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Positronium in alkali halides: Tunneling from the delocalized to the self-trapped state
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The tunnel transition of positronium~Ps! from its stable delocalized state to the metastable localized state in
alkali halides is investigated theoretically using the formalism developed by Nasu and Toyozawa for excitons
@J. Phys. Soc. Jpn.50, 235 ~1981!#. The tunneling rate between these two states is found to have the expo-
nential dependence on the parameterB/\v (B is half of the Ps bandwidth,v is the averaged frequency of the
longitudinal acoustic phonons!, whereas the potential barrier height between the two states is mainly deter-
mined by the bandwidthB and is proportional toB. A fitting procedure taking into account the quantum
tunneling of Ps between the delocalized and the self-trapped state is proposed for the theoretical interpretation
of the experimental data on Ps self-trapping. The procedure yields the numerical values of the parameters of Ps
self-trapping~the tunneling rate and the potential barrier height! in qualitative agreement with those calculated
theoretically.@S0163-1829~98!06218-3#
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I. INTRODUCTION

Positronium~Ps! formation in alkali halide crystals ha
presently been well established by means of the posi
annihilation technique.1–3 In the crystals with low enough
concentration of defects, the Ps atom has been experim
tally found to form in two types of states: the delocaliz
~Bloch-like, free! type and the localized one.3,4 The forma-
tion of the Bloch-type positronium is confirmed by observi
very narrow peaks~the central peak and the side peaks a
pearing at the momentum corresponding to the recipro
lattice vectors of the sample crystal! in the momentum dis-
tribution of the annihilation radiation at sufficiently low tem
peratures~typically less than a few tens K!.5–10 This type of
positronium is completely delocalized.

As the temperature increases it is observed4,11–14that the
central Ps peak becomes drastically wider and the side p
disappear, indicating the localization of positronium in t
crystal volume of the order of the lattice constant. This eff
was attributed to a temperature activated transition of
free delocalized Ps to the self-trapped state.12–14 Analogous
phenomenon is known for holes and excitons in crys
dielectrics.15,16 For instance, it is known15,16 that the ground
stable state of an electron in alkali halide crystals is delo
ized, whereas the ground states of excitons and holes
localized. This is connected with the broad band of the e
tron ~the band mass is;m0, the free-electron mass! and with
the comparatively narrow bands@the band masses are;(5
210)m0# of the excitons and holes in these crystals. F
excitons, moreover, additional metastable states exist tha
delocalized. The Ps atom can be regarded to some exte
an ‘‘isotope’’ of the exciton, and, in this sense, for positr
nium in alkali halides an analogous situation takes place w
the only difference being that, since the Ps band is less
row than that of the exciton@the Ps band mass is;(2.5
24)m0 ~Ref. 14!#, the ground stable state of Ps in alka
halides is delocalized and the metastable one is localized
570163-1829/98/57~18!/11341~8!/$15.00
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other words, since Ps is lighter, it is more difficult to b
localized than the exciton in the same material.15

According to theoretical studies of the electron a
exciton17–22 ~see also Refs. 15 and 16!, the free and the lo-
calized states are separated by the adiabatic potential ba
due to the short-range nature of the interaction with long
dinal acoustic phonons. The double-well structure of
adiabatic potential, in turn, results in a two-component ch
acter of the emission spectra of the decaying particle. T
two components originate from the delocalized and the s
trapped excitonic states, giving a narrow and a broad de
spectrum, respectively.15

The temperature activated transition of positronium fro
the delocalized to the self-trapped state was observed ex
mentally for a number of alkali halide crystals such as NaF11

KCl,13 KI,3 etc.14 The temperature of the self-trapping~the
temperature at which half of all the Ps atoms decay from
self-trapped state! was experimentally estimated to beTST
;150, 65, and 50 K for NaF,12 KCl,13 and KI,14 respectively.
The experimentally observed fractions of the self-trapped
in KI and KCl were compared with the predictions of
simple classical model.3,12–14 A deviation was observed a
T,TST of the experimental fraction from the value expecte
It was suggested that this deviation was possibly attribute
the tunneling of the delocalized Ps through the adiabatic
tential barrier into the self-trapped state. An attempt w
made to explain this deviation by phenomenologically int
ducing an effective temperature.3

The purpose of the present paper is to investigate the
tunneling between the free and the self-trapped state theo
cally, and to clarify the role of this purely quantum proce
in the temperature activated transition of Ps from one stat
another. Although the analogous tunnel transition for the
citon was already studied in a number of works,23–27 it is
impossible merely to extend the excitonic theory to posit
nium. Additional analysis is necessary for positronium, ta
ing into account the metastability of the self-trapped stat
11 341 © 1998 The American Physical Society
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11 342 57I. V. BONDAREV AND T. HYODO
We consider the interaction of Ps with longitudinal acou
tic phonons within the adiabatic approximation. The Ps
teraction with optical phonons is assumed to be negligi
small due to the electroneutrality of Ps.28 In Sec. II the basic
equations are derived for the positronium-acoustic-pho
coupling constant, for the parameters of the adiabatic po
tial ~the barrier height and the tunneling path length!, and for
the Ps tunneling rate from the free to the self-trapped st
Following the general theory for the exciton,24 we introduce
a trial interaction mode and formulate the interaction of
with acoustic phonons in terms of this mode only. The p
tential barrier height, the tunneling path length, and the
tunneling rate from the stable delocalized to the metasta
self-trapped state are written in terms of the trial interact
mode. Then the degree of localization of the trial mode
regarded as a variational parameter to be chosen so tha
barrier height is minimal and the tunneling rate is maxim

In Sec. III we explain how to incorporate the tunnelin
rate into the formulas previously proposed for the analysis
the self-trapping,14 and thus to take into account the pos
bility of the tunnel self-trapping of Ps atT,TST. We fit the
new formula to the experimental data for Ps in KCl~Ref. 13!
and in KI ~Ref. 14! and get the numerical values for the P
tunneling rate from the free delocalized to the self-trapp
state, and for the barrier height and the energy differe
between the two states.

In Sec. IV we perform the numerical calculations of t
barrier height, the tunneling path length, and the tunne
rate for Ps in KI, KCl, and in NaF in terms of the theoretic
relations obtained in Sec. II. We also discuss the results
tained in two previous sections.

II. ADIABATIC POTENTIAL FOR POSITRONIUM
SELF-TRAPPING AND POSITRONIUM TUNNELING

RATE FROM THE DELOCALIZED
TO THE SELF-TRAPPED STATE

Below we will basically follow the theory of the tunne
self-trapping of exciton developed by Nasu and Toyozaw24

which will, however, be modified to take into account t
essential features of the Ps self-trapping. We start with
HamiltonianH of Ps coupled with the field of longitudina
acoustic phonons. Ps is assumed to be in the ground 1S1/2
internal state during the whole self-trapping process, si
the typical energies of the acoustic phonons (;0.01 eV! are
much less than the energy difference between the ground
the first excited state of Ps (;5 eV!. The wave function of
Ps can, in such a case, be factorized in the form

C5f~n!u1S1/2&, ~1!

wheref(n) denotes the center-of-mass wave function, ann
is the center-of-mass coordinate of the Ps atom expresse
the units of the lattice constant. The Hamiltonian of the
averaged over the internal degrees of freedom takes the

H5^1S1/2uHu1S1/2&5HPs1Hph1H int . ~2!

The first term in Eq.~2! denotes the band energy of Ps in t
tight-binding approximation
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HPs5B2
B

3 (
j 5x,y,z

cos~2 i¹ j !, ~3!

whereB is the half of the Ps bandwidth, and¹ j ( j 5x,y,z) is
the j th Cartesian component of the gradient operator ofn.
The crystal is assumed to have a simple cubic structure
contrast to the case of the exciton,26 such an assumption
appears to be fairly natural for Ps, since the experim
shows that Ps in alkali halides hardly distinguishes the an
and the cation and only ‘‘sees’’ the simple cubic lattice.8,10

The second term in Eq.~2! is the phonon Hamiltonian. It is
written in the adiabatic approximation as

Hph5
\

2( 8
q

vq~C1q
2 1C2q

2 !, ~4!

whereCkq (k51,2) are the dimensionless coordinates of t
standing phonon wave of the cosine (k51) or the sine (k
52) type with the wave vectorq, vq5uq the frequency of
the acoustic wave,u the sound velocity, and(q8 denotes the
summation over the half of the first Brillouin zone. The thi
term in Eq.~2! is the Ps–acoustic-phonon interaction. It c
be represented in the form

H int52SA2

N ( 8
q

\vqAq̄

q
Lq $C1q cos~q•n!

1C2q sin~q•n!%, ~5!

whereS5Ed /A\vMu2 is the dimensionless coefficient,Ed
the deformation potential constant~it is assumed to be the
same for the electron and the positron in the Ps atom, s
the deformation potential corresponds to the variation of
band structure of the particle with changing the interion
distances, and the lowest positron band in alkali halide
not considerably different from the conduction band of t
electron,29! M the mass of the elementary cell,N the total
number of the elementary cells of the crystal,q̄5(ququ/N
the averaged phonon wave vector, andv5uq̄ the averaged
acoustic phonon frequency. The factorLq comes from the
relative motion of the electron and the positron in the
atom30,31

Lq52K 1S1/2UcosS q•r

2 D U1S1/2L 5
2

~11q2aB
2/16!2

, ~6!

wherer is the relative motion coordinate andaB is the Bohr
radius of Ps.

Our purpose in this section is to determine the adiab
potential for the Ps self-trapping in the crystal lattice. To
so we first define a localized distortion mode of the lattic24

Qn5A2

N ( 8
q

vq

v
Aq̄

q
$C1q cos~q•n!1C2q sin~q•n!%,

~7!
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which is, in other words, the dimensionless configurat
coordinate describing the displacement of an atom from
nth lattice site. Equations~4! and ~5! are then rewritten in
terms ofQn as

Hph5
\v

2 (
n

Qn
2 ~8!

and

H int52\vS
2

N ( 8
q,m

Lq Qm$cos~q•n!cos~q•m!

1sin~q•n!sin~q•m!%, ~9!

whereupon we assume the localized distortion modeQn to
have the following spatial distortion pattern:

Qn5QFn~a!, ~10!

Fn~a!5exp@2a~ unxu1unyu1unzu!/2#tanh3/2~a/2!,

wherea is the reciprocal distortion radius andQ is the am-
plitude of the lattice distortion. We also define the tr
center-of-mass wave function of Ps in the form

f~n,b!5exp@2b~ unxu1unyu1unzu!/2#tanh3/2~b/2!,
~11!

with b, the reciprocal radius of the center-of-mass moti
being the variational parameter. In Eqs.~10! and ~11! nj ( j
5x,y,z) are the Cartesian components ofn that are regarded
to be integers (nx,y,z50,61,62, . . . ) as ifthey were corre-
sponding to the lattice points of the simple cubic crystal,
as to take the discreteness of the lattice into account.
functions Fn(a) and f(n,b) have been chosen in such
way as to account for the existence of the two Ps states in
crystal. For example, at smallb→0 ~the large center-of-
mass distribution radius! one obtainsuf(n,b)u2'(b/2)3

;1/N→0, indicating the absence of the localization. W
then have the delocalized Ps state with the wave func
f(n,b)51/AN. This case corresponds to the small recip
cal distortion radiusa→0. Accordingly, uFn(a)u2→0 too,
indicating the absence of the lattice distortion around
delocalized positronium. In the opposite case of largeb ~the
small center-of-mass distribution radius! one hasuf(n,b)u2
→d unxu,0d unyu,0d unzu,0

, i.e., the positronium is localized at th
origin of the coordinate system chosen~the origin can be
fixed at any atom of the crystal lattice!. This then corre-
sponds to the large reciprocal distortion radiusa and, as a
consequence, to the large lattice distortion at this point si
uFn(a)u2→d unxu,0d unyu,0d unzu,0

. Thus both functions are th
simplest ones, allowing one to describe the existence of
delocalized and completely localized Ps states in the s
crystal.

The adiabatic potentialU for the Ps self-trapping is de
fined as the total energy of Ps in the adiabatic approximat
This energy is given by averaging the Ps Hamiltonian,
~2!, over the trial center-of-mass wave function, Eq.~11!,

U5H̄Ps1H̄ph1H̄ int . ~12!

This, in view of Eq.~3! and Eqs.~8!–~10!, give usU as a
function of a, b, andQ:
n
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U

B
512A12x222gF~x,y!Q̄1gQ̄2, ~13!

where

F~x,y!52S x~11xy!

x1y
A 2y

11y2D 3

, x5tanh~b/2!,

y5tanh~a/4!. ~14!

The first two terms in Eq.~13! come from the Ps kinetic
energyH̄Ps, the third and the forth terms areH̄ int and H̄ph,
respectively. The parameterQ̄5Q/S denotes the reduce
amplitude of the distortion pattern,g5\vS2/2B is the di-
mensionless coupling constant of Ps with acoustic phono
The functionF(x,y) has been obtained as a result of pow
expansion ofLq in Eq. ~9! to the zeroth order in (qaB/4)2.

Equation ~13! must be minimized with respect to th
variational parameterb ~or x). The corresponding condition
]U/]x50, being applied to Eq.~13!, gives us

Q̄5
x

2gA12x2
S ]F~x,y!

]x
D 21

. ~15!

Equation~15!, being substituted into Eq.~13!, eliminates the
reduced amplitudeQ̄, yielding

U

B
512A12x22

x

A12x2
F~x,y!S ]F~x,y!

]x D 21

1
x2

4g~12x2! S ]F~x,y!

]x D 22

. ~16!

In this way we finally get the adiabatic potentialU/B as a
function of the reduced amplitudeQ̄ and the reciprocal ra-
dius a ~or y) of the lattice distortion. It is given by the
parametric set of Eqs.~15! and ~16! with x as a parameter.

The adiabatic potential obtained contains the coupl
constantg whose value is not known. It can be estimated
the comparison with an experiment through the followi
procedure. When Ps is self-trapped, the range of the la
distortion around it is small (;a, the lattice constant!, and
hence the reciprocal distortion radiusa is large, yielding
y;1. So, we can eliminatey from Eqs. ~15! and ~16! by
puttingy51. The set of equations thus obtained gives us
adiabatic potential for the self-trapped Ps as a function ofQ̄,
the minimum of which determines the energy difference
tween the delocalized and the self-trapped Ps states~the en-
ergy of the delocalized state is taken to be zero!. The mini-
mum condition]U(g,x,y51)/]x50 gives us the equation
for g as a function ofx, which, being substituted into
U(g,x,y51)/B, eliminatesg from U/B. In this way we get
the following set of two equations, the parametric repres
tation of the adiabatic potential for the self-trapped Ps a
function of the coupling constantg:
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U

B
512A12x22

x2

6A12x2
, ~17!

g5
1

24x4A12x2
.

Note that the set of Eqs.~17! yields U/B'124g for the
self-trapped state (x;1) in agreement with the result re
cently obtained by another method.32 PuttingU in the first of
Eqs. ~17! to be equal toE, the experimental value of th
energy difference between the stable delocalized and
metastable self-trapped Ps state, one can calculate the c
sponding value of the parameterx, which lets us obtaing
from the second of Eqs.~17!. The value ofg thus obtained is
to be substituted into the parametric Eqs.~15! and ~16! and
in Eq. ~13! for the adiabatic potential of Ps. The valueE of
the energy difference between the two Ps states can be
tained by fitting the experimental data on Ps self-trapp
~see Sec. III!.

The heightUb of the adiabatic potential barrier betwee
the two states, measured from the bottom of the free Ps b
is determined by the two conditions:]U/]Q̄50 and
]U/]x50. The first one, applied to Eq.~13!, gives us

Q̄5F~x,y!. ~18!

The second one, in view of Eq.~18!, becomes

x

A12x2
22gF~x,y!

]F~x,y!

]x
50. ~19!

The barrier heightUb is now obtained by substituting th
root of Eq. ~19! into Eq. ~16! and then by minimizing the
function obtained with respect toy ~or a).

In Fig. 1 the result of the numerical calculation ofU/B for
the KI crystal is shown as a typical example of the Ps ad
batic potential energy inside the ionic crystal as a function
a and Q̄. In this calculation the value ofE was taken to be
0.013 eV~see Sec. III!. As is seen, the adiabatic potential
nearly parabolic with respect toQ̄ at a!1, while at moder-
ate a it becomes a double-well structure andUb takes its

FIG. 1. The adiabatic potential for the Ps self-trapping in K
calculated from Eqs.~15! and ~16! with g determined from Eqs.
~17!.
he
rre-

b-
g

d,

-
f

minimum. As a increases further,Ub increases as well
while the valley of the self-trapped state becomes dee
approaching its minimum ata*10.

The tunneling path lengthQ̄0 is determined as follows
According to the energy conservation, the transition ‘‘de
calized Ps–self-trapped Ps’’ takes place with the total ene
E in the case where the localized state is metastable. Th
fore, the value ofx0 ~or b0) just after the tunneling can b
determined from Eq.~16! under the additional conditionU
5E. The substitution ofx0 obtained into Eq.~15! gives us
the tunneling path lengthQ̄0 as a function ofy ~or a).

To estimate the tunnel transition rate of Ps,G, we use the
expression derived by Nasu and Toyozawa for the excito24

The tunneling is assumed to occur along the trial interact
mode defined by Eq.~10!. Its reciprocal distortion radiusa
~or y) is the variational parameter to be determined so a
maximizeG at the final stage of the calculation. According
Nasu and Toyozawa,24 the tunnel self-trapping rate of th
exciton at zero temperature as a function of the recipro
distortion radius, in the case where only the acous
phonons are taken into account, is given by

G~y!5v~S8Qc!
2

2Ap

SeA^Q2&
expS 2

Qc
2

^Q2& D , ~20!

whereSe5SF(x0 ,y) with x05tanh(b0/2) being the value of
x just after the tunneling, and

S85SS 11zy

z1y D 3S 4zy

~11z2!~11y2! D
3/2

, ~21!

with z5tanh(b0/4). The quantity

^Q2&5S 2

y~11y2! D
3 1

N

3(
q

vq

v )
j 5x,y,z

F11S 1

y2 21D sin2S qj

2 D G22

~22!

is the thermally averaged amplitude squared of the trial
teraction mode atT50 K. The parameterQc is defined as
follows. The adiabatic potential energyU(Q) of the self-
trapped state in the vicinity of the final pointQ0 of the tunnel
transition is written from Eq.~13! as

U~Q!52\vSe~Q2Qc!1
\v

2
Q2. ~23!

Then the constant term for the exciton is determined fr
the conditionU(Q0)50, because the self-trapped exciton
state is stable with the energy lower than that in the f
delocalized state.

For Ps, however, the self-trapped state is metastable
the energy higher byE than that in the free state. Therefor
this condition evidently has to be changed toU(Q0)5E.
Thus, for Ps we get

Qc5
E

\vSe
1Q0S 12

Q0

2Se
D . ~24!

As is seen from the equationHph5U(Q), in view of Eqs.~8!
and~10!, Qc thus defined has a meaning of the crossing po
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of the two adiabatic potential energy surfaces extended f
the initial Q50 and from the finalQ5Q0 point of the tunnel
transition, respectively,~see Fig. 1!. The tunnel transition, in
turn, according to Eq.~20!, mainly occurs around the cross
ing point Qc .

In estimatingG by Eq. ~20! we neglect the temperatur
dependence of the shape of the adiabatic potential for th
self-trapping. This can be justified by the fact that the typi
self-trapping temperatures of Ps in alkali halides, as it f
lows from the experiment,3,14 are low enough (; a few tens
K!. Indeed, according to the instanton theoretical appro
by Ioselevich and Rashba,27 the temperature dependence
the shape of the adiabatic potential at lowT→0 leads to the
temperature dependence of the exponential factor and o
pre-exponential factor in the tunneling rate. For interact
with acoustic phonons these dependences are given
(Ed

2v2/\ru5)(T/TD)4 and (122T/TD)23/2, respectively, (r
and TD are the density and the Debye temperature of
crystal!. It is easy to see now that both temperatu
dependent factors are rather small for Ps in alkali halide
T&TST since the typical Debye temperatures are the qua
ties of the order of 102 K and much bigger thanTST. Thus,
in the first approximation, we can consider the tunneling r
to be temperature independent for Ps in alkali halides,
use Eqs.~20!–~24! for its numerical estimation. The rate, E
~20!, must finally be maximized with respect toa to obtain
the actual rateG of the tunnel transition of Ps between i
free and self-trapped state.

III. ANALYSIS OF EXPERIMENTAL DATA
WITH THE TUNNELING EFFECT TAKEN

INTO ACCOUNT

According to the model of the Ps self-trapping previou
proposed,14 the fractionf ST of the self-trapped Ps is given b

f ST5
l t

sag t

l f
sa~l t1g f !1l t

sag t
, ~25!

wherel f
sa, l t

sa, g t , andg f are the Ps self-annihilation rat
from the free state, that from the self-trapped state, the t
ping rate from the free state, and the detrapping rate from
self-trapped state, respectively;l t5l t

sa1l t
po is the annihila-

tion rate from the self-trapped state with the pickoff anni
lation process (l t

po) taken into account. The effect of th
tunneling is not taken into account in this model. The detr
ping rateg f is assumed to have the temperature depende
of an activation type

g f5n expS 2
Ub2E
kBT D , ~26!

wheren (;v/2p) is the typical phonon frequency assoc
ated with the local deformation of the lattice, andUb2E is
the height of the potential barrier ‘‘seen’’ by the Ps in t
self-trapped state~see Fig. 1!. The trapping rateg t is then
obtained from the statistical detailed balance

g tgf~T!5g fgtexpS 2
E

kBTD , ~27!

where
m

Ps
l

l-

h

he
n
by

e
-
at
ti-

e
d

p-
e

-

-
ce

gf~T!5(
k

expS 2
Ek

kBTD5VS M* kBT

2p\2 D 3/2

is the effective number of the free Ps states in the crysta
volume V at temperatureT ~hereEk denotes the lowest P
band andM* is the effective mass of Ps!, and gt is the
number of the trapping sites in the same volume. This gi
the trapping rate in the form

g t5
gt

gf~T!
n expS 2

Ub

kBTD . ~28!

In Eq. ~28! the ratiogt /gf(T) is large because the number
the possible self-trapping sitesgt is of the order of that of the
unit cells. Therefore, the trapping rateg t is large at high
temperature even if the trapping probability at a particu
site in the crystal is small.

In the previous model14 the experimental values ofUb
andE were estimated by the least-squares fit of the exp
mental data for the fraction of the localized Ps to Eq.~25!
with g f andg t given by Eqs.~26! and~28!. As an example,
in Fig. 2 the fitting curve for the KI crystal (hn50.0077 eV,
the phonon energy at which the density of the longitudi
acoustic mode is largest33! is reproduced from Ref. 14 by th
dashed line. The curve is described by Eq.~25! taken under
the assumption thatl f

sa5l t
sa andl t583109 s21 ~the anni-

hilation rate of the free para-Ps in vacuum!, with E50.031
eV and Ub50.047 eV. At low temperature the significan
deviation is seen of the theoretical curve from the expe
mental data, though at high temperature the behavior of
curve is quite satisfactory.

To explain this deviation it is natural to assume that t
tunneling process of Ps from the free stable state to the s
trapped metastable state~see Fig. 1! starts at low temperature
and dominates up toT&TST over the classical self-trappin
mechanism of the activation type. As an attempt to take i
account the tunneling effect, we introduce the detrapping
g f in the form

g f5n expS 2
Ub2E
kBT D1G, ~29!

FIG. 2. Temperature dependence of the fractionf ST of the self-
trapped Ps in KI. The full circles show the experimental data a
the dashed line is the least-squares-fitted theoretical curve of
model previously proposed (E50.031 eV, Ub50.047 eV! ~Ref. 14!.
The solid line represents the least-squares-fitted theoretical curv
the model proposed in the present paper (E50.013 eV, Ub50.059

eV, G54.953107 s21).
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TABLE I. The parameters of the Ps self-trapping in some alkali halides.

Crystal E exp, eV Ub
exp, eV Gexp, s21 B, eV \v, eV g Ub , eV G, s21

KI 0.013 0.059 4.953107 0.92 0.019 0.22 0.15 1.13107

KCl 0.027 0.087 8.243107 1.16 0.031 0.22 0.19 1.03109

NaF 0.107 ~Ref. 12! 2.15 0.054 0.21 0.36 6.83108
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whereG, the tunnel detrapping rate, is introduced to take i
account the possibility for Ps to cross the adiabatic poten
barrier quantum mechanically. Note that the physical me
ing of the detrapping rateG thus introduced, is the same a
that of the tunneling rateG introduced in Sec. II. In view of
Eq. ~29!, the statistical detailed balance determined by
~27! gives us the following modified expression for the tra
ping rate from the free to the self-trapped state:

g t5
gt

gf~T!Fn expS 2
Ub

kBTD1GexpS 2
E

kBTD G , ~30!

where the second term in the brackets describes the qua
mechanical contribution to the trapping rate. Note that ag
as in the case of the classical trapping described by Eq.~28!
@or by the first term in the brackets in Eq.~30!#, even if G
itself is small, the tunnel trapping rate can, because of
large factorgt /gf(T), be sufficiently big so that Ps atom
forming in the free state tunnel through the potential bar
and annihilate mainly from the self-trapped state. Therefo
the fraction of the self-trapped Ps must start to grow at low
temperature than that predicted by the classical model g
by Eqs.~25!, ~26!, and~28! ~Fig. 2, the dashed line!.

In the present work we used Eq.~25! with g f andg t given
by Eqs.~29! and ~30! to estimateUb , E, andG experimen-
tally. The least-squares fits of the experimental data w
performed for KI ~Ref. 14! and for KCl ~Ref. 13! @hn
50.0145 eV~Ref. 33!# crystals under the same assumptio
for l f

sa, l t
sa and forl t as in Ref. 14. The fitting curve for K

is shown by the solid line in Fig. 2, and the results of the
for KI and KCl are listed in Table I in the columns marked
‘‘exp’’. The new fitting curve behaves satisfactory over t
whole temperature range, indicating the importance of
quantum tunneling process for Ps in KI at least up to
temperaturesT&TST. For KCl also the fitting procedure

FIG. 3. Thea dependence of the barrier heightUb for Ps in KI,
KCl, and NaF, calculated from Eqs.~16! with g determined from
Eqs.~17! andx determined from Eq.~19!.
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gives good correspondence of the fitting curve to the exp
mental data over the whole temperature range.

IV. DISCUSSION

The results of the numerical calculation of the adiaba
potentialU for the Ps self-trapping, of the barrier heightUb ,
and of the tunneling path lengthQ0, are shown in Figs. 1, 3
and 4. Since the values of the bandwidths for Ps in alk
halides are only poorly known, we estimated them from
expression given by the standard tight-binding approxim
tion for all the crystals under study~KI, KCl, NaF!: B
53\2/Ma2, where a is the distance between the neare
neighbors, andM , the Ps band mass, was simply assumed
be equal to 2m0, the doubled free-electron mass. The co
pling constantg was estimated from Eqs.~17! under the
additional conditionU5E with E obtained from the fits for
KI and KCl, and taken from Ref. 12 for NaF. The ban
widths and the coupling constants thus determined~see
Table I! were used, as described in Sec. II, to calculateU for
the KI crystal as a function ofa andQ ~Fig. 1!, andUb and
Q0 for KI, KCl, and NaF as functions ofa ~Figs. 3 and 4!.

As is seen from Figs. 3 and 4, with the increase ofg ~see
Table I! the minimum ofUb /B decreases somewhat and t
tunneling path lengthQ̄0 increases, indicating that the pote
tial barrier between the stable delocalized and the metast
self-trapped states of Ps becomes wider as its height
creases. The dependencesUb(a)/B in Fig. 3 take their
minima at a;4. These minima, in accordance with th
theory described in Sec. II, determine the numerical val
of the barrier heights between the two Ps states in the co
sponding crystals. The values ofUb thus calculated are listed
in Table I.

In Fig. 5 thea dependence of the tunneling rateG for KI
is shown as a typical example. The dependence was ca

FIG. 4. Thea dependence of the tunneling path lengthQ̄0 for
Ps in KI, KCl, and NaF, calculated from Eq.~15! with g determined
from Eqs.~17! andx0 obtained from Eq.~16! as described in Sec
II.
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lated from Eqs.~20!–~24! with E taken from the fit. Similar
dependences were obtained for KCl and for NaF (E was
taken from the fit for KCl and from Ref. 12 for NaF!. As is
seen from the figure,G(a) takes its maximum ata;12.
This maximum gives us the numerical value of the rateG of
the tunnel transition of Ps between its free and self-trap
state. The values ofG thus obtained are listed in Table I.

As is seen in Table I, the barrier heights and the tunne
rates estimated numerically, and those obtained from the
of the experimental data, are in qualitative agreement.
though the calculated barrier heights are approximately
times higher than the experimental ones, they show the b
width dependence in agreement with the experiment.
same is true for the tunneling rates: the tunneling rate in
is smaller than that in KCl, in agreement with the expe
ment. The quantitative disagreement of the values calcul
with those obtained from the fits may be caused by the m
ematical simplifications of the theoretical model. In partic
lar, the phonon energies given by the model of the sim
cubic lattice and shown in Table I, differ by a factor

FIG. 5. Thea dependence of the tunneling rateG obtained from
Eqs.~20!–~24! for KI.
,

.
,
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la

v,
d

g
ts
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o
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e
I
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le

approximately 2 from those used in the fits, 0.0077 eV for
and 0.0145 eV for KCl.33 Another source of the quantitativ
disagreement is the variational procedure used in the num
cal calculations, since, as is known, the variational metho
strongly dependent on the choice of the trial function.

Nevertheless, the qualitative agreement between
theory and the experiment lets us conclude that the pote
barrier heightUb between the stable free and the metasta
self-trapped state of Ps is mainly determined by the ba
width B and increases with the bandwidth, in agreement w
the predictions of the general theory for the case of
exciton.24 The tunneling rateG is mainly determined by the
factor B/\v. This results from its Gaussian dependence
Qc @see Eq.~20!#, which is estimated from Eq.~24! as Qc

'AB/\v3~the factor weakly dependent on the type of t
crystal!. According to Table I,B/\v is bigger in KI than in
KCl. Therefore,G in KI must be smaller than that in KCl
explaining qualitatively the results of the fits of the expe
mental data~see Table I!.

Finally, it is interesting to note that, as in the case of t
exciton,24 the value ofa that maximizes the Ps tunneling ra
is not equal to that minimizing the potential barrier heig
~compare Figs. 5 and 3!. This means that the tunneling pa
dominating in the self-trapping process at low temperatu
is different from the thermal activation path that prevails
high temperatures.
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