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Solitary excitations in discrete two-dimensional nonlinear Schro¨dinger models
with dispersive dipole-dipole interactions
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The dynamics of discrete two-dimensional nonlinear Schro¨dinger models with long-range dispersive inter-
actions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole
interaction, assuming the dipole moments at each lattice site to be aligned either in the lattice plane~anisotropic
case! or perpendicular to the lattice plane~isotropic case!. We investigate the nature of the linear dispersion
relation for these two cases, and derive a criterion for the modulational instability of a plane wave with respect
to long-wavelength perturbations. Furthermore, we study the on-site localized stationary states of the system
numerically and analytically using a variational approach. In general, the narrow, intrinsically localized states
are found to be stable, while broad, ‘‘continuumlike’’ excitations are unstable and may either collapse into
intrinsically localized modes or disperse when a small perturbation is applied.@S0163-1829~98!02318-2#
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I. INTRODUCTION

Determination of the dynamical properties of physic
systems with competition between discreteness, nonlinea
and dispersion has attracted a growing interest because o
wide applicability of such models in various physical pro
lems. Examples are coupled optical fibers,1–3 arrays of
coupled Josephson junctions,4 nonlinear charge and excita
tion transport in biological systems,5 and elastic energy
transfer in anharmonic crystals.6 It has been shown that th
balance between nonlinearity and dispersion in a weak n
linearity ~large dispersion! limit provides the existence o
low-energy solitonlike excitations. These are very robust
jects that propagate essentially without energy loss, and t
collisions are almost elastic.

As a result of the interplay between discreteness, dis
sion, and nonlinear interactions, new types of nonlinear
citations may appear. These are the intrinsically localiz
oscillatory states, which are also termed discrete breath
The properties of these modes have been intensively stu
during the past years.1–16 For example, in monoatomic lat
tices with a nearest-neighbor harmonic interaction an
positive quartic anharmonic interaction, localized states w
nonlinear frequencies lying above the phonon band w
found.10–12 In the case of the one-dimensional nonline
Schrödinger~NLS! lattice17 with focusing nonlinearity, there
exists below the linear excitation band a localized mo
which in the small amplitude limit reduces to the one-solit
solution of the continuum NLS equation.

A discrete NLS equation with ‘‘tunable’’ diagonal an
off-diagonal nonlinearities that includes the integrab
Ablowitz-Ladik system7 as a limit was introduced in Refs
18 and 19. It was shown that the reflection and translatio
symmetries of the integrable equation are broken by the
agonal nonlinearity, and the properties of the Peierls-Nab
potential as a function of the tuning parameter were stud
Recently, the dynamics in discrete two-dimensional non
570163-1829/98/57~18!/11303~16!/$15.00
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ear Schro¨dinger models with tunable nonlinearities was i
vestigated in Ref. 20. The generalized two-dimensional d
crete solitons were found, and their role in the final stage
the quasicollapse dynamics was demonstrated.

Until recently, the main attention was paid to system
with short-ranged dispersive interactions, and a near
neighbor approximation was used. However, during the
decade a series of theoretical and numerical studies of
effect of long-range interactions on properties of nonline
excitations was carried out. In Ref. 21 an implicit form f
solitons was obtained in a sine-Gordon system with lo
range interaction of the Kac-Baker type,22,23 and the depen-
dence of the soliton width and energy on the radius of
long-range interaction was analyzed. In Ref. 24 the nonlin
term in the sine-Gordon equation was assumed to hav
nonlocal character, and novel soliton states, of topolog
charge zero, were found to exist at a large enough radiu
interaction. In Ref. 25 the effects of a long-range harmo
interaction in a chain with short-range anharmonicity w
considered. It was demonstrated that the existence of
velocity-dependent competing length scales leads to
types of solitons with characteristically different width an
shapes for two velocity regions separated by a gap. Effect
long-range interactions of the Kac-Baker type were a
studied in static and dynamic nonlinear Klein-Gordon26–28

and nonlinear Schro¨dinger29 continuum models. In Ref. 30 a
one-dimensional discrete NLS model with a power dep
dencer 2s on the distancer of the dispersive interactions wa
proposed. It was shown that fors sufficiently large, all fea-
tures of the model are qualitatively the same as in the
crete NLS model with only nearest-neighbor interactio
For s less than a critical value,scr.3.03, there is an interva
of bistability where for each value of the excitation numb
two stable stationary states exist: one continuumlike~soliton-
like! state and one intrinsically localized~discrete! state.

In the main part of the studies in the literature, the effe
of nonlocal interactions were investigated only for on
11 303 © 1998 The American Physical Society
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11 304 57P. L. CHRISTIANSENet al.
dimensional systems. However, these effects should b
particular importance in systems of higher dimensions, si
in D-dimensional systems the effective number of atoms
participate in the interaction increases asRD (R is the radius
of the interaction!. Moreover, there exist physical situation
where the long-range properties of the interactions and
multidimensional character of the systems should be ta
into account on the same footing. For example, the excita
transfer in quasi-two-dimensional molecular crystals31 and in
Langmuir-Blodgett-Scheibe aggregates32 is due to transition
dipole-dipole interaction with ar 23 dependence on the dis
tancer . Furthermore, the DNA molecule contains charg
groups, with long-range Coulomb interaction (r 21) between
them. Thus, the corresponding vibrational excitation ha
dispersive interaction that is also of the dipole-dipole ty
As a final example we mention the long-range magnetic
der in literally two-dimensional Langmuir-Blodgett films o
manganese stearate@Mn~C18H35O2)2], which is stabilized by
the magnetic dipole-dipole interaction.33

The goal of this paper is to investigate the dynamics
discrete two-dimensional nonlinear Schro¨dinger models with
dipole-dipole dispersive interactions. We also develop a q
sicontinuum approach to the problem. The paper is str
tured in the following way. In Sec. II we define the equatio
of motions for the system under study and focus our att
tion on the two particular cases where the transition dip
moments are directed either in the lattice plane~anisotropic
case! or perpendicular to the plane~isotropic case!. We ob-
tain a general criterion for the modulational instability of
plane wave, which we apply for these two particular cases
Sec. III we discuss the localized stationary states of the
tem. We calculate them numerically and use a variatio
approach to gain some analytical insight into their structu
Also, we discuss their linear stability properties. In Sec.
we investigate the dynamics of the system with initial co
ditions chosen either of Gaussian form or as slightly p
turbed stationary states. Finally, we summarize our result
Sec. V.

II. SYSTEM AND EQUATIONS OF MOTION

We consider a quadratic two-dimensional lattice with l
tice spacing equal to 1. The model we study is described
the Hamiltonian

H5T1U, ~1!

where

T5 (
nW ,nW 8~nW 8ÞnW !

JnW 2nW 8cnW
* cnW 8 ~2!

is the dispersive energy of the excitation, and

U5
a

2(nW
ucnW u4 ~3!

is its potential energy that describes a self-interaction of
quasiparticle (a is the nonlinearity parameter!. In Eqs.~1!–
~3! nW 5(m,n,0)(m,n50,61,62,...) is the lattice vector~we
assume that the lattice is in thex2y plane!, andcnW[cm,n is
of
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the excitation wave function. We will investigate excitatio
whose dispersion is due to the dipole-dipole interaction

JnW 2nW 85
1

unW 2nW 8u3
F123S dW •

~nW 2nW 8!

unW 2nW 8u
D 2G , ~4!

wheredW 5(cosf sinu,sinf sinu,cosu) is the transition dipole
moment~its length is normalized to unity,u is the colatitude
andf is the longitude!.

From the Hamiltonian~1!–~3! we obtain the equation o

motion i ċnW5 ]H/]cnW
* for the excitation wave functioncnW in

the form

i ċnW2 (
nW 8~nW 8ÞnW !

JnW 2nW 8cnW 82aucnW u2cnW50, ~5!

where the overdot denotes the time derivative. The Ham
tonianH ~1!–~3! and the excitation number

N5(
nW

ucnW u2 ~6!

are conserved quantities. Obviously, the Lagrangian for
~5! can be written via the Legendre transform ofH as

L5 i(
nW

1

2
~ ċnWcnW

* 2c.c.)2H. ~7!

Equation~5! has an exact plane-wave solution

cnW~ t !5AeikW•nW 2 ivt, ~8!

with amplitudeA and the frequencyv being of the form

v5aA21J~kW !, ~9!

where the function

J~kW ![J~k,q!5 (
nW ~nW Þ0W !

JnWe
ikW•nW ~10!

determines the linear dispersion of the excitations.
To investigate the linear stability of the plane-wave so

tion determined by Eqs.~8!–~10!, we will seek the solution
to Eq. ~5! in the form

cnW~ t !5@A1 f nW~ t !#eikW•nW 2 ivt1 i ynW ~ t !. ~11!

Inserting Eq.~11! into Eq. ~5! and linearizing it with respec
to f nW andynW we get

ḟ nW52 (
nW 8~nW 8ÞnW !

JnW 2nW 8sin@kW•~nW 2nW 8!# f nW 8

2A (
nW 8~nW 8ÞnW !

JnW 2nW 8cos@kW•~nW 2nW 8!#~ynW2ynW 8!,

~12!

AẏnW5@J~kW !22aA2# f nW2 (
nW 8~nW 8ÞnW !

JnW 2nW 8cos@kW•~nW 2nW 8!# f nW 8

1A (
nW 8~nW 8ÞnW !

JnW 2nW 8sin@kW•~nW 2nW 8!#~ynW2ynW 8!.
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57 11 305SOLITARY EXCITATIONS IN DISCRETE TWO- . . .
Looking for the solution of the set of Eqs.~12! in the form

f nW~ t !5Fest1 ikW •nW , ynW~ t !5Yest1 ikW •nW , ~13!

whereF andY are the amplitudes,s is the increment, andkW
is the wave number of the modulation wave, we obtain t
the increment is given by

S s2
i

2
@J~kW2kW !2J~kW1kW !# D 2

5S 2J~kW !2J~kW2kW !2J~kW1kW !

2
D

3S 2aA21
J~kW2kW !1J~kW1kW !

2
2J~kW !D . ~14!

We remark that this expression for the increments is valid
for arbitrary interaction described byJnW 2nW 8 , and it reduces
to the expression obtained in Ref. 34 for the one-dimensio
case with only nearest-neighbor interactions. Modulatio
instability will occur whens has a strictly positive real part
In the limit of long-wavelength perturbations, i.e., whe
ukW u!1, we obtain from Eq.~14!,

S s1 i
]J~kW !

]km

kmD 2

52aA2
]2J~kW !

]km]kn

kmkn , ~15!

where the summation indicesm and n run over the coordi-
natesx andy, and the summation convention is used.

From Eq.~15! it is seen that the necessary condition f
modulational instability to occur is positive definiteness
the left-hand side of Eq.~15!. For the waves~8!–~10! that
correspond to the extrema of the dispersion surface~10!

@]J(kW )/]kW 50#, the necessary condition is thus positi
~negative! definiteness of the effective mass tens
]2J(kW )/]km]kn when self-interaction is attractive (a,0)
@repulsive (a.0)#.

Let us consider the shape of the dispersion surface g
by Eq. ~10!. We will distinguish two particular cases:~i! the
anisotropic case where the dipole moments are in thex2y
plane (u5p/2) and are parallel to thex-axis (f50); ~ii ! the
isotropic case where the dipole moments are perpendicul
the x2y plane (u50).

For the anisotropic case~i!, the shape of the dispersio
function J(k,q) is shown in Fig. 1~a!. It is seen that the
function has a minimum atk50,q56p and a maximum at
k56p,q50. In the Appendix we show that in the vicinit
of the minimumk50,q5p

J~k,q!.25.111.79k210.15~p2q!2, ~16!

and in the vicinity of the maximumk5p,q50

J~k,q!.6.0321.17~p2k!221.29q2. ~17!

The pointk5q50 is a saddle point, and near this point w
obtain from Eqs.~A19! and ~A20! that

J~k,q!.24.5112p
k2

Ak21q2
. ~18!
t

al
l

f

r

n

to

It is worth noticing that near the maximum the dispersi
~17! is almost isotropic, while in the vicinity of the minimum
it is highly anisotropic; in the latter case the ratio of th
effective masses in then and m directions exceeds 10@see
Eq. ~16!#.

The shape of the dispersion surface in the isotropic c
~ii ! is presented in Fig. 1~b!. At the pointk5q5p the dis-
persion function has a minimum and has the form~see Ap-
pendix!

FIG. 1. Linear spectrumJ(k,q) ~10! of the dispersion operato

JnW for the dipole-dipole interaction~4!; ~a! anisotropic case@dW

5(1,0,0)#; ~b! isotropic case@dW 5(0,0,1)#.
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FIG. 2. Excitation numberN versus nonlinear frequencyE for numerically obtained solitary stationary solutions of the form~21!; ~a!, ~b!

anisotropic case@dW 5(1,0,0)#; ~c!, ~d! isotropic case@dW 5(0,0,1)#. In ~a! and~c! the nonlinear interaction is attractive (a521); in ~b! and
~d! the interaction is repulsive (a511). Insets show detailed behavior near the cutoff frequencies obtained from Eqs.~25! and~26!; inset
in ~b! shows the behavior when the number of sites~indicated in the figure! is increased.
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J~k,q!.22.6510.4@~p2k!21~p2q!2#. ~19!

In close proximity of the pointk5q50 the dispersion sur
face has a peaklike shape, and is described by the func

J~k,q!.9.0322pAk21q2. ~20!

In accordance with the modulational instability criterio
obtained from Eq.~15!, one can conclude that in the anis
tropic case the waves~8!–~10! with k50,q56p are modu-
lationally unstable for long-wavelength perturbations wh
the self-interaction~3! is attractive (a,0), and the waves
k56p,q50 are unstable for the repulsive self-interacti
(a.0). In the isotropic case the modulational instability o
curs for the waves withk56p,q56p whena,0, and for
the wavek5q50 whena.0. @In the latter case, this is see
by direct substitution of Eq.~20! into Eq. ~14!.#

III. STATIONARY STATES OF THE SYSTEM

We are interested here in the stationary solutions of
~5! of the form
n

n

-

q.

cnW~ t !5CnWe
2 iEt, ~21!

with a real shape functionCnW[Cm,n and a nonlinear fre-
quencyE. The equation of motion~5! then yields the gov-
erning equation for the functionsCm,n as

ECm,n5 (
m8,n8

Jm8,n8Cm2m8,n2n81aCm,n
3 . ~22!

As was shown above, modulational instability may occ
for linear waves~8! with wave vectors belonging to th
boundaries or the center of the first Brillouin zone of t
square lattice. In the cases when the instability occurs at
Brillouin-zone boundaries, it is natural to expect that t
nonlinear excitations that appear as a result of this instab
will be staggered. Thus, the corresponding wave funct
Cm,n can be written in the form

Cm,n5ei ~Km1Qn!Fm,n , ~23!

where the envelope functionFm,n satisfies the equation
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FIG. 2. ~Continued!.
es

,

ve
-

hv
a
th

th

per

It is
ide,

r
th

d
-
ood
gion

of
est-
om-
f the

ns-
EFm,n5 (
m8,n8

Jm8,n8e
i ~Km81Qn8!Fm2m8,n2n81aFm,n

3 .

~24!

The vector (K,Q) corresponds to one of the boundari
@(K,Q)5(0,6p),(6p,0),(6p,6p)# or the center
@(K,Q)5(0,0)# of the first Brillouin zone. In the latter case
the function~23! describes an unstaggered excitation.

We have studied the nonlinear eigenvalue problem gi
by Eq.~22! numerically and analytically. The numerical pro
cedure used is a discrete version of the iterative Petvias
method described in Ref. 35. Throughout, zero bound
conditions were used, and the maximum residual error of
numerical solutionCm,n of Eq. ~22! never exceeded 10210.

Figures 2~a!–2~d! show the dependenceN(E), whereN is
the excitation number~6!, for the solitary states~21! ob-
tained numerically as solutions of Eq.~22! for the in-plane
@Figs. 2~a! and 2~b!# and out-of-plane@Figures 2~c! and 2~d!#
alignments of the dipole moments. Figures 2~a! and 2~c! cor-
respond to the attractive nonlinear interaction (a521).
Here the localized states have frequencies lying below
linear dispersion surface,

E<J~0,p!.25.1 whendW 5~1,0,0!;
~25!

E<J~p,p!.22.65 whendW 5~0,0,1!.
n

ili
ry
e

e

In Figs. 2~b! and 2~d! the nonlinear interaction~3! is repul-
sive (a51), and the eigenfrequencies lie above the up
edge of the dispersion surface,

E>J~p,0!.6.03 whendW 5~1,0,0!;
~26!

E>J~0,0!.9.03 whendW 5~0,0,1!.

Figures 3–5 show some examples of these solutions.
seen that, at least when the excitations are relatively w
their shapes vary in accordance with Eq.~23!: while in the
anisotropic case~in-plane dipole alignment! the eigenfunc-
tions are modulated either along them or n directions~Figs.
3 and 4!, in the isotropic case~dipole moments perpendicula
to the plane! the functions are either modulated along bo
the m and n directions (a,0) or they are nonmodulate
(a.0) ~Fig. 5!. However, we note that for narrow excita
tions, the states may be staggered only in a neighborh
around its central peak, and unstaggered outside this re
@see, e.g., the contour plots in Figs. 3~a!, 4~b!, and 4~c!#.
The existence of this type of solutions is a consequence
the long-range nature of the dispersion; in the near
neighbor case all solitary stationary states are either c
pletely staggered or unstaggered as a consequence o
symmetric nature of the dispersion surface.@The nearest-
neighbor equation is invariant under the simultaneous tra
formations Cm,n→(21)mm1nnCm,n, J61,0→(21)mJ61,0,
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11 308 57P. L. CHRISTIANSENet al.
J0,61→(21)nJ0,61, while no such invariance exists for th
general case of long-range dispersion.#

In Fig. 2~b! the dependence ofN on the grid size is pre-
sented. When the number of sites increases the influenc
the boundaries becomes smaller, and this is reflected in
narrowing of the dip in the region ofE close to the threshold
value@J(p,0) in this case#. It is seen that the level of the fla
plateau around the local maximum nearJ(p,0) approaches
the asymptotic value of the excitation numberN correspond-
ing to the ground state of the continuum NLS equatio
which can be obtained from Eq.~24! for the envelope func-
tion Fm,n . Indeed, taking into account the dispersion la
given by Eq.~17!, we obtain that the continuum limit of Eq
~24! near the threshold valueJ(p,0) for a51 has the form

FIG. 3. Shape functionsCm,n with contour plots for stationary

solutions~21! in the case of anisotropic dispersion@dW 5(1,0,0)# and
repulsive nonlinearity (a51); ~a! linearly stable solution forE
58; ~b! unstable solution forE56.3.
of
he

,

S 1.17
]2

]m2
11.29

]2

]n2D F1F32@E2J~p,0!#F50.

~27!

It is well known36 that the ground-state solution of the is
tropic two-dimensional NLS equation

S ]2

]x2
1

]2

]y2D f1f31Lf50 ~28!

exists for*2`
` dx*2`

` dyf2.11.7. Rescaling the spatial var
ablesm andn in Eq. ~27!, we obtain that the threshold valu
of the excitation number for the excitations~23! with K
5p,Q50 is 14.4, which is in fair agreement with the resu
presented in Fig. 2~b!. The same dependence of the shape
the functionN(E) on the grid size takes place for all cas
shown in Fig. 2, except for the case of a repulsive nonline
ity in the lattice with out-of-plane dipole moments@Fig.
2~d!#. HereN(E) monotonically increases whenE→J(0,0).
This behavior can also be explained by taking into acco
the peculiarities of the linear dispersion in the isotropic ca
Indeed, it is seen from Eq.~20! that fora51 andE close to
the top of the dispersion surfacek5q50, the continuum
limit of Eq. ~24! has the form

2A2¹2F1F32@E2J~0,0!#F50, ~29!

where

A2¹2[S 2
]2

]m2
2

]2

]n2D 1/2

~30!

is the Fourier multiplier operator defined by

E
2`

`

dmE
2`

`

dn ei ~km1qn!A2¹2F~m,n!

5Ak21q2E
2`

`

dmE
2`

`

dn ei ~km1qn!F~m,n!. ~31!

The behavior close to the thresholdJ(0,0) can easily be un-
derstood, since the scaling transformationF5@E
2J(0,0)#1/2R(x,y),x5@E2J(0,0)#m,y5@E2J(0,0)#n re-
duces Eq.~29! to

2S 2
]2

]x2
2

]2

]y2D 1/2

R1R32R50, ~32!

which is independent ofE. The applied scaling therefor
yields

N5E
2`

`

dmE
2`

`

dnF~m,n!;@E2J~0,0!#21, ~33!

which agrees with the results of the numerical simulatio
@see Fig. 2~d!#. It is interesting to note that an equation of th
same type as Eq.~29! ~but with a quadratic instead of cubi
nonlinearity! arises in the theory of low-frequency oscilla
tions of a boundary layer with high Reynolds number37 ~see
also Ref. 38!. For this equation, it was shown38 that one-
dimensional solitons are unstable with respect to tw
dimensional perturbations.
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FIG. 4. Same as Fig. 3 but for attractive nonlinearity (a521); ~a! unstable solution forE525.2; ~b!, ~c! stable solutions for~b! E
525.5 and~c! E528.
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Recently, a criterion for instability of solitary excitation
in a discrete two-dimensional NLS model with neare
neighbor dispersive interaction was obtained.39 It was shown
that the stationary states are unstable for

]N

]uEu
,0. ~34!

Using the approach proposed in Ref. 39, it is easy to sh
that the criterion~34! is valid also in the case of long-rang
dispersion. From this criterion, we conclude from the sha
of the curvesN(E) in Fig. 2 that, similarly to the case with
only nearest-neighbor interaction,39 the broad stationary
states are generally unstable@examples of unstable states a
shown in Figs. 3~b! and 4~a!#. For the one-dimensional cas
with nearest-neighbor40 or long-range30 dispersion, it has
been shown that localized stationary states, whose enve
has a single maximum at a lattice site~on-site states! and for
which
-

w

e

pe

]N

]uEu
.0 ~35!

are linearly stable. Although we have not been able to rig
ously extend this criterion to the two-dimensional case,
believe that also for the cases considered here, the cond
~35! is a necessary and sufficient condition for linear stabi
of on-site localized stationary states~a similar assumption
was employed in Refs. 20 and 41 for the case of near
neighbor dispersion!. As will be illustrated in Sec. IV, this
conjecture, which implies, e.g., that the states shown in F
3~a!, 4~b! and 4~c!, and 5 are linearly stable, is also support
by numerical dynamical simulations.

It is worth noting that in the case of an attractive nonli
ear interaction and in-plane dipole alignment, the dep
denceN(E) reveals in the interval of stability@(]N/]uEu)
.0# the existence of two different slopes]N/]uEu @see Fig.
2~a!#. Figure 4 shows that the shapes of the correspond
solutions differ significantly. The states with low frequen
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11 310 57P. L. CHRISTIANSENet al.
uEu have an ellipselike projection on the lattice plane. T
major axis of the ellipse is parallel to them axis and its
eccentricity is close to one@see Fig. 4~b!#. In contrast, the
solutions with high frequencyuEu represent almost isotropi
intrinsically localized states with a width of a few lattic
constants in both directions@see Fig. 4~c!#. It is clear that the
reason for this difference is the anisotropy of the linear d
persion given by Eq.~16! @in the cases where the linear di
persion is~almost! isotropic, all solutions are~almost! isotro-
pic as illustrated in Figs. 3 and 5#, but to gain insight into this
phenomenon we need to have a solution of the prob
which is valid in the whole interval of the nonlinear freque
cies.

To obtain the needed solution of the problem we will u
a variational approach. As an ansatz for a localized state
choose

Fm,n5AN fm~a! f n~b!, ~36!

where

f j~z!5Atanhze2zu j u, z5a,b, ~37!

with a andb being trial parameters. It is seen from Eqs.~36!
and~37! thata21 (b21) is the excitation width in them(n)
direction. The functions~36! and ~37! automatically satisfy
the normalization condition

(
m,n

Cm,n
2 5N, ~38!

FIG. 5. Same as Figs. 3 and 4 but for isotropic dispersion@dW

5(0,0,1)# and ~a! repulsive nonlinearity (a51) and E512; ~b!
attractive nonlinearity (a521) andE524.0. In both cases, the
solution is found to be linearly stable.
e

-

m

e

so that the problem of minimizingH under the conditionN
5const is reduced to the problem of satisfying the equati

]H

]a
50,

]H

]b
50. ~39!

To calculate the kinetic energyT we use the discrete Fou
rier transformation

F̄~k,q!5(
m,n

ei ~km1qn!Fm,n5AN f̄ ~k,a! f̄ ~q,b!, ~40!

where

f̄ ~k,a!5Atanha
sinh a

cosha2cosk
. ~41!

This permits us to rewrite Eq.~2! as

T~K,Q!5
1

M(
k,q

J~K1k,Q1q!@F̄~k,q!#2

5
N

4p2E0

2p

dk dqJ~K1k,Q1q!

3@ f̄ ~k,a!#2@ f̄ ~q,b!#2, ~42!

whereM is the number of sites in the system (M→`). Tak-
ing into account the definition~10! of the dispersion function
J(k,q), we obtain that the kinetic energy of the system c
be represented in the form

T~K,Q!52NF~K,Q!, ~43a!

with

F~K,Q!5 (
m51

`

(
n52`

`

Jm,nei ~Km1Qn!e2~am1bunu!

3~11m tanha!~11unutanhb!

1 (
n51

`

J0,neiQn~11n tanhb!e2bn. ~43b!

Inserting Eq.~36! into Eq. ~3! we get

U5
aN2

2

tanh2a

tanh~2a!

tanh2b

tanh~2b!
~44!

From Eq.~22! we obtain that the nonlinear frequencyE can
be expressed as

E5
1

N
@T~K,Q!12U#, ~45!

with T andU being defined by Eqs.~43! and ~44!.
The two particular types of dipole moment alignmen

isotropic case @dW 5(0,0,1)# and anisotropic case@dW
5(1,0,0)#, will be considered separately.

A. Out-of-plane dipole alignment

It is seen from Eq.~4! that whendW 5(0,0,1), the matrix
element of the excitation transferJm,n has the form
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Jm,n5~m21n2!23/2. ~46!

SinceJm,n is isotropic, we can restrict ourselves by the is
tropic trial functions~36! with a5b. In the case of attractive
nonlinear interaction (a,0), the modulational instability oc
curs forK56p andQ56p. This means that the nonlinea
excitations are staggered both along them andn directions
of the square lattice. Due to phase modulation the serie
the right-hand side of Eq.~43b! are rapidly converging for al
a, and with a good accuracy~of few per cent! they can be
approximated by their first terms, yielding

T~p,p!.N~24 secha1A2 sech2a!. ~47!

The equationdH/da 50, with H5T(p,p)1U, then yields
for a521

N.8
cosh4a~2 cosha2A2!

@2 cosh~2a!21#cosh~2a!
. ~48!

Figure 6 shows the dependenceN(E) obtained analytically
from Eqs. ~44!, ~45!, ~47!, and ~48!. Comparing with Fig.
2~c!, it is seen that there is a good qualitative agreem
between the analytical and numerical approaches.

B. In-plane dipole alignment

When the dipole moments are aligned along them direc-
tion @dW 5(1,0,0)#, the matrix element of the excitation tran
fer is

Jm,n5S 123
m2

m21n2D 1

~m21n2!3/2
. ~49!

We consider the case of attractive nonlinear interactiona
521). In this case the nonlinear excitations are modula
along the n direction (K50,Q5p), and the variational
equations~39! take the form

sinh~4a!

2 cosh~2a!21

]F~K,Q!

]a
5

sinh~4b!

2 cosh~2b!21

]F~K,Q!

]b
,

~50!

FIG. 6. Excitation numberN versus nonlinear frequencyE for
the isotropic and attractive case considered in Figs. 2~c! and 5~b!,
obtained from the approximate analytical expression~48!.
-

in

nt

d

N58
tanh~2b!

tanh2b

cosh4a

2 cosh~2a!21

]F~K,Q!

]a
. ~51!

Equation~50!, describing the link between the inverse widt
a andb, characterizes the shape of the excitation. Figur
shows that in accordance with the results of the numer
simulations represented in Fig. 4, the shape of the excitat
change when the absolute value of the nonlinear freque
uEu increases. When the frequencyE is close to the edge
J(0,p) of the linear dispersion band the excitation has
ellipselike shape with an eccentricitye5A12 a2/b2.0.98,
but for large uEu the excitation is more isotropic with th
eccentricitye.0.78. The dependenceN(E) obtained from
Eqs. ~50! and ~51! is plotted in Fig. 8. It is seen that th
analytical results agree qualitatively with the numerical
sults obtained from direct solution of Eq.~22! @see Fig. 2~a!#.
It is also worth noticing that the characteristic change of
slope of the dependenceN(E) occurs in the same energ
interval where the shape of the excitation changes. As it w
stressed above such a behavior is coupled with the hig

FIG. 7. The dependence on the nonlinear frequencyE of the
ratio of the excitation widths in them and n directionsa21 and
b21, as defined by Eqs.~36! and ~37!, obtained using the approxi
mate expression~50! for the anisotropic and attractive case cons
ered in Figs. 2~a! and 4.

FIG. 8. Excitation numberN versus nonlinear frequencyE for
the anisotropic and attractive case considered in Figs. 2~a!, 4, and 7,
as obtained from the approximate analytical expression~51!.
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11 312 57P. L. CHRISTIANSENet al.
anisotropic linear dispersion in the vicinity of the minimu
k50,q5p ~the ratio of the effective masses in then andm
directions exceeds 10!, and as a consequence with the ex
tence of two different characteristic length scales.

IV. DYNAMICAL SIMULATIONS

In this section, we investigate numerically the dynam
of Eq. ~5! with the dipole-dipole dispersive coupling~4! for
some different choices of initial conditions. The numeric
approach used to integrate the equation is the so-called s
step Fourier method where the linear and nonlinear part
the equation are integrated separately~see Ref. 42 for the
details!. The advantage of this method in this case is that
linear part is solved in Fourier space where the long-ra
interaction is reduced to a multiplication of the interacti
term J(kW ) and excitation wave function.

First, we consider the anisotropic case whendW 5(1,0,0)
and Jm,n is given by Eq.~49!. Figures 9 and 10 show th
time evolution for the case of repulsive nonlinearity (a51)
with slightly perturbed stationary states of the form~21! as
initial conditions:

cm,n~0!5~11e!Cm,n , ~52!

wheree50.1 andCm,n is the shape function for a stationa
state with nonlinear frequencyE. In Fig. 9, the initial condi-
tion is obtained from the stationary state withE58 shown in
Fig. 3~a!, which corresponds to the linearly stable branch

FIG. 9. Dynamical solution of Eq.~5! with anisotropic dipole-

dipole interaction~4! @dW 5(1,0,0)# and repulsive nonlinearity (a
51), where the initial condition is the perturbed stable station
state~52! with e50.1 andCm,n as in Fig. 3~a!. The figure shows a
cut along the axisn50.

FIG. 10. Same as in Fig. 9, but with the perturbed unsta
stationary state withCm,n as in Fig. 3~b! as initial condition.
-

s

l
lit-
of

e
e

f

the curveN(E) in Fig. 2~b! according to the criterion~35!.
As can be seen, the perturbation causes initially some s
oscillations around the initial excitation, but for longer tim
the solution relaxes into a stationary state of essentially
same form as the initial state, with only a small amount
radiation emitted. On the contrary, when the initial conditi
is obtained from the stationary state withE56.3 shown in
Fig. 3~b!, which belongs to the unstable part of the cur
N(E) in Fig. 2~b! according to the criterion~34!, the time
evolution is completely different as shown in Fig. 10. In
tially, the rather broad initial excitation collapses into a ve
narrow state. After this follows a time regime of large b
decaying oscillations between narrow and wide states,
finally the system seems to settle down in a narrow state
appears to be a stable stationary state like the one in Fig
Thus, Figs. 9 and 10, together with a number of other sim
results obtained for other parameter values, support the
jecture from Sec. III that the criterion~35! is both a neces-
sary and sufficient condition for linear stability of on-si
localized stationary states also for the two-dimensional c
with long-range dipole-dipole interactions.

In Fig. 11, we show the time evolution for the case
anisotropic dispersion and repulsive nonlinearity of an init
staggered Gaussian profile of the form

y

e

FIG. 11. Same as in Figs. 9 and 10, but with the Gauss
profile ~53! with K5p, Q50, m05n058, and ~a! N515 (A
.0.38), resp.~b! N513.5 (A.0.36), as initial condition.
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FIG. 12. Time evolution of an unstaggered initial Gaussian profile~53! with K50, Q50, with total excitation numberN525, for the

anisotropic and repulsive case@dW 5(1,0,0),a51#.
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pic
cm,n~0!5Aei ~Km1Qn!expS 2
m2

m0
2

2
n2

n0
2D , ~53!

with K5p, Q50, andm05n058, for two different values
of the amplitudeA. In Fig. 11~a! @Fig. 11~b!#, the total exci-
tation number isN515.0 (N513.5). Recalling the resul
from Sec. III that the continuum limit of the discret
NLS equation in this case can be written in the form~27!,
whose ground state solution has the excitation num
N5Ns.14.4, we see that Fig. 11~a! @Fig. 11~b!# corresponds
to the case whenN.Ns (N,Ns). It is seen that the initial
excitation withN.Ns collapses into an intrinsically local
ized mode, while the excitation withN,Ns disperses. This
indicates the existence of a critical threshold for~quasi!col-
lapse of broad initial excitations also for the cases conside
here, similarly to what is known36 for the ordinary con-
er

d

tinuum NLS equation. In the case of nearest-neighbor in
action, such a collapse threshold was clearly demonstrate
Ref. 43. Thus, these results indicate that the staggered e
tations in the systems with anisotropic dipole-dipole disp
sion behave in a similar manner as localized excitations
nearest-neighbor discrete NLS systems.

Figures 12 and 13 show the evolution of two initial
Gaussian distributed fields with the same envelope and
same value of the excitation number (N525), but with dif-
ferent phase configurations. In Fig. 12 the initial distributi
is isotropic (K5Q50), while in Fig. 13 it is staggered in th
m direction (K5p). It is clearly seen that while the stag
gered excitation in Fig. 13 collapses just as for the case
Fig. 11~a! ~sinceN.Ns), the unstaggered initial excitation i
Fig. 12 splits and spreads. These observations can, in
continuum limit, be related to the behavior of the anisotro
two-dimensional NLS equation



11 314 57P. L. CHRISTIANSENet al.
FIG. 13. Same as in Fig. 12, but with a staggered initial Gaussian profile (K5p, Q50).
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S i
]

]t
1

]2

]x2
2

]2

]y2D c1ucu2c50. ~54!

For this case, no localized solution exists,44 and an initially
localized waveform will never collapse, but elongate in they
direction and narrow in thex direction.45 The same behavio
can be expected for broad initial conditions in the tw
dimensional nearest-neighbor discrete NLS equation w
different signs in the coupling terms, since it is just a d
cretization of Eq.~54!. In the case considered here, wi
anisotropic long-range dipole-dipole interaction, we exp
that the effective dispersion, as experienced by a broad,
staggered excitation, can be approximated by the disper
function J(k,q) ~10! around the pointk5q50. Since we
know from Sec. II that this point is a saddle point, the effe
tive coupling in them and n directions will have opposite
signs, and a similar behavior as for Eq.~54! can be expected

The dynamical behavior in the isotropic lattice is illu
trated in Fig. 14. It appears that the dynamics of the isotro
collapse is characterized by requiring a considerable valu
the excitation number for a Gaussian initial condition to e
-
h
-

t
n-
on

-

ic
of
-

hibit quasicollapse. Thus, for the parameter values in Fig.
the threshold occurs aroundN.300. Figure 14~a! shows col-
lapse dynamics (N.325) leading to considerable and fa
localization of the energy in the vicinity of the core, followe
by oscillations. Figure 14~b! displays subthreshold dynamic
(N.250) of the initial excitation which spreads out.

The origin of the high threshold value ofN in the isotro-
pic case can be understood from the dependence ofN on E
in the stationary case displayed in Fig. 2~d!. Here we note the
resemblance to the situation in the three-dimensional cu
NLS equation, which is known to exhibit supercritical co
lapse behavior.36 Using a simple scaling argument it is als
evident from the renormalized continuum limit of Eq.~5! in
the isotropic case

ic t2A2¹2c1ucu2c50 ~55!

that the collapse dynamics has supercritical characteris
For the supercritical case the threshold value ofN is known
to depend on the explicit form of the initial condition46 im-
plying that broad initial conditions~as in Fig. 14! require a
rather large excitation number for collapse to occur. A d
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tailed investigation of the collapse dynamics in the fram
work of Eq. ~55! will be presented elsewhere.

V. CONCLUSIONS

In the present paper we have considered the effect
long-range dispersive coupling of the dipole-dipole type
the two-dimensional discrete nonlinear Schro¨dinger equa-
tion. From a general criterion for modulational instability
plane waves, we have concluded that in the anisotropic c
with in-plane alignment of the dipole moments, modulation

FIG. 14. Dynamical solution of Eq.~5! (a51) with isotropic

dipole-dipole interaction~4! @dW 5(0,0,1)# and with the Gaussian
profile ~53! with K50, Q50, m05n0518, and~a! N5325 (A
50.8), resp.~b! N.250 (A.0.7), as initial condition. The figure
shows a cut along the axisn50.
-

of

se,
l

instability for long-wavelength perturbations at an extrem
point of the dispersion surface always occurs for plane wa
that are staggered only in one direction. In the isotropic ca
with dipole moments aligned perpendicular to the latt
plane, modulational instability occurs either for waves sta
gered in both directions~for attractive nonlinearity!, or for
unstaggered waves~for repulsive nonlinearity!. We have
found that the broad nonlinear stationary excitations, app
ing as a result of the modulational instability, in general a
staggered in the same way as the corresponding plane wa
However, in contrast to what is seen in the case of near
neighbor dispersion, the more narrow stationary states ar
general found to be staggered only in a region close to
central site, and asymptotically unstaggered.

Concerning the linear stability of the stationary states,
have found that, similar to the case with nearest-neigh
dispersion, broad excitations in general are unstable, w
the narrow, intrinsically localized states are stable. In
case of anisotropic dispersion, we have demonstrated the
istence of a threshold for quasicollapse of broad excitati
~staggered in one direction! into intrinsically localized
modes. On the other hand, broad unstaggered excitat
have been found to split and spread. In the isotropic ca
quasicollapse is observed, however for much higher exc
tion numbers.

To make the comparison between the model investiga
in this paper and the standard continuum and discrete ne
neighbor NLS model more clear and explicit, we inclu
Table I that summarizes the main differences.

In general we have shown that the existence of stagge
localized states is a generic property of nonlinear mod
with dipole-dipole dispersive interaction. The stagger
states have a longer lifetime than the unstaggered states
the process of direct photon emission by the staggered e
tation is prohibited due to the momentum conservation la
In this way, in molecular systems with dipole-dipole dispe
sive interaction the energy may be stored using stagge
localized excitations. Our results on the effects of long-ran
dipole-dipole dispersion in the repulsive NLS equation m
be used in describing the dynamics of easy-plane ferrom
netic materials where the vortex dynamics in the case o
external magnetic field perpendicular to the easy-plane is
scribed by the repulsive NLS equation~see, e.g., Ref. 51!.
Magnetic dipolar forces changing fundamentally the grou
state of the two-dimensional Heisenberg ferromagnets~see,
e.g., Ref. 52! will also influence the dynamics of these m
terials in accordance with the results of our investigat
presented in this paper.
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Phenomenon
Discrete

and nonlocal
Standard 2D continuum

continuum
Discrete

nearest neighbor

Bistability Present Not present Present
Staggered states Stagger in core only Not present Stagger global
~Quasi!collapse Supercritical Critical Critical
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APPENDIX

In this appendix we derive an approximate formula for t
dispersion function

J~kW ![J~k,q!5 (
mW ,mW Þ0

eikW•mW

umW u3 F123S dW •
mW

umW u
D 2G , ~A1!

where the summation extends over all integral compone
of the vectormW 5(m,n,0) excluding the term withmW 50W .
First we consider the case when the dipole moments
aligned along thex axis: dW 5(1,0,0). We will consider the
behavior of the dispersion functionJ(k,q) in the vicinity of
its minimum (k50,q5p) and its maximum (k5p,q50)
separately.

In the vicinity of the minimum (k50,q5p) it is useful to
present the dispersion function as follows:

J~k,q!52(
n51

`

(
m52`

`
cos~km!cos~qn!

~m21n2!3/2 S 123
m2

m21n2D
24 ReF~eik,3!, ~A2!

where

F~z,s!5 (
n51

`
zn

ns
~A3!

is the Jonqie`re’s function. Its properties are described in R
47. Using the Poisson’s summation formula

(
m52`

`

f ~2pm!5 (
m52`

`
1

2pE2`

`

dt f ~t!eimt, ~A4!

we obtain

(
m52`

`
cos~km!

~m21n2!3/2S 123
m2

m21n2D
5 (

m52`

`

@~2pm2k!2K0~ u2pm2kun!

1~2pm1k!2K0~ u2pm1kun!],
~A5!

where Kn(z) is the modified Bessel function.47 Then Eq.
~A2! can be written as
n
.

r
n.
.
e-

ts

re

.

J~k,q!54k2(
n51

`

cos~qn!K0~ ukun!14(
n51

`

(
m51

`

cos~qn!

3@~2pm2k!2K0~ u2pm2kun!

1~2pm1k!2K0~ u2pm1kun!#24ReF~eik,3!.

~A6!

For uku,1 the second term in Eq.~A6! is a rapidly converg-
ing series@K0(z).Ap/2ze2z when z@1]. Therefore one
can write with a good accuracy

(
n51

`

(
m51

`

cos~qn!@~2pm2k!2K0~ u2pm2kun!

1~2pm1k!2K0~ u2pm1kun!#

.@~2p2k!2K0~2p2k!

1~2p1k!2K0~2p1k!]cos~q!. ~A7!

Taking into account Eq.~A7! and the relations47,48

(
n51

`

cos~qn!K0~ ukun!

5
1

2Fg1 lnS uku
4p D G1

p

2Ak21q2

1
p

2 (
m51

` S 1

Ak21~2mp2q!2
2

1

2mp D
1

p

2 (
m51

` S 1

Ak21~2mp1q!2
2

1

2mp D ~A8!

Re F~eik,3!5z~3!2
k2

4
@32 ln~k2!#

1 (
m52

`

z~322m!~21!m
k2m

~2m!!
,

~A9!

whereg.0.577 is the Euler’s constant andz(x) is the Rie-
mannz function, we obtain that foruku!1 anduq2pu!1

J~k,q!.24z~3!232p2K0~2p!1@312g22ln~p!

28~p211!K0~2p!132pK1~2p!

28p2K2~2p!#k2132p2K0~2p!~11cosq!

.25.111.79k210.29~11cosq!. ~A10!

By means of the Poisson’s summation formula~A4!, one
can obtain that in the vicinity of the maximum (k5p,q
50) the dispersion function can be written as
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J~k,q!52 (
m51

`

(
n52`

`
cos~km!cos~qn!

~m21n2!3/2 S 123
m2

m21n2D
12ReF~eiq,3!

524q2 (
m51

` S K0~ uqum!1
K1~ uqum!

uqum
D cos~km!

24 (
m,n51

` F ~2pn2q!2

3S K0@~2pn2q!m#1
K1@~2pn2q!m#

~2pn2q!m
D

1 idem~q→2q!Gcos~km!12 ReF~eiq,3!.

~A11!

Using the formula49

(
m51

`

cos~km!
q

m
K1~qm!

52
p2

12
1

1

4
~p2k!21

q2

8
F11cS k

2p D1cS 12
k

2p D
1 lnS 16p2

q2 D G2
p

2 (
m52`

` S A~2pm1k!21q2

2u2pm1ku2
q2

2u2pm1ku
D ~A12!

and Eqs.~A8! and ~A9!, we get foruqu!1 anduk2pu!1

J~k,q!.2z~3!1
p2

3
2@21g2 ln p24~114p2!K0~2p!

18K1~2p!#q2232p2S K0~2p!1
K1~2p!

2p
D cosk

.6.0321.29q22~p2k!220.34~11cosk!. ~A13!

Let us now consider the isotropic case when the dip
moments are perpendicular to the (x,y) plane@dW 5(0,0,1)#,
and the dispersion function has the form

J~k,q!54 (
m,n51

`
cos~km!cos~qn!

~m21n2!3/2
le

12 (
m51

`
cos~km!1cos~qm!

m3
. ~A14!

The function~A14! has a minimum atk5q5p and a maxi-
mum atk5q50. It is known50 that for Res.0,

(
m,n51

`
~21!n1m

~m21n2!s
5~122122s!z~2s!2~12212s!z~s!b~s!,

~A15!

where b(s) is the analytical continuation of the Dirichle
series

b~s!5 (
m50

`
~21!m

~2m11!s
. ~A16!

The properties ofb(s) were considered in Ref. 50. Thus, i
the vicinity of the minimumk5q5p, the dispersion func-
tion can be represented in the form

J~k,q!.24~12221/2!z~ 3
2 !b~ 3

2!1~1221/2!z~ 1
2!b~ 1

2!

3@~p2k!21~p2q!2#

522.64610.404@~p2k!21~p2q!2#. ~A17!

In the vicinity of the pointk5q50, the asymptotic ex-
pression for the dispersion function can be obtained direc
from Eq. ~A1! by replacing the summation overmW by an
integration over the two-dimensionalmW space

J~kW !.J~0W !1E dmW
~eikW•mW 21!

umW u3
F123S dW •

mW

umW u
D 2G .

~A18!

As a result we get

J~kW !.J~0W !12pS ~k cosf1q sin f!2sin2u

Ak21q2

2Ak21q2cos2u D , ~A19!

where

J~0W !54S 12
3sin2u

2
D z~3/2!b~3/2!.9.03S 12

3sin2u

2
D .

~A20!
-
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