PHYSICAL REVIEW B VOLUME 57, NUMBER 18 1 MAY 1998-11

Positronium in alkali halides: Tunneling from the delocalized to the self-trapped state
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The tunnel transition of positroniu®9 from its stable delocalized state to the metastable localized state in
alkali halides is investigated theoretically using the formalism developed by Nasu and Toyozawa for excitons
[J. Phys. Soc. Jprk0, 235(1981)]. The tunneling rate between these two states is found to have the expo-
nential dependence on the param@&#éf » (B is half of the Ps bandwidthy is the averaged frequency of the
longitudinal acoustic phonopswhereas the potential barrier height between the two states is mainly deter-
mined by the bandwidtiB and is proportional tdB. A fitting procedure taking into account the quantum
tunneling of Ps between the delocalized and the self-trapped state is proposed for the theoretical interpretation
of the experimental data on Ps self-trapping. The procedure yields the numerical values of the parameters of Ps
self-trapping(the tunneling rate and the potential barrier heightqualitative agreement with those calculated
theoretically.[S0163-182608)06218-3

[. INTRODUCTION other words, since Ps is lighter, it is more difficult to be
localized than the exciton in the same matefial.

Positronium (P9 formation in alkali halide crystals has According to theoretical studies of the electron and
presently been well established by means of the positroexcitort’~22(see also Refs. 15 and Yl@he free and the lo-
annihilation techniqué=3 In the crystals with low enough calized states are separated by the adiabatic potential barrier
concentration of defects, the Ps atom has been experimedue to the short-range nature of the interaction with longitu-
tally found to form in two types of states: the delocalizeddinal acoustic phonons. The double-well structure of the
(Bloch-like, fred type and the localized oré. The forma-  adiabatic potential, in turn, results in a two-component char-
tion of the Bloch-type positronium is confirmed by observingacter of the emission spectra of the decaying particle. The
very narrow peaksthe central peak and the side peaks aptwo components originate from the delocalized and the self-
pearing at the momentum corresponding to the reciprocarapped excitonic states, giving a narrow and a broad decay
lattice vectors of the sample crystah the momentum dis- spectrum, respectively.
tribution of the annihilation radiation at sufficiently low tem-  The temperature activated transition of positronium from
peraturegtypically less than a few tens)R~1° This type of  the delocalized to the self-trapped state was observed experi-
positronium is completely delocalized. mentally for a number of alkali halide crystals such as KaF,

As the temperature increases it is obsefvéd*“that the  KCI,*® KI,2 etc!* The temperature of the self-trappirithe
central Ps peak becomes drastically wider and the side peaksmperature at which half of all the Ps atoms decay from the
disappear, indicating the localization of positronium in theself-trapped stajewas experimentally estimated to Her
crystal volume of the order of the lattice constant. This effect~150, 65, and 50 K for Nat2 KCI,** and KI* respectively.
was attributed to a temperature activated transition of th&'he experimentally observed fractions of the self-trapped Ps
free delocalized Ps to the self-trapped stfé? Analogous in KI and KCI were compared with the predictions of a
phenomenon is known for holes and excitons in crystakimple classical modél**=* A deviation was observed at
dielectricst>® For instance, it is knowh*®that the ground T< T of the experimental fraction from the value expected.
stable state of an electron in alkali halide crystals is delocaltt was suggested that this deviation was possibly attributed to
ized, whereas the ground states of excitons and holes atke tunneling of the delocalized Ps through the adiabatic po-
localized. This is connected with the broad band of the electential barrier into the self-trapped state. An attempt was
tron (the band mass is'my, the free-electron masand with made to explain this deviation by phenomenologically intro-
the comparatively narrow bandthe band masses are(5 ducing an effective temperatute.
—10)my] of the excitons and holes in these crystals. For The purpose of the present paper is to investigate the Ps
excitons, moreover, additional metastable states exist that atenneling between the free and the self-trapped state theoreti-
delocalized. The Ps atom can be regarded to some extent aally, and to clarify the role of this purely quantum process
an “isotope” of the exciton, and, in this sense, for positro-in the temperature activated transition of Ps from one state to
nium in alkali halides an analogous situation takes place witlanother. Although the analogous tunnel transition for the ex-
the only difference being that, since the Ps band is less naciton was already studied in a number of wofks?’ it is
row than that of the excitofithe Ps band mass is (2.5 impossible merely to extend the excitonic theory to positro-
—4)m, (Ref. 14], the ground stable state of Ps in alkali nium. Additional analysis is necessary for positronium, tak-
halides is delocalized and the metastable one is localized. limg into account the metastability of the self-trapped state.
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We consider the interaction of Ps with longitudinal acous- B
tic phonons within the adiabatic approximation. The Ps in- Hps=B— 3 > cog—iv)), (©)
teraction with optical phonons is assumed to be negligibly =y
small due to the electroneutrality of Bsln Sec. Il the basic
equations are derived for the positronium-acoustic-phonoiihereB is the half of the Ps bandwidth, aig (j=x,y,z) is
coupling constant, for the parameters of the adiabatic poterihe jth Cartesian component of the gradient operaton.of
tial (the barrier height and the tunneling path lengénd for ~ The crystal is assumed to have a simple cubic structure. In
the Ps tunneling rate from the free to the self-trapped state&ontrast to the case of the excitéhsuch an assumption
Following the general theory for the excitéhwe introduce appears to be fairly natural for Ps, since the experiment
a trial interaction mode and formulate the interaction of Psshows that Ps in alkali halides hardly distinguishes the anion
with acoustic phonons in terms of this mode only. The po-and the cation and only “sees” the simple cubic latficé.
tential barrier height, the tunneling path length, and the Pd'he second term in Ed2) is the phonon Hamiltonian. It is
tunneling rate from the stable delocalized to the metastabl#ritten in the adiabatic approximation as
self-trapped state are written in terms of the trial interaction
mode. Then the degree of localization of the trial mode is 2
regarded as a variational parameter to be chosen so that the th:_Er wq(CqurC%q), 4
barrier height is minimal and the tunneling rate is maximal. 2

In Sec. Ill we explain how to incorporate the tunneling
rate into the formulas previously proposed for the analysis ofvhereC,, (k=1,2) are the dimensionless coordinates of the
the self-trappind? and thus to take into account the possi- standing phonon wave of the cosink=(1) or the sine K
bility of the tunnel self-trapping of Ps 8t<Tsr. We fit the ~ =2) type with the wave vectay, w,=ud the frequency of
new formula to the experimental data for Ps in KREf. 13 the acoustic wavea) the sound velocity, ana(’] denotes the
and in Kl (Ref. 14 and get the numerical values for the Ps summation over the half of the first Brillouin zone. The third
tunneling rate from the free delocalized to the self-trappederm in Eq.(2) is the Ps—acoustic-phonon interaction. It can
state, and for the barrier height and the energy differencée represented in the form
between the two states.

In Sec. IV we perform the numerical calculations of the 5 =
barrier height, the tunneling path length, and the tunneling , q
rate for Ps in Kl, KCI, and in NaF in terms of the theoretical Hint= _S\/% Z hwg \[a Lq{Ciq cogq-n)
relations obtained in Sec. Il. We also discuss the results ob-
tained in two previous sections. +Cyq sin(g-n)}, 5

Il. ADIABATIC POTENTIAL FOR POSITRONIUM V;’]he;e?: Ea/vioMu® is Ithe dimensionless Codeff'c'grﬁdh
SELF-TRAPPING AND POSITRONIUM TUNNELING the eforn;]atloln pOte”t'adCﬁ”Stam. IS ajssurznep to be the
RATE FROM THE DELOCALIZED same for the electron and the pOSItron In the Ps atom, since

TO THE SELE-TRAPPED STATE the deformation potential cprresponds to the variat_ion Qf the

band structure of the particle with changing the interionic

Below we will basically follow the theory of the tunnel distances, and the lowest positron band in alkali halides is

self-trapping of exciton developed by Nasu and Toyoz&a, not considerably different from the conduction band of the
which will, however, be modified to take into account the electron?®) M the mass of the elementary ceN, the total

essential features of the Ps self-trapping. We start with th@umber of the elementary cells of the crystak Sqlal/N

HamiltonianH of Ps coupled with the field of longitudinal the averaged phonon wave vector, anetuq the averaged

?‘COUS“C phonon;. Ps is assumed to be In the grouyg) 1 acoustic phonon frequency. The faclof comes from the
internal state during the whole self-trapping process, SiNCGy|ative motion of the electron and the positron in the Ps
the typical energies of the acoustic phonors0(01 e\j are aéon.?ogil

much less than the energy difference between the ground an
the first excited state of Ps-(5 eV). The wave function of
Ps can, in such a case, be factorized in the form

Ly=2(1S;5c08 —=||1S)p)|=—————, (6
K < M2 S( 2 Y2l (1+ g2a3/16) ©

: wherer is the relative motion coordinate asmg is the Bohr
whereg(n) denotes the center-of-mass wave function, and radius of Ps g

is the center-of-mass coordinate of the Ps atom expressed In . . L , . .
the units of the lattice constant. The Hamiltonian of the PsEb Our purpose in this section is to determine the adiabatic
r

V= ¢(n)[1Sy), @)

. otential for the Ps self-trapping in the crystal lattice. To do
averaged over the internal degrees of freedom takes the fo we first define a localized distortion mode of the latfice

H=(1S,,JH|1S/5) =Hpst Hpnt Hin - 3]

2 0 \[q_
=~/ =S 44/ . in(a-
The first term in Eq(2) denotes the band energy of Ps in the Qn= \/; 2 w o} {C1q cO8Q- M)+ Coq sin(g- )},
tight-binding approximation (7)
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which is, in other words, the dimensionless configuration U . .

coordinate describing the displacement of an atom from the g -1 VI-x"—29F(xy)Q+9Q", (13
nth lattice site. Equation$4) and (5) are then rewritten in
terms ofQ,, as

where
Hoe ol S Q2 ®)
2 4 @ Fouy)=2 x(1+xy) [ 2y \3 ank 812
X,¥)= ,  X=lan )
and Y x+y V1+y?
2 oo
Hin=—fiwS ; Ly Quicogq-n)cogq-m) y=tanh a/4). (14)
+sin(qg-n)sin(g-m)}, (9) The first two terms in Eq(13) come from the Ps kinetic
whereupon we assume the localized distortion mgeto ~ €N€r9YHeps, the third and the forth terms abé, andHypp,
have the following spatial distortion pattern: respectively. The parameté)=Q/S denotes the reduced
amplitude of the distortion pattery=7%wS?/2B is the di-
Qn=QPy(a), (100 mensionless coupling constant of Ps with acoustic phonons.
- The functionF(x,y) has been obtained as a result of power
Dp(a)=exd —a(|n +|ny|+[n ) /2]tan¥ A al2), expansion oL in Eq. (9) to the zeroth order indag/4)>.
wherea is the reciprocal distortion radius a@l is the am- Equation (13) must be minimized with respect to the
plitude of the lattice distortion. We also define the trial V&riational parameteg (or x). The corresponding condition
center-of-mass wave function of Ps in the form dU/9x=0, being applied to Eq13), gives us
¢(n,ﬁ)=exp[—ﬁ(|nx|+|ny|+|nz|>/2]tanr?’2</3/2),(1l) xRy
Q= A (15
with B, the reciprocal radius of the center-of-mass motion, 2gV1-x X

being the variational parameter. In E¢$0) and (11) n; (j

=X,Y,z) are the Cartesian componentsathat are regarded Equation(15), being substituted into Eq413), eliminates the
to be integersry, ,=0,£1,=2,...) as ifthey were corre-  reduced amplitud®, yielding

sponding to the lattice points of the simple cubic crystal, so

as to take the discreteness of the lattice into account. The

functions ®,(a) and ¢(n,B) have been chosen in such a U > X IF(xy)| t

way as to account for the existence of the two Ps statesinthe B I=V1=x"= WF(X'W IX

crystal. For example, at smap—0 (the large center-of-

mass distribution radigsone obtains|¢(n,B)|?~(B/2)3 x? IF(x,y)| 2

~1/MN—0, indicating the absence of the localization. We +4g(1—x2) IX : (16)

then have the delocalized Ps state with the wave function
#(n,B)=1/JN. This case corresponds to the small recipro-
cal distortion radiusx— 0. Accordingly,|®(a)|>—0 too,
indicating the absence of the lattice distortion around th
delocalized positronium. In the opposite case of lgBgghe
small center-of-mass distribution radiusne has ¢(n,8)|?
—’5Inxl,05\ny|,05\nzl,0’ i.e., the positronium is localized at the
origin of the coordinate system choséhe origin can be
fixed at any atom of the crystal latticeThis then corre-
sponds to the large reciprocal distortion radiusand, as a

consequence, to the large lattice distortion at this point Sincﬁence the reciprocal distortion radius is large, yielding

5 i
|(.I)"(a)| _)5|”x\’05\”y\’95\”z\’0' Thus bo-th functlor.1$ are the y~1. So, we can eliminatg from Egs. (15 and (16) by
simplest ones, allowing one to describe the existence of thButtingyz 1. The set of equations thus obtained gives us the

delocalized and completely localized Ps states in the SaM&diabatic potential for the self-trapped Ps as a functio@ of

crystal. the minimum of which determines the energy difference be-

' The adiabatic potentidl for. the Ps _self—trapping i_s de.- tween the delocalized and the self-trapped Ps stétesen-
fined as the total energy of Ps in the adiabatic apprOX|mat|onergy of the delocalized state is taken to be zefde mini-

This energy is given by averaging the Ps Hamiltonian, Eay, - _ P ;
: . um conditiondU(g,x,y=1)/dx=0 gives us the equation
(2), over the trial center-of-mass wave function, Etf), for g as a function ofx, which, being substituted into

Ty U(g,x,y=1)/B, eliminatesg from U/B. In this way we get
U=Hegt Hpnt Hin- (12 the following set of two equations, the parametric represen-
This, in view of Eq.(3) and Egs.(8)—(10), give usU as a tation of the adiabatic potential for the self-trapped Ps as a
function of «, B, andQ: function of the coupling constamt

In this way we finally get the adiabatic potentid/B as a

Junction of the reduced amplitud® and the reciprocal ra-
dius « (or y) of the lattice distortion. It is given by the
parametric set of Eq$15) and (16) with x as a parameter.
The adiabatic potential obtained contains the coupling
constanig whose value is not known. It can be estimated by
the comparison with an experiment through the following
procedure. When Ps is self-trapped, the range of the lattice
distortion around it is small+a, the lattice constahtand
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minimum. As « increases furtherlJ, increases as well,
while the valley of the self-trapped state becomes deeper,
approaching its minimum at=10.

The tunneling path lengt®Q, is determined as follows.
According to the energy conservation, the transition “delo-
calized Ps—self-trapped Ps” takes place with the total energy
£ in the case where the localized state is metastable. There-
fore, the value of, (or Bg) just after the tunneling can be
determined from Eq(16) under the additional conditiobJ
=¢. The substitution ok, obtained into Eq(15) gives us
the tunneling path lengt®, as a function ofy (or «).

To estimate the tunnel transition rate of Ps,we use the
expression derived by Nasu and Toyozawa for the exéfton.
The tunneling is assumed to occur along the trial interaction

FIG. 1. The adiabatic potential for the Ps self-trapping in Ki, mode defined by Eq10). Its reciprocal distortion radius
calculated from Egs(15) and (16) with g determined from Egs. (OrY) is the variational parameter to be determined so as to

(17). maximizel at the final stage of the calculation. According to
Nasu and Toyozaw#, the tunnel self-trapping rate of the
U 2 exciton at zero temperature as a function of the reciprocal
—=1-J1-x2— ——, (17) distortion radius, in the case where only the acoustic
B 6y1—x* phonons are taken into account, is given by
1

2m Q:
=, I'(y)=w(S'Q )Z—GXP<——2— , (20
g 24x*\/1—x? 7 5, \(Q% (Q%)
Note that the set of Eqg17) yields U/B~1—4g for the =~ whereS.=SH(xo,y) with xo=tanh(3y/2) being the value of
self-trapped statex(~1) in agreement with the result re- X just after the tunneling, and
cently obtained by another meth&dPuttingU in the first of

E : 1+zy\® 4zy 32

gs. (17) to be equal to&, the experimental value of the ' (21)
energy difference between the stable delocalized and the z+y | \(1+2)(1+y?))
metastable self-trapped Ps state, one can calculate the corres,. __ .

sponding value of the parameter which lets us obtairg Wih z=tanh{By/4). The quantity

from the second of Eq$17). The value ofg thus obtained is 2 31

to be substituted into the parametric E¢E5) and(16) and (QH)= i N

in Eq. (13) for the adiabatic potential of Ps. The valfeof y(L+y9

the energy difference between the two Ps states can be ob- wyq 1 [a; -2
tained by fitting the experimental data on Ps self-trapping X% o JX_[yZ 1+ F—l)smz 7) (22

(see Sec. I\
The heightU,, of the adiabatic potential barrier between is the thermally averaged amplitude squared of the trial in-

the two states, measured from the bottom of the free Ps bantkraction mode aT=0 K. The paramete@, is defined as

is determined by the two conditionsgU/9Q=0 and follows. The adiabatic potential enerdy(Q) of the self-

dU/9x=0. The first one, applied to E¢13), gives us trapped state in the vicinity of the final poi¥, of the tunnel
transition is written from Eq(13) as

Q=F(x.y). (18) -
The second one, in view of E18), becomes U(Q)= _ﬁwse(Q_Qc)+7Q2' (23
X IF(X,Y) Then the constant term for the exciton is determined from
W—Zg F(x,y) v =0. (199 the conditionU(Qy) =0, because the self-trapped excitonic

state is stable with the energy lower than that in the free
The barrier height, is now obtained by substituting the delocalized state. , _
root of Eq.(19) into Eq. (16) and then by minimizing the For Ps, however, the self-trapped state is metastable with

the energy higher by than that in the free state. Therefore,

function obtained with respect tp (or «). ; S ' a
In Fig. 1 the result of the numerical calculationlfB for ~ this condition evidently has to be changed W{Qo) =¢.
Thus, for Ps we get

the Kl crystal is shown as a typical example of the Ps adia-
batic potential energy inside the ionic crystal as a function of £ Q

a and Q. In this calculation the value of was taken to be Q°2ﬁ+ QO( 1- %) (29
0.013 eV(see Sec. I As is seen, the adiabatic potential is e e

nearly parabolic with respect @ at «<1, while at moder-  As is seen from the equatidt,,= U(Q), in view of Eqs.(8)

ate o it becomes a double-well structure ahf takes its and(10), Q. thus defined has a meaning of the crossing point
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of the two adiabatic potential energy surfaces extended fror
the initial Q=0 and from the finaQ = Q, point of the tunnel
transition, respectivelysee Fig. 1. The tunnel transition, in
turn, according to Eg(20), mainly occurs around the cross-
ing point Q.

In estimatingl” by Eq. (20) we neglect the temperature
dependence of the shape of the adiabatic potential for the R
self-trapping. This can be justified by the fact that the typical
self-trapping temperatures of Ps in alkali halides, as it fol+
lows from the experimerit}*are low enough £ a few tens '
K). Indeed, according to the instanton theoretical approac 20 40 60 80 100
by loselevich and Rashi#4 the temperature dependence of Temperature (K)
the shape of the adiabatic potential at w0 leads to the

temperature (;Iependen.ce of the eXp.Onentlal faCtO.r and OT t apped Ps in KI. The full circles show the experimental data and
pr.e-exponer!tlal factor in the tunneling rate. For mteractmnlhe dashed line is the least-squares-fitted theoretical curve of the
with acoustic phonons these dependences are given Q¥,qel previously proposed0.03 eV, U,=0.04, eV) (Ref. 14.
(E0/fipu®)(T/Tp)* and (1-2T/Tp) ~32 respectively, f  The solid line represents the least-squares-fitted theoretical curve of
and Tp are the density and the Debye temperature of theéhe model proposed in the present papgr 0.01 eV, U,=0.05,
crysta). It is easy to see now that both temperature-ev, I'=4.9x10" s %).

dependent factors are rather small for Ps in alkali halides at

T=<Tg7 since the typical Debye temperatures are the quanti- Ex M*kgT) %?

ties of the order of 1K and much bigger thafisr. Thus, gi(T)=2 exp — ﬁ) = (ﬁ)

. . . . " . Kk B ah

in the first approximation, we can consider the tunneling rate

to be temperature independent for Ps in alkali halides, an the effective number of the free Ps states in the crystal of
use Eqs(20)—(24) for its numerical estimation. The rate, Eq. volumeV at temperaturd (hereE, denotes the lowest Ps
(20), must finally be maximized with respect toto obtain  band andM* is the effective mass of Psand g, is the

the actual ratd” of the tunnel transition of Ps between its number of the trapping sites in the same volume. This gives

Fraction of Localized Ps

FIG. 2. Temperature dependence of the fracfigpof the self-

free and self-trapped state. the trapping rate in the form
Il. ANALYSIS OF EXPERIMENTAL DATA _ 9% f U 28
WITH THE TUNNELING EFFECT TAKEN "M’ kgT/

INTO ACCOUNT . .
In Eq. (28) the ratiog;/g¢(T) is large because the number of

According to the model of the Ps self-trapping previouslythe possible self-trapping sitggis of the order of that of the
proposed;’ the fractionf sy of the self-trapped Ps is given by unit cells. Therefore, the trapping ratg is large at high
< temperature even if the trapping probability at a particular
(o= A7t (25 site in the crystal is small.
STONSN 1) A3y, In the previous modét the experimental values df,
sa - sa o and £ were estimated by the least-squares fit of the experi-
whereA¢”, \¢", v, andy; are the Ps self-annihilation rate ental data for the fraction of the localized Ps to E2p)
from the free state, that from the self-trapped state, the tragg;iy y; and y, given by Eqs(26) and(28). As an example,
ping rate from the free state, and the detrapping rate from th, rig_ 2 the fitting curve for the KI crystah(z=0.0077 eV,
self-trapped state, respectively;=At*+ A is the annihila-  the phonon energy at which the density of the longitudinal
tion rate from the self-trapped state with the pickoff annihi- 3coustic mode is larg€st is reproduced from Ref. 14 by the
lation process X{°) taken into account. The effect of the dashed line. The curve is described by E2f) taken under
tunneling is not taken into account in this model. The detrapthe assumption that{®=\?and\=8Xx 10° s7! (the anni-

ping ratey; is assumed to have the temperature dependendgiation rate of the free para-Ps in vacuymwith £=0.031

of an activation type eV andU,=0.047 eV. At low temperature the significant
U—& deviation is seen of the theoretical curve from the experi-
yi=v ex;{ _=b ) (26) mental data, though at high temperature the behavior of the
kgT curve is quite satisfactory.

To explain this deviation it is natural to assume that the
tunneling process of Ps from the free stable state to the self-
trapped metastable staee Fig. 1 starts at low temperature
and dominates up td=<Tgy over the classical self-trapping
mechanism of the activation type. As an attempt to take into
account the tunneling effect, we introduce the detrapping rate
v¢ in the form

where v (~w/27) is the typical phonon frequency associ-
ated with the local deformation of the lattice, abg— £ is
the height of the potential barrier “seen” by the Ps in the
self-trapped statésee Fig. 1 The trapping ratey; is then
obtained from the statistical detailed balance

: (27)

£
79:(T)= ?’fgteXF< - kB_T

Up—€&
vi=v expg — +T, (29

where kgT
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TABLE |I. The parameters of the Ps self-trapping in some alkali halides.

Crystal EP eV Ug®, ev TP s! B,eV fo eV g Uy,,ev TI,s?
Kl 0.014 0.05 4.9x10° 092 0.019  0.22 0.15 14107
KCl 0.02 0.08, 8.2,x10"  1.16 0.031 022 0.19 1:010°
NaF 0.19 (Ref. 12 2.15 0.054 0.21 0.36 6:810°

IV. DISCUSSION

__ 9%
Mg

wherel’, the tunnel detrapping rate, is introduced to take intogives good correspondence of the fitting curve to the experi-
account the possibility for Ps to cross the adiabatic potentiainental data over the whole temperature range.
barrier quantum mechanically. Note that the physical mean-
ing of the detrapping rat€' thus introduced, is the same as
that of the tunneling rat€&' introduced in Sec. Il. In view of
Eq. (29), the statistical detailed balance determined by Eq. The results of the numerical calculation of the adiabatic
(27) gives us the following modified expression for the trap-potentialU for the Ps self-trapping, of the barrier heigdh,
ping rate from the free to the self-trapped state: and of the tunneling path lengt,, are shown in Figs. 1, 3,
and 4. Since the values of the bandwidths for Ps in alkali
. exp( _ & +Fexp( _ i) (30) halides are only poorly known, we estimated them from the
kgT kgT/ |’ expression given by the standard tight-binding approxima-
) ) tion for all the crystals under studiKl, KCI, NaF): B
where the second term in the brackets describes the quantumzz 2/M a2, wherea is the distance between the nearest
mechanical contribution to the trapping rate. Note that agai”meighbors, and, the Ps band mass, was simply assumed to
as in the case of the classical trapping described bYZ8).  pe equal to thy, the doubled free-electron mass. The cou-
[or by the first term in the brackets in E(O0)], even ifI' pling constantg was estimated from Eq€17) under the
itself is small, the tunnel trapping rate can, because of theqgitional conditionU =& with € obtained from the fits for
large factorg,/g¢(T), be sufficiently big so that Ps atoms k| ang KClI, and taken from Ref. 12 for NaF. The band-
forming in the free state tunnel through the potential barriekyigths and the coupling constants thus determireele
and annihilate mainly from the self-trapped state. Thereforeygpe ) were used, as described in Sec. II, to calculatior
the fraction of the self-trapped Ps must start to grow at lowegnq k| crystal as a function of andQ (Fig. 1), andU,, and
temperature than that predicted by the classical model give@0 for KI, KCI, and NaF as functions of (Figs. 3 and #
by Egs.(29), (26), and(28) (Fig. 2, the dashed line As is seen from Figs. 3 and 4, with the increase @ee
In the present work we used EQ5) with y; andy; given  ape |) the minimum ofU, /B decreases somewhat and the
by Egs.(29) and(30) to estimateU,, & andI’ experimen- i th lenatio. i indicating that th ten-
tally. The least-squares fits of the experimental data Wer%unnem_g path lengti), increases, in Icaling that the poten
performed for KI (Ref. 14 and for KCI (Ref. 13 [hv ial barrier between the stable delocallz_ed and t_he me_tastable
a ' ' . _self-trapped states of Ps becomes wider as its height de-
=0.0145 eV(Ref. 33] crystals under the same assumptlonsCreases The dependences(a)/B in Fig. 3 take their
for A$%, A{*and for\, as in Ref. 14. The fitting curve for Ki minima. at a4 ?I'hese mi?ﬂma in acc%rdance with the
is shown by the SOI.id Iin_e in Fig. 22 and the results of the fitstheory described in Sec. I, dete’rmine the numerical values
,ff) r K,l, ang KCl ar?_ I|§ted In Tath)IehI in the chL]!mns marked ﬁs of the barrier heights between the two Ps states in the corre-
exp”. The new fitting curve behaves satisfactory over t esponding crystals. The values df, thus calculated are listed
whole temperature range, indicating the importance of th(?n Table |
guantum tunneling process for Ps in Kl at least up to the In Fig Sthea dependence of the tunneling rdtefor K
temperaturesT<Tgt. For KCI also the fitting procedure is showﬁ as a typical example. The dependence was calcu-

FIG. 3. Thea dependence of the barrier heighf for Ps in Ki,
KCI, and NaF, calculated from Eg§l6) with g determined from
Egs.(17) andx determined from Eq(19).

U,/B —
U a,
0.18¢ s 1.84
. A
5 2
bD [ F
g NaF = KCl
3]
0.17¢} oW
5 KCl w 1.80}
t =1 NaF
2 ]
= KI g
0.16 5
; ' 4 176 ' 0 12 T
4 6 8 10 12 8 L .
Reciprocal Distortion Radius Reciprocal Distortion Radius

FIG. 4. Thea dependence of the tunneling path Ien@a for
Ps in Kl, KCI, and NaF, calculated from E(.5) with g determined
from Egs.(17) andx, obtained from Eq(16) as described in Sec.
Il.
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50 approximately 2 from those used in the fits, 0.0077 eV for Kl
and 0.0145 eV for KC2 Another source of the quantitative
disagreement is the variational procedure used in the numeri-
cal calculations, since, as is known, the variational method is
strongly dependent on the choice of the trial function.
Nevertheless, the qualitative agreement between the
theory and the experiment lets us conclude that the potential
barrier heightU,, between the stable free and the metastable
self-trapped state of Ps is mainly determined by the band-
/ n T 12 T width B and increases with the bandwidth, in agreement with

[y

.06}

=
o
]

Tunneling Rate (s™)

the predictions of the general theory for the case of the
exciton?* The tunneling ratd” is mainly determined by the
factor B/ w. This results from its Gaussian dependence on
FIG. 5. Thea dependence of the tunneling rateobtained from Q. [see Eq.(20)], which is estimated from E¢24) as Q.

Egs.(20—(24) for KI. ~/B/fw X (the factor weakly dependent on the type of the
crysta). According to Table IB/f w is bigger in Kl than in

lated from Eqs(20)—(24) with £ taken from the fit. Similar KCI. Therefore,I in KI must be smaller than that in KCI,
dependences were obtained for KCI and for NaFwas explaining qualitatively the results of the fits of the experi-

taken from the fit for KCI and from Ref. 12 for NaFAs is men.tal da‘?@@ Table)l .
seen from the figurel’ (@) takes its maximum ate~12. Finally, it is interesting to note that, as in the case of the

This maximum gives us the numerical value of the ftef _excnon, the value ofa that maximizes the Ps tunneling rate

the tunnel transition of Ps between its free and self—trappef()G not equE! to t5hat m|3r]||_rr1]1_|zmg the &Ottetnhtlalt barrllgr helqtnt
state. The values df thus obtained are listed in Table I. compare FIgs. and) IS means that the tunneling pa
ominating in the self-trapping process at low temperatures

As is seen in Table I, the barrier heights and the tunnelin diff Lt the th | activat th that s at
rates estimated numerically, and those obtained from the fits. rerent Trom the thermal activation pa at prevails a
igh temperatures.

of the experimental data, are in qualitative agreement. Al-
though the calculated barrier heights are approximately two
times higher than the experimental ones, they show the band-

width dependence in agreement with the experiment. The The authors express their cordial thanks to Professor K.
same is true for the tunneling rates: the tunneling rate in KNasu and Professor Y. Kayanuma for their valuable discus-
is smaller than that in KCI, in agreement with the experi-sions. The main part of this work was performed during the
ment. The quantitative disagreement of the values calculatestay of one of the authord.B.) at the University of Tokyo

with those obtained from the fits may be caused by the mathunder the auspices of the Japanese Society for the Promotion
ematical simplifications of the theoretical model. In particu-of Science. The work was also supported by the Fundamen-
lar, the phonon energies given by the model of the simpleal Research Foundation of the Belarusian Academy of Sci-
cubic lattice and shown in Table |, differ by a factor of ences(Grant No. M96-054

Reciprocal Distortion Radius

0.98"
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