (12)K-Br i K fi_nds 5fa(v)~—_57]a§v/3 using an integration_by part, pro-
rt vided the functionA is analytic. A nonanalytid\ yields a
(A17)  critical force (see Sec. VL
The completeut term in the quadratic part of the effec-
SLP :f FPRIPK K A 291 )oK vtg— (2 KBy K tive action isD*#(0t—t’,r—r’). It allows us to compute
b Jy TETYRATK ' the corrected correlation functions using the corrected re-
(A18) sponse function:
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a B \—Ipd + 0]
u®. u ={R ,9) [29T+D(0,w, 1 ;
< q,— q,m> { (‘U CI) [ n ( q)] SKPT = f rprO'RrEtzSK'BKy(IKE)
rt

aBy™
RY(—w,~q}ag, (A21) 2
XA;(s(r)e_iK'vte_(1/2)K'Brv['K. (A26)
(1) 1
R (w,q)= R w.q) 1R Na.q) ' (A22) 2. Explicit evaluation of the corrections in specific models

(i) Model II: We first study the continuous model Il valid

_ o o in the elastic limit. It is obtained by the substitutidA3).
where - denotes the matrix multiplication of indices. Exam- gne finds first that

ining the large time and space behaviors one finds that there
are two important corrections.

(i) A correction to the temperaturérom the equal-time
piece:

oLL=0, oCHE=0, OJKI% =0, (A27)
i.e., that no linear, KPZ terms are generated, and that there is
no correction to the static part of the response function.
These are consequences of the statistical tilt symn{stg

1 .
8( ”T)aB:§ fn[DaB(o’t'r)_ D*A(0t=+,r)], (A23) Sec. V). The only corrections are

5fa(v)=er7£0’tz (_iKy)AﬁﬁefiK-vtef(1/2)K»Boyt.K,
(i) a correction to a static random force. It is identified as t K A28)

the time persistent part of the disorder:

Maﬁ:f tRY K, K gAgoe ™K vig™ (12 K-Bor K (A20)
D*A(0)= lim f D*A(0t=+oo,r). (A24) r
rt

t—o
For the bare problem one can further substitus@®
_ _ . _ _ =K,Kzgk. Note the symmetriesy,s(—v)= 7,5(v) and
It yields to a static par(w) in the displacement correlation. 6f (—v)=—8f ,(v). Let us further specify to the problem
Note however that there is additional important correction toof a periodic lattice. The bare perturbation the6rg., start-
the nonlinearpart of the disorder, which we now identify.  ing from #,,= 7,) gives Eqs(41) and(42) in the text.
Finally we turn to the nonlinear terms in the effective  One can also look at the dressed perturbation théary
action and the correction to the disorder and generation aidding from the start the terms which are genenat8dip-
KPZ terms. It is important to follow not just the random pose the velocity along a principal lattice directionThen
force but the complete nonlinear static part of the disordethe symmetryy— —y ensures in EqA28) that to all orders
term. It is identified as 7xy=0. Howeveryn,, and»,, are in general different. Inver-
sion of the response tensor then leads$foo d= 2):

lim D*P(uy—upp t—t'r—r’) PT(a)up PY(Q)ap
trtoe cr(a)+inyyw+iva,  c(q)+inyw+iviy

= lim D A%B(r—r)e KLUty tet=t)] .
=t/ (7/yy_ Nyx) i W€ €Y
Xe~ WAKBrrr K, (A25) Cr(Q) +inw+ivgy’

(A30)

The correlation functions can also be computed using that
Finally, the nonlinear KPZ terms can be easily seen to bé&ere D*4(0t—t',r—r’)=D*(t—t")8(r—r'). Starting

generated already to this order. Expandij u] to second with the bare action and expanding to lowest order in disor-

order in the fieldu one finds der yields, afT=0:
P!, (a) Plss(q)
u®, Ul )= 27) 8(w—K-v)geK K Y S ., (A3l
{ q.-e q""> EK: I=L,T%:’=L,T q,BZ( ™ ow v)gKKy ?ci(q) +ino(w+v-q) ¢ (q)—iny(w+v-q) (ASD

which is a sum of oscillating functions, plus a static one.TAtO the expression is more complicated. It reads
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P! () PLA(Q)
a B \— ay BS
MWl =2 | 2 e at@ ot o @ imtwrorq 07
P!(a) PLs(a) .
+ D+ no(0 v ) c,’(q)—i R 2i 77T(w+v.q)67775 (A32)

with D, 5(w) = [1gx KK se~ (2K Bog Kelut=iK vt We study here priori both the periodic manifold case or
(i) Model I: In the full model | one can use E¢AL17) to  the nonperiodic one. The only difference is that in the peri-

compute the new, linear term which is generated. If one studedic case one has discrely to be replaced by in the

ies the bare disorder one may substituteg?(r)  continuous case.

—K,Kzg(r)e". Whenv is along a principal lattice direc- The effective action to second order in the interaction

tion one finds by symmetry that onlyY=v,, L¥*=v,, term st

LY=v3, L}Y=v, are nonzero. Note that by symmetry

y——Y, Kyy—>—Ky one hasén,,=0, 37,,=0, 8f,=0. Us- — 2T @[ W] = (S W+ SW]?) sw— ( Sind W+ SW1)5y,
ing symmetries one finds B SSn WH 6W] G OSn{ W+ W]
2102 iK ) oW oW oW oW
LY=v,= nv—; fﬂxK KZR(r,7)g(r)e' v, (61
(A33) . -
with W= (u,u) and W= (46u,su) and a Gaussian average
over 6W is performed using the bare quadratic action. The
LY=v,=L"=v,= —EK: f yK?K K R(r,7) last term merely ensures that all one-particle reducible dia-
" grams be absent. A tedious calculation then yields for the
xg(r)ek-(r-vn, (A34)  iuiu term in the effective action, a formula identical to Eq.

(C3) of Ref. 94 with the replacement;—u;— U, — U,/
o o2 K. (r—om) +uv(t—t")=U,4, since here we are dealing with a situation
Ly'=vs= 771’_; erK KXR(r,7)g(r)e - where v>0. In Eq. (C3) of Ref. 94 the symbokF[u])
i (A35) means(F[u+ du]) s, and(..). denotes a connected average
between the vertices, i.e{F[u;]G[us]).=(F[u.]G[u,])

Note thatv,=v, exactly and that to lowest order inone  —{F[u;]){(G[u,]). Note that simplifications occur in the
hasv,=v3 and n+ 67, (v=0)=n+ dn,,(v=0). The cor-  particular casel =0 since the connected terms then vanish
rections toy read identically, and one can also drop the averag€§ul)

=F(u). Using the assumption of time and space transla-
o2 Ko tional invariance one finds
5Naa(v)=2>, KZK2 | drdrrg(r)R(r,r)eK (—vn
K
1 - -
(A36) r=- J L GGR)GEE L At (B2)
rr
with @=Xx,y. Note thatv (v) has a maximum as observed ve
in solid friction (dynamical friction smaller than static one a5 a sum of four term55A=Ei:145A22f:

APPENDIX B: DYNAMICAL EFFECTIVE ACTION TO 5Af.:,[) = 2R§}\( 7'2,0) Ryp( 71,0 ,)<Aﬁ)\375( Ur+r’,t2 o 72)
SECOND ORDER AND ANALYSIS OF DIVERGENCES
X [Aap(ur,tl,tzfrl) - Aap( U rtyty—7— 7'2):|>C )

In this appendix we obtain the perturbative expression of
the effective dynamical action to second order in disorder. At 1
each step we remain as general as possible so that our ex\ (2 _~ o . "\RY(7 — VRN —1 ' VA o U
pressions can be applied to study a large class of models and " 2 (MRP(7, =R =1 B agivaUrs, 1)
situations. Then we study particular situations and identify

the terms which correct the bare disorder by performing a X[AM(UH"'H—%M—T’HAP%(UHf’vtz—ﬂtz—T’)
short distance or time expansion. We focus mainly on diver- AUy, DA (U, )
gences occurring near=4 (for v=0) andd=3 (for v>0). PAAETHTL Y m Tl PANLETHT oty =7 A/

Note that the operators are local inbut nonlocal in time,

which makes the expansion more involved. We will use the 5AS’)= R (71,,r")RM 7y, —1")

fact that the calculation performed in Appendix C of Ref. 94

(for d=2 andv=0) has similarities with the present, in X[<Aap;6(ur,tl,tzfrz)ABA:v(UHr’,tz,trfl»
order to skip some details. A detailed version of the present

calculation can be found in Ref. 106. _<A“p;5(ur't1'tl_7'1_TZ)AB}‘W(UH'r"tz'tl_71)>
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—Aap;a(Ur,tl,tz—Tz)Aﬁm(Ur+r’,t2,t2—rl—72)>]' wh?ore we have defined _the static_ res_ponégﬁ(r)
=Jod7R,4(7,r). Note that this formula is valid for a large
) class of models. It doesot suppose for instance that the
random force correlator is the second derivative of a random
potential. It is important to note that the condition that the
random force is the gradient of a potential, i.8.,5(u)
—Axp;y(Urﬂ',tz—fl,tz—fl—fzmcv (B3) = —aaQﬁR(u) where R(u) is the .correlator of the randqm
potential (not to be confused with the response function
where some terms have vanished from the Ito time discretiremains true only whe(r)=G(—r). Indeed, in that case,
zation propertyRé’filRifz:O. assuming the symmetry th@,5(r) =Gg,(r), one finds
We have written these terms in that form for simplicity,
but one must keep in mind that in addition they must be oR(u)=
symmetrized undett— B andr — —r when necessary. Up to
now this is very general. Note that the expression of the
second order correction to the kinetic term is given in Ref. X erW’(r)G‘?ﬁ’(r)'
106. We now consider several cases.

SAY = 8(r")RY(75, )R (71, =1 )(A g (Ut 1,

X[A)\p;y(Ur+r/,tl—71,t1—rl—72)

1
ER;'yS(u)R;a’ﬁ"(u)_ R;’yé‘(u)R;a’ﬁ’(O)

(B5)

If G(r)#G(—r) a nonpotential part is generated to the dis-
order. If u has only anN=1 component it remains a total
derivative. If we study models withN>1 component fields

In this subsection we first seT=0, and thusSA™)  and a non-FDT response function we generate nonpotential
= 5A™=0 and other averages can be dropped. Here we alsdisorder. From Eq(B4) a generalized FRG equation can be
only study static disorder and we thus drop th@—t’) derived, which depends on the divergences contained in the
terms thus setting) ., =u, — Uy in all the above formulas. response function. A special case corresponds>t® and
The bare response functi®f?(7,r) remains however arbi- isotropic responséhe simplesN component generalization
trary. In the moving lattice problem this amounts to restrict-of the moving glass equatiof®). Then one finds
ing ourselves to the modds, =0, which are of interest for
studying thetransverse components w=0 that see only a dA 4p(u)
static disordefassuming they can be decoupleshdv still dl
appears in the response function. Since we keap a vector
with arbitrary number of components, the equations that we X[A55(0)=A,5u)], (B6)
obtain can be applied to other problems with static disordewhere C is a numerical constant. The temperature can be
(e.g., the usual manifold case=0, periodic or not, nonpo- added. In the isotropic case it simply produces an extra term
tential problems ety. The only remaining terms ar8A(2)  —TA, ,,(u) in the above equation. .
and(SAf?) in Eq. (B3). It is then easy to perform a short time, Higher derivative terms have been neglected. In the peri-

. L . odic case, the annihilation tePfproduces a gradient ran-
short distance operator expansion in the variables, , 7,.

This yields, up to higher-order irrelevant gradient terms, thelom force termithe so-called Cardy-Ostlund tejmelevant

following total correction to the pinning force correlator: in the statics ind<2, but unimportant here.

1. Static degrees of freedom at zero temperature

=€l ,5(U)+ LU A 5 (U)+CA 5. ,5(U)

6Aa,8(u):Aaﬁ;yﬁ(u)[Aa/B’(o)_Aa'ﬁ'(u)] 2. Full dynamical problem at zero temperature
In this subsection we still sef=0 leading to the same
X j G o (NG g ()= Aygr s(WA ggr () S|mpI|fI|cat|ons as in the previous subsection, but we keep the
r v(t—t') terms. So we are studying the full dynamical prob-

lem of a driven latticgi.e., with transverse and longitudinal
% f G ot (1) Gspr(—T), (B4)  displacement f|elds.The effective action is the sum of the
r following two terms:

1 .
Fl:_Z,frr’tt’ ,(|uﬁ)(|uﬁ/)Rw(TarI)Rﬁ}\(T,vr,)Aaﬁ;yﬁ[urt_urt/+U(t_t,)][Ap>\(ur—r’,t—7_ur—r’,t—r/"—v(T,_T))
T
+Ap}\(ur,r/'t/,7._ur,rrytr,T/‘FU(T’_T))_Ap)\(ur,r/'t,T_ur,r/‘tr,Tr‘l‘U(t_t,+T,_T))
_Apx(urfr,t’fr_urfr’,tfr""v(t’_t+T,_T))],

1 e e ’ ’ ’ ’
o= =S (UR)AUL o DRI RN =1 ) A gy o= Uy - 0 (1=t + 7))

XTApn;yUp s pr = Upypr g o (U =t T’))_Aﬁx;y(urﬂ’,t’_ur+r’,t’frfﬂr’+v(7'+ )]

_Aap;ﬁ(ur,t_ur,t—r—7’+v(7+ T,))Aﬁ)\;y(ur-%—r',t’_ur+r’,t—r’+v(t/ —t+7')}. (B7)
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We can now perform a short distance and time expansion and compute the correction to the random force correlator. Expressed
asA ,g(U), withU=u—u'+v(t—t’) it reads

1
5Aa,8(u):jq Aapys(WR?(1,0)R™ (7', —q) Ap (7' =1)= S[AnU+o(r =)+ A (= Uto(r = 7)]

+RP(7, QRN DA iU+ 07 B gy ~UF07) = A (074 7))
~ B a0 (7 T DA gy (~Utv )], (B8)

It is also convenient to study the Fourier transform of the correlA;g;(U)=EKAﬁﬁeiKU and to compute the correction to
Aﬁﬁ. We express it using the response functioRiff(s=iw,q) spatial Fourier transform and time Laplace transform. It is
the sum of two contributions and reads

SARP=—K K AZPY qAﬁ))R”’(—ivK’,—q)R‘”(ivK’,q) (B9)
KI
1
+5 2 q(K—K’)V(K—K’)(SAi’iK,[Aﬁ’)RW’(—ivK’,—q)R‘”(iuK’,q)
KI
+ AP GR(10K', —q)RM(—ivK',q)] (B10)

—% qu(K'— K),ARPAR  (R7(ivK’,q)R™ (v (K’ —K),q) (B11)
+KARPY, | KLARR™(v(K+K'),q)R™M(ivK',q)
K’ 74

—K, AP fK;Aﬁﬂ’RW(ivK',q)Rf”(iv(K'—K),q), (B12)
K’ q

where the first half comes froifi; and the second frofi;.  above. We find that the correctiond2? are a priori the

following, starting with the terms which do not give a con-
tribution.

) ] i (i) The terms with connected averagds and (4) give

In this subsection we study the case of finite 0 and the  ¢contributions given by formulaé) and i) of Eq. (C19) of

static disorder casgcorresponding to Sec. B1 abgvehe  Ref. 94. One can check that this term does not produce a
study is rather tedious and we skip some details. Since thafivergence.

situation has already been analyzddit applied to the dif- (i) The last two terms oBA® give
ferent case of a periodic manifold th=2) we refer to Ref.
94 for further details. We concentrate mostly on what is

3. Study at finite temperature

needed for the analysis neard, (d,=4 for v=0 andd, SARP=2 [KKL(ARPAL) | op
=3 for v>0). The resuft is that the short distance expan- K’
sion of the effective action up to second order in disorder _KyK:s(AﬁeAﬁwaﬁ]Rry,pTzRin,fl

produces auiu term which can be written as
xe~ (V2K Bg, . K o=K-(Cf _, ~C;)-K'

. . _ - B14
[ ongpe e g i, e, o
rity,ty

(B13) where (), means symmetrization over the indicess.

This term was unlikely to produce a divergence for the same
reason as above, but in any case it does not since it vanishes.
which is thus of the same form as the first-order term andndeed one sees on this expression that this quantity vanishes
which thus corrects it. Here again, other operatsigch as  pecause of the symmetryr;— 7, which makes the
higher gradiengsare produced, but they are irrelevant nearsymmmand oveK’ odd undeiK’ — — K.

d,. We are using extensively the assumed symmetxigh (iii ) Finally, the terms which produce divergences are the
=A£*=A*% . We arenot using the potential condition that term SA(? and the first term ofSA®). They give a total
Aﬁﬁ~KaKﬁ, since this is wrong in generésee discussion contribution:
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SARP= X
K,K'=P-K

-7 =r,r

—P,P,ARY APRY R
K/

This term produces a divergence @t. It is simply the
finite-temperature generalization of E4) above. Since
B(r,7) is finite (and cutoff dependenat larger, 7and since
at T=0 the infrared divergence came from the lamger

values, the new IR divergence is the same as the old one,

with a coefficient obtained by simply by taking the lamger
limit in the exponential factors. Neat, the large time or
space limit ofB(r,7)=2(Cyo—C,,,) is proportional to the
temperature:

M masr 1) o BP(r,7)=2CH3=B.8,p

Pha(d) P;qu))
cr(@)  cr(a) )

:2qu(

The final divergent contribution is

sAgf= X

K,K'=P-K

(KK ARPARRY RO

T t-rr!

+KIKARPADRIPRY ek Bz K

L t—r,7’

—P,PAFY ADRY R™ e (W2K! B K
K/

T t-r

(B16)

APPENDIX C: ANALYSIS IN d=2

We start from the MSR dynamical action corresponding

to the equation studied in Sec. VII. It reafls S;+ S, + Si
with Sy and Sy, as defined in 48 an®,=3/ . (ilqy)
x(iﬂ_q,t/)(Aq2+ Ag). Here one studieA (u) =g cosg). In
the absence of disorder the free actignyields correlators
as in Eq. (38), e.g., C(q,»)=2Tx/|c,ai+c,q5+ivay
+inw|? and

2T ) 5
B(r,t):J [1_e—(qux+cyqy)\t\/,7

xXcogqr+uvq,t/7)]. (Cy

Note that forv>0 C(r,t)#C(—r,t). In the presence of
disorder one studies perturbation theory expanding in the

interaction termS;,; using the quadratic pa§;+ S, as the
bare action. The response function®f+ S, is identical to
the one ofSy with the correlation function changed &5y
—Cqtt+Cstagt  With CStaq,t:(Aq2+AO)/(C2q4+vqu)

e (12)K"-Bozr K COShP'(Cr,—T_Cr,—T’)' K.

11 399

aB A PA 2N K-(2Cpo=Cy —,—Cy _,)-K’ 4 ap A BA O\ K-(2Cpo=C; ,—Cy _ 1)K’
(KKAARPARRY, R, ek (2C00mCri—r=Cro) K KK GARPALIRYZRY, e (2C00™Crir Cr—p) KT

(B15)

FISO+SZ+ fttr(iart)g Sin(urt_urt’)thrt’ei (112 Brere:
r

—%(i%)(iﬁmgcos(un—un»e—<1’2>Bm', (C2)
whereBy ¢/ = Ciy + Cprprprpr = Cryprr = Crprge - This yields
immediately the corrections to first ordergnfor the friction
coefficient, the temperature, and the disorder given in the
text (95). The correction top comes fron a a gradient ex-
pansion in time which yields a correction to the term
ifjrt ndU,; . The correction tay T comes from a correction to
the il iU, , and the correction to the disorder comes from
the long-time limit of the exponential.

To compute the RG equations from E§5), we have to
decide on a regularization scheme. Here we choose to take
an infrared regulator by defining a large tinhg,, but no
infrared regulator in momentum. The ultraviolet cutoff is
enforced via a Gaussian cutoff in momentum, i.e., we define

d’q 2T

2 i ; 242
1—e~¢q M‘t|e|qr+|vqx/’«t e aq ,
@m? o :

B(r,t,a)=J
; (C3

where the mobilityu=1/7 has been introduced. Equation
(C3) can be readily evaluated as

2T (+= d?q
B(r,t,a)zTLz dsfq (27)2[e*sq2

e (ere” cogug,ut)]

u \1—u

_ T cut/(cut+a?) du 1
“2m@c Jo u

—e” u(y2+(x+v/1,t)2)/4c;4t) , (C4)
where in the intermediate stage we have integrated qver
and performed an intermediate change of variable
=cut/(cut+s). Using

z du .
J —(1—-e ™)=C+In(rz)—Ei[—-rz])
o u

Ei[x]=fx et$,

— oo

which is purely static and does not appear in any diagram of X2

perturbation theory.

As in Appendix A, we compute the effective action

F[u,l]] in perturbation ofS;,;. To lowest order one gets

Ei[ —X]~4<oC+In(—x)—x+ Z+O(X3)’ (C5)

one obtains for Eq(C4)
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T cult|+a2 y2+ (x+vut)?
ta)= +CHIn|
Blrta)=572 (In a® C+in 4(cult|+a?)

(C6)

—[y*+(x+vut)?] )
4(cult|+a?)

This is used to obtain, for the RG correctiofsee text

tmax vdt —2TiTe

palv Ma

vt

o(nT) vt
na

7T

:"g‘e—(T/Tc)cf

:ae— (TITo) Cd| +aed'(1_2T/Tc)e_ (TITg) C
tmax Udt

X —
pa'lv NA

APPENDIX D: STABILITY OF THE T=0
FRG FIXED POINT

ot | ~27Te

na'

(C7)

Here we diagonalize the RG flow around the fixed point

(63) and show that it is a locallgttractivefixed point within

the space of periodic functions d0,1]. A(u) satisfies the
RG equation(61) with A(0)=A(1)=0. We have checked
numerically that analytic initial function§.e., with zero odd
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on which one can work out the full stability spectrum and it
may enlighten us about the generation of nonanalyticity in
these types of RG equations.

APPENDIX E: PARAMETRIZATION
OF MOVING STRUCTURES

Moving structures can be generally parametrized by their
internal spaceD, the number of components of the dis-
placements fieldgcharacterizing its deformations, or the
number of components of the order parametard the em-
bedding spacel. We denote for convenience by the same
symbol the space itself and its dimension.

In the statics one can distinguish several cases. The prob-
lem of manifolds in random potentials has been studied for
e.g.,(i) fully oriented manifolds wher® andn are orthogo-
nal (d=D+n) such as directed polymers or interfacés)
isotropic manifoldsn=d such as self-avoiding chains in ran-
dom potentials, andiii) problem of lattices where usually
d=D andn=<d. Lattices withD<d are possible in prin-
ciple, such as flat but fluctuating tethered membrddesn
<d or isotropic tethered membranBs<d=n or any inter-
mediate caséthe so-called tubules

In the driven dynamics, let us call the direction in the
embedding space along which the system is driven. One can

derivatives at D converge towards the nonanalytic fixed distinguish the following cases.

point A_*(u)=u(l—_u)/2. _The stability analysis is per-
formed by writing A(u)=A*(u)+ 8(u). One then has to
solve the eigenvalue problem:

1
Eu(l—u)b‘”(u)z—)\é(u). (D1)
The eigenfunctions are such that
1 1
Eu(l—u)én”(u)=—En(n—l)én(u). (D2)

One can also define the variable=(1+wv)/2. Then the
eigenfunctions are the Jacobi polynomialss,(u)
=P, Y(v) (see Ref. 133, p. 77%nd form an orthonormal
complete set. They can be written as

(_1)n d" n-1
n(u)= ——u(l—u) gralu(l-u)]
_1 n dn
:—(Z”n? (1-v?) gor(1-v?)"H (D3)

Because of thel— —u symmetry, which due to periodic-

ity becomesu— (1—u) symmetry, we can restrict ourselves
to n an even and nonzero positive integer. The lowest eige

modes are thus,(v)=(v2—1)/4 (eigenvalue—1), 5,(v)
=3(1-6v%+50%)/16 (eigenvalue —6), &s(v)=5(v?
—1)(1—- 142+ 21w%4/32 (eigenvalue— 15), etc. Note that
they satisfy 6,(v=—1)=6,(v=1)=0 as requested. All
these eigenfunctions are nonanalytibough by combining
several one may get analytic one®Rendering the initial

(A) The structure is elasti@.e., not liquid in the direc-
tion where it is driven. Then there is a displacemgpalong
x andx also belongs to tha space. There are two subcases:
(A1) x also belongs to the internal spabe This is the
problem of manifolds driveralong one of their internal di-
mensionsto which the moving glass studied here belongs. A
general parametrization in that case would be

D:(val!z)v d:(xiyl!yZ!Z)'

(ED)

n=[uy ruy:(uyliuyz)]a

It allows for manifolds withD <d which do not entirely fill
space(i.e., with “height” degrees of freedomlyz). Then a

parametrization of the dimensiofand the subspaces

D:1+d1+dz, n:1+d1+d2, d:1+d1+d2+dz,

(E2

whered, andd, are the number of components wl and
Uy, respectively, andl, is the number of components f

In this paper we have mainly studied the cakeD (d,
=0) but with d;>0. Note that a singl&®) CDW hasd,;
=d,=0 (uy=0) andd=D.

(A2) x does not belong to the internal spdgeThis is the
problem of manifolds drivemperpendicular to their internal
dimension The general parametrization in that case is

n_

D=(y1,2), n=[uyuy=(uy,uy)],

d:(X:uX1yl!y21Z)v (Eg)

and thusD=d;+d,, n=1+d;+d,, and d=1+d;+d,

function nonanalytic is presumably the role of the nonlinear-+d,. It also contains the case of a driven order parameter
ity. This equation is interesting since it is the simplest casavhich does not couple at all to internal spaeich as a
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vector spin order paramejeidndeed in that particular case Ry =r(t—t'), Ciw=c(t—t')(Ref. 89 (in the statics
one can define the “embedding space” as the simD this is the equivalent of a replica symmetric solujiolh can
+n (and thusuy1=0). be written in Fourier-transform version:

(B) The structure is diquid in the direction where it is 1
driven. Thenx belongs toD space but not tm space. Then ()=

=0 i e n= k io+tk2+ivk+32(0)—3(w)’

one setsu,=0 in case(Al) above, i.e.,n=d;+d,. The w UKy w
parametrization is thus

2T+D(w)
D=(Xy1,2), Nn=(Uy,Uy), d=(Xy1,y2.2) (E4 Ck(w):|iw+k2+ivkx+2(0)—2(w)|2' (F2)

with D=1+d;+d,, n=d;+d,, d=1+d;+d,+d,. The
transverse moving glass is one example witf=0 and
(d;=1,d,=0)ind=2 and(d;=1,d,=1) in d=3 (a mov- o

ing line lattice giving a smectic sheets structure of channels 2(w)= —4f dte''Vi(b(t)r (1),
and(d;=2, d,=0) in d=3 (a moving point lattice giving a o

line crystal structure of channgls\ote that as for any liquid .

scalar density fluctuations should, in principle, be also incor- D(w):4f dte“tv](b(t)), (F3)
porated in a complete description. —o

Note thatc (w)=c_,(— w). We have defined

where r(t)=/[,r(t) and b(t)=[by(t)=/[[2¢c,(t=0)
—c(t)—c_i(t)]. Note that by(t)=[,(1—e"“Y cy(w)

For completeness we give here the Hartree equations ext C-k(w)] and b(t)=[,[1—cos@t)]c(w) where c(w)
act in the largeN limit, for model Il generalized toN com-  =JkCk(®) is an even function ob. S
ponents. The equationsat 0 were derived and analyzed in A superficial analysis of the above equation indicates that
Ref. 84(see also Refs. 134 and 13Fhese equations will be this nonperiodic problem has an asymptotically linear re-
analyzed further in a future publication. The Hartree equasPonse and is not glassy for>0 for N=c (while it has a
tions are nonlinear asymptotic response for=0 both atN finite®*
andN infinite®®). Indeed the response function appears to be
massive since integrating ovkg one has

APPENDIX F: HARTREE METHOD

t
Rty = _(k2+ivkx)Rktt’+4f dsV;(Bs)
0

1 1
XRes( R~ Risr). )=z fky (Kt 5(0)-S(w) r oz
_ ; t' Thus the response to an applied force bely=[1
y=—(K2+ik ,+2f V;(Bio)R_ v pons - :
5 ( ) Ciae 0 dsVi(Bio)R-w's —2'(0)] would be linear at least at the naive levér a

t more detailed behavior one must add a small transverse force
: _ and follow the methods of Ref. 136This is related to the
+4fodSV2(BtS)RtS(Ck“/ Cuesr) +2TR ke absence of divergence foy noticed in the FRG Sec. VI.
Further investigations would be necessary however before
(F2) reaching a conclusion. One should makes sure that no tran-
where Ry;» = [\ Ryt » Bitr =SB, and Byi» = Cyit+ Cyrpr sition occurs in the above equatiofssich can happen in the
—Cy—C_yw - Note thatC,;»=C_,¢, WhereV, con-  casev =0). Also, it is possible that the glassy physics found
tains only the potential part of disorder, whilg contains all  in Sec. VI, which comes from a renormalization of the dis-
disorder(see Ref. 84 for definitions One can look for a order, is not fully captured here by the most naive lakge-
time-translational invariant solution of these equationslimit.
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