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The dynamics of discrete two-dimensional nonlinear Sdimger models with long-range dispersive inter-
actions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole
interaction, assuming the dipole moments at each lattice site to be aligned either in the lattidamiksteopic
case or perpendicular to the lattice plarisotropic casg We investigate the nature of the linear dispersion
relation for these two cases, and derive a criterion for the modulational instability of a plane wave with respect
to long-wavelength perturbations. Furthermore, we study the on-site localized stationary states of the system
numerically and analytically using a variational approach. In general, the narrow, intrinsically localized states
are found to be stable, while broad, “continuumlike” excitations are unstable and may either collapse into
intrinsically localized modes or disperse when a small perturbation is appB6d63-182@8)02318-3

[. INTRODUCTION ear Schrdinger models with tunable nonlinearities was in-
vestigated in Ref. 20. The generalized two-dimensional dis-

Determination of the dynamical properties of physicalcrete solitons were found, and their role in the final stage of
systems with competition between discreteness, nonlinearitghe quasicollapse dynamics was demonstrated.
and dispersion has attracted a growing interest because of the Until recently, the main attention was paid to systems
wide applicability of such models in various physical prob-with short-ranged dispersive interactions, and a nearest-
lems. Examples are coupled optical fib&r$,arrays of neighbor approximation was used. However, during the last
coupled Josephson junctiohsonlinear charge and excita- decade a series of theoretical and numerical studies of the
tion transport in biological systemisand elastic energy effect of long-range interactions on properties of nonlinear
transfer in anharmonic crystdidt has been shown that the excitations was carried out. In Ref. 21 an implicit form for
balance between nonlinearity and dispersion in a weak norsolitons was obtained in a sine-Gordon system with long-
linearity (large dispersionlimit provides the existence of range interaction of the Kac-Baker tyfe?®and the depen-
low-energy solitonlike excitations. These are very robust obdence of the soliton width and energy on the radius of the
jects that propagate essentially without energy loss, and theiong-range interaction was analyzed. In Ref. 24 the nonlinear
collisions are almost elastic. term in the sine-Gordon equation was assumed to have a

As a result of the interplay between discreteness, dispemonlocal character, and novel soliton states, of topological
sion, and nonlinear interactions, new types of nonlinear exeharge zero, were found to exist at a large enough radius of
citations may appear. These are the intrinsically localizednteraction. In Ref. 25 the effects of a long-range harmonic
oscillatory states, which are also termed discrete breathergteraction in a chain with short-range anharmonicity was
The properties of these modes have been intensively studiemnsidered. It was demonstrated that the existence of two
during the past years® For example, in monoatomic lat- velocity-dependent competing length scales leads to two
tices with a nearest-neighbor harmonic interaction and dypes of solitons with characteristically different width and
positive quartic anharmonic interaction, localized states wittshapes for two velocity regions separated by a gap. Effects of
nonlinear frequencies lying above the phonon band weréong-range interactions of the Kac-Baker type were also
found®~1? In the case of the one-dimensional nonlinearstudied in static and dynamic nonlinear Klein-Goréfor®
Schradinger(NLS) lattice'” with focusing nonlinearity, there and nonlinear Schidingef® continuum models. In Ref. 30 a
exists below the linear excitation band a localized modepne-dimensional discrete NLS model with a power depen-
which in the small amplitude limit reduces to the one-solitondencer ~* on the distance of the dispersive interactions was
solution of the continuum NLS equation. proposed. It was shown that farsufficiently large, all fea-

A discrete NLS equation with “tunable” diagonal and tures of the model are qualitatively the same as in the dis-
off-diagonal nonlinearities that includes the integrablecrete NLS model with only nearest-neighbor interactions.
Ablowitz-Ladik system as a limit was introduced in Refs. Fors less than a critical value,=3.03, there is an interval
18 and 19. It was shown that the reflection and translationadf bistability where for each value of the excitation number
symmetries of the integrable equation are broken by the ditwo stable stationary states exist: one continuum(#aiton-
agonal nonlinearity, and the properties of the Peierls-Nabarrbke) state and one intrinsically localizédiscrete state.
potential as a function of the tuning parameter were studied. In the main part of the studies in the literature, the effects
Recently, the dynamics in discrete two-dimensional nonlin-of nonlocal interactions were investigated only for one-
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dimensional systems. However, these effects should be dhe excitation wave function. We will investigate excitations
particular importance in systems of higher dimensions, sincevhose dispersion is due to the dipole-dipole interaction

in D-dimensional systems the effective number of atoms that e s

participate in the interaction increasesRIS (R is the radius - (n—=n")

of the interaction Moreover, there exist physical situations n-n’'= m 1-3d: |*_ﬁ,| ' 4
where the long-range properties of the interactions and the

multidimensional character of the systems should be takefyhered= (cosp siné,sing sind,cos) is the transition dipole
into account on the same footing. For example, the excitatiofoment(its length is normalized to unityg is the colatitude
transfer in quasi-two-dimensional molecular crystaésd in and ¢ is the longitudg

Langmuir-Blodgett-Scheibe aggregafeis due to transition From the Hamiltoniar(1)—(3) we obtain the equation of
dipole-dipole interaction with a2 dependence on the dis- :
tancer. Furthermore, the DNA molecule contains charged
groups, with long-range Coulomb interaction ¢) between
them. Thus, the corresponding vibrational excitation has a )

dispersive interaction that is also of the dipole-dipole type. i — 2 st —alys
As a final example we mention the long-range magnetic or- n’(n'#n)

der in literally two-dimensional Langmuir-Blodgett films of \yhere the overdot denotes the time derivative. The Hamil-

manganese steardteIn(C,gH350,),], which is stabilized by  {5nianH (1)=(3) and the excitation number

the magnetic dipole-dipole interactidh.
The goal of this paper is to investigate the dynamics in

discrete two-dimensional nonlinear ScHimger models with N=2 [¢rl? (6)

dipole-dipole dispersive interactions. We also develop a qua- n

sicontinuum approach to the problem. The paper is strucare conserved quantities. Obviously, the Lagrangian for Eq.

tured in the following way. In Sec. Il we define the equations(5) can be written via the Legendre transformtbfas

of motions for the system under study and focus our atten- L

tion on the two particular cases where the transition dipole . _

moments are directed either in the lattice pldaeisotropic LI'; E(%‘/jﬁ —c.c)—H. @)

casg or perpendicular to the plang@sotropic casg We ob-

tain a general criterion for the modulational instability of a  Equation(5) has an exact plane-wave solution

plane wave, which we apply for these two particular cases. In .

Sec. Il we discuss the localized stationary states of the sys- Pr(t)=Agkniot ©)]

tem. We calculate them numerically and use a variational . ) .

approach to gain some analytical insight into their structure‘."“th amplitudeA and the frequency being of the form

Also, we discuss their linear stability properties. In Sec. IV

motioni ;= aH/asz for the excitation wave functiog; in
the form

247=0, ®

we investigate the dynamics of the system with initial con- w=aA?+J(k), 9
ditions chosen either of Gaussian form or as slightly per\where the function
turbed stationary states. Finally, we summarize our results in
Sec. V. . -
JK=dka)=_ 2 Jsekr (10)
n(n#0)

II. SYSTEM AND EQUATIONS OF MOTION . . . . o
determines the linear dispersion of the excitations.

We consider a quadratic two-dimensional lattice with lat- To investigate the linear stability of the plane-wave solu-
tice spacing equal to 1. The model we study is described byion determined by Eqg8)—(10), we will seek the solution

the Hamiltonian to Eqg. (5) in the form
H=T+U, (1) G =[A+f(t)]elk n-iet+ivv, (11)
where Inserting Eq.(11) into Eq.(5) and linearizing it with respect
to f;; and v; we get
T=_ 2  Jia¥im 2) - L
e " fa=— 2 Ja_asink-(n—n")]f

n’(n’ #n)
is the dispersive energy of the excitation, and

—A_ > Ji_mcogk-(n—n")](vi— i),

a n'(n’ #n)
U=52 lvil* 3 (12
n .
Avi=[J(K)—2aA?]f;— Ji_qcogk-(n—n")]f5
is its potential energy that describes a self-interaction of the vi=3(k) It 5,(?;,;) i otk ( N
guasiparticle & is the nonlinearity parameterin Egs.(1)—
(3) n=(m,n,0)(m,n=0,+1,%+2,...) is the lattice vectofwe +A D Jiopsink-(n—n")](vi—vi).

assume that the lattice is in the-y plang, andy;= i, , is n’(n’#n)



57 SOLITARY EXCITATIONS IN DISCRETE TWG.. .. 11 305

Looking for the solution of the set of Eq€l2) in the form

33
s .'533:0 SN
t+ieen trinn & S N
- _ ot+ik-n - _ ot+ik-n 6 e LR YR AGITRRERELRIR
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whereF andY are the amplitudesr is the increment, and s

. K . g ° ahiooo '0,:.:0}::::‘
is the wave number of the modulation wave, we obtain that 3¢ . "5"'0'0.’0'0:’0'";2;2:3212"5‘2 5
the increment is given by A
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o— IE[J(E— K)—I(k+ k)]

2J(K)—J(k— k) — I(K+ k)
2

J(K— k) +JI(K+ k)
2

x| 2aA?+

JK|. (19

We remark that this expression for the incremenis valid

for arbitrary interaction described hy;_;,, and it reduces

to the expression obtained in Ref. 34 for the one-dimensiona
case with only nearest-neighbor interactions. Modulational
instability will occur wheno has a strictly positive real part.

In the limit of long-wavelength perturbations, i.e., when

|k|<1, we obtain from Eq(14), @
- 2 R
aJ(k d2J(k
ot : )KM :_aAz—( )K,LKV, (15 23
Iy K 9K, a
j(v‘q) 4, o::‘\\ SOSEN

where the summation indicgs and v run over the coordi-
natesx andy, and the summation convention is used.
From Eq.(15) it is seen that the necessary condition for
modulational instability to occur is positive definiteness of
the left-hand side of Eq(15). For the waveg8)—(10) that
correspond to the extrema of the dispersion surfa®

[9J(k)/dk =0], the necessary condition is thus positive
(negative definiteness of the effective mass tensor

(3’2J(|2)/(9klur7k,, when self-interaction is attractiveag0)
[repulsive @>0)].

Let us consider the shape of the dispersion surface giver
by Eq.(10). We will distinguish two particular case€) the
anisotropic case where the dipole moments are inxthe
plane (9= w/2) and are parallel to the-axis (¢=0); (ii) the
isotropic case where the dipole moments are perpendicular tt
thex—y plane ¢=0).

For the anisotropic casg), the shape of the dispersion
function J(k,q) is shown in Fig. 1a). It is seen that the
function has a minimum d=0,0= = 7 and a maximum at
k=+,q=0. In the Appendix we show that in the vicinity =~ FIG. 1. Linear spectrund(k,q) (10) of the dispersion operator
of the minimumk=0,0= J;; for the dipole-dipole interactior{4); (a) anisotropic casdd
=(1,0,0)]; (b) isotropic casdd=(0,0,1)].

K X ROK RN
A AR RIENRIR:

S SRR
RS RIRINR
R I

SRR

J(k,q)=—5.1+1.7%*+0.15 7—q)?, (16)
and in the vicinity of the maximurk=7,q=0 It is worth noticing that near the maximum the dispersion
(17) is almost isotropic, while in the vicinity of the minimum
J(k,q)=6.03—1.1717—k)%>—1.2%2. (17) it is highly anisotropic; in the latter case the ratio of the

The pointk=g=0 is a saddle point, and near this point we effective masses in the and m directions exceeds 1{&Gee

/ Eq. (16)].
obtain from Eqs(A19) and (A20) that The shape of the dispersion surface in the isotropic case
2 (i) is presented in Fig.(b). At the pointk=q= 7 the dis-

(18)  Ppersion function has a minimum and has the fdsee Ap-

N pendix

J(k,q)=—4.51+27
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FIG. 2. Excitation numbeN versus nonlinear frequen&y for numerically obtained solitary stationary solutions of the f@21); (a), (b)
anisotropic casfd=(1,0,0)]; (c), (d) isotropic caséd=(0,0,1)]. In (a) and(c) the nonlinear interaction is attractiva€ —1); in (b) and
(d) the interaction is repulsivea= +1). Insets show detailed behavior near the cutoff frequencies obtained froni25gand (26); inset
in (b) shows the behavior when the number of sifieslicated in the figureis increased.

J(k,q)=—2.65+0.4 (7—Kk)?+ (7—q)?]. (19 Yr(t) =T e B (21)

In close proximity of the poink=qg=0 the dispersion sur- jith a real shape functio ;=¥ , and a nonlinear fre-
face has a peaklike shape, and is described by the functiogyyencyE. The equation of motiort5) then yields the gov-
erning equation for the function¥ , , as

J(K,q)=9.03- 27 k> + 2. (20
In accordance with the modulational instability criterion EV o= 2 Jm,'n,\lfmfm,yn,n/-l-a\l’gmn. (22
obtained from Eq(15), one can conclude that in the aniso- m’.n’ ’

tropic case the wave®)—(10) with k=0,0= = 7 are modu-

lationally unstable for long-wavelength perturbations when As was shown above, modulational instability may occur
the self-interaction(3) is attractive A<0), and the waves for linear waves(8) with wave vectors belonging to the
k=+,=0 are unstable for the repulsive self-interactionboundaries or the center of the first Brillouin zone of the
(a>0). In the isotropic case the modulational instability oc-square lattice. In the cases when the instability occurs at the
curs for the waves with= * 7r,q= = 7 whena<0, and for  Brillouin-zone boundaries, it is natural to expect that the
the wavek= gq= 0 whena>0. [|n the latter case, this is seen nonlinear excitations that appear as a result of this |nStab|l|ty

by direct substitution of Eq(20) into Eq. (14).] will be staggered. Thus, the corresponding wave function
W, n can be written in the form

IIl. STATIONARY STATES OF THE SYSTEM :
q’m,n:el(Km+Qn)q)m,ny (23
We are interested here in the stationary solutions of Eq.
(5) of the form where the envelope functioh,,, , satisfies the equation



57 SOLITARY EXCITATIONS IN DISCRETE TWG.. .. 11 307

15 -10 5
(c) E
40 -
35 |
30 |
25
N
20 |
15 |-
10
| | |
10 15 20
(d) E

FIG. 2. (Continued.

(K s on s In Figs. 2b) and Zd) the nonlinear interactiokB) is repul-
EQpn= 2 Iy o€ ™MD radd sive (a=1), and the eigenfrequencies lie above the upper

m’,n’ . .
(24) edge of the dispersion surface,
The vector K,Q) corresponds to one of the boundaries E=J(7,0)~6.03 whend=(1,0,0); (26)
[(K,Q)=(0,x7),(xm,0),(x7,*7)] or the center
[(K,Q)=(0,0)] of the first Brillouin zone. In the latter case, E=J(0,0=9.03 whend=(0,0,).

the function(23) describes an unstaggered excitation.

We have studied the nonlinear eigenvalue problem giverFigures 3—-5 show some examples of these solutions. It is
by Eq.(22) numerically and analytically. The numerical pro- seen that, at least when the excitations are relatively wide,
cedure used is a discrete version of the iterative Petviashvitheir shapes vary in accordance with Eg3): while in the
method described in Ref. 35. Throughout, zero boundarwnisotropic caséin-plane dipole alignmeitthe eigenfunc-
conditions were used, and the maximum residual error of théions are modulated either along threor n directions(Figs.
numerical solutior” ., , of Eq. (22) never exceeded 18°. 3 and 4, in the isotropic casélipole moments perpendicular

Figures 2a)—2(d) show the dependend¥(E), whereN is  to the plang the functions are either modulated along both
the excitation numbef6), for the solitary stateg21) ob- the m andn directions @<0) or they are nonmodulated
tained numerically as solutions of E(2) for the in-plane (a>0) (Fig. 5. However, we note that for narrow excita-
[Figs. 2a) and 2b)] and out-of-plané¢Figures 2c) and 2d)]  tions, the states may be staggered only in a neighborhood
alignments of the dipole moments. Figurda)2zand Zc) cor-  around its central peak, and unstaggered outside this region
respond to the attractive nonlinear interaction=(—1). [see, e.g., the contour plots in FigdaB 4(b), and 4c)].
Here the localized states have frequencies lying below th&he existence of this type of solutions is a consequence of

linear dispersion surface, the long-range nature of the dispersion; in the nearest-
neighbor case all solitary stationary states are either com-
E<J(0,m)=—5.1 whend=(1,0,0); pletely staggered or unstaggered as a consequence of the

(25 symmetric nature of the dispersion surfa¢€he nearest-
R neighbor equation is invariant under the simultaneous trans-
E<J(m,7)=—2.65 whend=(0,0,1). formations ¥, ,— (= 1) e 0= (—1)*J4 g,
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52 9?
2.0 (1.17—2+1.29—2 O+ D3 -[E—JI(m,0]P=0.
am an

1.5 | (27)

It is well knowrt® that the ground-state solution of the iso-
tropic two-dimensional NLS equation

?
_+_

ax?  ay?

o+ d3+AP=0 (28)

exists for[” _dx[” .dy$?=11.7. Rescaling the spatial vari-
ablesm andn in Eq. (27), we obtain that the threshold value
of the excitation number for the excitatiorf23) with K
=,Q=0 is 14.4, which is in fair agreement with the results
presented in Fig.®). The same dependence of the shape of
the functionN(E) on the grid size takes place for all cases
shown in Fig. 2, except for the case of a repulsive nonlinear-
ity in the lattice with out-of-plane dipole momeni§ig.
2(d)]. HereN(E) monotonically increases wheéf— J(0,0).
This behavior can also be explained by taking into account
the peculiarities of the linear dispersion in the isotropic case.
Indeed, it is seen from E@20) that fora=1 andE close to

the top of the dispersion surfade=q=0, the continuum
limit of Eq. (24) has the form

—\=V2P+d3-[E—-J(0,0]P=0, (29

e
< /% M"
‘\,”{,’\‘\‘\‘\\ "h ‘

where

(30

is the Fourier multiplier operator defined by

f de' dn km+am [ y2@(m,n)

=\/k2+qu dmf dn d*MTaNG(m n). (31)

(®) The behavior close to the threshal(0,0) can easily be un-
FIG. 3. Shape function¥ ,, , with contour plots for stationary ~derstood, since the scaling transformatio®=[E
solutions(21) in the case of anisotropic dispersipa= (1,0,0)] and —J(0,0)]**R(x,y),x=[E~J(0,0)]m,y=[E~J(0,0)]n re-
repulsive nonlinearity =1); (a) linearly stable solution folE duces Eq(29) to
=8; (b) unstable solution foE=6.3.

1/2
R+R3—R=0, (32

Jo+1—(—1)"Jo~1, While no such invariance exists for the
general case of long-range dispersjon. which is independent of. The applied scaling therefore
In Fig. 2(b) the dependence df on the grid size is pre- yields
sented. When the number of sites increases the influence of
the boundaries becomes smaller, and this is reflected in the
narrowing of the dip in the region @& close to the threshold
value[J(,0) in this casg It is seen that the level of the flat
plateau around the local maximum neHrr,0) approaches
the asymptotic value of the excitation numiércorrespond-
ing to the ground state of the continuum NLS equation,
which can be obtained from E4) for the envelope func-
tion ®,, ,. Indeed, taking into account the dispersion law
given by Eq.(17), we obtain that the continuum limit of Eq.
(24) near the threshold valu ,0) fora=1 has the form

N:F dmr dn®(m,n)~[E—J(0,00]"% (33

which agrees with the results of the numerical simulations
[see Fig. 2d)]. It is interesting to note that an equation of the
same type as Eq29) (but with a quadratic instead of cubic
nonlinearity arises in the theory of low-frequency oscilla-
tions of a boundary layer with high Reynolds numBésee
also Ref. 38 For this equation, it was showhthat one-
dimensional solitons are unstable with respect to two-
dimensional perturbations.
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FIG. 4. Same as Fig. 3 but for attractive nonlineariay=(—1); (a) unstable solution foE= —5.2; (b), (c) stable solutions fotb) E
=—5.5 and(c) E=-8.

Recently, a criterion for instability of solitary excitations N
in a discrete two-dimensional NLS model with nearest- m>0 (39
neighbor dispersive interaction was obtairiett.was shown
that the stationary states are unstable for are linearly stable. Although we have not been able to rigor-
ously extend this criterion to the two-dimensional case, we
oN believe that also for the cases considered here, the condition
m<0' (34 (35) is a necessary and sufficient condition for linear stability

of on-site localized stationary statéa similar assumption
Using the approach proposed in Ref. 39, it is easy to showas employed in Refs. 20 and 41 for the case of nearest-
that the criterion(34) is valid also in the case of long-range neighbor dispersion As will be illustrated in Sec. IV, this
dispersion. From this criterion, we conclude from the shapeonjecture, which implies, e.g., that the states shown in Figs.
of the curvesN(E) in Fig. 2 that, similarly to the case with 3(a), 4(b) and 4c), and 5 are linearly stable, is also supported
only nearest-neighbor interactiéh,the broad stationary by numerical dynamical simulations.
states are generally unstalhexamples of unstable states are It is worth noting that in the case of an attractive nonlin-
shown in Figs. &) and 4a)]. For the one-dimensional case ear interaction and in-plane dipole alignment, the depen-
with nearest-neighb®? or long-rang@’ dispersion, it has denceN(E) reveals in the interval of stability(dN/J|E|)
been shown that localized stationary states, whose envelopeO] the existence of two different slopedl/J|E| [see Fig.

has a single maximum at a lattice sftm-site stateésand for  2(a)]. Figure 4 shows that the shapes of the corresponding
which solutions differ significantly. The states with low frequency
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30‘ so that the problem of minimizingl under the conditiorN
) =const is reduced to the problem of satisfying the equations
2 oH 0 oH 0 39
¥ da 9B
19 dk To calculate the kinetic enerdlywe use the discrete Fou-
B rier transformation
S RESERRS
0 S _ . —
'S §:=§:z=§§z:!2$g:§g§::§ ®(k,q)=>, ekmag = Nf(ka)f(q,8), (40
S S PSE P O e e on e e m,n
B S S S ST e e S e m,n
SSREEEEEEEES
@) = where
— sinh «
5 f(k,a)=Vtanha————. 41
! (k@) “cosha—cosk (4D
1 This permits us to rewrite Eq2) as
k4 1 _ 5
T(K,Q)= 372 I(K+kQ+q)[P(k,q)]
g
N 27
=—J dk dgJK+k,Q+q)
47%J)o
X[f(k, )]’ f(a,8)]%, (42)

(b)
_ _ o _ WwhereM is the number of sites in the systed (). Tak-
FIG. 5. Same as Figs. 3 and 4 but for isotropic disper$bn ng into account the definitiofL0) of the dispersion function

=(0,0,1)] and (a) repulsive nonlinearity §=1) andE=12; (b)  j(k,q), we obtain that the kinetic energy of the system can
attractive nonlinearity §=—1) andE=—4.0. In both cases, the pg represented in the form

solution is found to be linearly stable.

T(K,Q)=2NF(K,Q), (439
|E| have an ellipselike projection on the lattice plane. The .
major axis of the ellipse is parallel to the axis and its with
eccentricity is close to ongsee Fig. 4b)]. In contrast, the o o
solutions with high frequenc}E| represent almost isotropic FIK,Q) =Y > J,,eKmtQng-(am+an))
intrinsically localized states with a width of a few lattice m=1n=-e< "
constants in both directiorjsee Fig. 4c)]. It is clear that the
reason for this difference is the anisotropy of the linear dis-
persion given by Eq(16) [in the cases where the linear dis- *
persion is(almosy} isotropic, all solutions arélmosy} isotro- +> Jon€Q"(1+n tanh B)e A" (43b)
pic as illustrated in Figs. 3 and,3ut to gain insight into this n=1
phenomenon we need to have a solution of the problenhserting Eq.(36) into Eq. (3) we get
which is valid in the whole interval of the nonlinear frequen-

X (1+m tanha)(1+|n|tanh 8)

cies. aN? tanffa tant?p

To obtain the needed solution of the problem we will use U=— (44)
a variational approach. As an ansatz for a localized state we 2 tanh2«a) tani(28)
choose From Eq.(22) we obtain that the nonlinear frequenEycan

be expressed as
@y n=Nfm(@)fn(B), (36) .
where E=y[T(K.Q)+2U], (45
fi(z)=\tanhze 4ll, z=a,B, (370 with T andU being defined by Eqg43) and (44).

The two particular types of dipole moment alignments,
isotropic case [d=(0,0,1)] and anisotropic case[d
=(1,0,0)], will be considered separately.

with a and g being trial parameters. It is seen from E36)
and(37) thata~* (87 1) is the excitation width in then(n)
direction. The function$36) and (37) automatically satisfy

the normalization condition _ )
A. Out-of-plane dipole alignment

2 _ It is seen from Eq(4) that When&=(0,0,l), the matrix
> Vh=N, (38) ~4
mn element of the excitation transfd, , has the form
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FIG. 6. Excitation numbeN versus nonlinear frequendy for FIG. 7. The dependence on the nonlinear frequecyf the
the isotropic and attractive case considered in Fige. &d §b), ratio of the excitation widths in then and n directionse™! and
obtained from the approximate analytical expressis). B71, as defined by Eq€36) and(37), obtained using the approxi-
mate expressiofb0) for the anisotropic and attractive case consid-
I n=(m2+n2)_3/2. (46) ered in Figs. 2a) and 4.
Slnqe\]m’n IS Iso_troplc, we can restrict ourselves by the_ iso- tanh(28) costa IF(K,Q)
tropic trial functions(36) with «= . In the case of attractive N=8 _ (51)
nonlinear interactiong< 0), the modulational instability oc- tantf@ 2costi2e)—-1 Je

curs forK =+ 7 andQ= = 7. This means that the nonlinear gqation(50), describing the link between the inverse widths

excitations are staggered both along theandn directions  , ang g, characterizes the shape of the excitation. Figure 7
of the square lattice. Due to phase modulation the series ighq\ys that in accordance with the results of the numerical
the right-hand side of Eq43b) are rapidly converging for all - gjmyations represented in Fig. 4, the shape of the excitations

a, and with a good accuradypf few per centthey can be  change when the absolute value of the nonlinear frequency
approximated by their first terms, yielding |E| increases. When the frequenéyis close to the edge
_ J(0,7) of the linear dispersion band the excitation has an
T(m,m)=N(~4 secha+2 secfla). (47 ellipselike shape with an eccentriciey= \1— a?/52=0.98,
The equatiordH/da =0, with H=T(#,7)+ U, then yields  but for large|E| the excitation is more isotropic with the

fora=—1 eccentricitye=0.78. The dependendd(E) obtained from
Egs. (50) and (51) is plotted in Fig. 8. It is seen that the
costfa(2 cosha—+?2) analytical results agree qualitatively with the numerical re-
N=8 . (48 sults obtained from direct solution of E(@2) [see Fig. 2a)].
[2 costi2a)—1]cosh(2a) It is also worth noticing that the characteristic change of the

Figure 6 shows the dependeniSéE) obtained analytically ~S/oPe of the dependend¥(E) occurs in the same energy
from Eqs. (44), (45), (47), and (48). Comparing with Fig. interval where the shape of the excitation changes. As it was

2(c), it is seen that there is a good qualitative agreemen?tressed above such a behavior is coupled with the highly
between the analytical and numerical approaches.

10
B. In-plane dipole alignment 95 1
When the dipole moments are aligned along riinélirec- or il
tion [d=(1,0,0)], the matrix element of the excitation trans- 85
fer is
8 -
N
m2 1 75 +
=(1-3 .
‘]m,n 1 m2+ n2 (m2+n2)3/2 (49 7L d
We consider the case of attractive nonlinear interactian ( 65 r
=—1). In this case the nonlinear excitations are modulated 6 F
along then direction K=0,Q=), and the variational 55 . . . .
equationg39) take the form 10 9 8 7 P 5
E
sinf(4a) ~ JF(K,Q) _ sin(4B)  dF(K,Q) FIG. 8. Excitation numbeN versus nonlinear frequendy for
2 coshi2a)—1 da 2 cosli2p)—1 B’ the anisotropic and attractive case considered in Figs. 2 and 7,

(50 as obtained from the approximate analytical expreséidn
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FIG. 9. Dynamical solution of Eq:5) with anisotropic dipole-
dipole interaction(4) [&=(l,0,0)] and repulsive nonlinearitya( 5
=1), where the initial condition is the perturbed stable stationary 0
state(52) with e=0.1 and¥, , as in Fig. 3a). The figure shows a
cut along the axi®=0. 0g
anisotropic linear dispersion in the vicinity of the minimum
k=0,g= 7 (the ratio of the effective masses in theandm
directions exceeds 10and as a consequence with the exis-
tence of two different characteristic length scales.
IV. DYNAMICAL SIMULATIONS 02 —
R R HHun:r=HwwHwy
In this section, we investigate numerically the dynamics WW
N R

of Eq. (5) with the dipole-dipole dispersive couplirg) for
some different choices of initial conditions. The numerical

approach used to integrate the equation is the so-called split-
step Fourier method where the linear and nonlinear parts of

the equation are integrated separatedge Ref. 42 for the

N N
iR
N

IR =
N

N

N

(b)

detaily. The advantage of this method in this case is that the
linear part is solved in Fourier space where the long-rangé g 11. same as in Figs. 9 and 10, but with the Gaussian

interaction is reduced to a multiplication of the interaction
term J(IZ) and excitation wave function.

First, we consider the anisotropic case w@ﬁ(l,0,0)
and Jy, , is given by Eq.(49). Figures 9 and 10 show the
time evolution for the case of repulsive nonlinearig=1)
with slightly perturbed stationary states of the fo(g1) as
initial conditions:

l//m,n(o):(l"_f)q}m,nr (52

wheree=0.1 and¥, , is the shape function for a stationary
state with nonlinear frequendy. In Fig. 9, the initial condi-
tion is obtained from the stationary state with-8 shown in

profile (53) with K=, Q=0, my=ny=8, and (a) N=15 (A
=0.38), resp(b) N=13.5 (A=0.36), as initial condition.

the curveN(E) in Fig. 2(b) according to the criteriofi35).

As can be seen, the perturbation causes initially some small
oscillations around the initial excitation, but for longer times
the solution relaxes into a stationary state of essentially the
same form as the initial state, with only a small amount of
radiation emitted. On the contrary, when the initial condition
is obtained from the stationary state with=6.3 shown in

Fig. 3(b), which belongs to the unstable part of the curve
N(E) in Fig. 2(b) according to the criteriori34), the time

Fig. 3(@), which corresponds to the linearly stable branch ofévolution is completely different as shown in Fig. 10. Ini-

tially, the rather broad initial excitation collapses into a very
narrow state. After this follows a time regime of large but
decaying oscillations between narrow and wide states, and
finally the system seems to settle down in a narrow state that
appears to be a stable stationary state like the one in Fig. 9.
Thus, Figs. 9 and 10, together with a number of other similar
results obtained for other parameter values, support the con-

jecture from Sec. Il that the criterio(85) is both a neces-

sary and sufficient condition for linear stability of on-site
localized stationary states also for the two-dimensional case

with long-range dipole-dipole interactions.

In Fig. 11, we show the time evolution for the case of

FIG. 10. Same as in Fig. 9, but with the perturbed unstableanisotropic dispersion and repulsive nonlinearity of an initial
stationary state with',, , as in Fig. 3b) as initial condition. staggered Gaussian profile of the form
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FIG. 12. Time evolution of an unstaggered initial Gaussian pré&8 with K=0, Q=0, with total excitation numbeK =25, for the
anisotropic and repulsive caEéz(l,0,0)a: 1].

m2 n? tinuum NLS equation. In the case of nearest-neighbor inter-
Ymn(0)=A€K™exy — —_——| (53  action, such a collapse threshold was clearly demonstrated in
' mg Ng Ref. 43. Thus, these results indicate that the staggered exci-
tations in the systems with anisotropic dipole-dipole disper-
sion behave in a similar manner as localized excitations in
nearest-neighbor discrete NLS systems.
Figures 12 and 13 show the evolution of two initially

with K=, Q=0, andmy=ny=_8, for two different values
of the amplitudeA. In Fig. 11(a) [Fig. 11(b)], the total exci-
tation number isN=15.0 (N=13.5). Recalling the result

from Sec. Il that the continuum limit of the discrete Gayssian distributed fields with the same envelope and the
NLS equation in this case can be written in the fof®7),  same value of the excitation numbe £ 25), but with dif-
whose ground state solution has the excitation numbeferent phase configurations. In Fig. 12 the initial distribution
N=Ns=14.4, we see that Fig. 18 [Fig. 11(b)] corresponds s isotropic K =Q=0), while in Fig. 13 it is staggered in the

to the case whelN>Ng (N<Ny). It is seen that the initial m direction K= ). It is clearly seen that while the stag-
excitation withN>Ng collapses into an intrinsically local- gered excitation in Fig. 13 collapses just as for the case in
ized mode, while the excitation witN<Ng disperses. This Fig. 11(a) (sinceN>Ny), the unstaggered initial excitation in
indicates the existence of a critical threshold fquasjcol-  Fig. 12 splits and spreads. These observations can, in the
lapse of broad initial excitations also for the cases consideredontinuum limit, be related to the behavior of the anisotropic
here, similarly to what is knowt for the ordinary con- two-dimensional NLS equation
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FIG. 13. Same as in Fig. 12, but with a staggered initial Gaussian préfiter, Q

325) leading to considerable and fast

hibit quasicollapse. Thus, for the parameter values in Fig. 14

the threshold occurs aroutdi=300. Figure 14a) shows col-

lapse dynamicsN

(54

=0.

9? ,
a_yz) b+ ylcy

(92
NG

9
i—+

ot

localization of the energy in the vicinity of the core, followed

For this case, no localized solution exidtsnd an initially
localized waveform will never collapse, but elongate inyhe
direction and narrow in the direction?® The same behavior

by oscillations. Figure 1#) displays subthreshold dynamics

(N

250) of the initial excitation which spreads out.

The origin of the high threshold value df in the isotro-
ic case can be understood from the dependend¢ af E

n the stationary case displayed in FigdR Here we note the
resemblance to the situation in the three-dimensional cubic

» With NS equation, which is known to exhibit supercritical col-

, We expeciq,

initial conditions in the two-

nearest-neighbor discrete NLS equation wit

can be expected for broad

dimensional

h

different signs in the coupling terms, since it is just a dis-
cretization of Eq.(54). In the case considered here

anisotropic long-range dipole-dipole interaction

pse behaviot® Using a simple scaling argument it is also

» URsvident from the

that the effective dispersion, as experienced by a broad

renormalized continuum limit of E&) in

pic case

staggered excitation, can be approximated by the dispersiafie isotro

function J(k,q) (10) around the poink

know from Sec.

0. Since we

q:

(59

=0

W

2

Yyl

the effec-

Il that this point is a saddle point

e

that the collapse dynamics has supercritical characteristics.

tive coupling in them and n directions will have opposite

and a similar behavior as for E§4) can be expected.

The dynamical behavior in the isotropic lattice is illus
trated in Fig. 14. It appears that the dynamics of the isotropi¢o depend on the explicit form of the initial conditifrim-

collapse is characterized by requiring a considerable value gilying that broad initial conditiongas in Fig. 14 require a

signs,

For the supercritical case the threshold valuéNas known

the excitation number for a Gaussian initial condition to ex-rather large excitation number for collapse to occur. A de-
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FIG. 14. Dynamical solution of Eq5) (a=1) with isotropic
dipole-dipole interaction4) [6:(0,0,1)] and with the Gaussian
profile (53) with K=0, Q=0, my=ny=18, and(a) N=325 (A
=0.8), resp.(b) N=250 (A=0.7), as initial condition. The figure
shows a cut along the axis=0.

tailed investigation of the collapse dynamics in the frame-

work of Eq. (55) will be presented elsewhere.

V. CONCLUSIONS

In the present paper we have considered the effects
long-range dispersive coupling of the dipole-dipole type in

the two-dimensional discrete nonlinear Salinger equa-

tion. From a general criterion for modulational instability of

11 315

instability for long-wavelength perturbations at an extremal
point of the dispersion surface always occurs for plane waves
that are staggered only in one direction. In the isotropic case,
with dipole moments aligned perpendicular to the lattice
plane, modulational instability occurs either for waves stag-
gered in both directiongfor attractive nonlinearity or for
unstaggered waveffor repulsive nonlinearity We have
found that the broad nonlinear stationary excitations, appear-
ing as a result of the modulational instability, in general are
staggered in the same way as the corresponding plane waves.
However, in contrast to what is seen in the case of nearest-
neighbor dispersion, the more narrow stationary states are in
general found to be staggered only in a region close to its
central site, and asymptotically unstaggered.

Concerning the linear stability of the stationary states, we
have found that, similar to the case with nearest-neighbor
dispersion, broad excitations in general are unstable, while
the narrow, intrinsically localized states are stable. In the
case of anisotropic dispersion, we have demonstrated the ex-
istence of a threshold for quasicollapse of broad excitations
(staggered in one directipninto intrinsically localized
modes. On the other hand, broad unstaggered excitations
have been found to split and spread. In the isotropic case,
quasicollapse is observed, however for much higher excita-
tion numbers.

To make the comparison between the model investigated
in this paper and the standard continuum and discrete nearest
neighbor NLS model more clear and explicit, we include
Table | that summarizes the main differences.

In general we have shown that the existence of staggered
localized states is a generic property of nonlinear models
with dipole-dipole dispersive interaction. The staggered
states have a longer lifetime than the unstaggered states since
the process of direct photon emission by the staggered exci-
tation is prohibited due to the momentum conservation law.
In this way, in molecular systems with dipole-dipole disper-
sive interaction the energy may be stored using staggered
localized excitations. Our results on the effects of long-range
dipole-dipole dispersion in the repulsive NLS equation may
be used in describing the dynamics of easy-plane ferromag-
netic materials where the vortex dynamics in the case of an
external magnetic field perpendicular to the easy-plane is de-
scribed by the repulsive NLS equatidsee, e.g., Ref. 51
Magnetic dipolar forces changing fundamentally the ground
state of the two-dimensional Heisenberg ferromag(ste,

e.g., Ref. 52 will also influence the dynamics of these ma-

&fznals in accordance with the results of our investigation

presented in this paper.
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For |k|<1 the second term in EgA6) is a rapidly converg-

APPENDIX ing series[Ky(z)=+m/2ze * when z>1]. Therefore one

. . . ) can write with a good accuracy
In this appendix we derive an approximate formula for the

dispersion function o o
> > cogqn)[(2mm—k)?Ky(|2rm—Kk|n)
n=1 m=1

ik-m >\ 2
J(K)=J(k,q)= 1-3|{d-—] |, (Al
(k)=J(k,q)= m%O EE ( |m|) (A1) +(2mm+Kk)?Ko(|2rm+k|n)]
where the summation extends over all integral components =[(2m—k)?Ko(27—k)
of the vectorm=(m,n,0) excluding the term withm=0.
First we consider the case when the dipole moments are +(2m+K)2Ko(27m+K)]cog q). (A7)

aligned along thex axis: &:(1,0,0). We will consider the
behavior of the dispersion functial{k,q) in the vicinity of Taking into account Eq(A7) and the relatiorf<48
its minimum k=0,0=) and its maximum K= ,q=0)
separately. o
In the vicinity of the minimum k=0g= ) itisusefulto > cogqn)K,(|k|n)
present the dispersion function as follows: n=1

= cos{km)cos{qn){ m? 1 K| T
Ik,q)=2 1-3 =2 ytin| | |+ ————
(k)= E 20@ (m?+n?)%7? \ m?+n? 2| Y Am| | 2Jk*+q?

—4ReF(ek,3), (A2)
+

where 1K+ (2ma—q)? 2mm

IM s

NE

+w§ ( 1 1 ) 8
o] n — —_—
F(Z,S):E Z_S (A3) 2m:l \/k2+(2m7r+q)2 2mmr
n=1n
2
is the Jongiee’s function. Its properties are described in Ref. ReF(ek,3)=¢(3)— k_[3_ In(k?)]
47. Using the Poisson’s summation formula 4
> f(2wm)= 2 de( e, (Ad) + > (3-2m)(—1)" :
m=—o m= —ox m=2 (Zm)'
(A9)
we obtain

where y=0.577 is the Euler’s constant ar@x) is the Rie-
mann{ function, we obtain that fofk| <1 and|q— m|<1

cogkm) . m?
m2+ n?

2)3/2

m=== (m?+n J(k,q)=—4¢(3)— 327K o(27) +[3+2y—2In()

_ i [(2mrm—k) 2Ky |2mm—KIn) —8(m2+1)Ko(2m) + 327K (2)
m=-= — 812K y(21) K%+ 327%Ko(27) (1+cosq)

~ 2
+(27Tm+k)2K0(|27Tm+k|n)], =—51+1.7%"+0.291+cosq). (A10)
(A5)
By means of the Poisson’s summation form(#a}), one
where K (z) is the modified Bessel functidf. Then Eq. can obtain that in the vicinity of the maximunk# 7,q
(A2) can be written as =0) the dispersion function can be written as
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Ika)=2> >

m=1 n=—x

cogkm)cogqn) R m?
(m2+ n2)32 "m2+n2

+2ReF(€9,3)

-,

©

K1(|alm)

Ko(lglm)+ ———
|g|m

) cogkm)

(2mn—q)?

m,n=1

X | Kol (2mn—q)m]+

Kl[(2wn—0|)m])
(2mn—qg)m

+idem(g— —q) [cogkm)+2 ReF(€'9,3).
(A11)
Using the formul&®
- q
>, cogkm) —Ky(qm)
= m
_ Tt k)2 @ 1 X 1 X
BT A AP Ed by E
167 T
+inl —-||-5 > | J2am+k)Z+g?
qZ
| P — (A12)
2|27m+K|

and Eqgs(A8) and(A9), we get for|g|<1 and|k—7|<1

2
I(k,q)=2£(3) + %—[2+ y—In 71— 4(1+472)K o 277)

Kl(27r))
cosk
2

v

+8K,(2m)]9%— 3272 Ko(27m) +

=6.03-1.29°— (7—k)2—0.341+cosk). (Al13)
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”. cogkm)+coggm
2 gkm) 3 1q )_
m=1 m

(A14)

The function(Al4) has a minimum ak=q= = and a maxi-
mum atk=q=0. It is knowr?® that for Res>0,

o

(_1)n+m
—— - =(1-21"%){(29)— (1-2'"){(s) B(9),
mn=1 (M°+n%)
(A15)
where B(s) is the analytical continuation of the Dirichlet
series

0

_1m
B(s)= > (=1

m=0 (2m+1)%’ (A0

The properties of3(s) were considered in Ref. 50. Thus, in
the vicinity of the minimumk=qg= , the dispersion func-
tion can be represented in the form

I(k,a)=—-4(1-2"Y97(H)B) +(1-2"H¢(2)B()
X[(m=k)?+(m=q)%]

= —2.646+ 0.404 (7—k)%+ (7—q)?]. (A17)

In the vicinity of the pointk=q=0, the asymptotic ex-
pression for the dispersion function can be obtained directly

from Eq. (A1) by replacing the summation oven by an
integration over the two-dimensionai space

Let us now consider the isotropic case when the dipole

moments are perpendicular to they) pIane[&z(0,0,l)],
and the dispersion function has the form

cogkm)cogqgn)
(m2+ r-]2)3/2

Ik,a)=4 >

m,n=1

L _(elkm_1) (a m )2
J(k)zJ(0)+fdm_,—3 1-3|{d-—| |.
|m| |m]|
(A18)
As a result we get
R R (k cos ¢+q sin ¢)?sin’e
J(k)—J(O)+27T( N
— K%+ q7c0s20) , (A19)
where
R ( 3sinz¢9) 3( 3sirfé
J(0)=4 1—T {(3/2B(3/2)=9.03 1— .
(A20)
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