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Moving glass theory of driven lattices with disorder
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We study periodic structures, such as vortex lattices, moving in a random pinning potential under the action
of an external driving force. As predicted in T. Giamarchi and P. Le Doussal, Phys. Rev. Lett.76, 3408~1996!
the periodicity in the directiontransverseto motion leads to a different class of driven systems: the moving
glasses. We analyze using several renormalization-group techniques, the physical properties of such systems
both at zero and nonzero temperature. The moving glass has the following generic properties~in d<3 for
uncorrelated disorder! ~i! decay of translational long-range order,~ii ! particles flow along static channels,~iii !
the channel pattern is highly correlated along the direction transverse to motion through elastic compression
modes,~iv! there are barriers to transverse motion. We demonstrate the existence of thetransverse critical
forceat T50 and study the transverse depinning. A ‘‘static random force’’ both in longitudinal and transverse
directions is shown to be generated by motion. Displacements are found to grow logarithmically at large scale
in d53 and as a power law ind52. The persistence of quasi-long-range translational order ind53 at weak
disorder, or large velocity leads to the prediction of the topologically orderedmoving Bragg glass.This
dynamical phase which is a continuation of the static Bragg glass studied previously, is shown to be stable to
a nonzero temperature. At finite but low temperature, the channels broaden and survive and strong nonlinear
effects still exist in the transverse response, though the asymptotic behavior is found to be linear. Ind52, or
in d53 at intermediate disorder, another moving glass state exists, which retains smectic order in the trans-
verse direction: themoving transverse glass.It is described by the moving glass equation introduced in our
previous work. The existence of channels allows us to naturally describe the transition towards plastic flow.
We propose a phase diagram in temperature, force, and disorder for the static and moving structures. For
correlated disorder we predict a ‘‘moving Bose glass’’ state with anisotropic transverse Meissner effect,
localization, and transverse pinning. We discuss the effect of additional linear and nonlinear terms generated at
large scale in the equation of motion. Generalizations of the moving glass equation to a larger class of
nonpotential glassy systems described by zero temperature and nonzero temperature disordered fixed points
~dissipative glasses! are proposed. We discuss experimental consequences for several systems, such as the
anomalous Hall effect in the Wigner crystal, transverse critical current in the vortex lattice, and solid friction.
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I. INTRODUCTION

Interacting systems which tend to form spontaneously
riodic structures can exhibit a remarkable variety of comp
phenomena when they are driven by an external force ov
disordered substrate. Many of these phenomena, which
from the interplay between elasticity, periodicity, quench
disorder, nonlinearities and driving, are still poorly unde
stood or even unexplored. For numerous such experime
systems, transport experiments are usually a convenient
to probe the physics~and sometimes the only way whe
more direct methods, e.g., imaging are not available!. It is
thus an important and challenging problem to obtain a qu
titative description of their driven dynamics. Vortex lattic
in type-II superconductors are a prominent example of s
systems.1 The motion of the lattice under the action of th
Lorentz force~associated to a transport supercurrent! in the
presence of pinning impurities has been studied in many
cent experiments.2–9 There are other examples of wel
studied driven systems where quenched disorder is know
be important, such as the two-dimensional electron gas
570163-1829/98/57~18!/11356~48!/$15.00
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magnetic field which forms a Wigner crystal10–12 moving
under an applied voltage, lattices of magnetic bubbles13,14

moving under an applied magnetic-field gradient, char
density waves15 ~CDW! or colloids16 submitted to an electric
field, driven Josephson-junction arrays17–19 etc. This prob-
lem may also be important in understanding tribology a
solid friction phenomena,20–22 surface growth of crystals
with quenched bulk or substrate disorder,23 domain walls in
incommensurate solids.24 One striking property exhibited by
all these systems is pinning, i.e., the fact that at low tempe
ture there is no macroscopic motion unless the applied fo
f is larger than a threshold critical forcef c . Dynamic prop-
erties have thus been studied for some time, quite ex
sively near the depinning threshold25–27 but mostly in the
context of CDW ~Refs. 28–30! or for models based on
driven manifolds31,32and their relation to growth processes33

described by the Kardar-Parisi-Zhang~KPZ! equation.34,31

They are, however, far from being fully understood. In ad
tion, the full problem of a periodiclattice ~with additional
periodicity transverse to the direction of motion! was not
scrutinized until very recently~see, e.g., Ref. 35 for a re
11 356 © 1998 The American Physical Society



at
a
e
ac
-
e
he
ic
ts

st
bu

n
o

rd

he
d
te

u
th
o

e

, t
s

ge
n

ss
er

m
en

ic
re

c
an
e
ig
en
a

as
ib

n
n
r

e

a

na-
in

n-
the

e a

the
-

er.
s, a
nd

ugh
uch
eri-
n

ed

the
x-
he
a
m-
sts
ov-

d

to
an
ain
to
not

rge
on-
if-

ion
ent

. A

4,
zero
ther

t the
lf-
can

l
-
d

if-
the

res-
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view!. A crucial question in both the dynamics and the st
ics is whether topological defects in the periodic structure
generated by disorder, temperature and the driving forc
their combined effect. Another important issue is to char
terize the degree of order~e.g., translational order, or tempo
ral order! in the structure in presence of quenched disord
In the absence of topological defects it is sufficient in t
statics to consider only elastic deformations. In the dynam
this leads toelastic flow. On the other hand, if these defec
exist ~e.g., unbound dislocation loops! the internal periodic-
ity of the structure is lost and one must consider also pla
deformations. In the dynamics the flow is then not elastic
turn into plastic flowwith a radically different behavior.

The statics of lattices with impurity disorder has bee
much investigated recently, especially in the context
type-II superconductors. It was generally agreed that diso
leads to aglass phase~often called36,37 a vortex glass! with
many metastable states, diverging barriers between t
states,38,1 pinning and loss of translational order. Indee
even if for the pure elastic theory various proposals exis
for the translational order,39–43 general arguments,37,39 un-
challenged until recently, tended to show that disorder wo
always favor the presence of dislocations destroying
Abrikosov lattice beyond some length scale. In a series
recent works,44–47we have obtained a different picture of th
staticsof disordered lattices~including vortex lattices! and
predicted the existence of a new thermodynamic phase
Bragg glass. The Bragg glass has the following propertie
~i! relative displacements grow only logarithmically at lar
scale,~ii ! translational order decays at most algebraically a
there are divergent Bragg peaks in the structure function
d53 ~i.e., quasi-long-range order survives! ~iii ! it is topo-
logically ordered, ~iv! it is nevertheless a true static gla
phase with diverging barriers. There has been sev
analytical48–50 and numerical studies51,52 confirming this
theory. The predicted consequences for the phase diagra
superconductors compare well with the most rec
experiments.47

While some progress towards a consistent theoret
treatment has been made in the statics, it is still further
moved in the dynamics. Determining the various phases
driven systems is still a widely open question. Eviden
based mostly on experiments, numerical simulations
qualitative arguments indicates that quite generally one
pects plastic motion for either strong disorder situations, h
temperature, or near the depinning threshold in low dim
sions~for CDW see, e.g., Ref. 53!. Indeed there has been
large number of studies on plastic~defective! flow.54–56 In
the context of superconductors aH-T phase diagram with
regions of elastic flow and regions of plastic flow w
observed.7,8 Several experimental effects have been attr
uted to plastic flow, such as the peak effect,57,8,58,59unusual
broadband noise60 and fingerprint phenomena in theI -V
curve.61,62,9 Steps in theI -V curve were also observed i
Y-Ba-Cu-O near melting.5 Close to the threshold and i
strong disorder situations the depinning is observed to p
ceed through what can be called ‘‘plastic channels’’63,64 be-
tween pinned regions. This type of filamentary flow has be
found65 in simulations of two-dimensional~2D! ~strong dis-
order! thin-film geometry~with c11@c66). Depinning then
proceeds via filamentary channels which become incre
-
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ingly denser. Filamentary flow was proposed as an expla
tion for the observed sharp dynamical transition observed
MoGe films62,9 characterized by abrupt steps in the differe
tial resistance. Interesting effects of synchronization of
flow in different channels were also observed.65 Despite the
number of experimental and numerical data55,56 a detailed
theoretical understanding of plastic motion remains quit
challenge.66

As in the statics, one is in a better position to describe
elastic flow regime, which is still an extremely difficult prob
lem. This is the situation on which we focus in this pap
Though elastic flow in some cases extends to all velocitie
natural idea is to start from the large velocity region a
carry perturbation theory in 1/v. At large velocity one may
think at first that since the sliding system averages eno
over disorder one recovers a simple behavior, in fact m
simpler than in the statics. Indeed it was observed exp
mentally, some time ago in neutron-diffractio
experiments,67 and in more details recently,68 that at large
velocity the vortex lattice is more translationally order
than at low velocity. This tendency todynamical reordering
has also been seen in numerical simulations.54,55,69The 1/v
expansion has been fruitful to compute the corrections to
velocity itself in Refs. 70, 71, and 29. Recently it was e
tended by Koshelev and Vinokur in Ref. 72 to compute t
vortex displacementsu induced by disorder and led to
description in term of an additional effective shaking te
perature induced by motion. This description sugge
bounded displacements in the solid and thus a perfect m
ing crystal at large velocity. Recently we have investigate73

the effects of theperiodicity of the moving lattice in the
direction transverse to motion, in the same spirit which led
the prediction of the Bragg glass in the statics. It was still
open problem how much of the glassy properties rem
once the lattice is set in motion. We found that, contrary
the naive expectation, some modes of the disorder are
affected by the motion even at large velocity. Thus, the la
v expansion of Ref. 72 breaks down and the effects of n
linear static disorder persists at all velocities, leading to d
ferent physics. As a result the moving lattice isnot a perfect
crystal but amoving glass.

The aim of this paper is to provide a detailed descript
of the moving glass state predicted in Ref. 73 and to pres
our approach to the general problem of moving lattices
brief account of some of the new results contained here~e.g.,
the T50 renormalization-group equations~RG! and fixed
points and random forces! has already appeared in Refs. 7
35. We use several RG approaches at zero and at non
temperature. Since several sections of this paper are ra
technical we have chosen to expose all the results abou
physics of the moving glass in Secs. II and III in a se
contained manner, avoiding all technicalities. The reader
find there the results for the existence of static channels~Sec.
III A ! the transverseI -V curves atT50 and the dynamica
Larkin length~Sec. III B!, the random force and the correla
tion functions~Sec. III C! the various crossover lengths an
the finite-temperature results~Sec. III F!. Decoupling sce-
narios for the channels, which distinguish between two d
ferent moving glass phases: the moving Bragg glass and
moving transverse glass~Sec. III D! as well as predictions
for the dynamical phase diagrams are given in~Sec. III G!.
Finally we discuss how the moving glass theory stands p
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11 358 57PIERRE LE DOUSSAL AND THIERRY GIAMARCHI
ently compared to numerical simulations~Sec. III H! and
experiments~Sec. III I! and present some suggestions of fu
ther observables which would be interesting to measure.

The following sections contain the analytical derivation
the results discussed in Secs. II and III and more gener
aim at making progress towards an analytic description
the moving state of interacting particles in a random pot
tial. Since this is a vastly difficult problem, it is potential
dangerous~and unfruitful! to try to attack this problem by
treating all the effects at the same time~dislocations, nonlin-
earities, thermal effects, etc.!. Already within the simplifying
assumption of an elastic flow two main types of phenom
are missed in a naive largev approach. The first one is
direct consequence of previous works on driven dynamic
CDW and elastic manifolds.34,31 It is expected on symmetry
grounds75 that nonlinear KPZ terms (¹u)2 are generated by
motion, an effect which was studied in the driven liquid76

Another important effect, studied so far only within th
physics of CDW, is the generation of a staticrandom force
convincingly argued by Krug77 and explored in Ref. 78. If
both effects are assumed to occur simultaneously, they
lead to interesting interplays which have been explored o
recently and only in simple CDW models.79 However there
is still no explicit RG derivation of those terms even in CD
models. In the context of driven lattices, they have not e
been discussed yet. Our aim in this paper is to remedy
situation. We derive these terms explicitly and show t
other linear terms,a priori even more relevant are generate
Though these additional linear, nonlinear and random fo
terms certainly complicate seriously the problem, focus
exclusively on these terms only obscurs the physics of
present problem. Indeed the second and as we show
most important effect in the moving structure is the cruc
role of transverse periodicity to describe the dynamics
rigorous study of the problem of moving interacting partic
would be to first study the fully elastic flow of a lattice. Onc
the main elastic physics is understood a second step is
to allow for topological excitations~vacancies, interstitials
dislocations!. In principle the results obtained within th
elastic only approach can, as in the statics,45 be used to check
self-consistently the stability of the elastic flow itself. Clear
understanding the elastic flow first is a necessary step be
going further. Here we carry most of the first step and p
pose an effective description of the second.

Even the purely elastic model turns out to be difficult
treat when all sources of anisotropies, nonlinear elastic
and cutoff effects are included. There are no analogous te
in the statics and thus in that sense the dynamics is m
difficult. Our strategy has thus been to simplify the proble
in several stages and resort to simplified models. The sim
fied models of moving glasses that we have obtained turn
to exhibit some new physics and become interesting in t
own. They call for interesting generalizations to other mo
els exhibiting dissipative glassy behavior, as we propose.
call model I the full model of an elastic flow of a lattic
containing all the above-mentioned relevant linear and n
linear terms. Such models can also be written for other e
tic structures with related kind of order~such as liquid crysta
order!. This model is discussed in Sec. VIII B. However i
complete study goes beyond the present paper. Fortunate
useful and further simplified model can be construc
-
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~model II!. It corresponds to considering the above full ela
tic model in the continuum limit. It certainly gives a ver
good approximation of the full model at least up to som
very large scale. This model was discussed in Ref. 73 an
studied in detail here. It has both longitudinal degrees
freedom~along the direction of motion! and transverse ones
Though it is quite difficult, it can be handled by perturbati
renormalization-group studies, as we show here. It has n
trivial fixed point which gives a detailed description of th
moving Bragg glass phase. It turns out that most of the ph
ics of the moving glass is contained in a further simplific
tion of model II which retains only the transverse degrees
freedom ~displacements!. This model, which here we cal
model III, was introduced in Ref. 73 and is described by
equation of motion:

h] tu1hv]xu5c¹2u1Fstat
„r ,u~r ,t !…1z~r ,t !, ~1!

which we callthe moving glass equation. Fstat is a nonlinear
static pinning force and we have denotedx as the direction of
motion, y as the transverse direction~s!, and r 5(x,y). The
model retains only the transverse displaceemntu[uy . Equa-
tion ~1! was obtained simply by considering the dens
modes of the moving structure which areuniform in the di-
rection of motion. Indeed, the key point of Ref. 73 is that th
transverse physics is to a large extent independent of
details of the behavior of the structure along the direction
motion. This is because the transverse density modes, w
can be termed smectic modes, see an almost static diso
and thus are the most important ones to describe the phy
of moving structures with a periodicity in the direction tran
verse to motion. Let us emphasize that this is explicitly co
firmed here by the detailed RG analysis of the properties
model II. Note that to obtain model III one setsformally ux
50.80 The hierarchy of models introduced here is rep
sented in Fig. 1.

The outline of the paper is as follows. After Secs. II a
III where we give a nontechnical discussion of the physi
results, we start in Sec. IV by deriving an equation of moti
and, carefully examining its symmetries, we introduce mo
els I, II, III and explain the approximations leading to them
In Sec. V we perform perturbation theory on the full dynam
cal problem, focusing on model II. In Sec. VI we use t
functional RG to study model III and thus the transver

FIG. 1. Various models studied here to describe with vario
levels of approximation the~i! fully elastic flow of a lattice,~ii !
intermediate phase with ordering transverse to motion.~iii ! plastic
flow.
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57 11 359MOVING GLASS THEORY OF DRIVEN LATTICES WITH . . .
physics ind53 andd532e. We studyT50 andT.0. In
Sec. VII we study a two-dimensional version of the movi
glass equation model III. This allows us to obtain results
d52 at T.0 and ind521e. Having obtained a good un
derstanding of the transverse physics in the sections dev
to model III, we are now in good position to tackle the fu
problem. We treat in Sec. VIII A the RG of model II and
Sec. VIII B we examine the full model I, show that line
terms and KPZ terms are generated at large scales and
cuss some consequences. Conclusions can be found in
IX and many technical details have been hidden in the
Appendixes of the paper.

II. MOVING STRUCTURES AND MOVING GLASSES

A. Moving structures: General considerations

All the structures we consider share the same basic
tures. The static system in the absence of quenched subs
disorder consists of a network of interacting objects at eq
librium positionsRi

0 , forming either a perfect lattice~peri-
odic case! or elastic manifolds~nonperiodic case!. Depend-
ing on the system the objects can be either pointlike~e.g.,
electrons in a Wigner crystal! or lines~vortex lines in super-
conductors!. Deformations away from equilibrium position
are described by displacementsui or in a coarse-grained de
scription u(r ,t) where r is the internal coordinate. A com
plete characterization of the structure in motion uses th
parameters~i! the internal dimensionD, ~ii ! the number of
componentsn of the displacement fieldua, and~iii ! the em-
bedding space dimensiond. Two examples are shown in Fig
2 and more details are given in Appendix E. Since we
mostly interested here in periodic structures~though not ex-
clusively! we can setD5d. We consider motion along on
direction calledx, and we parametrize throughout all th
paper the space variabler as r 5(x,y,z) where x is one
dimension,y has a priori n21 dimensions, andz has dz
5d2n dimensions, and the displacements along motion
ux and transverse to motion asuy . Three-dimensional trian
gular flux-line lattices driven along a lattice direction th

FIG. 2. Two cases of a driven structure.~a! An interfaceD
52, n51, d53, driven orthogonal to its internal space.~b! A tri-
angular line latticeD53, n52, d53 driven within its internal
space.
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haved53, n52, r 5(x,y,z), u5(ux ,uy), wherez denotes
the direction of the magnetic field. Two-dimensional triang
lar lattices of point vortices haved52, n52, r 5(x,y).

At finite temperatures or in the presence of quenched s
strate disorder the structure is deformed. An important is
is then to characterize the degree of order. This can be
pressed in terms of displacements correlation functions.
simplest one measures the relative displacements of
points ~e.g., two vortices! separated by a distancer

B̃~r !5
1

n
^@u~r !2u~0!#2&, ~2!

where ^ & denotes an average over thermal fluctuatio
and—is an average over disorder. The growth ofB̃(r ) with
distance is a measure of how fast the lattice is distorted.
thermal fluctuations alone ind.2, B̃(r ) saturates at finite
values, indicating that the lattice is preserved. Intuitively it
obvious that in the presence of disorderB̃(r ) grows faster
and can become unbounded.B̃(r ) can directly be extracted
from direct imaging of the lattice, such as performed in de
ration experiments of flux lattices. Related toB̃(r ) is the
structure factor of the lattice, obtained by computing t
Fourier transform of the density of objectsr(r )5( id

d(r
2Ri

02ui). The square of the modulusurku2 of the Fourier
transform of the density is measured directly in diffracti
~neutrons, x rays! experiments. For a perfect lattice the di
fraction pattern consists ofd-function Bragg peaks at the
reciprocal vectors. The shape and width of any single p
aroundK can be Fourier transformed to obtain the trans
tional order correlation function given by

CK~r !5^eiK •u~r !e2 iK •u~0!&. ~3!

For simple Gaussian fluctuations~and isotropic displace-
ments! CK(r )5e2 (K2/2)B̃(r ) but such a relation holds only
qualitatively in general~as a lower bound!. CK(r ) is there-
fore a direct measure of the degree of translational order
remains in the system. Three cases are possible~see Fig. 1 in
Ref. 35!: ~a! for thermal fluctuations aloneCK(r )→Cste,
one keeps the perfectd-function Bragg peaks, albeit with a
reduced weight~b! CK(r ) decays exponentially fast. Th
structure factor has no divergent peak, translational orde
destroyed beyond lengthRa , although some degree of orde
persists at short distance~c! CK(r ) decays as a power law
The structure factor still has divergent peaks but notd func-
tions. One retains quasi-long-range translational order. T
is the case, e.g., ind52 at low temperature~Kosterlitz-
Thouless! or in the Bragg glass. Depending on how mu
crystalline order remains in the system the structure fac
has extremely different behaviors as depicted in Fig. 3.

Quite surprisingly, if one takes into account correctly t
periodicityof the lattice, a thermodynamic phasewithout dis-
locations was predicted to exist ind53 at weak
disorder.44,45 This phase, named the Bragg glass, has qu
long-range order with Bragg peaks diverging at least
q2(32A3) ~with A3'1!, similar to dashed lines in Fig. 3. A
the same time displacementsB(r ) grow logarithmically at
large scale. Similar predictions hold for other elastic mod
such as random-fieldXY systems, anda priori also for liquid
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crystals. The Bragg glass theory has by now received c
siderable numerical51,52 and analytical confirmations.48–50 If
disorder is increased above a threshold it is predicted
there is a transition at which topological defects prolifera
They destroy the translational long-range order exponenti
fast beyond a lengthRD leading to finite height diffractions
peaks. The height of the peak increases with the scal
which translational order is destroyed. This transition is th
characterized by the loss of the divergence in the Br
peaks. In type-II superconductors it implies that there i
transition, upon increasing the magnetic field, predicted
Ref. 45 ~see also Ref. 48!, from the Bragg glass~at low
fields! to another phase. The high-field phase is either
putative vortex glass36,37 or is simply continuously related to
the high-temperature phase. These predictions for the p
diagrams of superconductors has received experimental
port ~see Ref. 47 for a review!.

What happens when an external force is applied to su
structure? One obviously important quantity to determine
the curve of velocityv versus the applied forcef . Through
this v- f characteristic, three main regimes can be dis
guished and are shown in Fig. 4.

Far below the depinning thresholdf c the system moves
through thermal activation. This is the so-called creep
gime. Since the motion is extremely slow in this regime
has been analyzed based on the properties of thestatic
system.38,1,40 The resultingv- f curve crucially depends on
whether the static system is in a glass state~such as the
Bragg glass! where the barriersU( f ) become very large
when f→0, or a liquid where barriers remain finite at sma
f , resulting in a linear resistivity. The general form expec
in the creep regime is

v;r0f e2U~ f !/T. ~4!

Let us emphasize that this ‘‘longitudinal’’v- f characteristic
has mainly been used to determine whether thestaticsystem
~i.e., the limit f 5v50! is or is not in a glass state. It may no
be enough though, if one wants to probe glassiness of
moving system itself, as discussed below. The second

FIG. 3. Depending on the translational order remaining in
lattice the structure factor has different shapes. The thick line is
d-function Bragg peak of a perfect lattice~including thermal fluc-
tuations!. The dashed line is the divergent Bragg peak of the Bra
glass~which retains quasi-long-range order and has no topolog
defects!, the dotted line is the Lorentzian-like shape of a syst
losing its translational order exponentially fast.
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gime, near the depinning transitionf ' f c , has been intensely
investigated in similarity with usual critical phenomena~see,
e.g., Refs. 25, 27, 26! where the velocity plays the role of a
order parameter. A particularly important question in th
regime is to determine whether plastic rather than ela
motion occurs.53 Close to the threshold in low dimension
and in strong disorder situations the depinning is observe
proceed through ‘‘plastic channels’’63,64 between pinned re-
gions as depicted in Fig. 5. This type of filamentary flow h
been found65 in simulations of 2D~strong disorder! thin-film
geometry~with c11@c66! where depinning proceeds via fila
mentary channels which become increasingly denser.

The third regime is above the depinning thresholdf . f c.
This is the situation on which we focus in this paper~though
some of our considerations have consequences in the o
regimes as well!. An important phenomenon in this regime
that of dynamical reordering. Indeed, it was observed ex
perimentally, some time ago in neutron-diffractio
experiments,67 and in more detail recently,68 that at large
velocitythe vortex lattice is more translationally ordered th
at low velocity. Intuitively the idea is that at large velocityv,
the pinning force on each vortex varies rapidly and disor
should produce little effect. This phenomenon was a

e
e

g
al

FIG. 4. A typicalv- f characteristic atT50 ~full line! and finite
temperatures~dashed line!. Three main regimes can be distin
guished: the creep regime for forces well below threshold, the c
cal regime around the threshold, and the large velocity regime w
above threshold.

FIG. 5. Plastic flow of a network of objects submitted to
external forceF, shown for simplicity in two dimensions. The mo
tion occurs through plastic channels around pinned regions. Pla
flow might occur close to the depining threshold whereas at la
velocities one expects to recover elastic flow where the whole
tice moves coherently.
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known in the context of CDW.25 The tendency to reorder ha
also been seen in numerical simulations.54,55,69Since the ef-
fects of disorder were expected to vanish at high veloc
perturbation theory in 1/v was developed mainly to comput
the v- f characteristics.70,71,29 Recently it was extended b
Koshelev and Vinokur72 to compute the vortex displace
mentsu induced by disorder in the moving lattice and in t
moving liquid. The effect of disorder on the moving liqu
was found to be equivalent toheating to an effective tem-
peratureT85T1Tsh with Tsh;1/v. Thus the moving liquid
was argued to survive at temperatures lower than the me
temperatureT,Tm , and adynamical melting transitionto
occur belowTm from a moving liquid to a moving solid
upon increase of the velocity,72 whenT85Tm . These argu-
ments were then extended to describe the moving solid its
and it was argued that there the effect of pinning could a
be described72 by some effective shaking temperatureTsh
;1/v2 defined by the relation̂ uu(q)u2&5Tsh/c66q

2. This
suggests bounded displacements in the solid and that at
T and above a certain velocity the moving lattice isa perfect
crystal. As is discussed in the remainder of this paper,
picture of the moving lattices emerging from the above b
qualitative arguments72 goes wrong in several ways.

There are several other important questions to be
swered in addition to thev- f characteristics. The first one i
the question of the effect of the motion on the spatial cor
lations and in particular whether translational order exists
a moving system. This is related to the question of pla
versus elastic flow. If plastic flow occurs, the structure fac
should signal some destruction of lattice. However becau
moving system is inherently anisotropic different effects a
pear and the decay of the structure factor is not as isotr
as in the static system~the Lorentzian in Fig. 3!. This ques-
tion thus remains to be investigated. A possibility, sugges
by the idea of a shaking temperature,72 would be that at large
velocity one should observed-function Bragg peaks charac
teristic of a crystal at finite temperature. Such questions
discussed in detail in Sec. III. Finally determining how m
tion affects the phase diagram of the statics has to be in
tigated and depends of course on the above issues. In
ticular what remains of the glassy properties of the syste
when in motion~slow relaxation, history dependence, no
linear behaviors! needs to be addressed. For moving perio
systems, an equivalent question can be asked also a
‘‘temporal order’’ and its associated effects such as no
spectrum. In particular if one looks at a signal at a fix
position in space but as a function of time, one expect
periodic signal with a periodicity ofa/v, havingd peaks in
frequency at the multiples of the washboard frequencyv0
52pv/a. If the lattice becomes imperfect one could naive
expect the Fourier peaks in frequency to broaden in a w
that reflects the loss of translational order. Quite surprisin
this is not so. Indeed it can be shown for a single-compon
displacement field81 ~CDW! that the perfect periodicity in
time remains~in the absence of topological defects!. How-
ever this result is not readily applicable to a moving lattic
and it is thus crucial to determine whether this remarka
property holds in that case.

B. The moving glass

To tackle the physics of a structure with a displacem
field with more than one component(n.1), such as a trian-
y
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gular lattice~by contrast with a singleQ CDW!, two routes
seem to be possible. The commonly followed one72,78,82is to
simply borrow from, or extend, the physics of singl
component CDW,28–30or of elastic manifolds drivenperpen-
dicularly to their internal direction.31 In this case emphasis i
put on the displacementsalong the direction of motionux
and on the proper way to model its dynamics. Such a pr
lem has turned out to be already quite complicated in p
ticular due to the generation of KPZ-type nonlinearities
the equation of motion. Even if degrees of freedom tra
verse to motionuy exist as in the cases depicted in Fig.
they constitute an extension32 of this ‘‘longitudinal’’ physics.
Thus in this ‘‘CDW paradigm’’ it would seem necessary
understand first completely the physics of longitudin
modesux and then incorporateuy as an extra complication
Indeed there were a few attempts to describes the physic
driven vortex lattices along those lines.72,78

The second approach is based on the realization that
physics of periodic structures driven along one of their int
nal direction is radically different73 from the above descrip
tions. This stems from the fact that due to the periodicity
the transverse directionuy a static nonlinear pinning force
Fstatpersists even in a fast moving system. We want to str
that this is a very general property ofany moving structure
which contains uniform density modesKx50 in the direc-
tion of motion~as can be seen on the Fourier decomposit

FIG. 6. Three types of dynamical systems.~a! A manifold
driven perpendicular to itself.~b! A single Q CDW system. Only
displacements in the direction of motion exist, but periodicityalong
the direction of motion can play a role.~c! A periodic system with
transverse degrees of freedom driven along one of its symm
directions. The correct description of this last class of systems is
moving glass fixed point where thetransversedegrees of freedom
are the important one as represented here.
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of the density73!. As illustrated in Fig. 6 the substructur
formed by these modes can deform elastically in theuy di-
rection and sees essentially a static disorder. As is obv
from Fig. 6~c!, this substructure has generically a liqui
crystal type of ~topological! order and can be termed
‘‘smectic’’ ~though whendz50, e.g., ford53 andn53, it is
rather a ‘‘line crystal,’’ see below!. In all cases the basic
starting point thus involves thetransversedegrees of free-
dom as shown in Fig. 6, and is quite different from t
‘‘CDW description.’’ The equation which captures the ma
ingredients of such moving systems was derived in Ref.
It leads to an interesting model for transverse compone
u[uy , which has the general form in the laboratory fram

h] tu1hv]xu5c¹2u1Fstat
„r ,u~r ,t !…1z~r ,t !. ~5!

Since this equation~model III! captures glassy features o
moving systems we call itthe moving glass equation. Al-
though it looks like a standard pinning equation theconvec-
tion term hv]xu dissipates even in the static limit~a re-
minder that we are looking at a moving system! and doesnot
derive from a potential. Thus we consider this problem a
its generalizations as a prototype for a new class of phys
phenomena which are glassy and do not derive from a
tential ~or from a Hamiltonian!. The first example is to
chooseFstat(r ,u) periodic in theu direction:

Fstat~r ,uy!5V~r !r0 (
KyÞ0

Ky sin Ky~uy2y! ~6!

and corresponds to lattices~or to liquid crystals! driven in a
random potential with a short-range correlatorV(r )V(r 8)
5g(r 2r 8) of ranger f . The study of this case in Ref. 7
gave the first hint that nonpotential dynamics can inde
exhibit glassy properties and lead todissipative glasses. This
is a rather delicate notion because the constant dissipa
rate in the system would naturally tend to generate or
crease the effective temperature and kill the glassy pro
ties. However this type of competition between glassy
havior and dissipation arises in other systems which ar
generalization of the above equation. Let us briefly indic
some of the generalizations that we are proposing which
being studied here or in related works. An interesting gen
alization is the case of a periodic manifold withcorrelated
disorder.83 This is relevant to describe themoving Bose glass
state of driven vortex lattices in the presence of correla
disorder. Another generalization is to extend Eq.~5! to a
N-component vectorua . It is easy to see in that case that
nonpotential nonlinear disorder is generated ifv.0 ~which
reduces to the ‘‘static random force’’ forN51!. Thus in that
model it is natural to look at a generic nonpotential disor
Fa

stat(r ,u) from the start. The mean-field dynamical equatio
for largeN and the functional renormalization group~FRG!
equations at anyN for a large class of such models are d
rived in Sec. VI and in Appendix F. A subclass of the
models is nonperiodic~manifold!. They are relevant to de
scribe the random manifold crossover regime in the mov
glass~see Sec. III and Fig. 12!. A further subclass is then
obtained by settingv50. Interestingly the resulting mode
describes polymers~and manifolds! in random flows and can
be studied both in the large-N limit 84 and using RG~Ref. 85!
for any N.
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Finally, there are other simpler but interesting situatio
such as disorder correlated along the direction of motion
lattices moving in a periodic tin roof potential. IfFstat in Eq.
~5! is independent ofx one finds the interesting property th
the steady-state measureP@u(r )# is identical ~at anyT.0!
to the one withv50. This can be shown by studying th
associated Fokker-Planck equation. Thus we see that
moving glass Eq.~5! hides a whole class of interesting di
sipative models with glassy properties.

III. PHYSICAL RESULTS

In this section we present all the physical results on
moving glass that we have obtained in Refs. 73, 74, 35
in the present paper. We deliberately avoid technicalities
refer to the proper sections for details.

A. Channels

One of the most striking properties of moving structur
described by Eq.~5! is that the nonlinear static forceFstat

results in the pinning of the transverse displacementsuy(r ,t)
into preferred static configurationsuy(r ) in the laboratory
frame. Thus the resulting flow can be described in terms
static channelswhere the particles follow each other lik
beads on a string. In the laboratory frame these channels
determined by the static disorder and do not fluctuate in tim
They can be visualized in simulations or experiments by s
ply superposing images at different times. What makes
problem radically different compared to conventional sy
tems which exhibit pinning is that despite the static nature
these channels there is constant dissipation in the ste
state. This can be seen in the moving frame where e
particle, being tied to a given channel~which is then moving!
must wiggle alongy and dissipate. In fact the existence
the channels shows in a transparent way that the wigglin
different particles in the moving frame is highly correlated
space and time, thus leading to a radically different image
the one embodied in the ‘‘shaking temperature’’ based
thermal-like incoherent motion.72

The channels are thus the easiest paths followed by
particles. One can see that the ‘‘cost’’ of deforming a cha
nel alongy is that dissipation is increased. Thus the chann
are determined by a subtle and novel competition betw
elastic energy, disorder, and dissipation. As a conseque
these channels arerough. This is a crucial difference be
tween what would be observed for a perfect lattice as ill
trated in Fig. 7.

By contrast the channels which are predicted in the m
ing glass are illustrated in Figs. 8 and 9. It is important
stress that the moving glass equation~5! does not assume
anything about the coupling of the particle indifferentchan-
nels but only implies that the channels themselves are e
tically coupled alongy, and thus through compressio
modes.73 Indeed on specific models such as model II one c
verify explicitly that although coupling between longitudin
and transverse degrees of freedom existsa priori, the longi-
tudinal degrees of freedomux do not feed backat all in the
moving glass equation~see Sec. VIII A!. The existence of
channels naturally leads to severala priori possible regimes
for the coupling between particles in different channels. T
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57 11 363MOVING GLASS THEORY OF DRIVEN LATTICES WITH . . .
first case, represented in Fig. 8~b!, is a topologically ordered
moving structure corresponding to full elastic coupling b
tween particles in different channels. Since, remarkably,
structure retains perfect topological order despite the rou
ness of the channels, it is reminiscent of the properties of
static Bragg glass, and thus we call it a moving Bragg gla
A second case of a moving glass corresponds to decoup
between the channels, by injections of dislocations beyon
certain length scaleRd and is called the moving transvers
glass. These two regimes are discussed in more detail in
III D. Finally note that in d53 channels can be eithe
‘‘sheets’’ ~for line lattices! or linear ~for point lattices! as
represented in Fig. 9. It is important to note that the chann
in the moving glass are fundamentally different in natu
from the one introduced previously63,64 to describe slow
plastic motion between pinned islands, as illustrated in F
5. In the moving glass they form a manifold of almost pa
allel lines ~or sheets for vortex lines ind53!, elastically
coupled alongy. For that reason we call them generica
‘‘elastic channels’’~whether or not they are fully coupled o
decoupled! to distinguish them from the ‘‘plastic channels
~even though some plastic flow may occur when ela
channels decouple!. Note that in the above discussion w
have concentrated on elastic channels which canspatially
decouple. It is possiblea priori that they may still remain
temporally coupled, i.e. synchronized. Indeed, examples
synchronization were observed even in extremely pla
filamentary flow.65

FIG. 7. ~a! A snapshot of a perfect~nondisordered! lattice mov-
ing along thex direction.~b! Upon superposing images at differe
times one would see that atT50 the particles follow perfectly
straight lines.~c! At 0,T,Tm in d53 the channels remain per
fectly straight with a finite width due to the thermal fluctuation
the particles.~d! In d52 since thermal fluctuations are unbounde
channels are completely blurred and cannot be defined even fT
,Tm . ~e! Even in situation~b!, ~c! applying an additional smal
force alongy immediately results in tilted channels with ang
Fy /Fx .
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B. Dynamical Larkin length and transverse critical force

Another important property of the moving glass in
mately related to the existence of stable channels is the
istence of ‘‘transverse barriers.’’ Indeed it is natural phy
cally that once the pattern of channels is established
system does not respond in the transverse direction a
which it is pinned. Thus we have predicted in Ref. 73 th
the response to an additional small external forceFy in the
direction transverse to motion vanishes atT50. A truetrans-
verse critical force Fc

y, such that the transverse veloci

,

FIG. 8. ~a! The motion in the moving glass occurs throug
rough static channels. Relative deformations grow with dista
and become of ordera at distancesRa

x;Ra
y2. Only the channels

themselves are elastically coupled along they direction. Depending
on the dimension, velocity, and disorder strength two main ca
can occur:~b! an elastic flow where the particle positions are ela
tically coupled between channels~in d53 and weak disorder or
large velocities!. In this regime the lattice is topologically ordere
~no dislocations! and the rows of the lattice follow the channel
This is a moving Bragg glass.~c! In d52 or at stronger disorder in
d53 the positions of particles in different channels may decoup
Dislocations with Burgers vectors alongx ~indicated by the square!
are then injected between some channels beyond the lengthRa .
This situation describes a moving transverse glass~with a smectic
or a line-crystal-type topological order!.

FIG. 9. Different types of topological order for the manifold o
channels ind53. ~a! For line lattices in motion the channels a
‘‘sheets’’ and thus form an anisotropic type of smectic layering,~b!
for 3d lattices of pointlike objects or for triply periodic structure
~e.g., tripleQ CDW! they have instead the topology of a line cry
tal.
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11 364 57PIERRE LE DOUSSAL AND THIERRY GIAMARCHI
vy50 for Fy,Fc
y, exists~and thus a transverse critical cu

rent Jc
y in superconductors! for a lattice driven along a prin

cipal lattice direction.86

The transverse critical force is a rather subtle effect, m
so than the usual longitudinal critical force. It doesnot exist
for a single particle atT50 moving in a short-range
correlated random potential. By contrast even a sing
particle experiences a nonzero longitudinal critical force
does not exist either for a single driven vortex line or a
manifold driven perpendicular to itself in a pointlike diso
dered environment. It does exist, however, even for a sin
particle if the disorder is sufficiently correlatedalong the
direction of motion~such as a tin roof potential consta
alongx and periodic alongy!. Such disorder breaks the ro
tational symmetry in a drastic way. Still, in the case of
lattice driven in an uncorrelated potential a nonzero tra
verse critical force does seem to break the rotational sym
try of the problem. In some sense in the moving glass
transverse topological order which persists~and the elasticity
of the manifold! provide the necessary correlations~through
a spontaneous breaking of rotational symmetry!. Thus the
transverse critical force is a dynamical effect due to barr
preventing the channels to reorient.

Thus we have proposed the moving glass as a dynam
phase~a new RG fixed point! and the transverse critical forc
as its order parameter atT50. The upper critical dimension
of this phase isd53 instead ofd54 for the static Bragg
glass. Aboved53 weak disorder is irrelevant and the mo
ing glass is a moving crystal. Ford<3 disorder is relevant in
the moving crystal and leads to a breakdown of the 1/v ex-
pansion of Ref. 72. Divergences in perturbation theory
be treated using a RG procedure~Sec. VI!. One indeed finds
a different fixed point which confirms the prediction that t
moving glass is a dynamical phase. Using RG and the p
erties of this fixed point one can compute various phys
quantities~Sec. VI B 3!. We find that the transverse critica
force is given by

Fc
y;A

cr f

~Rc
y!2 ~7!

with c5c11 in d52, c5Ac11c44 in d53, andA is a nonuni-
versal constant. The length scaleRc

y is thedynamical Larkin
length. It is defined as the length scale alongy at which
perturbation theory breaks down, nonanalyticity appears
the FRG and the~scale-dependent! mobility vanishes. Before
we proceed further let us define now disorder strength
rameters. For uncorrelated disorder the random poten
V(r ) which couples to the density of the structure has sh
range correlations of ranger f , V(r ,z)V(r 8,z)5g(r
2r 8)ddz(z2z8) ~see Sec. IV!. As in Ref. 73 we denote byD
@also denotedD(u50), see Sec. IV# the bare static pinning
force correlatorD5r0

2(Ky ,Kx50Ky
2gK wherer0 is the aver-

age density andgK is the Fourier transform ofg(r ) at the
reciprocal-lattice vectors. ThroughoutD2 denotes the secon
derivative of the nonlinear pinning force correlatorD2

52D9(0)'D/r f
2 ~see Sec. VI!. Our result is that ind53

the dynamical Larkin length is given by
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Rc
y;aexp

4phvc

D2
, ~8!

while in d<2 it reads

Rc
y;S a32d1

4phvc~32d!

D2
D 1/~32d!

~9!

with againc5c11 in d52 andc5Ac11c44 in d53. These
results are valid for large enough velocitiesv@vc* ~see be-
low for the definition ofvc* and results for all velocities!.
Note that forv.vc* the dynamical Larkin length depend
only onc11 ~and ofc44 in d53! as it should since the physic
of the moving glass is controlled by the compression mo
and thus largely independent of the detailed behavior al
x.73

Another way to estimate the dynamical Larkin length is
compute the displacements in perturbation theory of the
order. At very short distance one can treat the pinning fo
in Eq. ~5! to lowest order inu. This gives a model where
disorder is described by arandom force Fstat(x) independent
of u whose correlator iŝ Fstat(r )Fstat(r 8)&5Ddd(r 2r 8).
This regime is the equivalent of the short distance Lar
regime for the statics. In the moving glass at very large
locity v@vc* the displacements~2! along y grow asB(r )
5BRF(r ) ~at T50! with

BRF~y!5E dqxdqyd
dzqz

~2p!d

D@12cos~qyy!#

~hvqx!
21~c11

2 qy
21c44

2 qz
2!2 . ~10!

The scale alongy at which uy becomes of orderr f defines
the dynamical Larkin lengthRc

y , i.e., BRF(y5Rc
y ,x50)

;r f
2 . The resulting expression coincides with the one o

tained within the RG approach~up to nonuniversal prefac
tors!. Similarly one can define a Larkin length for transver
pinning along thex direction by the condition thatuy(x
5Rc

x ,y50)2uy(x50,y50);r f . Since what determines
this length is onlyuy ~and notux! it is independent of the
detailed behavior alongx. It is important to note that the
moving glass is a very anisotropic object at large scale w
a scalingx;y2 of the internal coordinates. This implies th
at large velocity (v.vc* ) the Larkin length alongx is very
large ~much larger thanRc

y!, with Rx5v(Rc
y)2/c11 ~one has

also the more conventional behaviorRc
z;Ac44/c11Rc

y in d
53!. Estimating the random force acting on a Larkin volum
for the transverse displacements73 one recovers the abov
estimate forFc

y .
The resulting transverseI -V characteristics atT50 is de-

picted in Fig. 10. The transverse depinning is studied in S
VI and we find the behavior near the thresholdvy;uFy

2Fc
yuu for Fy.Fc

y with u51 to lowest order ine532d. A
reasonable conjecture which would be interesting to verify
that it remainsu51 to all orders.87 Thus the transverse ve
locity vy starts linearly with a slope which depends on t
velocity longitudinal velocityv. It is very large forv!vc*
and diverges in the limitv→0.

The existence of a transverse critical force in a mov
state raises interesting issues abouthistory dependence.
These issues are largely open and should be explored in
ther numerical, experimental, and theoretical work. Let
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57 11 365MOVING GLASS THEORY OF DRIVEN LATTICES WITH . . .
for instance, consider two experiments. In the first one
force f xex1 f yey is applied to the lattice at timet50 and
then one waits until a steady state is reached. The veloci
then@vx( f ),vy( f )#. In the second experiment one first a
plies a forcef x along the directionx, waits for a steady state
and then appliiesf y alongy. One then measures the veloc
ties @vx

w( f ),vy
w( f )#. The question is, should one find th

same result in the two experiments or not. Of course th
are subtle issues which complicate the problem and need
be further investigated@such as~i! the order of limits system
size versus waiting time before a steady state is reached~ii !
whether the lattice globally rotates or breaks into crystallit
and ~iii ! some nonuniversality ofT50 dynamics# but one
should still be able to find anoperational answer. If it is
found that there are such history dependence effects then
would be a strong characteristic of a glassy state~it should
not happen in the liquid where one expects both answer
be the same, but in the same trivial sense as for a si
particle!. On the other hand, if no clear history dependenc
found it has interesting consequences. We assume in the
lowing that the global orientation of the lattice is unchang
Then the first consequence is that there is a well-defi
history-independent globalv- f function. This function how-
ever is nonanalytic in a large region of thef x , f y plane.
vy( f x , f y) should remain zero at least in the regionf y

,Fc
y
„vx( f x , f y)… and similar regions near each of the princ

pal symmetry axis of the crystal. This is clearly the result
the FRG calculation presented here. But then one may
guess that it may be nonanalytic too along other lattice
rections~though it is possible that some of the higher sy
metry directions be screened by lower ones!. The transverse
mobility as a function of the angle and the force shou
exhibit a complex~and rather strange! behavior which would
be interesting to investigate further. A second interest
consequence would be that if in the above described
experiment one chooses af y.0 smaller thanFc

y(vx), the
lattice would first glide in the direction of the applied forc
~as small time perturbation theory would indicate! but would
soon change its velocity to lock it along a symmetry axis
is quite possible that this locking effect exists and could b
possible explanation for the behavior ubiquitously obser

FIG. 10. Transversev- f characteristics atT50: transverse ve-
locity vy as a function of the applied transverse forceFy at a fixed
longitudinal velocity. The behavior near threshold is found to
linear. The slope at the threshold is large forv<vc* .
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in experiments, namely that lattices tend to flow along th
principle axis directions. Such a behavior near depinning w
observed in recent decoration experiments.88 Note that a
similar locking would happen for a particle moving in a t
roof potential~but as a more trivial effect!.

Another important question for experiments is to det
mine the transverse critical force as a function of the lon
tudinal velocity v. As v decreasesFc

y increases but it is
intuitively clear thatFc

y cannot become larger than the lo
gitudinal critical current~strictly speaking in the same direc
tion y!. We neglect for now the dependence of the longi
dinal critical current in the orientation with respect to th
lattice ~which gives a numerical factor which can be inco
porated!. We call Fc

iso the critical current forv50. As v is
decreased belowvc* the transverse critical force saturates
Fc

iso. This is depicted in Fig. 11@the large-v behavior was
given in Eqs.~7!–~9!#. There is thus a crossover towards t
static isotropic behavior~e.g., in the Bragg glass!, assuming
no dynamical phase transition asv decreases which would
complicate the analysis.

FIG. 11. Transverse critical force as a function of the longitu
nal velocity. At small velocities the transverse critical force sa
rates to the isotropic oneFc

iso. For a relation betweenhvc* and the
longitudinal critical force see the text.

FIG. 12. Crossover as a function of the length scaleR and
longitudinal velocity v from the static Bragg glass behavior~at
smallv! to the moving glass behavior~at largev!. The dashed line
represents the crossover between these two regimesR5Rcross

5c/v. The dynamical Larkin lengthRc
y(v) as a function ofv and

the transverse translational order lengthRa
y(v) are indicated as plain

curves. This is valid in the collective-pinning regimeRc
iso.a where

Rc
iso is the static Larkin length.
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11 366 57PIERRE LE DOUSSAL AND THIERRY GIAMARCHI
This crossover can be explicitly estimated using the F
in Secs. VI, VIII A, and physical arguments. It is convenie
to discuss it using Fig. 12~also useful for studying the cross
over in the correlations—see the next section!. Let us first
discuss it for simplicity with isotropic elasticityc115c66
5c445c. There is a crossover length scaleRcr5c/v below
which the moving glass looks very isotropic and very simi
to the Bragg glass. This length scale is represented in Fig
as a dashed line. Increasing the length scaleR starting from
a, at fixed v, one is first controlled by the static behavi
until reaching that line (R,Rcr) and then one is controlled
by the dynamical moving glass regime forR.Rcr . Similarly
one can also represent the Larkin length atv50 Rc

iso

5(c2r f
2/D)1/(42d) ~in d,4!. The crossover velocityvc* cor-

responds to the velocity at whichRc
y5Rcr when one has also

Rc
y5Rc

iso. One finds

vc* 5~D/cr f
2!ln~c2r f

2/aD! ~d53!,

vc* 5c~D/c2r f
2!1/~42d! ~d<3!. ~11!

These results are valid when (Rc
iso.a), i.e., in the collective-

pinning regime for the statics. We denoter f5min(r f ,a), i.e.,
if r f;a one can simply replacer f by a in all the above
formulas. Thus forv,vc* the transverse critical current be
comes of order the longitudinal oneFc

iso5cr f /(Rc
iso)2. It is

useful for the purpose of comparison with experiments
comparehvc* with the longitudinal critical forceFc

iso. One
finds the general relation

hvc*

Fc
iso 5

Rc
iso

r f
~12!

with logarithmic corrections in d53, hvc*
5Fc

iso(Rc
iso/r f)ln(Rc

iso/a). This result is remarkable: since fo
weak disorder one has usually thatRc

iso@r f it shows that for
a system with isotropic elasticity, the transverse critical fo
should remain of the order of the longitudinal one up un
very far above the longitudinal threshold (Fx@Fc) ~very
high up in thevx-Fx curve in Fig. 4!.

The situation is different whenc66!c11. In that case two
distinct crossover velocities exist which we denote byv66
andv11. This is because the pinning properties of the la
velocity moving glass are determined by the compress
c11, while the pinning of the static Bragg glass are det
mined by shearc66. The critical current in the statics is the
Fc

iso5c66r f /(Rc
iso)2 with Rc

iso5r f
2c66

3/2c44
1/2/D in d53 andRc

iso

5r fc66/(D)1/2 in d52 ~we have neglected the contributio
of compression modes!. This critical current is much large
than the one which would be inferred from compress
modes aloneFc,11. Thus whenv,v66 the transverse critica
force is of the order of the isotropic static oneFc

iso. For
v66,v,v11, the transverse critical force decreases asv in-
creases fromFc

iso to Fc,11 whereFc,11 is given by the same
formulas asFc

iso but with c66→c11 and is thus much smalle
~with the correspondingRc,11 also obtained fromRc

iso by sub-
stitutingc66→c11!. For v.v11 the transverse critical force i
given by the large velocity result@see Eqs.~7!–~9!#. While
v11 is still very large,v66 can be within experimentally ac
cessible order of magnitude:
t

r
12

o

e
l

e
n
-

n

hv66

Fc
iso 5

~Rc
iso!2

r fRc,11
. ~13!

One finds that the ratio of the two crossover velocities
v11/v665c11/c66 ~up to logarithms ind53!. One sees from
Eq. ~13! that a measure of the transverse critical current m
lead to interesting information about the elasticity of the l
tice. To estimate the transverse critical force in all regim
one could compute the dynamical Larkin length asuy;r f
using the complete formula~45! which contains bothc66 and
c11 contributions.

Finally note that one can make a simple minded argum
showing directly in Eq.~5! that the convective term shoul
not change pinning much at smallv. Indeed starting from the
casev50, where one has a pinned stateustat

v50(r ) and treating
the convection term as a perturbation~which should be valid
at small scales!, one sees that this terms acts on thev50
pinned state as an additional quenched random force. S
there is a critical forcef c(v50) in that case, it is intuitively
clear that this term does not destroy completely the s
ustat

v50(r ) until vr f /Rc; f c . This argument gives back th
correct value forvc* .

C. Displacements and correlation functions

Due to the presence of the static disorder one exp
unbounded growth of displacements in the moving gla
The relative displacements induced by disorder in the m
ing system can be first computed in naive perturbation the
using Eq.~10!. One finds

B~x,y!;D
y32d

chv
HS cx

hvy2D ~14!

where H(0)5cst and H(z);z(32d)/2 at large z. Thus x
scales asy2 and the displacements are very anisotropic. T
above formula, if taken seriously, leads to displaceme
growing unboundedly ford<3. This is similar to the Larkin
calculation for the static problem. As in the statics it ind
cates that the crystal is unstable to weak disorder ind<3 and
that perfect transverse long-range order is destroyed. N
that due to motion the upper critical dimension is nowd
53 instead ofd54 for the statics. As in the statics, th
above formula and perturbation theory breaks down ab
Rc

y and an RG approach is absolutely necessary to com
the displacements. Using an RG calculation one finds
the behavior of displacements is indeed controlled by a fi
point characteristic of the moving glass phase. One finds
the correlation function of displacementsaveraged over dis-
order can be rigorously separated into two partsB(r )
5^@u(r )2u(0)#2&5BRF(r )1BNL(r ) where BNL(r ) comes
from thenonlinear partof the pinning force. While this par
~computed in Ref. 45! is dominant in the Bragg glass in th
moving glass this contribution is subdominant at large sca
~although it can be dominant at intermediate scales! and we
neglect it for now. The main contribution comes from th
static random forcewhich is generated both alongy and x
direction. The generation of such a random force, forbidd
in a static system, occurs here because of the nonpotenti
induced by the motion. The complete expression of the g
erated random force is given in Sec. VIII A~see also Sec
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FIG. 13. Renormalized random force strength as a function of the velocity~right! and resulting amplitude in displacement correlatio
~left!.
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VI !. This random force gives a contribution to the displac
ment which at large scale has the same spatial depend
than the one naively extrapolated from Larkin regime f
mula ~10! and thus Eq.~14!. One thus finds

BRF~r !;
DR

4pchv
ln~y!, d53,

BRF~r !;Cd

DR

4pchv
y32d;

DR

4pchv
x~32d!/2, d,3.

~15!

At large scales the random force contribution toB(r ) domi-
nates. Although the formula resembles the perturbative o
the amplitude of the random force is given by therenormal-
izedDR which has been extracted from the RG analysis a
is determined by the nonlinear pinning force. In generalDR
can be different from the perturbativeD. In particularDR
must vanish whenv→0. Although DR is a nonuniversal
quantity~contrary to the behavior in the Bragg glass! one can
still obtain a reliable estimate forDR by studying the cross
over depicted in Fig. 12. If the velocity is smaller than t
crossover velocityvc* the random force is renormalize
downwards according to the behavior in the Bragg gl
phase. ThusDR will be smaller than the bareD. This is
illustrated in Fig. 13.

The amplitude of the displacements@e.g., the prefactor of
the logarithmic growth in Eq.~14!# generated by the renor
malized random force is maximum around the velocityvc* .
Even at this velocity the displacements can be estimate
BRF(r );r f

2 ln(r/Rc
y) in d53 and BRF(r );r f

2(y/Rc
y) in d

52. At all other velocities the amplitude is much smalle
Given the form of the displacement correlation function t
moving glass has quasi-long-range translational order id
53. One finds for transverse translational order correlatio

CKy ,Kx50~0,y,z!;S Ra
y

Ay21z2~c11/c44!
D AK

, AK5
Ky

2DR

8pvch
.

~16!

In particularAK0
5pa2DR /(2vch). The dependence in th

coordinatex is CKy ,Kx50(x,0,0);(Ra
x/x)AK/2 and thus one

finds an anistropic divergence of the Bragg peaks co
sponding toKx50 of the form

S~q!;
1

~c11qy
21c44qz

2!22AK/2;
1

qx
22AK/2 . ~17!
-
nce
-

e,

d

s

as

.

s:

-

The question of the divergences of peaks associated
Kx.0 is discussed in the next section. Ind52 algebraic
growth of displacements imply a stretched exponential de
of CK(r ) and thus that the peaks in the structure factor
rounded~as the dotted line in Fig. 3!.

The roughness of the channels define an additional len
scale at which the wandering becomes similar to the lat
spacing. As in the statics~Bragg glass! it is possible to esti-
mate these lengths. At large velocity these lengths are la
and at this scale the system is very anisotropic. A sim
argument a la Fukuyama-Lee, similar to the one in Ref.
gives

Ra
y;~a2vc/D!1/~32d!, Ra

x5v~Ra
y!2/c. ~18!

At largev one can also obtain these lengths by looking at
displacements generated by the random force. For smav
,va* there is a long crossover since at small scales the
tem looks more like the Bragg glass. As a consequence
estimates forRa change. This illustrated in Fig. 12.va* is
determined roughly byRcr5Ra

y .
Let us summarize the main regimes as a function of

velocity of the moving glass, as can be seen in Fig. 12.
large velocityv.vc* the system is already anisotropic at th
scaleRc and pinning and correlations are determined direc
by the asymptotic moving glass behavior. Forva* ,v,vc*
the system is isotropic at the Larkin length and pinning
similar to the static, but the system is still very anisotropic
scalesRa

y . Finally for v,va* the system is almost staticlik
up to Ra

y and isotropic. The random force is enormous
reduced, and transverse barriers are very large. Finally
that in each configuration of the disorder the random fo
alongy and the transverse critical force compete. The ph
ics of the moving glass is determined by this competition

D. Decoupling of channels and dislocations

Most of the properties of a moving structure discussed
the previous section were obtained from the moving gl
equation~5!, which contains only the transverse displac
mentsuy . They thus rest only on the channel structure its
and not on the precise motion of the individual particl
along these channels. Let us now discuss the problem o
coupling of particles between different channels which is i
portant for the issues of topological, translational order, a
structure factor.

An outstanding problem in the statics is whether or n
topological defects are generated by disorder in an ela
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structure. Using energy arguments it was predicted that
to the periodicity a lattice is stable to dislocations at we
disorder ind53 giving rise to the Bragg glass.45 The similar
question of whether disorder generates dislocations ar
also for moving structures. At first sight the situation loo
even more complicated to tackle analytically and furth
more precise energy arguments cannot be used becaus
system is out of equilibrium. However, as is becoming cl
from the discussion in the previous section the issue of
creation of dislocations can now be discussed here in te
of decoupling of channels. Even in the presence of dislo
tions our picture of pinned channels should remain valid
long as periodicity alongy is maintained. Before the chann
structure was identified in Ref. 73 it was unclear how dis
cations could affect a moving structure. The existence
channels thennaturally suggests a scenario by which disl
cations appear. In fact the results of Ref. 73 naturally s
gests that transitions from elastic to plastic flow may now
studied asordering transitionsin the structure of channels.

Let us examine first whether dislocations appear in
moving Bragg glass ind53. The relative deformations du
to disorder grow only logarithmically with distance, resultin
in quasi-long-range order. At weak disorder or large veloc
~since the relevant parameter isD/v! the prefactor of the
logarithmic displacements is very small. This suggests,
analogy with the statics, that dislocationsdo not appear,
leading to a stable moving Bragg glass at weak disorde
large velocity. In that case the structure factor exhibits Bra
glass-type peaks~at all the small reciprocal-lattice vectors!.
Note however that due to the anisotropy inherent to the m
tion theshapeof each peak is highly anisotropic the leng
Ra

x being much larger thanRa
y . Upon increase of disorder th

first likely transition corresponds to a decoupling of t
channels, while the periodicity alongy is maintained. This
corresponds to the loss of divergent Bragg peaks
reciprocal-lattice vectors with nonzero components along
direction of motion. The peaks at reciprocal-lattice vect
along y still exhibit divergences~computed in the last sec
tion!. This particular case of a moving glass was obser
numerically ind52 and called the moving transverse glas89

~see next section!. This phase has also a smectic type
order. One question is whether particles can hop between
channels in this phase. This however seems unlikely at z
temperature provided the channels are well defined. In
absence of such hops this decoupled phase can still be
scribed by Eq.~5! and has nonzero transverse critical curre
Increasing further the disorder should destroy even the ch
nel structure leading to a fully plastic flow.

An estimate of the locus of the transition between
moving Bragg glass and the moving transverse glass is g
by a Lindemann criterion. For the statics such a criterion
been shown to accurately predict the positional decouplin
a layered structure.48,49 Here we extend this criterion to th
dynamics

^@ux~y5a!2ux~0!#2&5cL
2a2. ~19!

Decoupling of channels comes from displacements along
direction of motion. This scenario makes sense since
placements alongx are likely to dominate~see the discussion
below and Sec. V B!. This is consistent with edge disloca
tions appearing first.
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In d52 displacements grow algebraically@see Eq.~15!#.
Thus, even at weak disorder or large velocities, it is mu
more likely that dislocations appear at large scale. Pres
ably this scale corresponds to the displacements being
order a. One then easily sees that dislocations appear
tween the layers. Indeed

^@ux~La
y!2ux~0!#2&;a2 ~20!

is controlled by the random force alongx and byc66 ~the
displacementsuy are down by a factorRa

y/Ra
x—see below

and Sec. V B!. In this regime blocks of channels of variab
transverse sizeLa

y ~depending on the strength of the disorde!
are separated by dislocations.

The peaks at vectors with a nonzeroKx thus allow us to
distinguish between the moving Bragg glass and the mov
transverse glass. This is illustrated in Fig. 14.

In systems with a small ratioc66/c11 and stronger disor-
der the peaks withKx.0 have a tendency to be smaller~and
decoupling becomes easier asux becomes larger thanuy!.
Indeed the displacements at large scales~and thus the decay
of translational long-range order! are controlled by the ran
dom forces alongy, Dyy and alongx, Dxx ~they remain
statistically uncorrelated—see Sec. VIII A!. These random
forces act differently onuy andux . Indeed, onlyPxx

T ~shear,
c66! andPyy

L ~compressionc11! lead to unbounded displace
ments~e.g., ind53!. The y random force thus acts mainl
on uy via compression, and thex random force mainly onux
via shear. Though generally one hasDxx,Dyy at weak dis-
order, if the ratioc66/c11 is small this could strongly favor
the weakening of theKx.0 peaks and channel decouplin
A estimation ofDxx is performed in Sec. VIII A.

The problem of the behavior of dislocations in the movi
glass system is of course still open,90.91and constitutes as fo
the statics one of the most important issues to understan
is noteworthy, however, that although these issues are
course important to obtain the structure factors and as s
they do notaffect the main physics of the moving glass.

E. Moving Bose glass

Similar arguments also apply in the presence of correla
~columnardz51! disorder along thez direction. We predict

FIG. 14. Bragg peaks for the two realizations of the movi
glass:~a! moving Bragg glass with quasi-long-range order and p
fect topological order.~b! Moving transverse glass where channe
have decoupled and quasi-long-range order in they direction is
maintained.
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in that case the existence of a ‘‘moving Bose glass’’ ind
53,92 whose upper critical dimension isd54. Indeed the
same calculation as above,

BRF~y!5DE dqxdqydqz

~2p!2

3d~qz!
@2cos~qyy!#

~hvqx!
21~c11

2 qy
21c44

2 qz
2!2 , ~21!

now yields a fast growing displacement. Thus the disor
effects are stronger and one can expect thermal effects t
weaker for correlated disorder. The situation resembles
d52 case atT50. One can still predict a transverse critic
current. Full topological order is unlikely so one shou
rather have a moving transverse glass type of order alony
with a localization effect of the layers and thus a transve
Meissner effect alongy. A detailed study of this moving
Bose glass phase will be given elsewhere.83 In a similar way,
the effect of correlated disorder on another dissipative g
system~nonpotential! was found to be quite strong.85

F. Moving glass at finite temperature

Thus the moving glass, in its different forms, described
Eq. ~5! is a new disordered fixed point atT50. An important
question is to understand what is the effect of thermal fl
tuations. Indeed in moving systems, as can be seen by
turbation theory, the fluctuation dissipation theorem is v
lated and a generation of temperature by motion occurs. T
corresponds to the physical effect of heating by motion. N
however that atT50 a system in the absence of therm
fluctuations retains perfect time order which implies that
temperature can be generated. Thus the heating effect i
well described by a ‘‘shaking temperature’’ as introduced
Ref. 72 which would be nonzero even atT50. Although the
temperature grows due to motion, this effect competes w
the fact that naive power counting in glassy systems sugg
that the temperature is an irrelevant variable flowing to ze
The competition between these two effects is highly n
trivial and leads to physics which need to be investigated
the whole class of moving glasses of Sec. II B. Remarka
for this class of systems, different finite temperature fix
points exists. In the case of driven lattices, we find a fix
point at finite temperature in ad532e expansion andd
521e expansion. Similarly for randomly driven polyme
very similar fixed points are obtained.85 Thus a large class o
dissipative glasses exists at nonzero temperature. Ind53,
the fixed point is slightly peculiar since both temperature a
disorder flow to zero but can be analyzed along the sa
lines. The properties of the finite-temperature phase are
tinously related to theT50 one. In particular the finite-
temperature moving glass exhibits the same type of ro
channel structure. Channels are slightly broadened du
bounded thermal displacements around the average cha
position. Thus the asymptotic behavior of the displaceme
and structure factor, still remains similar to that atT50 dis-
cussed in the previous sections. There is, in addition, a c
tribution of thermal displacements. Ind53 they are small,
and one sees that the RG methods developed here allow
estimate more precisely the thermal heating effect, and
distinguish it clearly from the disorder effects. This is impo
r
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tant for determining the dynamical phase diagrams. Ind
52 the thermal displacements are large~see Sec. VII!.

The main effect of temperature is to modify thev- f char-
acteristics. One finds~Sec. VI! that the asymptotic mobility
mR is nonzero. However at low temperatures or at velocit
not too large thev- f characteristics remain highly nonlinea
There is still an ‘‘effective’’~or apparent! transverse critical
force Fc

y(T) as shown in Fig. 15. At low temperature th
mobility mR is very small. If the velocity is not too largev
,vc* there are several regions in thev- f curve. Below the
transverse pinning force slow motion due to effective ba
ers exist. They are a growing function of 1/f until one
reaches the finite-temperature moving glass fixed point.
deed reducing the transverse force probes larger and la
length scales. As depicted in Fig. 12 one is dominated u
the scaleRcr by the Bragg glass fixed point for which tem
perature is strongly renormalized downwards. In this regi
the v- f curve is nearly similar to the one in the static Bra
glass and thus highly nonlinear. This corresponds to a cr
regime. For smaller forces~i.e., when probing scales large
than Rcr! one crosses over to the moving Bragg glass fix
point. At that point the FRG calculation shows that the b
riers saturate. Thus below the scalef * one recovers a linea
v- f charactersitic, with an extremely small mobility. No
that the scalef * which corresponds to the crossover sca
Rcr can be much smaller than the critical transverse pinn
force if v,vc* .

In a realistic system wherec66!c11, vc* splits into two
different crossover velocities as discussed in Sec. III
Whenv,v11 barriers are very high as in the static proble
and there is a noticeable transverse creep regime as show
Fig. 15. Sincev11 is very large in practice this regime applie
to a large range of longitudinal velocities. Whenv,v66 one
enters a regime where transverse creep becomes identic
the isotropic one.

These properties show that even at finite temperature
moving Bragg glass remains different from a perfect crys
The definition of what is ‘‘glassiness’’ in a moving structu
is a concept which has to be defined. In that respect too c
analogies with the statics can be misleading. A first obvio
glassy characteristic is the loss of translational order, c
trary to the crystal. Note however that a similar effect cou

FIG. 15. Transverse critical force as a function of the velo
ity. v- f characteristics at finite temperature. The vertical dot
line is the crossover forcef * below which the barriers saturate~see
text!. Above f * the characteristics are highly nonlinear.
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be obtained by adding a random force by hand to a per
crystal. However the response of such a structure to an
ternally applied force would beidentical to the one of a
perfect crystal. Thus the glassy properties of the mov
Bragg glass are necessarily stronger than such a state.
same question of history dependence as discussed abo
T50 can be asked. If these effects exist the question of
finiteness of the barriers might not be as important an is
as in the static case. Note however that in some other
amples of nonpotential dynamics barriers can indeed
infinite.85 Since the finite-temperature moving Bragg glass
described by a new fixed point which still contains nonline
disorderD(u) the system remains obviously in a glassy
gime. Some correlation functions of the system, such as f
point correlation functions, necessarily depend on the e
tence of this finiteD(u) and exhibit infrared divergence
leading to anomalous behavior. Others, such as the two-p
response functions, have these divergences cut by the fi
velocity. This is reminiscent of what happens in the stat
where the order parameter of the glassy phase is the fluc
tion of the susceptibility93 whereas the averaged susceptib
ity itself remain inocuous. A detailed investigation of high
order nonlinear response clearly deserves further stud
Note finally that for driven lattice~and for experimental pur
poses!, the predicted existence of high~even if asymptoti-
cally finite! barriers in a large regime of velocities is a tota
unanticipated property of disordered moving systems.

G. Phase diagrams

Having established the existence of the moving Bra
glass ind53 and of the moving transverse glass ind53 and
d52 and having discussed their properties we now indic
in which region of the phase diagram these phases are
pected to exist. We study the phase diagram as a functio
disorder, temperature, and applied force~or velocity!.

Let us first discuss the cased53. We have represented i
Fig. 16 a schematic expected phase diagram as a functio
temperature, disorder, and applied force. For clarity we h
not represented intermediate phases~or the various forms of
the moving glass!. Let us now discuss the main features
Fig. 16. At zero external forceF50, one recovers the stati
phase diagram.45,47 There is a transition at finite disorde
strength between the Bragg glass to an amorphous g
where dislocations proliferate. Upon applying a force t
Bragg glass phase becomes the moving Bragg glass in
low velocity regime~creep regime! and continuously extend
to the moving Bragg glass at higher drives. At weak enou
disorder the continuity between the two phases suggests
depinning should be elastic without an intermediate pla
region. Upon raising the temperature the moving Bragg g
melts to a liquid, presumably through a first-order dynami
melting transition. TheT50 plane contains a pinned regio
for F,Fc(D) and it is natural to expect the Bragg glass
still exist even for a finite forceF,Fc until the depinning
transition. At higher disorder dislocations appear and
Bragg glass is replaced by an amorphous glass. The natu
this amorphous glass is still unclear~see, e.g., Ref. 47!, but it
is sure to contain topological defects. Thus the depinning
this amorphous glass should be via a highly disordered
mentary plastic flow. Upon increasing the force and thus
ct
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velocity, the system should reverse back to the mov
Bragg glass~MBG!, since the effective disorderD/v de-
creases. At strong disorder and finite drive the liquid exte
to zero temperature.

These different behaviors are also represented along
plane in Figs. 17–19. In these figures we also have indica
intermediate phases such as the Moving transverse glass
termining the exact shape of the various boundaries is stil
open and challenging problem, in particular in the squ
region in Fig. 16.

One of the strong features that emerges from these p
diagrams is the fact that the Bragg glass is able to surv

FIG. 16. Schematic phase diagram in the temperatureT, disor-
der D, applied forcef variables. Ind53 for very weak disorder,
since the moving glass is likely to be topologically ordered, t
possibility of a depinning without a plastic regime exists. Note th
the moving Bragg glass then should extend all the way down
small f . We have not represented intermediate phases~hexatic,
moving transverse glass! for clarity. Note also that the lower plan
corresponds to a small but nonzeroD. The connections between th
various phase boundaries~inside the square region! is schematic.

FIG. 17. Schematic phase diagram in the forcef , disorderD in
d53 at T50. The behavior in the square region is unclear.
interesting possibility would be a direct depinning of a hexatic in
the moving transverse glass, but other scenarios are possible.
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motion by turning into the moving Bragg glass. On the oth
hand other, more disordered phases such as the amorp
glass~vortex glass! are likely to be immediately destroyed
finite drive ~and finite temperature! and to be continuously
related to the liquid.

In d52, the static phase diagram is still unresolved.
reasonable assumption is that there is no topologically
dered phase45,52,1,94 although this is far from being firmly
established. Accepting this as a starting point for the st
phase diagram, we can now extend it to the dynamic c
Most of the transitions then reduce to simple crossovers
F50 and finite disorder dislocations are expected to
present. The resulting phase should thus be continuo
connected to the liquid, although it can retain good sh
distance translational order. AtT50 there is a pinned phas
until Fc , which should depin by a plastic flow. At large
drive disorder effects become smaller and one expects
system to revert to a moving glass state. As discussed ea
due to the presence of disorder induced dislocations,

FIG. 18. Schematic phase diagram in the temperatureT, disor-
der D in d53 for a fixed velocity~not too small!. This phase dia-
gram is the dynamical version to the static one~containing the
Bragg glass, the vortex glass, and the field-driven transition!. The
MBG can either thermally melt atTm ~via a first-order transition! or
decouple because of disorder.

FIG. 19. Schematic phase diagram as a function of forcef and
temperatureT in d53. Tm is the melting temperature of the stat
system. The Bragg glass phase also exists atT50 for f ,Fc .
r
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state is a moving transverse glass~if d52 is above its lower
critical dimension!. At any finite temperature, one can us
the RG flow of Sec. VII. Since the temperature renormaliz
abovethe melting temperature and disorder flows to zero
resulting phase should be a driven liquid.~See Fig. 20.!

H. Comparison with numerical simulations

Some of the predictions of the moving glass theory co
tained in the short account of our work73 have been later
verified in several numerical simulations ind52 andd53.
The static channels were clearly observed89 at T50 in d 52,
and then in Ref. 95. Both Ref. 89 and Ref. 96 showed cl
evidence of the transverse critical force atT50 ~see also
Ref. 95!. The transverse critical force was found to be
fraction of the longitudinal critical force which is a reaso
able order of magnitude. The effect of a nonzero tempera
T.0 weakened the effect of transverse barriers95 in d52.
Some nonlinear effects still persisted for low enough tra
verse force and temperature.96 Such an observation is in
agreement with the discussion of Sec. III F and can be in
preted as a long crossover.

Sharp Bragg peaks were observed in the direction tra
verse to motion89 at T50. However the order along thex
direction was found to have fast decay. This is consist
with a decoupling of the channels, and the resulting state
termed the ‘‘moving transverse glass.’’89 Such a decoupling
is in agreement with the expectations from the theory p
sented here@Eq. ~20!#, as illustrated on the phase diagram
This observed phase in the simulations is presumably thT
50 moving transverse glass fixed point analyzed in S
III D which does have a nonzero transverse critical for
This is in fact confirmed by the observation of Ref. 96 of
smectic type of order where well separated dislocations e
between the channels90,91 consistent with the expectation
discussed in Secs. III A and III D and summarized in Fig.
The absence of long-range order was also observed in
97 in a stronger disorder situation.

In d53, a simulation of a driven discrete superconducti
XY gauge model98 finds not perfect but still well defined
Bragg peaks atT.0 ~near the melting!, a result which indi-
cates that the driven lattice is in a quasiordered mov

FIG. 20. Schematic phase diagram as a function of forcef ,
temperatureT, and disorderD in d52. There is a very long cross
over not represented here.
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11 372 57PIERRE LE DOUSSAL AND THIERRY GIAMARCHI
Bragg glass state. The melting is found to occur at low
temperature than in the pure system and the transition
remain first order up to higher fields. This is consistent w
the discussion in Sec. III G. In another study on the simp
d53 driven XY model atT50,99 it was found that indeed
there is a phase without topological defects at large eno
drive. If it carries to the lattice problem it would indicate th
indeed there is ad53 moving Bragg glass state.

Finally note that there are also very recent simulations
a lattice with a periodic substrate.100,56This is a simpler case
where a transverse critical current exists~it does exist for a
single particle!. It would be worthwhile to also investigat
this case in all details.

All the above numerically observed effects seem to be
qualitative agreement with the predictions in Ref. 73. Ho
ever, it would be very useful to be able to make a mo
quantitativecomparison. This should now be possible, as
give here more detailed predictions than the short acco
~Ref. 73!. Among the various interesting topics to check a
the algebraic decay of translational order ind53, a detailed
study of the dependence of the transverse critical force on
velocity, the exponentu of the transverse depinning, a me
sure of the barriers at low temperatures, a characterizatio
the history dependence, and zero and at low temperatur

I. Comparison with experiments

The moving glass picture has also been confronted w
experiments. Since these experiments need the characte
tion of a moving structure they are challenging. The tra
verse critical current can, in principle, be observed in tra
port experiments~and may show up as an hysteretic effec!.
These are difficult though because of dissipation in the l
gitudinal direction.

Decoration experiments on themovingvortex lattice have
been performed recently by Marchevskyet al.101 In these
experiments the external field is slowly varied and vortic
are decorated while they move. The decoration particles
accumulate on the regions where vortices are flowing p
erentially. The lattice is observed to move in the symme
axis direction and relatively large regions of highly corr
lated static channels are observed. These channels do
look like ‘‘plastic channels’’ but much more like the elast
channels predicted in Ref. 73. Note however that some
locations alongy appear~defects in the layered structure!.
This may be due to strong disorder effects or to the geom
of the experiment~since the advancing front geometry is
the shape of a droplet some dislocations are unavoida!.
Another set of experiments in NBSe2, also exhibiting chan-
nels, was reported.102 Note that there has also been seve
decoration experiments performedjust after the current is
turned off.103 These can, in principle, probe the defect stru
ture of the flowing lattice~though one may worry about tran
sient effects! but cannot show the channel structure. Finall
recent experiment104 on superconducting multilayers foun
that the flux-flow resistivity exhibit quasiperiodic oscillation
as a function of the field. This was interpreted104 in terms of
dynamics matching of the moving vortex lattice with th
periodic substrate. This is compatible with the presence
quasiordered structure in motion.

Other effects of the moving glass and transverse crit
force can be found in systems other than vortex lattices.
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deed, as suggested in Ref. 73, the transverse barriers
explain the anomalies recently observed in the Hall effec
a Wigner crystal in a constant magnetic field.12,11 The quali-
tative analysis suggested by the moving glass theory is
follows. An electric fieldEx is applied in along thex direc-
tion. The Wigner crystal starts moving alongx when the
applied field is larger than a ‘‘longitudinal’’ thresholdEx
.Ec . It produces a current alongx, I x5qvx which is di-
rectly measured. Below the longitudinal threshold a high
nonlinear regime is observed where activated motion do
nates. Since it is moving in a high magnetic field, the mov
Wigner crystal is submitted to a transverse Lorentz fo
Fy

L5qvxB. The geometry of the experiment is such, ho
ever, that no transverse motion is permitted in the station
state~because of zero current boundary conditions!, and thus
vy50. Thus the transverse Lorentz force must be balan
by a transverse electric field, which is thus generated, an
measured as the Hall voltageVy . In the absence of trans
verse pinning the Hall voltage isVy5LBIx . Remarkably, it
is found in the experiment that the actual measured H
voltage is indeedVy5LBIx for small I x , then experiences a
plateau, and finally starts again growing linearly with a slo
dVy /dIx'LB. We have interpreted the different behavio
upon increase ofI x as follows. For smallI x one is near the
longitudinal depinning and it is probably a plastic flow r
gime with little transverse barriers. Then upon motion,
transition to the moving glass occurs~see Fig. 11!. The ex-
istence of a nonzero transverse critical forceFy

c.0 then im-
mediately implies that there are sliding states withvy50 as
long asFy

L,Fy
c and no Hall voltage is necessary.

Obviously more experiments are needed, to investigat
detail the properties of the moving glass phase. It would
interesting to probe further the channel structure by dir
imaging techniques. In particular one may investigate
degree of reproducibility of the channel pattern. In particu
upon sudden reversal of the velocity the channels should
different. The question of order and quasiorder can be pro
in experiments such as neutron scattering, flux-lattice im
ing magnetic noise experiments, NMR experiments, a
more indirectly in transport measurements. Other imag
techniques such asm-SR NMR electron holography,105 can
also be used. Finally it would be interesting to check
similar effects in the presence of columnar defects since
discussed in this paper we predict the formation of a mov
Bose glass.

IV. THE MODELS AND PHYSICAL CONTENT

A. Derivation of the equations of motion

Let us first derive the equation of motion for a lattic
submitted to external forcef . We work in the laboratory
frame. This offers several advantages that will become ob
ous later. We denote byRi(t) the true position of an indi-
vidual vortex in the laboratory frame. The lattice as a who
moves with a velocityv. We thus introduce the displace
mentsRi(t)5Ri

01vt1ui(t) where theRi
0 denote the equi-

librium positions in the perfect lattice with no disorder.ui
represent the displacements compared to a moving pe
lattice ~and corresponds to the position of thei th particle in
the moving frame!. The definition ofv imposes( i u̇i(t)50
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57 11 373MOVING GLASS THEORY OF DRIVEN LATTICES WITH . . .
at all times. We furthermore assume that the motion is ov
damped. The exact equation of motion can then be obta
from the HamiltonianH by

h
dui~ t !

dt
52

dH

dui
1 f 2hv1z i~ t !, ~22!

whereh is the friction coefficient and the thermal noise s
isfies z i(t)z j (t8)52Thd i j d(t2t8). The Hamiltonian is the
standard Hamiltonian for periodic structure in a random
tential H5Hel1Hdis. Hel is the standard elastic Hami
tonian, andHdis describes the interaction with the rando
potential

Hdis5E
r
V~r !r~r !5(

i
E

r
V~r !d„r 2@Ri

01vt1ui~ t !#…,

~23!

where the random potential has correlationsV(r )V(r 8)
5g(r 2r 8) of ranger f .

In order to use the standard field description of the d
placementu instead of focusing on the equation for one p
ticle, one rewrites Eq.~22! as

h
dui~ t !

dt
52

dHel

dui
1E

r
]V~r !d„r 2@Ri

01vt1ui~ t !#…

1 f 2hv1z„Ri~ t !,t…. ~24!

In doing so one would get the same thermal noise for t
particles being at the same place at the same time, instea
the two independent noises of Eq.~22!. Since such a con
figuration cannot happen, going from Eq.~22! to Eq. ~24! is
essentially exact.

As for the static case44,45 the difficulty is to take the con-
tinuum limit of Eq. ~24! since the disorder can vary at
much shorter scale than the lattice spacinga. To proceed one
follows the same steps than for the static case, suitably m
fied to take into account the time dependence of the displ
ments. One first introduces a smooth interpolating displa
ment fieldu(r ,t) such thatu(Ri

01vt,t)5ui(t) @see formula
~A2! of Ref. 45#. The field u(r ,t) is the smoothest field
interpolating between the actual positionsui(t). All coordi-
nates r are expressed in the laboratory frame. The fi
u(r ,t), whose components we denote byua(r ,t) thus ex-
presses the displacement in the moving frame, as a func
of the coordinates of the laboratory frame. As for the sta
if one assumes the absence of dislocations at all times
particles can be labeled in a unique way. One then introdu
the continuous labeling fieldf(r ,t)5r 2vt2u@f(r ,t)
1vt,t#. Thusf„Ri(t),t…5f„Ri

01vt1ui(t),t…5Ri
0 by defi-

nition, andf numbers the particles by their initial position
In the absence of dislocations the fieldf(r ,t) can be single
valued. To obtain the continuum limit of Eq.~24! one first
performs the continuum limit in the Hamiltonian as in Re
45, to obtain for the disorder term
r-
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Hpin5E drV~r !r~r !52r0E drV~r !]aua

1r0E dr (
KÞ0

V~r !eiK •@r 2vt2u~r ,t !#, ~25!

whereK spans the reciprocal lattice andr0 is the average
density. In Eq. ~25! we have made the approximatio
u@f(r ,t)1vt,t#;u(r ,t). Such an approximation is exact u
to higher powers of]u, negligible in the elastic limit, as for
the static case.45 However the dynamic case is more sub
since such terms could generate relevant terms when c
bined with a nonzero velocity. This is the case for exam
of the so-called KPZ terms generated through cutoff effe
Since it is hopeless to try to tackle from first principles
such additional terms the only safe procedure is to ass
that every term allowed by symetry is generated, and ha
be examined. We proceed with such a program in S
VIII B. For the moment we only retain the dominant terms
Eq. ~25!. If one then takes the derivative with respect to t
smooth fieldu(r ,t) one obtains for the equation of motion i
the laboratory frame

h] turt
a 1hv•¹urt

a 52E
r 8

Fab~r 2r 8!ur 8t
b

1Fpin
a ~r ,t !

1 f a2hva1za , ~26!

whereFab(r 2r 8) is the elastic matrix. The termhv•¹ua
comes from the standard Euler representation when expr
ing the displacement field in the laboratory frame.2hva is
the average friction and in the continuumv is determined by
the condition that the average ofu is zero. The thermal noise
satisfies in the continuum limit za(r ,t)zb(r 8,t8)
52Thdabdd(r 2r 8)d(t2t8) and

Fa
pin~r ,t !52dHpin /dua~r ,t !5V~r !r0(

K
iK a

3exp„iK •@r 2vt2u~r ,t !#…2r0¹aV~r !

~27!

is the pinning force. Note the difference between our E
~26! and the one derived in Ref. 70, which does not cont
the convective term. This difference comes simply from
different definition of the displacement fields. They consid
displacement fields labeled by the original position of t
particle ~i.e., the actual position of the particle isr 1u!
whereas for usr denotes the actual position of the vorte
considered@i.e., in the presence of an external potentialV the
potential acting on the vortex at pointr is V(r ) instead of
V(r 1u) for Ref. 70#. In Ref. 106 we give a more genera
derivation of Eq.~27! valid even for cases where the equ
tion of motion isnot the derivative of a potential.

B. Models and symmetries

Before we even attempt to solve Eq.~26!, let us examine
the various symmetries of the problem and define sev
models which approximate the physical problem at vario
levels. The physical symmetry of the original equation
motion ~22! is the global inversion symmetry (r→2r ,u→
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2u,v→2v,f→2f ). When the force~and thusv! is along a
principal lattice direction, one has then two independent
version symmetries I x5(x→2x,ux→2ux ,v→2v, f→
2 f ) and I y5(y→2y,uy→2uy). These symmetries ar
exact and hold in all cases. They are the only symmetrie
the original model~22!. The proper continuum limit of Eq
~22! must thus include all terms which are relevant and c
sistent with these exact symmetries. We define such a m
as model I, which is studied in more detail in~Sec. VIII B!.
The additional terms can originate from, e.g., anharmo
elasticity, cutoff effects or higher-order terms in¹u com-
bined with disorder, as is dicussed in Sec. VIII B.

If one drops in model I the terms which are small in t
elastic limit ¹u!1, one obtains another model that we c
model II. ~See Fig. 1.! It corresponds to the continuum lim
of the equation of motion to obtain Eq.~26! i.e., Eq.~26! in
the elastic limit. However this continuum limit is nontrivia
and should be performed with care as the disorder can
at scales much shorter than the lattice spacing.45 Although
model II is slightly simpler than model I, it only misse
terms which are small in the bare equation but would
allowed by the above symmetries. Even if some of them
relevant, they would only be able to change the physics c
pared to model II at very large length scales. One thus
pects model II to give in practice an extremely accurate
scription of the physics. Model II possesses a hig
symmetry than model I. Let us examine the symmetries
the pinning force~27!. Using the correlator of the random
potentialV, the correlator of the pinning force is

Dab5Fa
pin~r ,t,urt !Fb

pin~r 8,t8,ur 8t8!5r0
2g~r 2r 8!

3 (
K,K8Þ0

iK aiK b8eiK •~r 2vt2urt !1 iK 8•~r 82vt82ur 8t8!.

~28!

Sinceu is a smooth field it has no rapidly oscillating com
ponents and thus in Eq.~28! the terms that are rapidly osci
lating in r 1r 8 can be discarded. SettingK852K in Eq.
~28!, one is left with

Dab5r0
2 (

KÞ0
KaKbg~r 2r 8!exp„iK •~r 2r 8!

2 iK •@urt2ur 8t81v~ t2t8!#…. ~29!

The symmetries of Eq.~29! thus a priori depend on the
precise form of the correlatorg(r ). However in the elastic
limit it is legitimate to replaceur 8t8 by urt 8 in the above
expression. Integrating then overr 8 one obtains

Dab5r0
2 (

KÞ0
KaKbgK exp„2 iK •@urt2urt 81v~ t2t8!#…,

~30!

where gK is the Fourier coefficient of the correlatorg(r ).
SincegK is essentially zero forK@1/r f , the error made in
the above approximation is itself of order¹u and thus con-
sistent with the elastic limit approximation. This justifies t
choice of Eq.~30! as the pinning force correlator in model I
The disorder term then posseses the statistical tilt symm
~STS! urt→urt1 f (r ) where f (r ) is an arbitrary function. In
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this case one can absorb anystatic change inu without af-
fecting the correlations of the pinning force. Finally note th
in the case of isotropic elasticity, the additional inversi
symmetryy→2y holds.

Though we study the complete model II in Secs. V a
VIII B its main physics can be understood73 by noticing that
the pinning forceFa

pin(r ,t) in Eq. ~27! naturally splits into a
static and a time-dependent part:

Fa
stat~r ,u!5V~r !r0 (

K.v50
iK a exp„iK •~r 2u!…2r0¹aV~r !,

Fa
dyn~r ,t,u!5V~r !r0 (

K.vÞ0
iK a exp„iK •~r 2vt2u!….

~31!

The static part of the pinning force comes from the mod
such thatK•v50 which exist for any direction of the veloc
ity commensurate with the lattice. The maximum effect
obtained forv parallel to one principal lattice direction, th
situation we study now. This force originatesonly from the
periodicity alongy and the uniform density modes alongx,
i.e., the smecticlike modes. Since this static pinning fo
Fa

stat(r ,u) is along they direction, it is useful to conside
only the transverse part~alongy! of the equation of motion
~26! droppingFa

dyn. This leads to introducing model III, de
fined by the following equation of motion in the laborato
frame:

h] tuy1hv]xuy5c¹2uy1Fstat
„r ,uy~r ,t !…1zy~r ,t !,

Fstat~x,y,uy!5V~x,y!r0 (
KyÞ0

Ky sin Ky~uy2y!

2r0]yV~r !. ~32!

Thus model III only involves thetransversedisplacements
uy . It posesses the same symmetries as model II with
three additional independent symmetriesy→2y, uy→2uy,
and (x→2x,v→2v) and is also defined in the elastic limi
It is to be emphasized that although the derivation of mo
III was given here systematically starting from an elas
description the only serious hypothesis behind model III
the existence of transverse periodicity.73,107,74As discussed
in Sec. II B Eq.~32! is the correct starting point to describ
any kind of structure having such transverse periodic
properties. Thus model III is the generic equation contain
the physics necessary to describe these structures.

V. PERTURBATION THEORY FOR THE COMPLETE
TIME-DEPENDENT EQUATION

Let us start by a simple perturbation analysis of the eq
tion of motion model II. Such a large velocity or weak di
order expansion has a long history in various contexts s
as vortex lattices71,70 and charge-density waves.29 The natu-
ral idea is that at large velocity the disorder term oscilla
rapidly and averages to a small value and that 1/v is a good
expansion parameter. As we will see such an idea is in
incorrect, albeit useful, since previously unnoticed div
gences appear in the perturbation theory.
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A. Analysis to first order

We start from the initial equation~26! defining model II
that we rewrite as

~R21!rtr 8t8
ab ur 8t8

b
5 f a2habvb1Fa~r ,t,urt !, ~33!

where from now on we drop the pin subscript onf . The
response kernelR is defined in Fourier space:

~R21!qt,q8t8
ab

5d tt8dq8,2q@hab] t1 ih0vgqgdab

1CT~q!Pab
T ~q!1CL~q!Pab

L ~q!#, ~34!

wherePT and PL are the standard transverse and longitu
nal projectors and the elastic matrix isCT(q)5c66q

2,
CL(q)5c11q

2 for a two-dimensional problem andCT(q)
5c66q

21c44qz
2 , CT(q)5c11q

21c44qz
2 for a three-

dimensional problem. The bare value of the friction coe
cient h0 is defined ashab5dabh0 . In Eq. ~33! the velocity
is fixed by the constraint that̂ub&50 to all orders in per-
turbation theory. This is equivalent to enforce that the lin
term in the effective action108 is exactly zero. Instead o
working directly with the equation of motion it is more con
venient to use the de Dominicis-Janssen-Martin-Siggia-R
formalism ~MSR!.109 The generic MSR functional is give
by

Z@h,ĥ#5E DuDûe2S@u,û#1ĥu1 ihû ~35!

whereĥ,h are source fields. The MSR action correspond
to the equation of motion~33! and the disorder correlato
~30! is S@u,û#5S0@u,û#1Sint@u,û# with

S0@u,û#5E
rtr 8t8

i û rt
a ~R21!rt ,r 8t8

ab ur 8t8
b

2E
rt

i û rt
a ~ f a2habvb!

2hTE
r ,t

~ i û rt
a !~ i û rt

a !, ~36!

Sint@u,û#52
1

2 E
rtt 8

~ i û rt
a !~ i û rt 8

b
!

3Dab@urt2urt 81v~ t2t8!#. ~37!

Note that Eq.~37! corresponds to the action derived in Re
106.

The fundamental functions to compute are the disord
averaged displacements correlation functionCrt ,r 8t8

a,b

5^urt
a ur 8t8

b & and the response function Rrt ,r 8t8
a,b

5d^urt
a &/dhr 8t8

b which measures the linear response to a p
turbation applied at a previous time. They are obtained fr
the above functional asCrt ,r 8t8

ab
5^urt

a ur 8t8
b &S and Rrt ,r 8t8

ab

5^urt
a i û r 8t8

b &S , respectively. Causality imposes thatRrt ,r 8t8
50 for t8.t and we use the Ito prescription for time di
cretization which imposes thatRrt ,r 8t50. We assume here
time and space translational invariance~for disorder aver-
aged quantities! and denote indifferently Crt ,r 8t8
5Cr 2r 8,t2t8 andRrt ,r 8t85Rr 2r 8,t2t8 by the same symbol, a
well as their Fourier transforms when no confusion is p
sible. Note that in this problemC2r ,tÞCr ,t whenv is non-
-

-

r

se

g

r-

r-

-

zero. In the absence of disorder the action is simply quadr
S5S0 . The response and correlation function in the abse
of disorder are thus~for t.0! and introducing the mobility
m51/h:

Rq,t
ab5Pab

L ~q!me2@cL~q!1 ivqx#mtu~ t !

1Pab
T ~q!me2@cT~q!1 ivqx#mtu~ t !,

Cq,t
ab5Pab

L ~q!
T

cL~q!
e2@cL~q!mutu1 ivqxmt#

1Pab
T ~q!

T

cT~q!
e2@cT~q!mutu1 ivqxmt#. ~38!

Note that the fluctuation dissipation theorem~FDT! TRr ,t
ab

52u(t)] tCr ,t
ab doesnot hold here~it holds only forv50 or

in the absence of disorder!, since we are studying a movin
system which does not derive from a Hamiltonian. It is ea
to show that the disorder does not produce any correctio
the part iu t̂(cq21 ivqx)ut of the action, and thus that th
parametersc ~c11 andc66! andh0v are not renormalized~we
consider here for simplicity the isotropic versionc5c11
5c66 but this property holds in general!. Thus here and in
the following we often denoteh0v simply by v. This is
similar to the property of nonrenormalization of connect
correlations in the statics93 ~for v50! due to the statistica
tilt symmetry ~STS!. Here the exact relation lnZ@h,ĥt #
5*dtĥt

q(cq21 ivqx)
21h2q1 ln Z@0,ĥt # where h is an arbi-

trary static field, holds because of the STS discussed in S
IV B ~as can be seen from a simple change of variable!. It
implies that the static response function*dt8Rq,t,t85(cq2

1 ivqx)
21 is not renormalized.

Let us now study the perturbation theory in the disord
and compute the effective actionG@u,û# to lowest order in
the interacting partSint , using a standard cumulant expa
sion

G@u,û#5S0@u,û#1^Sint@u1du,û1dû#&du,dû , ~39!

where the averages in Eq.~39! over du,dû are taken with
respect toS0 . The calculations are performed in Append
A. One finds that the effective action has the same form
the bare action, up to irrelevant higher-order derivat
terms, with the following modifications. First the full nonlin
ear form of the correlator of the pinning force is corrected
thermal fluctuationsDK

ab→D̃K
ab . In d.2 it reads

D̃K
ab5DK

abe2~1/2!K2B` ~40!

or equivalently g̃K5gKe2(1/2)K2B` where B`;^u2& thermal.
We have definedBr ,t

ab52(C0,0
ab2Cr ,t

ab). This amounts to a
smoothing out of the disorder by thermal fluctuations. S
ondly, the friction coefficient matrix is corrected bydhab ,
and the temperature bydT. Finally, the driving force is cor-
rected byd f ~we are working at fixed velocity, enforcing
order by order thatf 1d f 5hv!. Let us start by the correc
tions to the driving force. We find
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d f a~v !52(
K

(
I 5L,T

E
q,BZ

Ka~K•PI~q!•K !gK

3
v•~K1q!

cI~q!21@h0v•~K1q!#2
. ~41!

This formula gives the lowest correction to the driving for
at fixed velocity or, equivalently to the velocity at fixed driv
ing force. It is identical to the formula~22! of Schmidt and
Hauger.71 There are small differences, unimportant in t
elastic limit, which come from the different definitions of th
continuum limit of the model~see discussion in Sec. IV A!.
A salient feature of the above formula was noticed
Schmidt and Hauger, i.e., the velocity and the force are
in general, aligned. They are aligned however when the
locity is along one of the principal lattice directions, i.e
K0•v50, whereK0 is one of the principal reciprocal-lattic
vectors~note that this is also the case for the median dir
tion p/6!. Such a feature is reasonable on physical grou
and can be confirmed by higher-order analysis of the per
bation theory~see Sec. VI!. Furthermore, using the approx
mationv(K1q);vK Schmidt and Hauger found that, ind
52, the transverse pinning force versus the anglea between
the velocity and one principal direction of the lattice has
discontinuity ata50. One could naively think that such
discontinuity could be interpreted as the existence of a tra
verse critical force. Indeed a natural interpretation of Fig
of Ref. 71 would be that one needs to apply a finite force
the lattice~opposite to the transverse pinning force! to tilt
sightly its velocity from the principal axis direction. Notab
confusion on this subject existed in the literature.71,70 Such
an interpretation is in fact incorrect. First, as Schmidt a
Hauger correctly pointed out such a discontinuity is anarte-
fact of the approximationv(K1q);vK, and disappears i
the correct expression~41! is used. Furthermore it is easy t
check that even with the above approximation the disco
nuity exists only ind52 and the function is continuous fo
d.2. Thus the first-order perturbation does not exhibit a
divergence anddoes notgive rise to a transverse critica
current. In order to have divergences in the perturbat
theory ~and the associated effects! it is thus necessary to
examine the perturbation theory tosecond order. We per-
form such a calculation in Sec. VI.

Before we do so it is interesting to examine the first-ord
corrections to the friction coefficient and the temperature.
T50 and using the bare form of the disorder one finds

dhab5(
K

(
I 5L,T

3E
q,BZ

KaKb~K•PI~q!•K !gK

3
1

@cI~q!1 ih0v•~K1q!#2 . ~42!

More general expressions are given in Appendix A, E
~A30!. When the velocity is along a principal lattice dire
tion one finds thatdhxy50 and thus the friction matrix re
t,
e-

-
s
r-

s-
1
o

d

i-

y

n

r
t

.

mains diagonal. However the corrections to the friction
clearly not the same alongx and y. Next we give the cor-
rections to temperature:

d~hT!ab5
1

2 (
K

E
t
DK

ade2 iK •vt

3~e2~1/2!K•B0,t •K2e2~1/2!K•B` •K!. ~43!

Contrary to the velocity corrections, corrections to the te
perature~43! exhibit divergences for anyv already at the
first order in the disorder. However these divergences
well hidden and canonly appear if one looks at thenonzero
temperatureperturbation theory, which wasnot done in
Refs. 70, 71. AtT50 one finds trivially thatdT50, showing
that disorder alone cannot generate a finite temperature. S
corrections are thus nontrivial and there is in general
simple relation betweend(hT)ab and d(h)ab , due to the
absence of FDT theorem. Only in the particular case wh
v50 and of potential random forcesDK

ab5KaKbgK the
FDT theorem enforcesdT50 ~see, e.g., Ref. 94 and below!.
The way to treat these divergences is examined together
the second order in perturbation in Sec. VI.

B. Correlation functions

The last physical information that can be extracted fro
the perturbation theory is about the correlation functio
The calculation is performed in Appendix A and the result
T50 is given in Eq.~A33! and atT.0 in Eq. ~A33! ~at T
.0!. The static component is

^u2q,t
a uq,t

b &5 (
K,K•v50

(
I 5L,T,I 85L,T

3E
q,BZ

gK

Pag
I ~q!

cI~q!1 ih0v•q

3
Pbd

I 8 ~q!

cI8~q!2 ih0v•q
Dgd , ~44!

where the disorder is smoothed by the temperature
gKDgd5gKKgKde2(1/2)K•B0,̀ •K. We now focus on theT
50 limit of Eq. ~44!. To lowest order in perturbation theor
the pinning force is only alongy, and corresponds to a ran
dom force of strengthDyy . We now compute the mean
squared displacements alongx and y produced by this ran-
dom force:

Byy'DyyE
q,BZ

@12cos~qr !#

3F qx
4

q'
4 $v2qx

21@c66~qx
21qy

2!1c44qz
2#2%

1
qy

4

q'
4 $v2qx

21@c11~qx
21qy

2!1c44qz
2#2%G ,
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Bxx'DyyE
q,BZ

@12cos~qr !#

3F qx
2qy

2

q'
4 $v2qx

21@c66~qx
21qy

2!1c44qz
2#2%

1
qx

2qy
2

q'
4 $v2qx

21@c11~qx
21qy

2!1c44qz
2#2%G , ~45!

where q'
2 5qx

21qy
2 . Since qx;qy

2 one immediately see
from Eq. ~45! that the compression modes are the ones
sponsible for displacements growing unboundedly ind<3.
The expression forByy allows one to estimate the dynamic
Larkin length for transverse pinning, as discussed in S
III B.

On the other hand, in order to obtain a decoupling of
channels one can use a simple Lindemann criterion~19!. We
use Eq.~45! for Bxx where we neglect all terms containin
c11 ~i.e., the compression modes!, assuming as is reasonab
for most systems thatc11 is very large. The decoupling be
tween the channels is thus controlled byc66 whereas the
roughness of the channels and the characteristics le
scales of the moving glass directly depends on the comp
sion modec11 ~at large velocities!. Estimating the integra
one finds ind53:

Bxx~y5a!;
Dyy

a2c44
1/2 minF S a2

c66
D 3/2

,~a/v !3/2G . ~46!

This gives back the Bragg glass estimate~in the simpler case
a5r f!. The effect of thermal fluctuation can also be added
in Ref. 47. The above perturbation expansion for the Lin
mann criterion implicitly supposes that the random force
directed along they direction. In fact, under renormalizatio
a random force alongx is of strengthDxx is also generated a
discussed in Sec. III. The resulting expression forBxx is
identical to the one ofByy in Eq. ~45! with Dyy→Dxx andc11
and c66 interchanged. Thus that quantity is determin
mostly by the shear modes. If one uses again the Lindem
criterion with a random force alongx it would contribute,
providedc66/c11 is small enough to compensate for the fa
that Dxx!Dyy . This can be quantified using the estimat
given in Sec. VIII A forDxx .

VI. RENORMALIZATION-GROUP STUDY
OF THE TRANSVERSE PHYSICS „MOVING GLASS …

Up to now, we have studied the perturbation expansion
the full continuous model II, keeping both thex andy direc-
tions. Doing the second-order perturbation on that full mo
is tedious. Since one knows on physical grounds that
singularities in the perturbation theory comes from thestatic
componentsof the disorder,73 which as was discussed in Se
II B originates from the transverse degrees of freedom,
now study the perturbation theory of the simplifiedtrans-
verse equation of motion, model III. If, as we indeed find
this perturbation theory is singular, this implies divergenc
in the full model II as well. We thus study it here and com
back to the full model II in Sec. VIII A.
-

c.

e

th
s-

s
-

s

nn

t
s

f

l
e

e
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A. Zero-temperature perturbation theory to second order

To avoid cumbersome expressions, and since in
whole section we only discuss transverse degrees of free
we skip the indexy for uy . We also discuss here for sim
plicity an n51 component model for the transverse displa
mentu ~which is appropriate for flux lines ind53 and point
vortices ind52!. Generalizations ton.1 are briefly men-
tioned in Appendix B.

We thus study the dynamical equation for model III73

Since we are dealing with an anisotropic fixed point it
useful to distinguishcx andcy :

h] turt5~cx¹x
21cy¹y

22v]x!urt1F~r ,urt !1z~r ,t !.
~47!

The bare value of the friction coefficient alongy is denoted
by h0 , and for simplicity we denote byv the quantityh0v
~which remains uncorrected to all orders in this model!. The
correlator of the static transverse pinning force~32! is
F(r ,u)F(r 8,u8)5D(u2u8)dd(r 2r 8). Averages over solu-
tions of Eq.~47! can be performed using the Martin-Siggi
Rose~MSR! action ~35! with

S0@u,û#5E
rt

i û rt~h] t1v]x2cx¹x
22cy¹y

2!urt

2hT~ i û rt !~ i û rt !,

Sint52
1

2 E
rtt 8

~ i û rt !~ i û rt 8!D~urt2urt 8!. ~48!

In this section we restrict ourselves toT50. The corrections
coming from correlation functionŝdutdut8&;T then van-
ish, which simplify the analysis. This can be used to sh
that to all orders the temperature remains zero. The fi
order corrections where computed in Sec. V and Appen
A. At T50 there is no correction to the disorder term~to this
order!. There is a nontrivial correction to the kinetic term
which gives the following correction to the friction coeffi
cient h, dh52D9(0)*q*0

1`dttR(q,t). This leads to

dh

h
52D9~0!E dd21qy

~2p!d21

2cx

~4cxcyqy
21v2!3/2. ~49!

This is not a divergent integral, except whenv50. To find
divergences in the perturbation theory atT50 one has to go
to second order.

The second-order corrections to the effective MSR acti
and thus to the coarse-grained equation of motion, are c
puted in Appendix B. To second order a correction to the f
nonlinear disorder correlator appears and reads

dD~u!5D9~u!@D~0!2D~u!#E
r
G~r !G~r !

2D8~u!2E
r
G~r !G~2r !, ~50!

whereG(r ) is the static response function
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G~r !5E
0

`

dtR~r ,t !, G~q!5
1

cxqx
21cyqy

21 ivqx
.

~51!

At zero velocity both terms in Eq.~50! are infrared divergen
for d<4, as is well known leading to the glassy effects in t
statics. The key novelty with respect to the problem av
50 is that due to the assymetry introduced by motion,G(r )
is different fromG(2r ). As a consequence the second te
in Eq. ~50! is now convergentfor v.0. Indeed the integral

E
r
G~r !G~2r !5E

q
G~q!25E dd21qy

~2p!d21

2cx

~4cxcyqy
21v2!3/2

~52!

is convergentin all dimensions forv.0. On the other hand
one divergence remains from the first term:

E
r
G~r !G~r !5E

q
G~q!G~2q!

5E dd21qy

~2p!d21

1

2cyqy
2A4cxcyqy

21v2

;E dd21qy

~2p!d21

1

2vcyqy
2 . ~53!

The integral~53! is divergent ford<3, even forv.0. Thus,
contrary to general belief70–72 originating mainly from the
study of the first-order perturbation in 1/v, analysis to
second-order confirms the surprising conclusion that eve
large velocity infrared divergences occur in the perturbati
theory.73,110 Such divergences indicate the instability of t
zero disorder fixed point and the breakdown of the largv
expansion. They lead the system to a fixed point where
disorder plays a crucial role. The above divergence is the
to the physics of the moving glass.

B. Renormalization-group study at zero temperature

In order to handle these new divergences, and to find
fixed point which describes the large scale physics, we u
dynamical functional renormalization-group~DFRG! proce-
dure on the effective action using a Wilson scheme. T
allows us to keep track of the full functionD(u), which is
necessary since the full function is marginal at the up
critical dimension. This is equivalent to decomposing t
fields into fast and slow componentsu→u1du and û→û

1dû and to integrate the fast fieldsdu and dû over a mo-
mentum shell. This method is very similar to the meth
introduced in Refs. 26, 27 for thev50 case, though it differs
in details. An alternative RG method of mode elimination
hand yielding the same results is given in Ref. 106. It sho
in a direct way how nonpotential disorder forces are gen
ated.

1. Derivation of the RG equations

The first task is to perform a dimensional analysis of
MSR action and to determine the appropriate rescaling tra
formation. Since we want to describe both thev50 andv
.0 fixed points, we perform the following redefinition o
at

e
y

e
a

is

r
e

s
r-

e
s-

space, time, and the fields~keeping also an arbitraryT! y

5y8el x5x8es l , t5t8ezl, û5û8ea l , u5u8ez l . We now im-
pose that the actionS in Eq. ~48! is unchanged, which yields
redefinitions of the coefficients. Sincecy5cy8 since this
quantity remains uncorrected to all orders, this fixesa53
2d2s2z2z. One finds the rescaling:

h→h85he~22z!l , v→v85ve~22s!l ,

cx85cxe
~222s!l , T→T85Te~32d2s22z!l ,

D→D85De~52d2s22z!l . ~54!

In the casev50 the natural choice iss51, which yields
D85De(42d22z) l . Power counting at the Gaussian fixe
point ~z52, z50! yields the upper critical dimensionduc
54 below which disorder is relevant~and ad542e expan-
sion can be performed!.26,27 For v.0 sincev is uncorrected
to all orders a natural choice iss52. Power counting nea
the Gaussian fixed point~z52, z50! indicates that now the
upper critical dimension is thusduc53 ~with D→D8
5De(32d22z) l!. As a consequence disorder terms are r
evant for dimensionsd<3, whereas the temperature appea
to be formally irrelevant~see however Sec. VI C!. The elas-
ticity term alongx (cx) now corresponds to an irrelevan
operator at the anisotropic fixed point. Note that the abo
rescaling~54! indicates that the proper dimensionless dis
der parameter isD/vLd23, whereL is the momentum cut-
off. Here we are mostly interested in periodic systems
which, as in the statics,45 one must setz50. For complete-
ness we give however the equations for nonperiodic syst
(z>0).

The standard RG method consists of two steps. First,
integrates the modes betweena,y,ael or equivalently
L0.qy.L0e2 l with L0;p/a, which yields corrections to
the bare quantities. The cutoff procedure we choose here
convenience is to integrate over the following momentu
shell:

E
sh

dq5E
Le2 l

L dd21qy

~2p!d21 E
2`

1` dqx

2p
. ~55!

This results in the same theory but with a different cutoff a
corrected parameter. Second, one performs the length, t
and field rescaling~54!, as well as the corresponding chan
of quantities~54!, so as to leave the effective action invar
ant. The cutoff has thus been brought back to its origi
value. Scale-invariant theories thus correspond to fix
points of this combined transformation. Using the above,
RG equation for the disorder can be established. The s
contribution of the integral~53! is asymptotically:

E
r
dG~r !dG~r !;E

sh
dqy

1

2vcyqy
2 ;

1

2vcy
Ad21Ld23,

~56!

where Ad5Sd /(2p)d and Sd is the surface of the
d-dimensional sphere. Ind53 one hasA251/(2p). Using
Eqs.~50!, ~52!, ~56! we obtain after rescaling the following
FRG equation for the disorder correlator:
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dD~u!

dl
5~32d22z!D~u!1zuD8~u!

2D8~u!2
1

2p

2cx~ l !L0
2

@4cx~ l !cyL0
21v2#3/2

1
1

4pvcyA114cx~ l !cyL0
2/v2

3D9~u!@D~0!2D~u!# ~57!

where cx( l )5cxe
22l . In the large scale limit it reduce

to74,35

dD~u!

dl
5~32d22z!D~u!1zuD8~u!1

1

4pvcy
D9~u!

3@D~0!2D~u!#. ~58!

Equation~57! allows us, in principle, to examine the inte
mediate scales crossover whenv is not very large. Indeed
there is a characteristic crossover length scaleLcross

52Acxcy/(h0v) such that Eq.~58! becomes valid forel

@Lcross/a. Note that settingv50 in the above equation~57!
leads back the FRG equation for the usual manif
depinning26,27 ~up to numerical factors originating from
choice of short distance cutoff, and different choices for
scalings!. The RG equation for the friction coefficient@e.g.,
for a periodic problem (z50)# can be obtained. Using Eq
~49! and taking into account thatL5L0e2 l and cx( l )
5cxe

22l , andD l9(0)5D9(0)e(32d) l one finds the RG equa
tion, after rescaling:

dh

hdl
522z2D l9~0!Ad21

2cx~ l !L0
d21

@4cx~ l !cyL0
21v2#3/2 ~59!

thus except forv50, h is corrected only by a finite amoun
as long asD l9(0) is finite ~see below!.

2. Study of the FRG equation

We now study the FRG equation~58! for the periodic
problem (z50). Thus we imposeD(u) to be periodic of
period 1 and study the interval@0,1#. One can easily restor
the perioda in the solution. Let us look for a perturbativ
fixed point in d532e. Absorbing the factor 1/4pvcye in
D(u) and redefining temporarilye l→ l , the FRG equation
reads111

dD~u!

dl
5D~u!1D9~u!@D~0!2D~u!#. ~60!

No continuous solutions such thatdD(u)/dl50 exist.112

This is due to the fact that the average value ofD(u) on the
interval @0,1# must increase unboundedly. Indeed integrat
inside the interval one finds (d/dl)*D(u)5*D(u)
1*D8(u)2. It is thus natural to defineD̄(u)5D(0)2D(u)
which satisfies

D̄~u!

dl
5D̄~u!@11D̄9~u!#. ~61!
d

-

g

Note that physically one expectsD̄(u)>0. This equation has
a fixed pointD̄* (u)5u(12u)/2. It is shown in Appendix D
that this fixed point is stable~locally attractive!. Equation
~60! shows thatD(0)(l ) grows unboundedly asD(0)(l )
5D(0)ee l ~restoring thee factor!. Thus the full fixed-point
solution in ad532e expansion is74,35

D l~u!5D* ~u!2D* ~0!1Cee l , D* ~u!951, ~62!

whereC is an arbitrary constant and

D* ~u!5C* 1~e4pvcy!S 1

2
u22

1

2
uD ~0<u<1!

~63!

and the solution repeats periodically as shown in Fig. 21.
have restored the factor 1/(4pvcy) ande532d. In K space
the fixed-point solution can be writtenDK51/K2 for KÞ0
~K52pk with k integers! andDK50( l )5D l(u50)1(1/12)
5D0(u50)el1(1/12).

Thus there is an ever growing average to the correla
Remarkably, thisdoes not spoilthe above fixed point, since
one can always separateD~0! andD(u)2D(0) in the start-
ing MSR action. In perturbation theory one sees thatD~0!
has no feedback at all into the nonlinear part. It simp
means that there is an unrenormalized random force wh
simply adds to a nonlinear pinning force, which is describ
by D* (u). Note that this solution has cusp nonanalyticity
all integersu. At the initial stages of the RGD9(0) is nega-
tive @sinceD(u) is an analytic function with a maximum a
u50#. However one easily sees thatD l9(0) becomes infinite
at a finite length scale~interpreted as the dynamical Larki
length! see Sec. VI B 3, the function becomes nonanaly
andD9(01) becomes positive.

Once the solution is known ind532e it is straightfor-
ward to obtain it in the physically relevant dimensiond53.
In d53 defining D l(u)5(1/l )D̂l(u) and introducing l 8

5 ln l one finds thatD̂ l 8(u) satisfies again Eq.~60!. Thus the
physics is controlled by the slow decrease to zero of disor
at large scale with the following stable fixed-point behavi

D l~u!;D~0!1
4pvcy

2l
~u22u!. ~64!

FIG. 21. Solution of the FRG equation. Note the nonanalytic
at all integers.
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The random force term does not grow by rescaling ind
53.

Finally, let us point out that Eq.~58! presents severa
differences and some remarkable similarities with the o
describing the statics FRG and the dynamical FRG fov
50 in a d542e expansion. Let us callR(u) the correlator
of the random potential. The statics FRG equation and
periodic fixed point was given in Ref. 45~see Eqs.~5.2! and
~5.5! with D denotingR!. The dynamic FRG equation fo
(v50) is

dD~u!

dl
5D~u!1D9~u!@D~0!2D~u!#2D8~u!2. ~65!

Since one hasD(u)52R9(u) it yields the solution periodic
in @0,1# ~Ref. 45! D* (u)5 1

36 (126u16u2). Remarkably
both the solution forv50 and forv.0 are nonanalytic a
integeru, though the detailed form of these solutions is d
ferent. Since this nonanalyticity is related to glassiness
pinning one can expect a certain continuity of properties
tween the moving and nonmoving case. The main differe
however is that in Eq.~65! D(0)5D(01) starts growing at
the initial RG stages as forv.0 but is stopped at its fixed
point value 1

36 beyond the scale at which a nonanalycity d
velops ~Larkin length!. This effect is due to the term
2D8(01)2 and physically means that in the casev50 dis-
placements grow much more slowly at larger scales. T
system remembers that it is a potential system and
*D(u) remains zero if it is zero at the start~at least formally,
see however Ref. 27!. Thus no random force can be gene
ated. By contrast for the moving system one has asymp
cally D l(0);D`ee l . As is discussed later this corresponds
the generation of a random force~which cannot exist in the
statics!.

Note that forv not very large one can see in Eq.~57! that
there is a long crossover during which the te
2D8(01)2 acts. This is the static random manifold regim
as depicted in Fig. 12. Thus the actual value ofD` should be
decreased compared to the value naively suggested by
turbation theory, an effect studied in the next section.

3. Physical results at T50

We now extract some of the physics of the moving gla
from the FRG analysis. From the equation for the seco
derivative of the force correlator:

dD9~0!

dl
5~32d!D9~0!2C~ l !D9~0!2 ~66!

with 1/C( l )54pvcyA114cxe
22lcyL0

2/v2 it is possible to
extract the length scaleRc

y at whichD9(0) becomes infinite.
We first estimate it in the large velocity regimeLcross!a
where one can setC( l )51/(4pvcy). In d53 one has
D l9(0)52D2 /(12D2l /4pvcy). whereD l9(0)52D2 is the
bare value. ThusRc

y5ae4ph0vcy /D2. This length scale, intro-
duced in Refs. 73, 35, and discussed in Sec. III B is an
gous of the Larkin length for the statics. IndeedRc

y coincides
with the scale at which the scale-dependent mobilitym(L)
vanishes as depicted in Fig. 22. This can be seen from
e

ts

d
-
e

-

e
us

ti-

er-

s
d

o-

q.

~59!. The divergence ofD l9(0) at L5el5Rc
y drives m(L)

51/h(L) to zero for all larger scales. Beyond that scale p
ning starts to play a role.

In d,3 one has D l9(0)52D2ee l /(12D2(ee l

21)/4pvcye). Thus one obtains the dynamical Lark
length as given in Eq.~9! where we have restored the prop
a andh dependence~with c[cy!. Note that it is the second
derivative D2 of the force correlator which appears in th
Larkin length. For a realistic disorder with a correlatio
length r f one hasD2;D(0)/r f

2 . Using this relation, one
checks that Eq.~9! is the one obtained73 by estimating the
length scale at whichudis;r f .

One can also determine the dynamical Larkin length wh
the velocity is not very large. Restoring the proper dep
dence ofC( l ) in l in Eq. ~66! gives that 1/D25*0

l cee lC( l )
with l c5 ln(Rc

y/a). This yields after some algebra ind53:

Rc
y5ae4ph0vcy /D2

1

2
S 11e28ph0vcy /D2

1~12e28ph0vcy /D2!A11
4cxcyL0

2

~h0v !2 D ~67!

and ind52 one finds

~Rc
y!25a21S 4ph0vcy

D2
D 2

1a
8ph0vcy

D2
A11

4cxcyL0
2

~h0v !2 ,

~68!

where we recall L0;p/a. These formulas interpolate
smoothly between the Bragg glass and moving glass res
Finally, note that since the above equations are exact~within
the 32e FRG approach! the calculations of the Larkin
lengths are independent of whether there is an intermed
random manifold regime, i.e., it holds both forr f!a and
r f;a. Nonuniversal irrelevant operators of course chan
the numerical values of the prefactors but the above exp
sions should be correct when all the Larkin lengths are lar

One of the remarkable properties of the moving state
the existence of transverse pinning.73 This is demonstrated
from the FRG fixed point, due to thenonanalyticityof the
fixed point Eq.~63!. Adding an external forcef y along y

FIG. 22. Scale-dependent mobility. It vanishes beyond the
namical Larkin length~at T50!.
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@i.e., in the left hand side of Eq.~47!# generates a velocity
vy . The naive perturbation theory results, formula~A30!, for
d f y(vy) ~the correction to the applied force at fixedvy! reads
d f (vy)5* tRr 50,tD8(vyt). In the limit of vanishingly small
vy one gets a nonzero limitd f y(0

1)52Fc
y , i.e., a trans-

verse critical force only if the function is nonanalytic wit
D8(01),0. The critical force is thus given by summing u
the contributions of all the successive shells

Fc'2E
ln Rc

y

1`

dlD l8~01!Ad21

L0
d21e2~d21!l

A4cx~ l !cyL0
21v2

e2~32d!l ,

~69!

where quite logically only scales beyond the Larkin leng
give a nonvanishing contribution. Using the asympto
value forD8(01)* 5e4ph0vcy one finds

Fc
y'Ccya~Rc

y!22 ~70!

and ind53:

Fc
y'C8

cya

~Rc
y!2 ln~Rc

y/a!
. ~71!

In Eqs. ~70! and ~71! the prefactorsC and C8 are not uni-
versal~and ind53 the additional logarithm correction wil
also be affected by higher orders in perturbation theory!. In
the above formulas we have assumed a direct passage
the Larkin scale regime to the asymptotic periodic regim
thus r f;a. If r f!a an intermediate random manifold re
gime is first reached where the typical value forD l8(0

1) is
rathera/r f . This yields to the replacement ofa by r f in the
numerators of Eqs.~70!, ~71!. Remarkably this coincides
with the estimate obtained73 by balancing forces. Note tha
this result can be obtained herewithout any referenceto a
Larkin length along thex direction. This illustrates that the
physics of the moving glass depends only on the periodi
along they direction. Note that the fullv- f characteristics
can also be computed from the FRG using Eq.~A30! ~see
Ref. 106!.

It is interesting also to study the behavior near the tra
verse depinning threshold. Because of the absence of IR
vergence in the integral forh Eq. ~59! the exponent at the
threshold remains uncorrected, i.e.,vy;u f y2Fc

yuu with u
51 ~to first order ine!. The slope can easily be estimate
from D l9(0) and the above results and becomes large at s
velocities as shown in Fig. 10.

We now study the displacement correlations. The grow
of the average of*0

1D(u) implies that there is a static ran
dom force generated. However, unlike in thev50 case, the
critical force does not kill the random force in the FRG equ
tion. In fact the moving glass is dominated by thecompeti-
tion between the random force and the critical force. A
though the existence of such a random force has no effec
pinning it affects strongly the positional correlation fun
tions. In particular the relative displacements correlat
function ~2! becomes, in the presence of the random force
large scale, identical to Eqs.~10! and ~14! with a renormal-
ized disorderD ren(0) ~as discussed in Sec. III C!:
om
,

y

s-
di-

all

h

-

-
on

n
at

D ren~0!5D~0!2E
0

1`

dle2e lD l8~01!2

3
1

2p

2cxe
22lL0

2

~4cxe
22lcyL0

21v2!3/2, ~72!

and one can simply sete50 to get the result ind53.

C. RG study at finite temperature T>0

We now extend the analysis to finite temperature. In pr
ciple the FRG equations can also be written for any tempe
ture. We study both the casev50 andv.0 ~since no such
derivation exist in the litterature!. In thev50 case the tem-
perature is formally irrelevant. In fact it is dangerously
~see below! as it cuts off the properties of the fixed point~the
nonanalyticity! and thus modifies some observables lead
to barrier determination. Here as we see the temperature
v.0 is even more so, very dangerously irrelevant by pow
counting. The dimensional rescaling Eq.~54! yields T→T8
5Te(12d22z) l and thus thatT is irrelevant. This turns out to
be incorrect: if one adds a smallT.0 onto theT50 moving
glass fixed point, FRG indicates that it flows upwards ve
fast ~while if T50 to start with, it remains so!.

1. Derivation of the RG equations

Letting T.0 leads to several important modifications
the perturbation theory. The general idea is that the diso
is changed everywhere roughly asDKe2(1/2)K•B0,t •K ~with t
→`!. Of course this has to be checked carefully which
done in detail in Appendix B and we give here only the ma
results. Near the upper critical dimension~du54 for v50
anddu53 for v.0! thermal displacements are bounded:

lim
t→`

B0,t5B`52TE
q

1

cq2 5
2T

c
Ad

Ld22

d22
~v50!

52TE
q

1

cxqx
21cyqy

21 ivqx
~v.0!. ~73!

We rescaleT by a nonuniversal quantity and defineT̃ the
‘‘dimensionless temperature’’12 B`5 T̃. Remarkably it is
possible to replace everywhereDK by the smoothed disorder

D̃K5DKe2 T̃K2
, D̃~u!5(

K
DKeiKue2 T̃K2

. ~74!

The divergent part of the correction to the friction coefficie
is now Eq.~A17!, thus the same as before, except one m
use the smoothed disorder.

Let us now compute the renormalization of the tempe
ture by disorder~for a related calculation see also Ref. 85!.
As was mentionned earlier there is a nontrivial divergence
the correction to the temperature. Using Eq.~43! one finds

hdT5(
K

E
t.0

DK~e2~1/2!K•B0,t •K2e2~1/2!K•B` •K

2K2tTRr 50,te
2~1/2!K•B0,t •K!. ~75!



T

th

di-
ing

11 382 57PIERRE LE DOUSSAL AND THIERRY GIAMARCHI
When v50 this integral can be simplified using the FD
relation 2TRr 50,t5u(t)(d/dt)B0,t which givesdT50. This
yields the RG equation, after rescaling:

dT

dl
5~22d22z!T ~v50!. ~76!

For v.0 the second part does not diverge anymore, and
divergence of the first one can be extracted as follows:

hdT;(
K

E
t.0

D̃K~e2~1/2!K•~B0,t2B`!•K21!

;
1

2 (
K

E
0

1`

dtD̃KK2~B`2B0,t!. ~77!

Since we are also interested in the crossover fromv50 to
v.0 we use Eqs.~77!, ~38!, and ~49! to estimate the large
time behavior of Eq.~75! and obtain
n

ec
an

rk
e

r
er
e

dT

T
;(

K
K2D̃KE

qy

v2

2cyqy
2~4cxcyqy

21v2!3/2. ~78!

Note that it vanishes, as it should whenv→0. This yields the
following RG equation for the temperatureT̃:

dT̃

Tdl
522d22z2

D̃9~0!

~4pcyv !~114cxcyL0
2e22l /v2!3/2.

~79!

using rescaling~54! and~73!. We now look at the corrections
to disorder. The calculation is done in Appendix B. The
vergent contributions to the disorder correlator are, add
first and second order in perturbation
DP
R5e2 T̃P2FDP1eT̃P2

(
K,K85P2K

DKe2 T̃K2
DK8e

2 T̃K82S K2E
r
G~r !G~r !1K8KE

r
G~r !G~2r ! D

2P2DP(
K8

DK8e
2 T̃K82E

r
G~r !G~r !G . ~80!
le
t-

be

e:
The key point is that usingK•K85(P22K22K82)/2 all ex-
ponential factors rearrange and at the end everything ca
written only using the smoothed functionD̃K . This yields
the RG equation for the disorder:

dD̃~u!

dl
5 T̃D̃9~u!1~32d22z!D̃~u!1zuD̃8~u!

1 f 1~ l !D̃9~u!@D̃~0!2D̃~u!#2 f 2~ l !D̃8~u!2,

~81!

wheref 1 and f 2 are the same coefficients as in Eq.~57!. We
have used that the smoothed functionD̃(u) itself has an ex-
plicit cutoff dependence. Note that this equation is corr
for anyT and to second order in the disorder. Although it c
also be obtained by a small-T expansion~expanding the first-
order correction in̂ Sint& both in D andT, see Appendix A!
such an expansion is potentially dangerous since it wo
only if TD9<D. This happens to be the case here becaus
the fixed pointTD9;eD. However it may not be true fo
other problems and does not allow us to treat larger temp
tures. In addition to Eq.~81! the RG equation for the friction
coefficient is identical to Eq.~59! with D→D̃ ~and also
yields z52 for v.0!.

2. Analysis of FRG equations at T>0

Let us now analyze the FRG equations atT.0 for the
periodic case in ane532d expansion and ind53. We
write D instead ofD̃ and T instead of T̃ everywhere for
convenience. One has
be

t

s
at

a-

dD~u!

dl
5eD~u!1TD9~u!1D9~u!@D~0!2D~u!#,

~82!

dT

Tdl
5211e2D9~0!. ~83!

We have absorbed the factor 1/4pvcy in D(u). Let us first
search for a fixed point. We thus assume thatdT/dl50 with
T5T* , which implies thatD9(0)5211e. Using T* we
now search for a fixed point forD(u)2D(0) as we did for
the T50 fixed point. Let us setD(u)5D(0)2T* g(u) with
g(u).0 and periodic. One gets

g952
e

T*
1

e2D9~0!

T*
1

11g
52V8~g!. ~84!

Equation~84! is the classical equation of motion of a partic
in the potentialV(g). It always has a periodic solution star
ing from g50. Thus the solution is

u5E
0

g dg

A22V~g!
, V~g!5

e

T*
g2

e2D9~0!

T*
ln~11g!.

~85!

This yield a condition since we have fixed the period to

u51: 1
2 5*0

gmax@dg/A22V(g)# where V(gmax)50, the other
condition beingD9(0)5211e. Both conditions determine
T* andD9(0). From this we get the fixed-point temperatur
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T* 5
e2

4„*0
ymaxdy/A2@ ln~11y/e!2y#…2

;
e2

8 ln~1/e!
.

~86!

Thus we find that there is a finite-temperature fixed po
This is the moving glassT.0 fixed point. Though we have
not investigated in detail the stability of this fixed point it
likely to be attractive. Indeed one sees clearly in Eq.~83! that
at high T one expectsD9(0) to be small ~since D is
smoothed by temperature!, while at lowT D9(0) grows very
fast therebyT increases. Note that similar finiteT fixed
points were found for other nonpotential systems.85 On the
other hand, settingu50 in Eq. ~82! shows that the random
forceD~0! is still generated, though it grows slower than f
T50. Thus there should be a reduction of the displaceme
induced by the random force, due to nonzero temperat
There is an interesting crossover at lowT whereD9(0) first
starts to increase violently before it finally decreases agai
its fixed-point value. This crossover is discussed in the
lowing section.

The case ofd53 can be studied similarly. ForT50 one
looks again for a solution decaying as 1/l . As we noticed
beforee and 1/l plays the same role. Indeed the substituti
D(u)5D̂(u)/ l in d53 and the substitutionD(u)5eD̂(u) in
d532e leads to the same equation for the fixed pointD̂(u)
in both cases. Thus the asymptotic fixed-point solution ind
53 can be obtained from the solution ind532e approxi-
mately asD̄(u);1/l D̄@u,e51/l ,T* (e51/l )# with the corre-
sponding flow of temperature:

T~ l !;
1

8l 2 ln~ l !
. ~87!

This solution is not exact now since temperature flows, ho
ever one can check that the flow of temperature is s
enough so that this is a consistent approximation. Thu
large scale temperature decays back toT50. Indeed the
fixed-point function is very similar to theT50 fixed-point
function except in small layers around integeru. Near the
origin the termTD9(0) is of same order aseD~0! in d53
2e. Thus the main effect of temperature is to round t
nonanalyticity.

3. Physical results at finite temperature T>0

We now discuss the behavior of the mobilitymR51/hR
and of theI -V characteristics. One can compute the mob
ity from the RG equation by integrating theT.0 version of
Eq. ~59! over all scales:

lnS m~ l !

m0
D52E

0

l

D l9~0!Ad21

2cxe
22lL0

d21

~4cxe
22lcyL0

21v2!3/2.

~88!

The asymptotic mobility as given bymR5m( l 5`). Since
asymptotically there are only finite corrections toh as soon
as v.0 this integral converges. Thus there is a nonz
asymptotic mobilitymR in the T.0 moving glass~by con-
trast with what one would have in the static Bragg glass
T.0!. However the renormalized mobilitymR is very small
~for experimental purposes! in two important cases~i! at low
t.

ts
e.

to
l-

-
w
at

e

-

o

t

temperature,~ii ! for velocities not very largev<vc* . This
leads to thev- f characteristics shown in Fig. 15. A comple
calculation ofmR in all regimes can be made by examinin
the RG equations derived above. We give here a rough e
mate of the barriers in these two cases~i! and ~ii !.

Let us start by the low-temperature, high velocity beha
ior ~v@vc , Rcr,a!. A key point is that at low temperatur
mR is determined by the short scale contributions. Inde
there must be some continuity with theT50 flow, where
2D l9(0) diverges after a finite length scale, the Larkin leng
Rc

y ~as discussed above!. Thus at low temperature2D l9(0)
first shoots up near the dynamic Larkin length, strong
renormalizing the mobility downwards, before the tempe
ture catches on and reduces it back to its fixed-point va
2D* 9(0);1. Note that this fixed-point value corresponds
values of disordermuch larger than the original disorder
Indeed restoring the factors~in d53! gives for the original
disorder dimensionless parameterD2 /(4pvc); ln(a/Rc

y)!1
at weak disorder, while asymptotically one hasD2

R/(4pvc)
51. The global behavior with length scale is illustrated
the Fig. 23.

The small-T behavior ind53 can be estimated as fo
lows. Let us denote byT0 the bare value. One has the exa
equations:

dD9~0!

dl
5TD8888~0!2D9~0!2, ~89!

dD8888~0!

dl
527D9~0!D8888~0!1TD~6!~0!, ~90!

and Eq. ~83! with e50. We roughly estimate the scal
Rc(T0)5ael* at which the termTD8888(0) starts slowing
down the growth ofD9(0). Wedenote the bare values of th
derivatives of the disorder correlator byD252D9(0) and
D45D8888(0). At T50 higher and higher moments hav
more rapid growth:D4( l );1/(12D2l )7 and D6( l );1/(1
2D2l )16, etc. A natural hypothesis is that the effects of te
perature is to smooth out the highest moments first. Ass
ing that only one length scale exists atT.0, this allows us to

FIG. 23. Behavior of the second derivative2D9(0) of the dis-
order correlator as a function of the scale around theT50 dynami-
cal Larkin lengthRc

y . At T50 there is a divergence atRc
y which is

rounded atT.0. However2D9(0) still passes through very larg
values before eventually decaying slowly towards its fixed-po
value. This results in high barriers at low temperature as discus
in the text.
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replaceD6→CsteD4
2/D2 in the above equations. The equ

tions can now be solved forD4 and D2 and T. The length
scalel * at which a nonzero temperature modifies the flow
D2 is given by (12D2l * )65T0e2 l* D4 /(D2)2. This length
scale is very close to the Larkin length and the end resu

2D9~0,l 5 l * !5
D2

~T0 /T* !1/6, T* 5
D2

4pvc

Rc
y

a
. ~91!

The renormalized mobility can then be estimated from E
~88!. Restoring all the dimensional factors one finds

mR;m0e2Uc, ~92!

where ind53 Uc can be estimated as

Uc;S Rcr

Rc
y D 2

maxF g

@~T/Tm!~a/Rc
y!~1/g!#1/6

3 lnF1/S T

Tm

a

Rc
y

1

gD G G . ~93!

Rcr5c/v has been defined in Sec. III B,Tm5cad and g
5D2 /(4pvcy). For simplicity we have assumed herer f
;a. We stress that this estimate is a rough one, and
more work is needed to obtain better estimates by study
in more detail the solution of the FRG equation at all sca
Also, ours is probably a lower bound. This estimate indica
that for very large velocities one has to go to very low te
peratures to experience significant barriers.

Barriers are much larger when the velocity is not ve
largev,vc the case which we study now. It must be stress
that the crossover velocityvc which determines the barrier
corresponds toc11 ~or to c11 and c44! and thus may be ex
tremely large~see discussion in Sec. III B!. One can use the
results for barriers in the Bragg glass, which grow asUb
5Uc(R/Rc)

u, whereu is the energy exponent~u5d22 as-
ymptotically in the Bragg glass!, Uc5DRc

d/2 the barrier at
the pinning force andRc is the isotropic Larkin length. Thes
barriers grow until the crossover lengthRcr is reached, as
indicated in Fig. 12. Thus the asymptotic mobility can
estimated as

m`}m0e2Uc~Rcr /Rc!u/T. ~94!

VII. MOVING GLASS EQUATION IN D52 AND D521e

As stressed in Sec. I, it is important to first study t
elastic theory as a function of the dimensiond, before at-
tempting to include topological defects. Up to now we ha
studied the moving glass equation in ad532e expansion.
This study is of course mostly relevant for the physical
mensiond53. To study the other physically interesting d
mensiond52 another RG calcluation can be performed. F
the staticsv50 the RG approach was constructed by Ca
and Ostlund~CO!.113 It was later extended to study equilib
rium dynamics114 and, with some additional assumptions,
study the problem ind521e. In the casev50 it yields a
marginal glass phase ind52 for T,Tc described by a line
of perturbative fixed points. Extensions to models withn .1
components necessary to describe a lattice close94 and far
from equilibrium115 were also studied.
f

is

.

at
g

s.
s
-

d

e

-

r
y

In this section we first show that ind52 the CO fixed line
is unstableto a finite v on the simplest case of then51
component moving glass equation. We derive the RG eq
tions for the casev.0. We stress that this is a toy mod
since it is clear that ind52 additional instabilities to dislo-
cations occur at the temperatures where we can control
behavior of the model. However it is instructive, and pr
vides the first necessary step to introduce the other insta
ties.

A. d52

1. RG equations in d52

We now study Eq.~47! in d52 splitting the pinning force
F5 f 1(r ,urt)1 f 2(x) where f 1(r ,urt) is the random nonlin-
ear pinning force with f 1(r ,urt) f 1(r 8,ur 8t8)5D(urt
2ur 8t8)d(r 2r 8) and f 2(x) is the disorder originating from
long-wavelength disorder Eq.~25! with f 2(q) f 2(2q)
5Dq21D0. In addition such terms are generated in pert
bation theory~at least forv50! and should thus be adde
from the start.

We use everywhere the shorthand notationv[h0v,
whereh0 is the bare value of the friction coefficient. Sinc
we are looking at a periodic system one hasD(u)
5(KDKeiKu. However ind 52 where temperature ismar-
ginal the harmonics are relevant at different temperatur
This remains true atv.0. It is thus enough to consider th
lowest harmonic D(u2u8)5g cos(u2u8). Perturbation
theory is carried in Appendix C using the MSR formalism
Note that the random forcesf 2 can be eliminated by a shif
and do not feedback in the RG~see Appendix C!. In addition
due to the tilt symmetry~galilean invariance! cx , cy , andv
have no corrections. One finds to first order ing the follow-
ing corrections to the friction coefficient, the temperatu
and the disorder:

dh5gE
0

1`

dttR~0,t!e2~1/2!B~0,t!,

d~hT!5gE
0

1`

dt~e2~1/2!B~0,t!2e2~1/2!B~0,t5`!!,

dg5ge2~1/2!B~0,t5`!, ~95!

where B(r ,t)5^@(urt2u00#
2&0 and R(r ,t)5^durt /dh00&0

are, respectively, the correlation and response function
the theory without disorder. In the casev50 the FDT en-
suresdT50, as in the previous sections. This property do
not hold any more whenvÞ0 andT renormalizes upward in
d52. Similarly as for the statics, disorder is relevant below
certain temperatureTg . To determineTg one computes the
mean-square displacements in the absence of disorder.
cording to whetherv50 or v.0 one finds, using a regular
ization discussed in the Appendix C, two different large-tim
behaviors:

B~0,t,a!5
4T

Tc
~ ln@vmt/a#1C/2! ~v.0!,

B~0,t,a!5
2T

Tc
~ ln@cmt/a2#1C/2! ~v50!, ~96!
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where Tc54pc is the transition temperature of the sta
system. Remarkably, as can be seen from Eq.~96!, Tg is half
of the Cardy-Ostlund glass temperatureTc of the statics.

Thus the CO line is unstable and both disorder and te
perature are generated. To obtain the RG equations we
strict ourselves to the case when the starting cutoff is la
enougha2v2/(4c2)@1 ~or the velocity large enough! so that
one is already in the asymptotic regime. Of course at sm
velocity there is a complicated crossover where the sh
distance properties are dominated by the static solution,
the large distance properties are again given by the pre
RG equations. Introducing the dimensionless coupling c
stant g̃5ga/(vTc) Eqs.~95! and~96! allow us to obtain the
correction tohT ~see Appendix C! and the RG equation
upon a change of cutoffa85aedl. Note that the exponentia
decay of the response function at large time~as in Sec. VI!
cuts all divergences inh. One finds

d g̃

dl
5S 12

2T

Tc
D g̃1O~ g̃2!,

dT

Tdl
52C1g̃1O~ g̃2!,

dh

dl
50, ~97!

whereC15e2C/2 is a nonuniversal constant. Equation~97!
can be compared with the Cardy-Ostlund RG equation113 for
v50 where the eigenvalue is 2(12T/Tc).

B. Analysis of RG equations ind52

Let us analyze the RG flows. We introduce the reduc
temperaturet5(2T2Tc)/Tc andḡ52C1g̃ . The trajectories
are the arches of parabolaes represented in Fig. 24 cen

FIG. 24. RG flow diagram ind52. The flow is circular around
an instability temperature atT5Tg5Tc/2. The Cardy-Ostlund line
of the fixed point of the statics~dotted line! which starts atT5Tc is
unstable whenv.0. For d521e there is a finiteT moving glass
fixed point ~presumably attractive! on the dashed line atg;e ~the
resulting spiraling flow is not shown!. Continuity with the FRG
result suggests that this fixed point moves upward to theT50 axis
asd goes fromd52 to d53. In d52 a zero-temperature movin
glass fixed point is expected at infiniteg52D9(0) ~if the lower
critical dimensiondlc for the T50 moving glass isdlc<2!.
-
re-
e

ll
rt
ut
nt
-

d

red

aroundTc/2, of equationḡ2ḡ05 1
2 (t0

22t2) ~note that close
to Tg5Tc/2 these trajectories are not modified by the high
order terms!.

As can be seen from Fig. 24 if one starts at small disor
with temperatureTc/22DT, both disorder and temperatur
first increase pushing the system in a region where the
order is irrelevant, ending up with a disorder free system
aboutTc/21DT. This has several physical consequences

~i! At finite velocity the effect of disorder is weaker tha
in the statics, which manifests itself in the RG equation sin
weak disorder becomes irrelevant forT.Tc/2, a region
which is already deep in the glass phase in the statics. T
effect is analogous to the dimensional shift fromduc54 in
the statics toduc53.

~ii ! However we still find a transition atT5Tc/2 below
which disorder is relevant and grows under RG. That suc
region where disorder is relevant exists ind52 is compat-
ible with the FRG findings ind532e and clearly shows
that even in motion one still has to consider the effect of
random potential. However due to the importance of
thermal effects ind52, at large enough scales the disord
stops being relevant since the temperature also increa
The length scalej at which disorder becomes again neg
gible can be estimated from the RG and reads at smag
!t0

2, j;(t0
2/g)1/(4t0). j becomes extremely large when th

disorder is weak or when one starts at low enough temp
tures.

~iii ! Finally, we find that disorder generates an addition
temperature. This renormalization of temperature is phy
cally very different from the ‘‘shaking temperature’’ of Re
72. In particular the value of the generated temperature
our case does not depend on the strength of the disorde
on the temperature itself and the distance toTg . In particu-
lar, and in a similar way as for the FRG, if one had started
T50 no temperature is generated, as can be seen from
~97!.

Using the RG flow one can compute the displaceme
For the connected correlations one finds

^@u~x!2u~0!#2&2^u~x!2u~0!&2;TR~t,g!ln x. ~98!

We have used the exponent at the fixed point, which i
correct procedure because the fixed point is approached
enough ast02t( l );t0e2t0l . These correlations are non
monotonic as a function ofT with an almost cusp~rounded
by g! at Tc/2, and increase belowTc/2. TR is given by the
above trajectory equation settingt05(2T2Tc)/Tc and t
5(2TR2Tc)/Tc .

In d52 thermal RG effects are obviously important. Th
raises the issue of whether the moving glass phase exis
finite T. Since at low-temperatures the disorder is renorm
ized to nonperturbative values, one cannot rule out from
above calculations that a low-temperature moving gl
phase exists. In that case an additional fixed point wh
controls the transition is necessary. In the absence of su
fixed point the moving glass would always be unstable
finite temperature ind52 due to temperature renormaliza
tion. This last scenario is supported by the FRG results
d532e and by the calculations ind521e of Sec. VII C.
Of course this is separated from the issue of the existenc
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a T50 moving glass phase ind52 which is likely from the
zero-temperature FRG study of Sec. VI.

C. Moving glass equation ind521e

We now follow Goldschmidt and Schaub114 and continue
the above RG equations tod521e. Thee simply shifts the
dimensions of the operators. We stress that this is base
the assumption that the RG functions are well beha
aroundd52. This procedure has been used in other ca
such as theO(n) model.116 Taking into account the dimen
sions, one readily obtains using the same reduced varia
to lowest order:

dḡ

dl
52~e1t!ḡ2bḡ2,

dt

dl
522e1ḡ ~99!

with b5B/(4C1
2) being a universal~regularization indepen

dent! number~by analogy with CO!.94 Finally one has also
dh/dl50. These equations now have a fixed point atḡ
52e and t52(112b)e. To lowest order the eigenvalue
arel652be6 iA2e. Thus without needing to compute th
coefficient b we know that there is a fixed point, and w
know the leading behavior of the eigenvaluesl6;6 iAe.
Such spiraling fixed points have been obtained in other pr
lems ~e.g., Ref. 117!. However to know whether the fixe
point is attractive or repulsive, one needs to know the r
part, which is controlled by theO(g2,t2,gt) terms in the
RG equation. For instance, the RG equation contains at le

dḡ

dl
52~e1t!ḡ2bḡ2,

dt

dl
5~22e1ḡ1cḡ2!~11t!. ~100!

Inspection shows thatb actually controls the leading behav
ior of the real part. So this is the only nonlinear term we ne
to compute. Results from FRG~see Appendix B! and static
CO lead us to expect thatb.0, but to settle the question an
obtain the universal value ofb an actual calculation along
the lines of Ref. 94 is needed. It is tempting to associate
fixed point to a finite temperature moving glass fixed po
~analogous to the finiteT fixed points found in recent mani
fold studies85!. Finally we note that at this fixed point on
hasz52 since we find thatdh/dl50 ~thus there are large
but finite barriers!.

VIII. TOWARDS A COMPLETE DESCRIPTION
OF ELASTIC FLOWS

In this section we go beyond the transverse descriptio
the moving glass and study models II and I.

A. Study of the complete dynamical equation
in elastic limit „model II …

In this section we come back to model II which contai
both degrees of freedom transverseuy and along motionux
on
d

es

es,

b-

al

st:

d

is
t

of

and the full time dependence of the pinning force. If o
describes the elastic flow of a solid, i.e., in a regime, o
range of scales where there are no topological defects,
model improves on model III~see Sec. I for a discussion o
the regimes where it is useful!. As discussed in Sec. IV it is
still an approximation, but a rather good one, of the full~but
intractable! model of the elastic flow~model I!.

Since model II is still quite difficult, our aim in this sec
tion is more limited than in Sec. VI. We show that the ma
features of the transverse physics of the moving glass
bedded in model III are also present when the degree
freedomux along the motion are added. In fact we sho
explicitly that in model II the RG equations for quantitie
involving uy remain identical to the one of model III. The
two important issues we discuss are the ones of the exist
or not of an extra temperature generated by motion, and
the generation of a static ‘‘random force.’’ We perform pe
turbation theory up to second order in the disorder and
amine the terms generated as well as the divergences.
develop an approach which allows to treatall harmonics
DK

ab of the disorder correlator. First, we find that a sta
‘‘random force’’ is generated in the direction of motion. Th
may seem surprising at first, because first-order perturba
theory gives a pinning force alongx which rapidly oscillates.
However, as our calculation shows, to second order the v
ous washboard frequency harmonics interfere to produc
static random force. Second, we identify the divergences
perturbation theory and follow the evolution of the full di
order correlator under renormalization. We show that up
some details the resulting picture is close, if not identical,
the one given by model III. We work atT50 but the ap-
proach can be extended toT.0 along the lines of Sec. VI.

1. General properties

Here we study Eqs.~33!, ~34! keeping the time depen
dence. More specifically we are interested in the model fo
triangular lattice~n52 component model! with the force ap-
plied along a symmetry direction. The equation of motion
model II reads for lines ind53:

hxx] tux1h0v]xux1~c66¹
21c44]z

2!ux1~c112c66!

3]x~]xux1]yuy!

5 f 2hxxv1Fx
pin~r ,t,u!, ~101!

hyy] tuy1h0v]xuy1~c66¹
21c44]z

2!uy1~c112c66!

3]y~]xux1]yuy!

5Fy
pin~r ,t,u!, ~102!

and settingc4450 to describe lattices of points ind52. Note
that hxy50 from the symmetry~uy→2uy , y→2y!. We
have allowed for differenthxx and hyy since, even if they
start identical~and equal toh0! they do not remain so unde
renormalization. The statistical tilt symmetry ensures that
elastic coefficients andh0v remains uncorrected. Note tha
in later calculations it is convenient to rescale thez direction,
setting z5Ac44/c66z8. The correlator of the pinning force
can be written as
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Fa~r ,t,u!Fb~r 8,t8,u8!5dd~r 2r 8!Dab@u2u81v~ t2t8!#

5dd~r 2r 8!(
K

DK
ab

3e2 iK •@u2u81v~ t2t8!#. ~103!

It contains all lattice harmonicsK. Due to the modes with
KxÞ0 it is an explicitperiodic function of timewith frequen-
cies all integer multiples of the washboard frequency 2pv0
5v/a. In addition it contains nonlinearstatic components
Kx50, KyÞ0 ~which lead to model III treated in Sec. VI!.
Finally it contains a staticu-independentcomponent,DK50
which, as we discuss below, is the static random force. T
random force is strictly zero in the bare modelDK50( l 50)
50, but is generated in perturbation theory, as we show
low.

The idea behind the method presented here is thatT
50 all the time dependenceremains strictly periodicto all
orders in perturbation theory in the disorder~plus a static
part!. Only frequencies multiple ofv0 can be generated. In
deed to lowest orderFy

pin(x,y,t,u50) is periodic in time,
and yields au periodic. Iterating perturbation theory thu
leads only to periodicu andFy

pin(x,y,t,u) with integer mul-
tiples of v0 . This property allows us to construct a clos
RG scheme of the above model with a renormalized diso
which remains of the form~103!.

An immediate consequence is thatno temperature is gen
eratedwhenT50 at the start. Temperature is defined as
zero-frequency limit of the incoherent noise@or using the
MSR formalism the vertex functionhT5G ûû(q50,v
→01)]. Thus here one has

hdT5E dt (
KÞ0

~D ren!K
abe2 iK •vt50. ~104!

The static random forceK50 mode leads to ad~v! part inu
and thus is distinct from the temperature. The fact that
temperature is generated atT50 is a rather strong propert
of the elastic flow. In physical terms in theT50 elastic
laminar periodic flow all particles strictly replace each oth
after timet05a/v, i.e., Ri x ,i y

(t1t)5Ri x11,i y
(t1t) where

i 5 i x ,i y are integer labels for the particles. Although th
laminar periodic flow may becomeunstableto chaotic mo-
tion, we proceed here assuming that such instabilities
chaos happen only at finite large enough disorder, or at la
enough scale. We reserve the study of the stability of
flow ~chaos, nonperturbative effects, etc.! to future study.
Finally note that this periodic flow is allowed by the assum
absence of topological defects in the system. Dislocation
present, may ruin periodicity and introduce a small ad
tional temperature~though this is far from established!.

We start by establishing the possible form for the disor
correlator~at any order in perturbation theory! based on the
symmetries of the problem~model II!. This is necessary her
because the bare disorder ispotential DK

ab(0)5gKKaKb ,
but it does not remain of this form in perturbation theory. W
are interested here in the case when the velocity is along
lattice direction. Our analysis here is very general, and
will specify when we apply it to the case of a triangul
is

e-

er

e

o

r

to
ge
is

d
if

i-

r

he
e

lattice. More details are contained in Appendix B using t
more rigorous MSR formalism.

The symmetries are as follows. First one can exchangt
with t8 andu with u8 in Eq. ~103! and relabel the disorde
term. This givesD2K

ab (v)5DK
ba(v). This is by construction

and from the specific dependence int andt8 of the disorder.
Second, the action must be real and thusD2K

ab (v)
5DK

ab(v)* . Third, the symmetryTy ~uy→2uy , y→2y,

ûy→2ûy! yields that DKx ,2Ky

yy (v)5DKx ,Ky

yy (v),

DKx ,2Ky

xx (v)5DKx ,Ky

xx (v), DKx ,2Ky

xy (v)52DKx ,Ky

xy (v),

DKx ,2Ky

yx (v)52DKx ,Ky

yx (v). Similarly, because ofTx one

finds D2Kx ,Ky

yy (2v)5DKx ,Ky

yy (v), D2Kx ,Ky

xx (2v)

5DKx ,Ky

xx (v), D2Kx ,Ky

xy (2v)52DKx ,Ky

xy (v), D2Kx ,Ky

yx (2v)

52DKx ,Ky

yx (v). Note that the global symmetryTxTy implies

that D2K
ab (v)5DK

ab(2v). Thus one finds that one can sp
the disorder correlator intoDK

ab(v)5DS,K
ab (v)1DA,K

ab (v),
whereDS,K

ab (v) is real, symmetric inab, even inK, and even
in v andDA,K

ab (v) is imaginary, antisymmetric inab, odd in
K, and odd inv. This naturally leads to the decompositio

DS,K
ab ~v !5D1

Kv2dab1D2
KKaKb1D3

Kvavb , ~105!

DA,K
ab ~v !5 iD4

K~vaKb2vbKa!, ~106!

where allD i
K are even inK andv and real. The bare disorde

has onlyD2
K nonzero and thus possesses the extra symm

D2K
ab 5DK

ab or equivalently (u→2u,v→2v). Because of
the convection termv]xu in the equation of motion, this
additional symmetry does not hold to higher orders in p
turbation theory. It is natural to suppose that to any fix
order in perturbation theory theD i

K are regular whenv→0.
Thus in the limitv50 one recovers a strictly potential prob
lem ~all terms exceptD2

K vanish!.
Finally note that model III is a particular case of model

which corresponds to the following choice of bare para
eters: ~i! isotropic responsec115c66, ~ii ! DK

xy50. Then
clearly the equations alongx and y decouple. Another par-
ticular case is to start fromDK

ab5gKKaKb and use isotropic
elasticity. Then the equations are only coupled through
time-dependent part of the nonlinear pinning force alongy
which depends onux ~one hasDK

xyÞ0!. It would be interest-
ing to check whether this is enough to change the beha
compared to model III.

At T50 the lowest-order corrections to the disorder co
from second-order perturbation theory. The calculation
the effective action to second order for the most gene
model is performed in Appendix B. The full correction to th
disorder correlator is obtained asdDK

ab given in Eq.~B9!.

2. Generation of the static random force

SettingK50 in Eq. ~B9! one gets the general expressio
for the static random force correlatordD0

ab , i.e., a
u-independent Gaussian random termF(r ) in the original
equation of motion. This random force has zero crossed
relations, i.e.,dD0

xy(v)50. Thus there are two independe
random forces one alongx of strengthD0

xx and one alongy
of strengthD0

yy . This is consistent with formula~105! which
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givesDK
xy(v)5 iD4

KKyv and vanishes forK50. It can also be
seen explicitly on the above expression which is found to
symmetric inab ~using all the above symmetries!. Since we
know that D0

xy(v) must be antisymmetric inxy ~from the
aboveKy→2Ky transformation! it must vanish. The expres
sion for the random force is still complicated as it does
volve all disorder harmonics. One must carefully distinguish
between:

~i! The static random force generated to lowest orde
the bare disorderO(D2) ~i.e., at the initial stage of the RG!.
To this order one can use thebare disorderand the resulting
perturbative expression of the random force~evaluated be-
low! is found to be well behaved and without IR dive
gences. Of course once even a small finite random forc
generated, it is relevant by power counting and must be ta
into account~though it does not feedback in the RG for th
nonlinear disorder!.

~ii ! The static random force generated to higher order
perturbation theory~or at the next stages of the RG!. There
we find IR divergences. This means that nontrivial corr
tions originating from the nonlinear disorder have to be a
taken into account to estimate the random force genera
This is done in the next subsection.

Thus we start by giving the expression of the rand
force generated from the bare disorder~i!. Setting DK

ab

5gKKaKb in Eq. ~B9! one finds

dD0
ab5(

K
E

q
KaKbgK

2 $@K•R~2 ivK,2q!•K#

3@K•R~ ivK,q!•K#2@K•R~ ivK,q!•K#2%.

~107!

Note that it does vanish forv50 as it should since the prob
lem becomes potential in that limit. One can first specify t
formula for the casec115c66. We also sethxx5hxy ~which
is consistent since we are just looking at the lowest-or
contribution in perturbation theory!. This yields35

dD0
ab5(

K
E

q,BZ
K4KaKbgK

2 2~h0v !2~Kx1qx!
2

@c2q41~h0v !2~Kx1qx!
2#2 .

~108!

A random force is indeed generated along both thex andy
directions i.e., there is a positiveD0

xx and D0
yy . The cross

terms vanishD0
xy50. The integral forD0

yy is infrared diver-
gent, as discussed above~which is natural from the analysi
in Sec. VI! and is examined in the next section.

Let us estimate the magnitude of the static random fo
generated alongx. From the above expression~109! one
finds in the casedz50 relevant for point lattices~in d
51,2,3!:

D0
xx'

Cd

~h0v !2 (
K,uKxu>Km

K4gK
2

1
Cd8

~h0v !22d/2cd/2 (
K,uKxu,Km

K4uKxud/2gK
2 , ~109!

whereKm5uK0umax(1,vcr /v). There is a crossover velocit
h0vcr;cp/a. One has definedCd52Sd /@d(2p)d# and Cd8
e

-

n

is
en

in

-
o
d.

s

r

e

5Sd(42d)p/@8(2p)dsin(pd/4)# and n52 for triangular lat-
tices. This yields forr f!a:

D0
xx'

g2an2d

~h0v !2r f
41n minF1,S va

vcrr f
D d/2G . ~110!

In the casec66!c11 one can simply retain only the transver
mode~thus settingc5c66 in the above formulas!. In the case
dz51 ~relevant for line lattices! we only give the largev
estimate~valid for v@vcr5c66p/a!. It reads

D0
xx'

1

Ac44~h0v !3/2 (
K

K4uKxu1/2gK
2

;
g2an

Ac44~h0v !3/2r f
n1411/2

. ~111!

Let us stress again that we have defined the random f
as DK50

ab , which is the correct definition based on the R
decomposition. Note that one must distinguish it fromD(u
50). If one was to compute the displacements correla
^uu& to orderD2, in order to show that the displacemen
feel the random force~e.g., grow unboundedly in thex or y
direction! one would needD(u50) to second order~and to
be consistent the response function corrected to orderD!. It
would be thus tempting to attribute the random force
D(u50), but such a definition would not be carried o
beyond the simple perturbative approach. While it mak
little difference in order of magnitude estimates for the effe
of thex random force, it is drastically different alongy ~one
quantityDK50 is IR divergent and the other is not, see Se
VI !.

3. RG study of model II

We now look for the divergences in perturbation theo
which appear in model II. We address only the casev.0.
Let us look again at Eq.~B9!. It contains infrared diver-
gences of the same type that was discussed in Sec. VI. T
divergences occur only forq-momentum integrals which ar
both ~i! zero-frequency integrals~K•v50 terms!, ~ii ! in-
volve q and2q. These are of the form

Dgr,dl5E
q
Ggr~2q!Gdl~q!, ~112!

whereGab(q)5Rab(v50,q) is the static response function
Here it has the form

Gab~q!5(
I

PI~qx ,qy!

cI~q!1 ivqx
, ~113!

where I 5T,L index the transverse and longitudinal proje
tors and elastic eigenenergies as defined in Eq.~38!. The key
point ~for n52, e.g., triangular lattices! is that one has here
qx;qy

2;qz
2 . Thus all projector elements are subdomina

for small q ~i.e., kill the IR divergences! except the two
elementsPyy

L ;Pxx
T ;qy

2/(qx
21qy

2);1. Thus the only IR di-
vergent elements among Eq. ~112! are
Dyyyy,Dxxyy,Dyyxx,Dxxxx. Explicit calculation of the diver-
gent parts gives
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Dyyyy;E
qy ,qz

1

2v~c11qy
21c44qz

2!
,

Dxxxx;E
qy ,qz

1

2v~c66qy
21c44qz

2!
, ~114!

Dxxyy5Dyyxx;E
qy ,qz

1

v@~c111c66!qy
212c44qz

2#
.

~115!

Let us now analyze the consequences of these di
gences. From Eq.~B9! the relevant corrections to disorde
are

dDK
ab5Dgr,dl (

P5~0,Py!
S 2KgKdDK

abDP
rl1~K2P!g

3~K2P!dDK2P
ab 1

2
@DP

rl1D2P
rl # D . ~116!

Note that there is no componentDP5(0,Py)
xx in the bare

action but that it is generated in perturbation theory. T
expression simplifies because of the symmetries discu
above and the fact that only the terms~114! appear in Eq.
~116! ~the termDPy

rl always occurs in sums symmetrized ov

rl and one can use thatDPy ,Px50
xy 52DPy ,Px50

yx to cancel all

crossedDxxyy terms!. From what remains one finally obtain
the following RG equations:

dDK
ab

dl
5eDK

ab1 (
P5~0,Py!

$A11DPy

yy@2KyKyDK
ab1~K2P!y

3~K2P!yDK2P
ab #1A66DP

xxKxKx~DK2P
ab 2DK

ab!%

~117!

with A1151/(4pvAc11c44) andA6651/(4pvAc66c44) if one
uses the same regularization as in Sec. VI.

The RG equations~117! are thus the generalization t
model II of the RG equations of model III and contain bo
the physics ofux and uy . They show that in the moving
Bragg glass, nontrivial, nonlinear effects also occur in
direction of motion. A more detailed study of these equatio
will be given elsewhere.83 Here we give their salient fea
tures. The RG equations~117! exhibit remarkable features
First, the subset of these equations forD (0,Ky)

yy closes onto

itself. Indeed settingKx50 in Eq.~117! one recovers exactly
the RG equation~58! ~with z50! of the moving glass mode
III. Thus we have shown that model III describes correc
the transverse physics, as announced, even if longitud
degrees of freedom are present~i.e., within model II!.

One can also write the above RG equations as cou
differential equations for three periodic functions of tw
variablesDab(ux ,uy) with a,b5xx,yy,xy. We temporarily
use the shorthand notationu5uy and v5ux . We denote
DKx50

yy (u) by D1(u) and absorb the factore/A11 in the D.

These coupled RG equations become
r-

s
ed

e
s

al

d

dDab~u,v !

dl
5Dab~u,v !1@D1~0!2D1~u!#]u

2Dab~u,v !

1g@D2~0!2D2~u!#]v
2Dab~u,v ! ~118!

with g5A66/A11 and D1(u)5*dvDyy(u,v) and D2(u)
5*dvDxx(u,v). The functionD1(u) obeys the closed RG
equation~60!, identical to the moving glass RG. ThusD1(u)
converges towards the moving glass fixed point of Sec.
D1* (u)2D1* (0)5 1

2 u(u21). Let us now examine the behav
ior of the other components of the disorder withKx50 ~and
ab5xx,xy!. They obey the equation

dDab~u!

dl
5Dab~u!1Dab9 ~u!@D1~0!2D1~u!#. ~119!

By settingu50 in this equation, one easily sees thatDab(u)
also becomesnonanalytic beyond the dynamical Larkin
length. Indeed the divergence ofD19(0)→2` at the Larkin
length l c5 ln Rc

y ~see Sec. VI! implies thatDab9 (0) also di-
verges. Thus the fullDab(u) does become nonanalytic. Not
that the solution of Eq.~119! for u50 is simply D2( l )
5(D2 /D1)D1( l ). It is then easy to show thatDab(u)
5CD1* (u) is a stable fixed-point solution~up to the usual
growing constant!. Indeed, inserting the fixed-point valu
D1(u) in Eq. ~119! at u50 one finds exactly the stability
operator of the original fixed point which was discussed
Appendix D. This proves the stability of the fixed point fo
the whole equation~119!. To determine the constantC we
use Eq. ~119! to compute g5Dab9 (01). One gets g
;* l . l c

dl@12D19(0
1,l )#. The exponential convergence o

D1 towards its fixed point implies thatg is a finite constant
which determinesC. At the fixed point one can thus replac
D2(u)5CD1(u) in Eq. ~118!.

Thus we have shown that the RG equations in a mov
Bragg glass decouple completely alongy, giving back one of
the generic moving glasses studied in Sec. VI. A compl
study of the system~117! will be given elsewhere.83

B. Full model for the elastic flow „model I…

We now come back to the problem of establishing t
correct long-wavelength hydrodynamic description of
moving structure with some internal order described by
displacement fieldua(r ,t). The first step is to write an equa
tion of motion which contains all terms which are~i! allowed
by symmetry and ~ii ! a priori relevant in the long-
wavelength limit by power counting. We carry this step he
check that all these terms are indeed generated in pertu
tion theory from the original equation of motion~22!, and
estimate their magnitude. The second step, which is to s
the universal large distance physics of such an equation t
out here to be a formidable task, which goes beyond
paper.

As we have discussed in Sec. IV the problem of driv
lattices possesses some additional ‘‘almost exact’’ symm
tries which allow us to simplify the hydrodynamic descri
tion and to extract some of the physics. This has led us
study model II~Sec. VIII A! which possesses the statistic
tilt symmetry forbidding many terms, and the simpler mod
III ~Sec. VI! ~the moving glass equation! which contains
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most of the physics of moving structures, i.e., the physics
the transverse degrees of freedom.

As discussed in Sec. IV the only exact symmetries of
problem, for motion along a symmetry direction of the mo
ing structure~x axis!, are the spatial inversions along th
directions transverse to the velocity. Power counting sho
that the general form for the equation of motion ind<3 is
~model I!:

hab] tub1Lab
g ]gub2Cab

gd ]g]dub2Kabg
de ]dub]eug

5Fa
dis~r ,u,t !1za~r ,t !1 f a2habvb1d f a , ~120!

where the velocity v is fixed by the convention tha
d/dt* rurt

g 50 and f is the applied force. The KPZ terms a
allowed becauseua is dimensionless at the upper critic
dimensionduc53 in a power counting atT50. This can also
be seen by writing a MSG formulation of Eq.~120!. The
above equation of motion is not fully complete unless o
specifies the relevant disorder and thermal noise correla
The thermal noise has a Gaussian correlatorza(t)zb(t8)
52(hT)abd(t2t8)dd(r 2r 8), in general anisotropic. The
correlator of the pinning forceFa

dis(r ,u) ~which has zero av-
erage! is Gaussian and of the form~103! for periodic struc-
tures. Note however that in general,Dab(u) is not a potential
disorder.

Compared to model II, cutoff effects which break the e
act statistical tilt symmetry allow new terms to be generat
such as linear terms which correct the original convect
term v]xu and nonlinear KPZ-type terms. The linear term
are obviously relevant and the nonlinear KPZ terms, in pr
ence of the disorder, are relevant ford<3. Thus once they
are generated, even if their bare values are very small
may grow under RG and become important at large scal@a
full solution of the RG equations for Eq.~120! would be
needed in order to conclude#. However one may guess tha
since the statistical tilt symmetry is almost exact, the scal
which these new terms are able to change the physics c
pared to models II and III~if they do! may be very large.
Finally note that there are also small corrections to the ela
matrix.

The above approach consists of writing a model indep
dent equation~120! based on symmetry arguments. It may
useful in proving the universality of the behaviors of vario
structures. However, in many cases it is much more inst
tive to start from a given simple model without disorde
such as Eq.~22!, and to estimate the bare values of the n
terms to first order in a perturbation theory in disorder.
deed, in the absence of disorder the above equation of
tion reduces to

hab
0 ~] tub1v]xub!5~C0!ab

gd ]g]dub1 f a2hab
0 vb1za~r ,t !.

~121!
f

e
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We have thus computed in Appendix A the corrections
first order in perturbation theory with respect to disorder
all terms of Eq.~120!. Though the above equation~120!
looks formidable many terms are zero from the exact inv
sion symmetry. We thus now explicitly specify the term
allowed in the equation of motion, for the case of an elas
structure described by ann52 component displacement fiel
(ux ,uy). In d52 andd53 the equation alongy should be
odd under the inversion~uy→2uy , y→2y! and also under
(z→2z), while the equation alongx must be even unde
these transformations. This yields ind53

hyy] tuy1v1]xuy1v2]yux

5~c1]x
21c2]y

21c3]z
2!uy1c4]x]yux1~a1]xux

1a2]yuy!]xuy1~a3]xux1a4]yuy!]yux

1a5]zux]zuy1Fy
dis~r ,u,t !1zy~r ,t !,

hxx] tux1v3]xux1v4]yuy

5~c5]x
21c6]y

21c7]z
2!ux1c8]x]yuy1a6~]xux!

2

1a7~]yux!
21a8~]xuy!21a9~]yuy!21a10]xux]yuy

1a11]xuy]yux1a12~]zux!
21a13~]zuy!2

1Fx
pin~r ,u,t !1 f x2hxxv1d f x1zx~r ,t !, ~122!

and the same ind52 with c35a55c75a125a1350. The
physical interpretation of the linear terms is that now t
local velocity explicitly depends on the local strain rates
the structure. The first possible effect of these terms wo
be to generate instabilities~see below!. In the absence of
such instabilities, it is unlikely that these terms alter t
transverse physics. Although the full analysis of Eq.~122!
goes beyond the present paper, some arguments suppor
picture. Indeed one can see that small additional linear te
do not remove the divergence in perturbation theory whi
was the hallmark of the moving glass. Let us writev15v
1w, v25aw, v35v2w, v45bw and considerw as small
compared tov. Also we choose for simplicity isotropic elas
ticity c15c25c45c55c75c35c, c85c450. Then the ei-
genvalues of thev50 ~static! response matrix areD6(q)
5 i (qxv6wAqx

21abqy
2)1cq2 and eigenvectors (dux ,duy)

5(bqy ,qx6Aqx
21abqy

2). Note that one must haveab.0
otherwise an instability develops. The perturbation the
result shows that indeedab.0 at least to lowest order in th
disorder. One finds for instance that the integral which is
key of the FRG equation for the transverse modes Eqs.~53!–
~114! becomes
E
q
Gyy~q!Gyy~2q!5E

q

c2q41~v2w!2qx
2

@c2q41~vqx1wAqx
21abqy

2!2#@c2q41~vqx2wAqx
21abqy

2!2#
. ~123!
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As is easily seen this integral is infrared divergent ford
<3, logarithmically ind53 and powerlike ind52 ~sincew
is a small correction tov!. The divergences occur in tw
hyperplanesqx56(abw/Av22w2) qy which are tilted sym-
metrically with respect of the direction of motion. Thus th
main conclusions of Sec. VI are unchanged.

Let us now reexamine the moving glass equation, i
model III, and ask whether cutoff effects~absence of exac
statistical tilt symmetry! generate relevant terms. By defin
tion this equation involves onlyuy and thus the onlya priori
relevant terms allowed by symmetry are

hyy] tuy1v1]xuy5~c1]x
21c2]y

21c4]z
2!uy1a2]yuy]xuy

1Fy
pin1zy . ~124!

Now, we have shown in Sec. VI that at the moving gla
fixed point]x;]y

2 and thus the KPZ terma2 is irrelevant by
power counting. Note that a cubic KPZ terms (]yuy)

2]xuy is
allowed by symmetry but again irrelevant neard53. The
moving glass equation model III is thus stable to cutoff
fects and perfectly consistent. This lead us to claim73 that
while previous descriptions of moving systems, such
manifolds driven in periodic118 or disordered potentials,75,77

focused on the generation of dissipative KPZ, such terms
much less important in the moving glass equation, a prob
which, because of periodicity, belongs to a universality cla

Finally one can also reexamine model II, the physics
which is presumably very similar to model III at least as
as the transverse degrees of freedom are concerned.
certainly holds below a~large! length scale max(Llin ,LKPZ).
Above one must worry about the new terms. Power coun
at d53 ~whereuy andux are dimensionless! in the equation
for the transverse degrees of freedomuy ~using that]x;]y

2

in the absence of the new terms! shows that the only KPZ
term marginally relevant at the model II fixed point ind
53 ~and thus the dangerous one! is the terma4]yuy]yux .
Note also that the linear termv2]yux also becomes relevan
there and changes the counting. In the end it is probable
all terms in Eq.~122! have to be treated simultaneously
get the physics beyond max(Llin ,LKPZ).

Finally we note that the arguments given in the previo
section about the fact that no temperature is generatedT
50 are unspoiled by the terms generated here in the equa
of motion compared to model II. That these terms may le
to other instabilities of the periodic time ordered flow resu
ing in chaotic motion is clearly an interesting possibility d
serving further investigations.

IX. CONCLUSION

In this paper we have studied the problem of movi
structures~such as vortex lattices! in a disordered medium
following the physical approach developed in Ref. 73. T
main emphasis in that approach is that because of degre
freedom transverse to motion, periodic structures hav
radically different physics than more conventional driv
manifolds. The main consequence of our study is that
moving structures remain different from perfect structu
~e.g., a perfect crystal! at all velocities~for d<3 for uncor-
related disorder!. In particular they still exhibit glassy behav
ior. The moving configurations can be generally described
.,
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terms ofstatic channelswhich are the easiest paths in whic
particles follow each other in their motion. We have intr
duced here several degrees of approximation of the prob
of moving periodic structures, embodied in several mod
The simplest one, model III, introduced in Ref. 73 focus
only on the transverse degrees of freedom. A more comp
one model II also contains degrees of freedom along
direction of motion. We have studied these models us
several renormalization-group techniques as well as phys
arguments. All our calculations and results confirm that
cusing on the transverse degrees of freedom~model III!
gives the main physics for this problem. Indeed we ha
shown explicitly that the more complete model II leads to t
same transverse physics as model III.

At zero temperature we have explicitly demonstrated t
the physics of the moving glass is governed by a nontriv
attractive disordered fixed point. Using the RG, we have
plicitly demonstrated the existence of the transverse crit
force predicted in Ref. 73, which is related to the nonanaly
behavior of the renormalized disorder correlator at the fix
point. Its actual value, computed from the RG coincides w
the estimate given in Ref. 73 based on the existence o
dynamical Larkin lengthRc

y . We have also found that atT
50 no temperature is generated because perfect time
odicity is maintained. A static random force is also genera
both along and perpendicular to the directions of motion.
a consequence relative displacements in both thex and y
directions grow logarithmically ind53, but algebraically in
d52. Thus ind53 at weak disorder or at large velocity, th
moving glass retains quasilong range order and diverg
Bragg peaks. Since the decay of translational order is v
slow in d53 we predict that a glassy moving structure wi
quasi-long-range order and perfect topological order in
directions exists:the moving Bragg glass.The determination
of its physical properties is the main result of this paper. T
phase is the natural continuation to nonzero velocities of
static Bragg glass.

We have investigated the effect of a nonzero initial te
perature. We found that the moving Bragg glass survive
finite temperature as a phase distinct from a perfect cry
and with properties continuously related to the ze
temperature moving Bragg glass. At low temperature
moving Bragg glass still exhibits highly nonlinear transver
velocity-transverse force characteristics with an ‘‘effecti
transverse critical current’’~in the same sense as for the lo
gitudinal critical current!. At T.0 the FRG calculation in-
dicates that the asymptotic behavior is linear but with
strongly suppressed transverse mobility at low temperatu

The existence of elastic channels provides a precise
to look at the problem of generation of dislocations in mo
ing structures. The natural transition is now a decoupling
the channels with dislocations decoupling the adjacent
ers. It is indeed easier to decouple the channels via s
deformations than to destroy the channel structure altoget
This leads to expect another moving glass phase which ke
a periodicity alongy, which has been termedmoving trans-
verse glass.Since it retains a periodicity along the directio
perpendicular to motion it shares the properties of mov
glasses, and in particular it exhibits a nonzero transve
critical force atT50.

We have given predictions for the phase diagram of m
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ing systems. It shows that the existence of the Bragg g
phase in the statics has profound implications on the dyna
cal phase diagram as well. Indeed it is natural to conn
continuously the static Bragg glass~at v50! to the moving
Bragg glass~at v.0!. Thus there should be a wide range
velocities ~down from the creep region to the fast movin
region! where effects associated with transverse periodi
~such as the transverse critical force! should be observed. W
have analyzed the crossovers between the Bragg glass
erties and the moving glass properties in the region wh
the velocity is not large.

Further experimental consequences should be investig
in details for vortex systems in motion. A direct measu
ment of the transverseI -V characteristics at low temperatu
would be of great interest. But consequences for the ph
diagrams should be explored too. It was predicted45 that the
static Bragg glass should undergo a transition into an am
phous glassy state upon increase of disorder. As discu
previously47 the field-induced transition observed in ma
experiments is the likely candidate for such a transition
similar prediction can be made in the dynamics. At fix
velocity the moving Bragg glass should melt, upon incre
ing the temperature, into a moving liquid at a temperat
smaller than the static system. Since the moving Bragg g
is topologically ordered this transition is likely to be fir
order. Upon an increase of the disorder~or equivalently the
magnetic field for vortex systems!, at fixed velocity, the
moving Bragg glass should experience a transition into
amorphous moving phase. However, unless the velocit
small, since the effective disorder is smaller in moving s
tems this transition should occur at a higher value of disor
~or magnetic field! than for the statics. A detailed investiga
tion of these transitions may help understand the natur
the high-field pinned phase. Indeed the nature of the tra
tion away from the Bragg glass may change once the sys
moves if the moving amorphous phase is different from
static amorphous phase. If the ‘‘vortex-glass’’ phase36,37 ex-
ists at all in the statics ind53, one may expect that it would
not survive as smoothly as the Bragg glass once the syste
set in motion. Finally, it would be interesting to investiga
whether the anomalous response to transverse forces c
have an impact on the anomalous Hall angle. As we h
discussed, other experimental systems, such as Wigner
tals, seem to be a promising arena to investigate the phy
presented here. The effects predicted here also provid
strong motivation to reexamine other moving systems s
as doubleQ or triple Q CDW’s.

Another direct experimental consequence, in the cas
correlated disorder is that one should observe a ‘‘mov
Bose glass.’’ Static columnar disorder in vortex systems
strong but at large velocity one should expect that the ef
tive disorder becomes weaker. Thus the Bose glass drive
low temperature should have interesting properties such
discussed here. The resulting moving Bose glass should
hibit a transverse critical force and retain a transverse Me
ner effect in the direction perpendicular to motion.

The properties of periodic driven systems discussed
this paper also suggest many other directions of invest
tion. As for the statics one outstanding problem is to tr
properly dislocations in the moving glass system. A co
trolled calculation may seem out of reach, but on the ot
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hand, the existence of elastic channels suggests a precise
to look at the problem of generation of dislocations in mo
ing structures and may provide a starting point.119 Solving
this issue starting from large velocity is already a formida
task, but could help us to understand what happens clos
the threshold. Indeed here again only simple cases, insp
from the manifold or CDW with scalar displacements and
transverse periodicity, have been considered previously.
in the statics it is possible that the physics is modified in
quite surprising way, and certainly all the issues about cr
cal behavior close to threshold, dynamics reordering,
elastic to plastic motion transitions, have to be reconside
These issues are of major theoretical concern but also
large practical importance. Finally we note that thou
model I remains to be tackled in order to reach a comp
description of the lattice elastic flow, we have shown that
extra linear terms do not seem to change drastically the m
features of perturbation theory. The KPZ terms remain to
treated, but an interesting possibility would be that ag
because of periodicity their effect would be weaker than
pected.

Another interesting issue is to understand to which ext
a moving, or more generally a nonpotential system can
glassy. This concept may seem doomed from the start s
one could conclude that the constant dissipation in the s
tem would tend to kill glassy properties. However there t
the situation may be more subtle and leave room for un
pected behavior. We have proposed the moving glass
first physical realization of a ‘‘dissipative glass,’’ i.e., a gla
with a constant dissipation rate in the steady state. O
realizations of nonpotential glassy systems have been s
ied, such as in spin systems120 or for elastic manifolds in
random flows such as polymers.84,85

It is important to characterize these glassy effects
driven systems. Too close analogy with glassiness in the s
ics could be misleading. As we have discussed it is inter
ing to check whether the presence of a transverse crit
force leads to history dependence effects. The role of
temperature in moving systems and its relation to entro
production remains puzzling. It is natural to expect, as
other related nonpotential systems120,84,85that the absence o
the fluctuation dissipation theorem leads to a generation
temperature. This is of course what happens in the RG
proach presented here. This heating effect however is v
different from the ‘‘shaking temperature’’~since it disap-
pears atT50 in the moving Bragg glass! and rather is likely
to be related to the entropy production. Hopefully the me
ods introduced here should allow us to understand this r
tion better. We have found within the FRG that at fini
temperature the physics is controlled by a nontrivial fini
temperature moving glass fixed point. This result is streng
ened by the fact that another nonzeroT.0 fixed point has
also been obtained in the problem of randomly driven po
mers, a problem which does have a dissipative gla
phase.85 The problem of understanding dissipative glas
systems is also related to the study of generalnon-Hermitian
random operators. Indeed nonpotential dynamical proble
~including, e.g., the moving glass! are described by a Fokker
Planck operator whose spectrum is not necessarily real~by
contrast with potential problems which are purely rela
ational!. These Fokker-Planck problems with complex spe
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trum ~which could be called ‘‘dynamical non-Hermitia
quantum mechanics’’! are related to problems which hav
received a renewed interest recently~such as vortex lines
with tilted columnar defects,121,79 spin relaxation in random
magnetic fields,122 and diffusion of particles and polymers i
random flows.123,124,85Exploring this connection, as well a
the very interesting question of the classification of the
glasses and the study of their physical properties is
largely open.

Finally other fascinating open questions remain. TheT
50 moving Bragg glass fixed point, at least within model
is a time-periodic state. The general question of the stab
of periodic attractors towards chaotic motion is still ve
much open. It is related to problems of time coupling a
decoupling in nonlinear dynamics, such as synchroniza
of oscillators in Josephson arrays, which has been stu
extensively recently125–130 or synchronization by
disorder.131,132 Indeed the existence of channels where p
ticles follow each other may provide the equivalent of t
no-crossing property which allowed to demonstrate the te
poral order for CDW’s.81 The relation between instability to
chaos and possible nonperturbative generation of a temp
ture is also intriguing. Indeed one important issue is whet
dislocations when present do generate an additional temp
ture or chaos. Finally, the general question of dynam
elastic instabilities is also related to recently investiga
questions about solid friction. It would be interesting to i
vestigate in solid friction quantities analogous to the tra
verse response and the transverse critical force once the
is in motion. By analogy with the effects discussed here,
may expect the existence of a transverse threshold in s
regime of solid friction.

Note added in proof.Recently, G. D’annaet al. ~unpub-
lished! gave experimental evidence of a transverse crit
current in YBCO crystals.
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APPENDIX A: FIRST-ORDER PERTURBATION THEORY

1. General analysis

In this appendix we compute the effective actionG@u,û#
to first order in the interacting partSint using the standard
formula ~39!. We remain as general as possible, in order
treat several problems and cases simultaneously, and spe
ize only at the end to particular cases. We thus choose
following disorder term@as it appears in the MSR actio
~37!#

Sint52
1

2 E
rr 8tt8

~ i û rt
a !~ i û r 8t8

b
!Dab@urt2ur 8t8

1v~ t2t8!,r 2r 8#. ~A1!
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This allows us to treat several problems. It allows us to tr
short-range correlated disorder keeping the cutoff dep
dence which allows to generate the extra linear and K
terms. It also allows to treat correlated disorder. The disor
correlator is chosen as

Dab@urt2ur 8t81v~ t2t8!,r 2r 8#

5(
K

DK
ab~r 2r 8!e2 iK •@urt2ur 8t81v~ t2t8!#, ~A2!

where the symbol(K denotes a discrete sum of lattice ha
monics for aperiodic problem and a continuous sum(K
[*ddk/(2p)d for a nonperiodicmanifold. For the model
~29! one hasDK

ab(r )5KaKbg(r )eiKr . This is thebarestart-
ing correlator~it is itself corrected and does not remain und
this form, see below!. In the case of model II~30!, i.e., the
continuum limit of the above model, one can replaceg(r
2r 8)eiK (r 2r 8)→gKd(r 2r 8). This is because the scale
which the displacement field varies is large compared to
correlation length of the disorder~see discussion of Sec
IV B !. Since we know that nonpotential terms may be ge
erated under RG~from FDT violation! we rather study from
the start the continuous model:

DK
ab~r 2r 8!→DK

abd~r 2r 8!. ~A3!

We work at finiteT and also specify toT50. With these
definitions one finds from Eq.~39!:

G@u,û#5S01E
rt

~ i û rt
a !S rt

a @u#2
1

2 E
rr 8tt8

~ i û rt
a !

3~ i û r 8t8
b

!Drt ,r 8t8
ab

@u# ~A4!

with

S rt
a @u#52E

r 8t8
(
K

Rrt ,r 8t8
gb

~2 iK g!DK
ab~r 2r 8!

3e2 iK •@urt2ur 8t81v~ t2t8!#e2 ~1/2! K•Brt ,r 8t8•K,

~A5!

Drt ,r 8t8
ab

@u#5(
K

DK
ab~r 2r 8!e2 iK •@urt2ur 8t81v~ t2t8!#

3e2 ~1/2! K•Brr 8,tt8•K. ~A6!

We have used thatD2K
ba (r 82r )5DK

ab(r 2r 8) which comes
from simple relabeling in Eq.~A1!. One can now use time
and space translational invariance and express the above
der the form, e.g., Drt ,r 8t8

ab
@u#5Dab(urt2ur 8t8 ,t2t8,r

2r 8). At T50 it reads simply

G@u,û#5S@u,û#2E
rr 8tt8

~ i û rt
a !Rrt ,r 8t8

gb

3Dab;g@urt2ur 8t81v~ t2t8!,r 2r 8#. ~A7!

Thus to this order the effect of temperature amounts to
place everywhere formally:
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DK
ad~r 2r 8!→DK

ad~r 2r 8!e2~1/2! K•Br 2r 8,t2t8•K. ~A8!

Temperature has thus two important effects~i! it generates a
time dependence and~ii ! it smoothes out the disorder. On
can already see that there are two important different ca
Either~high enough dimension! there is a time persistent pa
to the correlator limt→` Br ,t5B`,1`, in which case the
disorder is smoothed out, or limt→` Br ,t5` and the disorder
gets smaller at larger scales~low dimension!. Another inter-
pretation of the above result is that the corrected equatio
motion includes~i! a new, nonrandom, time retarded for
Sa@u# @see Eq.~A5!# and ~ii ! a corrected pinning force
which has an extra time dependence:

~R21!rtr 8t8
ab ur 8t8

b
52S rt

a @u#1F̃a~r ,t,urt !1 f a2habvb ,
~A9!

where the new~time-dependent! pinning force correlator is
Dab(u,r ,t). We now separate the relevant contributions
this complicated nonlinear, equation of motion. We also
fine:

Sab~urt2ur 8t8 ,t2t8,r 2r 8!

5
dS rt

a @u#

dur 8t8
b

5Rrt ,r 8t8
gd S ^Dad;gb~urt2ur 8t8!&

2d tt8E
t9

Rrt ,r 8t9
gd ^Dad;gb~urt2ur 8t9!& D . ~A10!

On the functional expression~A1! we can identify the cor-
rections to various terms. The first thing to do is to obtain
nd
s.

of

-

e

corrected response and correlation functions. For that,
simply has to expand Eq.~A4! in powers ofu and û up to
quadratic order. This yieldsG1 andG2, respectively, the lin-
ear and quadratic part. The linear term proportional toû
gives the correction to the forced f a52Sa@u50#.

The linear term in the effective action in Eqs.~36! and
~37! becomes

2E
rt

~ i û rt
a !@ f a2habvb1d f a~v !#, ~A11!

where the correction to the force is given by

d f a~v !5E
r ,t

Rr ,t
gb(

K
~2 iK g!DK

ab~r !e2 iK •vte2 ~1/2! K•Br ,t •K.

~A12!

At T50 this can also be written as

d f a~v !5E dtdrRgd~r ,t!Dad;g~vt,r !. ~A13!

The quadratic part of the effective action reads

G2@u,û#5S0
21E

rr 8tt8
~ i û rt

a !Sab~0,t2t8,r 2r 8!ur 8t8
b

2
1

2 E
rr 8tt8

~ i û rt
a !~ i û r 8t8

b
!Dab~0,t2t8,r 2r 8!.

~A14!

The correction to the response function is thus
~dR21!ab~q,v!52E
rt

~12ei ~q•r 1vt !!Rgd~r ,t !KgKbDK
ad~r !e2 iK •vte2 ~1/2! K•Br ,t •K. ~A15!
to

-

-

re-
It is useful to perform the smallq,v expansion to obtain the
corrections to the friction coefficient, the linear terms, a
the elastic matrix. From the general equation of motion~120!
one has

~dR21!ab~q,v!5~ iv!dhab1~ iqr!dLab
r 1qrqsdCab

rs

1h.o.t. ~A16!

One finds

dhab5E
rt

tRrt
gdKgKbDK

ad~r !e2 iK •vte2 ~1/2! K•Br ,t •K,

~A17!

dLab
r 5E

rt
r rRrt

gdKgKbDK
ad~r !e2 iK •vte2 ~1/2! K•Br ,t •K,

~A18!
dCab
rs 5

1

2 E
rt

r rr sRrt
gdKgKbDK

ad~r !e2 iK •vte2 ~1/2! K•Br ,t •K.

~A19!

This is a very general expression which we particularize
special cases below. AtT50 one has

dhab~v !52E dtdrtRgd~r ,t!Dad;gb~vt,r !. ~A20!

Note thatdd f a(v)/dvb52dhab(v). In the limit v→0 one
finds d f a(v);2dhabvb using an integration by part, pro
vided the functionD is analytic. A nonanalyticD yields a
critical force ~see Sec. VI!.

The completeûû term in the quadratic part of the effec
tive action isDab(0,t2t8,r 2r 8). It allows us to compute
the corrected correlation functions using the corrected
sponse function:
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^u2q,2v
a uq,v

b &5$R~1!~v,q!•@2hT1D~0,v,q!#

•R~1!~2v,2q!%ab , ~A21!

R~1!~v,q!5
1

R21~v,q!1dR21~v,q!
, ~A22!

where• denotes the matrix multiplication of indices. Exam
ining the large time and space behaviors one finds that t
are two important corrections.

~i! A correction to the temperature~from the equal-time
piece!:

d~hT!ab5
1

2 E
rt

@Dab~0,t,r !2Dab~0,t51`,r !#, ~A23!

~ii ! a correction to a static random force. It is identified
the time persistent part of the disorder:

Dab~0!5 lim
t→`

E
rt

Dab~0,t51`,r !. ~A24!

It yields to a static partd~v! in the displacement correlation
Note however that there is additional important correction
the nonlinearpart of the disorder, which we now identify.

Finally we turn to the nonlinear terms in the effectiv
action and the correction to the disorder and generation
KPZ terms. It is important to follow not just the rando
force but the complete nonlinear static part of the disor
term. It is identified as

lim
t2t8→`

Dab~urt2ur 8t8 ,t2t8,r 2r 8!

5 lim
t2t8→`

(
K

DK
ab~r 2r 8!e2 iK •@urt2ur 8t81v~ t2t8!#

3e2 ~1/2! K•Br 2r 8,t2t8•K. ~A25!

Finally, the nonlinear KPZ terms can be easily seen to
generated already to this order. ExpandingS rt

a @u# to second
order in the fieldu one finds
re

s

o

of

r

e

dKabg
rs 5

1

2 E
rt

r rr sRrt
edKbKg~ iK e!

3DK
ad~r !e2 iK •vte2 ~1/2! K•Br ,t •K. ~A26!

2. Explicit evaluation of the corrections in specific models

~i! Model II: We first study the continuous model II vali
in the elastic limit. It is obtained by the substitution~A3!.
One finds first that

dLab
r 50, dCab

rs 50, dKabg
rs 50, ~A27!

i.e., that no linear, KPZ terms are generated, and that the
no correction to the static part of the response functi
These are consequences of the statistical tilt symmetry~see
Sec. VI!. The only corrections are

d f a~v !5E
t
Rr 50,t

gb (
K

~2 iK g!DK
abe2 iK •vte2 ~1/2! K•B0,t •K,

~A28!

dhab5E
rt

tRr 50,t
gd KgKbDK

ade2 iK •vte2 ~1/2! K•B0,t •K. ~A29!

For the bare problem one can further substituteDK
ad

5KaKbgK . Note the symmetrieshab(2v)5hab(v) and
d f a(2v)52d f a(v). Let us further specify to the problem
of a periodic lattice. The bare perturbation theory~i.e., start-
ing from hab5h0! gives Eqs.~41! and ~42! in the text.

One can also look at the dressed perturbation theory~i.e.,
adding from the start the terms which are generated!. Sup-
pose the velocity along a principal lattice directionx. Then
the symmetryy→2y ensures in Eq.~A28! that to all orders
hxy50. Howeverhxx andhyy are in general different. Inver
sion of the response tensor then leads to~for d52!:

PT~q!ab

cT~q!1 ihyyv1 ivqx
1

PL~q!ab

cL~q!1 ihyyv1 ivqx

1
~hyy2hxx!ivex

aex
b

cT~q!1 ihxxv1 ivqx
. ~A30!

The correlation functions can also be computed using
here Dab(0,t2t8,r 2r 8)5Dab(t2t8)d(r 2r 8). Starting
with the bare action and expanding to lowest order in dis
der yields, atT50:
^u2q,2v
a uq,v

b &5(
K

(
I 5L,T,I 85L,T

E
q,BZ

~2p!d~v2K•v !gKKgKd

Pag
I ~q!

cI~q!1 ih0~v1v•q!

Pbd
I 8 ~q!

cI8~q!2 ih0~v1v•q!
, ~A31!

which is a sum of oscillating functions, plus a static one. AtT.0 the expression is more complicated. It reads
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d^u2q,2v
a uq,v

b &5(
K

(
I 5L,T,I 85L,T

E
q,BZ

Pag
I ~q!

cI~q!1 ih0~v1v•q!

Pbd
I 8 ~q!

cI8~q!2 ih0~v1v•q!
Dgd~v!

1
Pag

I ~q!

cI~q!1 ih0~v1v•q!

Pbd
I 8 ~q!

cI8~q!2 ih0~v1v•q!
2ihT~v1v•q!dhgd ~A32!
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with Dgd(v)5* tgKKgKde2(1/2)K•B0,t •Keivt2 iK •vt.
~ii ! Model I: In the full model I one can use Eq.~A17! to

compute the new, linear term which is generated. If one s
ies the bare disorder one may substituteDK

ab(r )
→KaKbg(r )eiKr . Whenv is along a principal lattice direc
tion one finds by symmetry that onlyLx

yy5v1 , Lx
yx5v2 ,

Lx
xx5v3 , Ly

xy5v4 are nonzero. Note that by symmet
y→2y, Ky→2Ky one hasdhxy50, dhyx50, d f y50. Us-
ing symmetries one finds

Lx
yy5v15hv2(

K
E

tr
xK2Ky

2R~r ,t!g~r !eiK •~r 2vt!,

~A33!

Ly
xy5v45Ly

yx5v252(
K

E
tr

yK2KyKxR~r ,t!

3g~r !eiK •~r 2vt!, ~A34!

Lx
xx5v35hv2(

K
E

tr
xK2Kx

2R~r ,t!g~r !eiK •~r 2vt!.

~A35!

Note thatv25v4 exactly and that to lowest order inv one
hasv25v3 andh1dhxx(v50)5h1dhyy(v50). The cor-
rections toh read

dhaa~v !5(
K

K2Ka
2E dtdrtg~r !R~r ,t!eiK •~r 2vt!

~A36!

with a5x,y. Note thatvh(v) has a maximum as observe
in solid friction ~dynamical friction smaller than static one!.

APPENDIX B: DYNAMICAL EFFECTIVE ACTION TO
SECOND ORDER AND ANALYSIS OF DIVERGENCES

In this appendix we obtain the perturbative expression
the effective dynamical action to second order in disorder
each step we remain as general as possible so that ou
pressions can be applied to study a large class of models
situations. Then we study particular situations and iden
the terms which correct the bare disorder by performin
short distance or time expansion. We focus mainly on div
gences occurring neard54 ~for v50! andd53 ~for v.0!.
Note that the operators are local inr but nonlocal in time,
which makes the expansion more involved. We will use
fact that the calculation performed in Appendix C of Ref.
~for d52 and v50! has similarities with the present, i
order to skip some details. A detailed version of the pres
calculation can be found in Ref. 106.
d-

f
t

ex-
nd
y
a
r-

e

nt

We study herea priori both the periodic manifold case o
the nonperiodic one. The only difference is that in the pe
odic case one has discrete(K to be replaced by*K in the
continuous case.

The effective action to second order in the interacti
term is114

22G~2!@W#5^Sint@W1dW#2&dW2^Sint@W1dW#&dW
2

2 K dSint@W1dW#

dW L
dW

GK dSint@W1dW#

dW L
dW

~B1!

with W5(u,û) and dW5(du,dû) and a Gaussian averag
over dW is performed using the bare quadratic action. T
last term merely ensures that all one-particle reducible d
grams be absent. A tedious calculation then yields for
i û i û term in the effective action, a formula identical to E
~C3! of Ref. 94 with the replacementut2ut8→urt2urt 8
1v(t2t8)[Urtt 8 , since here we are dealing with a situatio
where v.0. In Eq. ~C3! of Ref. 94 the symbol̂ F@u#&
meanŝ F@u1du#&du and^..&c denotes a connected avera
between the vertices, i.e.,^F@u1#G@u2#&c5^F@u1#G@u2#&
2^F@u1#&^G@u2#&. Note that simplifications occur in the
particular caseT50 since the connected terms then van
identically, and one can also drop the averages^F@u#&
5F(u). Using the assumption of time and space trans
tional invariance one finds

G52
1

2 E
rr 8t1t2

~ i û rt 1

a !~ i û r 1r 8,t2

b
!dD r 8

ab ~B2!

as a sum of four terms:dD5( i 51,4dDeff
(i) :

dD r 8
~1!

52Rdl~t2,0!Rgr~t1 ,r 8!^Dbl;gd~Ur 1r 8,t2 ,t22t2
!

3@Dar~Ur ,t1 ,t22t1
!2Dar~Ur ,t1 ,t22t12t2

!#&c ,

dD r 9
~2!

5
1

2
d~r 9!Rgr~t,2r 8!Rdl~t8,2r 8!^Dab;gd~Ur ,t1 ,t2

!

3@Drl~Ur 1r 8,t12t,t12t8!1Drl~Ur 1r 8,t22t,t22t8!

2Drl~Ur 1r 8,t12t,t22t8!2Drl~Ur 1r 8,t22t,t12t8!#&,

dD r 8
~3!

5Rgr~t2 ,r 8!Rdl~t1 ,2r 8!

3@^Dar;d~Ur ,t1 ,t22t2
!Dbl;g~Ur 1r 8,t2 ,t12t1

!&

2^Dar;d~Ur ,t1 ,t12t12t2
!Dbl;g~Ur 1r 8,t2 ,t12t1

!&
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2Dar;d~Ur ,t1 ,t22t2
!Dbl;g~Ur 1r 8,t2 ,t22t12t2

!&],

dD r 9
~4!

5d~r 9!Rgr~t2 ,0!Rdl~t1 ,2r 8!^Dab;d~Ur ,t1 ,t2
!

3@Dlr;g~Ur 1r 8,t12t1 ,t12t12t2
!

2Dlr;g~Ur 1r 8,t22t1 ,t22t12t2
!#&c , ~B3!

where some terms have vanished from the Ito time discr

zation propertyR
t
28t

18

gb1R
t
18t

28

db250.

We have written these terms in that form for simplicit
but one must keep in mind that in addition they must
symmetrized undera→b andr→2r when necessary. Up to
now this is very general. Note that the expression of
second order correction to the kinetic term is given in R
106. We now consider several cases.

1. Static degrees of freedom at zero temperature

In this subsection we first setT50, and thusdD (1)

5dD (4)50 and other averages can be dropped. Here we
only study static disorder and we thus drop thev(t2t8)
terms thus settingUrtt 85urt2urt 8 in all the above formulas
The bare response functionRab(t,r ) remains however arbi
trary. In the moving lattice problem this amounts to restri
ing ourselves to the modesKx50, which are of interest for
studying thetransverse components u•v50 that see only a
static disorder~assuming they can be decoupled! andv still
appears in the response function. Since we keepu as a vector
with arbitrary number of components, the equations that
obtain can be applied to other problems with static disor
~e.g., the usual manifold casev50, periodic or not, nonpo-
tential problems etc.!. The only remaining terms aredD r 9

(2)

anddD r 8
(3) in Eq. ~B3!. It is then easy to perform a short tim

short distance operator expansion in the variablesr 8,t1 ,t2 .
This yields, up to higher-order irrelevant gradient terms,
following total correction to the pinning force correlator:

dDab~u!5Dab;gd~u!@Da8b8~0!2Da8b8~u!#

3E
r
Gga8~r !Gdb8~r !2Daa8;d~u!Dbb8;g~u!

3E
r
Gga8~r !Gdb8~2r !, ~B4!
ti-

e

e
f.

so

-

e
r

e

where we have defined the static responseGab(r )
5*0

`dtRab(t,r ). Note that this formula is valid for a large
class of models. It doesnot suppose for instance that th
random force correlator is the second derivative of a rand
potential. It is important to note that the condition that t
random force is the gradient of a potential, i.e.,Dab(u)
52]a]bR(u) whereR(u) is the correlator of the random
potential ~not to be confused with the response functio!
remains true only whenG(r )5G(2r ). Indeed, in that case
assuming the symmetry thatGab(r )5Gba(r ), one finds

dR~u!5 F1

2
R;gd~u!R;a8b8~u!2R;gd~u!R;a8b8~0!G

3E
r
Gga8~r !Gdb8~r !. ~B5!

If G(r )ÞG(2r ) a nonpotential part is generated to the d
order. If u has only anN51 component it remains a tota
derivative. If we study models withN.1 component fields
and a non-FDT response function we generate nonpote
disorder. From Eq.~B4! a generalized FRG equation can b
derived, which depends on the divergences contained in
response function. A special case corresponds tov.0 and
isotropic response~the simplestN component generalization
of the moving glass equation~5!. Then one finds

dDab~u!

dl
5eDab~u!1zugDab,g~u!1CDab;gd~u!

3@Dgd~0!2Dgd~u!#, ~B6!

where C is a numerical constant. The temperature can
added. In the isotropic case it simply produces an extra t
2TDab,gg(u) in the above equation.

Higher derivative terms have been neglected. In the p
odic case, the annihilation term94 produces a gradient ran
dom force term~the so-called Cardy-Ostlund term! relevant
in the statics ind<2, but unimportant here.

2. Full dynamical problem at zero temperature

In this subsection we still setT50 leading to the same
simplifications as in the previous subsection, but we keep
v(t2t8) terms. So we are studying the full dynamical pro
lem of a driven lattice~i.e., with transverse and longitudina
displacement fields!. The effective action is the sum of th
following two terms:
G152
1

4 E
rr 8tt8tt8

~ i û rt
a !~ i û rt 8

b
!Rgr~t,r 8!Rdl~t8,r 8!Dab;gd@urt2urt 81v~ t2t8!#@Drl„ur 2r 8,t2t2ur 2r 8,t2t81v~t82t!…

1Drl„ur 2r 8,t82t2ur 2r 8,t82t81v~t82t!…2Drl„ur 2r 8,t2t2ur 2r 8,t82t81v~ t2t81t82t!…

2Drl„ur 2r ,t82t2ur 2r 8,t2t81v~ t82t1t82t!…#,

G252
1

2
~ i û rt

a !~ i û r 1r 8,t8
b

!Rgr~t,r 8!Rdl~t8,2r 8!$Dar;d„ur ,t2ur ,t82t1v~ t2t81t!…

3@Dbl;g„ur 1r 8,t82ur 1r 8,t2t81v~ t82t1t8!…2Dbl;g„ur 1r 8,t82ur 1r 8,t82t2t81v~t1t8!…#

2Dar;d„ur ,t2ur ,t2t2t81v~t1t8!…Dbl;g„ur 1r 8,t82ur 1r 8,t2t81v~ t82t1t8!…%. ~B7!
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We can now perform a short distance and time expansion and compute the correction to the random force correlator. E
asDab(U), with U5u2u81v(t2t8) it reads

dDab~U !5E
q,tt8

Dab;gd~U !Rgr~t,q!Rdl~t8,2q!FDrl„v(t82t)…2
1

2
@Drl„U1v~t82t!…1Drl„2U1v~t82t!…#G

1Rgr~t,q!Rdl~t8,q!@Dar;d~U1vt!„Dbl;g~2U1vt8!…2Dbl;g„v~t1t8!…

2Dar;d„v~t1t8!…Dbl;g~2U1vt8!#. ~B8!

It is also convenient to study the Fourier transform of the correlatorDab(U)5(KDK
abeiKU and to compute the correction t

DK
ab . We express it using the response function inRgr(s5 iv,q) spatial Fourier transform and time Laplace transform. It

the sum of two contributions and reads

dDK
ab52KgKdDK

ab(
K8

E
q
DK8

rlRgr~2 ivK8,2q!Rdl~ ivK8,q! ~B9!

1
1

2 (
K8

E
q
~K2K8!g~K2K8!dDK2K8

ab
@DK8

rlRgr~2 ivK8,2q!Rdl~ ivK8,q!

1D2K8
rl Rgr~ ivK8,2q!Rdl~2 ivK8,q!# ~B10!

2(
K8

E
q
Kd8~K82K !gDK8

arDK82K
bl Rgr~ ivK8,q!Rdl

„iv~K82K !,q… ~B11!

1KdDK
ar(

K8
E

q
Kg8DK8

blRgr
„iv~K1K8!,q…Rdl~ ivK8,q!

2KgD2K
bl (

K8
E

q
Kd8DK8

arRgr~ ivK8,q!Rdl
„iv~K82K !,q…, ~B12!
th

i

n-
de

n
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t

n-
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me
hes.
shes

the
where the first half comes fromG1 and the second fromG2 .

3. Study at finite temperature

In this subsection we study the case of finiteT.0 and the
static disorder case~corresponding to Sec. B 1 above!. The
study is rather tedious and we skip some details. Since
situation has already been analyzed~but applied to the dif-
ferent case of a periodic manifold ind52! we refer to Ref.
94 for further details. We concentrate mostly on what
needed for the analysis neard5du ~du54 for v50 anddu
53 for v.0!. The result94 is that the short distance expa
sion of the effective action up to second order in disor
produces ai û i û term which can be written as

E
r ,t1 ,t2

dDK
abe2 ~1/2! K•B0,t12t2

•K~ i û rt 1

a !~ i û r ,t2
b !eiK ~urt 1

2urt 2
!,

~B13!

which is thus of the same form as the first-order term a
which thus corrects it. Here again, other operators~such as
higher gradients! are produced, but they are irrelevant ne
du . We are using extensively the assumed symmetriesDK

ab

5DK
ba5D2K

ab . We arenot using the potential condition tha
DK

ab;KaKb , since this is wrong in general~see discussion
at

s

r

d

r

above!. We find that the correctionsDK
ab are a priori the

following, starting with the terms which do not give a co
tribution.

~i! The terms with connected averages~1! and ~4! give
contributions given by formulas~i! and ~iii ! of Eq. ~C19! of
Ref. 94. One can check that this term does not produc
divergence.

~ii ! The last two terms ofdD (3) give

dDK
ab5(

K8
@KdKg8~DK

arDK8
bl

!uab

2KgKd8~DK8
arDK

bl!uab#Rr ,t2

gr R2r ,t1

dl

3e2 ~1/2! K8•B0,t11t2
•K8e2K•~Cr ,2t1

2Cr ,t2
!•K8,

~B14!

where (̄ )ab means symmetrization over the indicesa,b.
This term was unlikely to produce a divergence for the sa
reason as above, but in any case it does not since it vanis
Indeed one sees on this expression that this quantity vani
because of the symmetryt1→t2 which makes the
summmand overK8 odd underK8→2K8.

~iii ! Finally, the terms which produce divergences are
term dD (2) and the first term ofdD (3). They give a total
contribution:
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dDP
ab5 (

K,K85P2K
~KgKdDK

abDK8
rlR2r ,t

gr R2r ,t8
dl eK•~2C0,02Cr ,2t2Cr ,2t8!•K81Kg8KdDK

arDK8
blRr ,t

gr R2r ,t8
dl eK•~2C0,02Cr ,t2Cr ,2t8!•K8!

2PgPdDP
ab(

K8
DK8

rlR2r ,t
gr R2r ,t8

dl e2 ~1/2! K8•B0,t82t •K8 coshP•~Cr ,2t2Cr ,2t8!•K8. ~B15!
on

ing

f
th

n

the

m

m

take

fine

n

r

This term produces a divergence atdu . It is simply the
finite-temperature generalization of Eq.~B4! above. Since
B(r ,t) is finite ~and cutoff dependent! at larger , t and since
at T50 the infrared divergence came from the larger , t
values, the new IR divergence is the same as the old
with a coefficient obtained by simply by taking the larger , t
limit in the exponential factors. Neardu the large time or
space limit ofB(r ,t)52(C0,02Cr ,t) is proportional to the
temperature:

limmax~r ,t !→` Bba~r ,t!52C0,0
ba5B`dab

52T*qS Pba
T ~q!

cT~q!
1

Pba
L ~q!

cT~q!
D .

The final divergent contribution is

dDP
ab5 (

K,K85P2K
~KgKdDK

abDK8
rlR2r ,t

gr R2r ,t8
dl

1Kg8KdDK
arDK8

blRr ,t
gr R2r ,t8

dl
!eK•B` •K8

2PgPdDP
ab(

K8
DK8

rlR2r ,t
gr R2r ,t8

dl e2 ~1/2! K8•B` •K8.

~B16!

APPENDIX C: ANALYSIS IN d52

We start from the MSR dynamical action correspond
to the equation studied in Sec. VII. It readsS5S01S2 1Sint

with S0 and Sint as defined in 48 andS25 1
2 *q,t,t8( i ûq,t)

3( i û2q,t8)(Dq21D0). Here one studiesD(u)5g cos(u). In
the absence of disorder the free actionS0 yields correlators
as in Eq. ~38!, e.g., C(q,v)52Th/ucxqx

21cyqy
21 ivqx

1 ihvu2 and

B~r ,t !5E
q

2T

cxqx
21cyqy

2 @12e2~cxqx
2
1cyqy

2
!utu/h

3cos~qr1vqxt/h!#. ~C1!

Note that for v.0 C(r ,t)ÞC(2r ,t). In the presence o
disorder one studies perturbation theory expanding in
interaction termSint using the quadratic partS01S2 as the
bare action. The response function ofS01S2 is identical to
the one ofS0 with the correlation function changed as:Cq,t

→Cq,t1Cstatq,t with Cstatq,t5(Dq21D0)/(c2q41v2qx
2)

which is purely static and does not appear in any diagram
perturbation theory.

As in Appendix A, we compute the effective actio
G@u,û# in perturbation ofSint . To lowest order one gets
e,

e

of

G5S01S21E
rtt 8

~ i û rt !g sin~urt2urt 8!Rrtrt 8e
2 ~1/2! Brtrt 8

2
1

2
~ i û rt !~ i û rt 8!g cos~urt2urt 8!e

2 ~1/2! Brtrt 8, ~C2!

whereBrtr 8t85Crtrt 1Cr 8t8r 8t82Crtr 8t82Cr 8t8rt . This yields
immediately the corrections to first order ing for the friction
coefficient, the temperature, and the disorder given in
text ~95!. The correction toh comes from a a gradient ex-
pansion in time which yields a correction to the ter
i û rth] turt . The correction tohT comes from a correction to
the i û rt i û rt , and the correction to the disorder comes fro
the long-time limit of the exponential.

To compute the RG equations from Eq.~95!, we have to
decide on a regularization scheme. Here we choose to
an infrared regulator by defining a large timetmax but no
infrared regulator in momentumq. The ultraviolet cutoff is
enforced via a Gaussian cutoff in momentum, i.e., we de

B~r ,t,a!5E
q

d2q

~2p!2

2T

cq2 ~12e2cq2mutueiqr 1 ivqxmt!e2a2q2
,

~C3!

where the mobilitym51/h has been introduced. Equatio
~C3! can be readily evaluated as

B~r ,t,a!5
2T

c E
a2

1`

dsE
q

d2q

~2p!2
@e2sq2

2e2~s1cmt !q2
cos~vqxmt !#

5
T

2pc E
0

cmt/~cmt1a2! du

u S 1

12u

2e2 u„y21~x1vmt !2
…/4cmtD , ~C4!

where in the intermediate stage we have integrated oveq
and performed an intermediate change of variableu
5cmt/(cmt1s). Using

E
0

z du

u
~12e2ru!5C1 ln~rz!2Ei@2rz#)

Ei@x#5E
2`

x

et
dt

t
,

Ei@2x#;x!0C1 ln~2x!2x1
x2

4
1O~x3!, ~C5!

one obtains for Eq.~C4!
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B~r ,t,a!5
T

2pc S lnFcmutu1a2

a2 G1C1 lnFy21~x1vmt !2

4~cmutu1a2! G
2EiF2@y21~x1vmt !2#

4~cmutu1a2! G D . ~C6!

This is used to obtain, for the RG corrections~see text!:

d~hT!

hTc
5 g̃e2~T/Tc!CE

ha/v

tmax vdt

ha S vt

haD 22T/Tc

5 g̃e2 ~T/Tc! Cdl1 g̃edl~122T/Tc!e2 ~T/Tc! C

3E
ha8/v

tmax vdt

ha8 S vt

ha8D
22T/Tc

. ~C7!

APPENDIX D: STABILITY OF THE T50
FRG FIXED POINT

Here we diagonalize the RG flow around the fixed po
~63! and show that it is a locallyattractivefixed point within
the space of periodic functions on@0,1#. D̄(u) satisfies the
RG equation~61! with D̄(0)5D̄(1)50. We have checked
numerically that analytic initial functions~i.e., with zero odd
derivatives at 0! converge towards the nonanalytic fixe
point D̄* (u)5u(12u)/2. The stability analysis is per
formed by writing D̄(u)5D̄* (u)1d(u). One then has to
solve the eigenvalue problem:

1

2
u~12u!d9~u!52ld~u!. ~D1!

The eigenfunctions are such that

1

2
u~12u!dn9~u!52

1

2
n~n21!dn~u!. ~D2!

One can also define the variableu5(11v)/2. Then the
eigenfunctions are the Jacobi polynomialsdn(u)
5Pn

21•21(v) ~see Ref. 133, p. 779! and form an orthonorma
complete set. They can be written as

dn~u!5
~21!n

n!
u~12u!

dn

dun @u~12u!#n21

5
~21!n

2nn!
~12v2!

dn

dvn ~12v2!n21. ~D3!

Because of theu→2u symmetry, which due to periodic
ity becomesu→(12u) symmetry, we can restrict ourselve
to n an even and nonzero positive integer. The lowest eig
modes are thusd2(v)5(v221)/4 ~eigenvalue21!, d4(v)
53(126v215v4)/16 ~eigenvalue 26!, d6(v)55(v2

21)(1214v2121v4)/32 ~eigenvalue215!, etc. Note that
they satisfy dn(v521)5dn(v51)50 as requested. Al
these eigenfunctions are nonanalytic~though by combining
several one may get analytic ones!. Rendering the initial
function nonanalytic is presumably the role of the nonline
ity. This equation is interesting since it is the simplest ca
t

n-

-
e

on which one can work out the full stability spectrum and
may enlighten us about the generation of nonanalyticity
these types of RG equations.

APPENDIX E: PARAMETRIZATION
OF MOVING STRUCTURES

Moving structures can be generally parametrized by th
internal spaceD, the number of componentsn of the dis-
placements fields~characterizing its deformations, or th
number of components of the order parameter! and the em-
bedding spaced. We denote for convenience by the sam
symbol the space itself and its dimension.

In the statics one can distinguish several cases. The p
lem of manifolds in random potentials has been studied
e.g.,~i! fully oriented manifolds whereD andn are orthogo-
nal (d5D1n) such as directed polymers or interfaces,~ii !
isotropic manifoldsn5d such as self-avoiding chains in ran
dom potentials, and~iii ! problem of lattices where usuall
d5D and n<d. Lattices withD,d are possible in prin-
ciple, such as flat but fluctuating tethered membranesD5n
,d or isotropic tethered membranesD,d5n or any inter-
mediate case~the so-called tubules!.

In the driven dynamics, let us callx the direction in the
embedding space along which the system is driven. One
distinguish the following cases.

~A! The structure is elastic~i.e., not liquid! in the direc-
tion where it is driven. Then there is a displacementux along
x andx also belongs to then space. There are two subcase

~A1! x also belongs to the internal spaceD. This is the
problem of manifolds drivenalong one of their internal di-
mensions, to which the moving glass studied here belongs
general parametrization in that case would be

D5~x,y1 ,z!, n5@ux ,uy5~uy1
,uy2

!#, d5~x,y1 ,y2 ,z!.
~E1!

It allows for manifolds withD,d which do not entirely fill
space~i.e., with ‘‘height’’ degrees of freedomuy2

!. Then a
parametrization of the dimensions~and the subspaces! is

D511d11dz , n511d11d2 , d511d11d21dz ,
~E2!

whered1 andd2 are the number of components ofuy1
and

uy2
, respectively, anddz is the number of components ofz.

In this paper we have mainly studied the cased5D (d2
50) but with d1.0. Note that a singleQ CDW has d1
5d250 (uy50) andd5D.

~A2! x does not belong to the internal spaceD. This is the
problem of manifolds drivenperpendicular to their internal
dimension. The general parametrization in that case is

D5~y1 ,z!, n5@ux ,uy5~uy1
,uy2

!#,

d5~x5ux ,y1 ,y2 ,z!, ~E3!

and thus D5d11dz , n511d11d2, and d511d11d2
1dz . It also contains the case of a driven order parameteu
which does not couple at all to internal space~such as a
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vector spin order parameter!. Indeed in that particular cas
one can define the ‘‘embedding space’’ as the sumd5D
1n ~and thusuy1

50!.
~B! The structure is aliquid in the direction where it is

driven. Thenx belongs toD space but not ton space. Then
one setsux50 in case~A1! above, i.e.,n5d11d2 . The
parametrization is thus

D5~x,y1 ,z!, n5~uy1
,uy2

!, d5~x,y1 ,y2 ,z! ~E4!

with D511d11dz , n5d11d2 , d511d11d21dz . The
transverse moving glass is one example withd250 and
~d151, dz50! in d52 and~d151, dz51! in d53 ~a mov-
ing line lattice giving a smectic sheets structure of channe!
and ~d152, dz50! in d53 ~a moving point lattice giving a
line crystal structure of channels!. Note that as for any liquid
scalar density fluctuations should, in principle, be also inc
porated in a complete description.

APPENDIX F: HARTREE METHOD

For completeness we give here the Hartree equations
act in the large-N limit, for model III generalized toN com-
ponents. The equations atv50 were derived and analyzed i
Ref. 84~see also Refs. 134 and 135!. These equations will be
analyzed further in a future publication. The Hartree eq
tions are

] tRktt852~k21 ivkx!Rktt814E
0

t

dsV29~Bts!

3Rts~Rktt82Rkst8!,

] tCktt852~k21 ikxv !Cktt812E
0

t8
dsV18~Bts!R2kt8s

14E
0

t

dsV29~Bts!Rts~Cktt82Cks,t8!12TR2kt8t

~F1!

whereRtt85*kRktt8 , Btt85*kBktt8, and Bktt85Cktt1Ckt8t8
2Cktt82C2ktt8 . Note thatCktt85C2kt8t , whereV2 con-
tains only the potential part of disorder, whileV1 contains all
disorder ~see Ref. 84 for definitions!. One can look for a
time-translational invariant solution of these equation
:

ls

r-

ex-

a-

s:

Rktt85r k(t2t8), Cktt85ck(t2t8)~Ref. 84! ~in the statics
this is the equivalent of a replica symmetric solution!. It can
be written in Fourier-transform version:

r k~v!5
1

iv1k21 ivkx1S~0!2S~v!
,

ck~v!5
2T1D~v!

u iv1k21 ivkx1S~0!2S~v!u2
. ~F2!

Note thatck(v)5c2k(2v). We have defined

S~v!524E
2`

1`

dteivtV29„b~ t !…r ~ t !,

D~v!54E
2`

1`

dteivtV18„b~ t !…, ~F3!

where r (t)5*kr (t) and b(t)5*kbk(t)5*k@2ck(t50)
2ck(t)2c2k(t)#. Note that bk(t)5*v(12eivt)@ck(v)
1c2k(v)# and b(t)5*v@12cos(vt)#c(v) where c(v)
5*kck(v) is an even function ofv.

A superficial analysis of the above equation indicates t
this nonperiodic problem has an asymptotically linear
sponse and is not glassy forv.0 for N5` ~while it has a
nonlinear asymptotic response forv50 both atN finite84

andN infinite85!. Indeed the response function appears to
massive since integrating overkx one has

r ~v!5
1

2 E
ky

1

@ky
21 iv1S~0!2S~v!1v2/4#1/2. ~F4!

Thus the response to an applied force beingF/V5@1
2S8(0)# would be linear at least at the naive level~for a
more detailed behavior one must add a small transverse f
and follow the methods of Ref. 136!. This is related to the
absence of divergence forh noticed in the FRG Sec. VI.
Further investigations would be necessary however bef
reaching a conclusion. One should makes sure that no t
sition occurs in the above equations~such can happen in the
casev50!. Also, it is possible that the glassy physics foun
in Sec. VI, which comes from a renormalization of the di
order, is not fully captured here by the most naive largeN
limit.
.
*Laboratoire Propre du CNRS, associe´ á l’Ecole Normale
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