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Strain relaxation at the 3C-SiC/Si interface: Raman scattering experiments

L. A. Falkovsky
Groupe d’Etudes des Semiconducteurs, cc074, UM2-CNRS, 34095 Montpellier cedex5, France
and Landau Institute for Theoretical Physics, Russian Academy of Sciences, Kosygina 2, Moscow 117 334, Russia

J. M. Bluet and J. Camassel
Groupe d’Etudes des Semiconducteurs, cc074, UM2-CNRS, 34095 Montpellier cedex5, France
(Received 23 May 1997; revised manuscript received 10 Septembey 1997

Using micro-Raman spectroscopy we have investigated both the residual strain and strain relaxation effect in
the heteroepitaxial @-SiC/Si system. To get quantitative results, we have developed a theory of inhomoge-
neous shift and broadening for optical phonons, which takes into account the phonon interaction with the static
strain fluctuations. We solved Dyson’s equation for the averaged phonon Green’s function and studied the
solution for a small momentum transfer near the top of the phonon branches. The Raman scattering cross
section is then calculated, including both disorder and the spatial dependence of the average strain with
distance from the interface. It is shown that two regimes of short- and long-range disorder, with different line
shapes, can be observed. In the case of the short-range disorder, a phonon can change its montarstum
scattering process due to strain fluctuatiansa range which is larger than the value determined by the phonon
width. The opposite case corresponds to the long-range disorder. We have also considered the case of an
anisotropic(two-dimensional-likg disorder which can be viewed as a set of columns perpendicular to the
heterointerface. The results of our investigations show that all three regimes should have macroscopic scales.
Comparing in great detail the experimental results with the theory, we have obtained a very good agreement in
both cases of the singlétO) and doublefTO) modes, including the cases where the lattice mismatch-induced
splitting is observed. Finally we have found, from the change in coupling constant plotted versus distance from
the interface, that the mean-squared strain relaxes in the bulk of our epitaxial samples according to an approxi-
matez™~! dependencd.S0163-182(8)04318-5

[. INTRODUCTION inhomogeneities near the interface. Finally, focusing on three
3C-SiC/Si samples coming from different origins, we show
There is in the modern automotive, avionics, and processhat every time the residual strain relaxes with an approxi-
control industries more and more interest in probing the enmatez ! dependence.
vironment at high temperature and under extremely rough This paper is organized as follows. In Sec. Il, we discuss
conditions. With this respect, SiC sensors would be verythe physics of probing the strain by Raman spectroscopy. We
much welcome. However, it will be a long way to go before make clear the difference which does exist between the
6H or 4H polytyps, grown on 6H or 4H substrates, can enteconstant-strain approximatiofwhich is the standard one,
this very lucrative market.This is not the case forG-SiC  only considered in the literature up to npand both the
or Si. Despite a very larg@about 20% nominal lattice mis- homogeneous and inhomogeneous strain approximations.
match, it is now well established that cubicGB silicon  These two complementary features where recently
carbide can be grown on largé—6 in) silicon wafers using introduced in order to take into account the spatial fluctua-
heteroepitaxial chemical vapor deposition(CVD)  tions which generally exist in the bulk of any epitaxial layer
techniqueg. By creating a regular misfit dislocation pattern, anda fortiori close to the interfaces. In Sec. lIl, we recapitu-
most of the lattice mismatch is accommodated near théate the motion equation of optical phonons in the long-wave
SiC/Si interface and only a few percent of the nominal strairapproximation including the straifsec. Il A) while, in Sec.
remains in the two different materials. This is still a problemlll B, the Green’s functions method is applied to consider the
for mass-market applications. Indeed, in many cases, thisffect of the strain fluctuations in very much detail. We ob-
(smal) amount of residual strain induces a large bending otain the inhomogeneous broadening and shift in terms of the
the initial wafer which precludes any further processing stepstrain correlation function. A Gaussian strain correlator is
This makes useless the deposited SiC material. As a consased(in Sec. Il O to perform final estimations. The Raman
guence controlling and, next, lowering the residual strain apeross section is finally given in Sec. Illl E, where the selec-
pear of fundamental technical interest. tion rules are discussed. The comparison with experimental
In this work we focus on the investigation of the residualdata for 32-SiC deposited on silicon is given in Sec. IV. We
strain(and strain relaxatigrin the 3C-SiC/Si heteroepitaxial show that, in this particular material system where the lattice
semiconductor system. We use micro-Raman spectroscopyismatch between SiC and Si is about 20%, there exist both
as a probe and, to account for the asymmetric line shapeBomogeneous strain with a smooth relaxation and a notice-
experimentally observed, develop in full details a theoreticahble inhomogeneous contribution to the Raman spectra. Per-
model which takes into account the finite effect of stresforming a detailed comparison between the theoretical pre-
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lead to a broadenin@nd shif} of the Raman lines. This is a
very large effect which comes because the strain fluctuations
destroy the perfect lattice symmetry and allow a coupling of
phonon states with differerit values. In this work we show
that, every time, the strain consists of a spatial fluctuating
component superimposed on the term which reduces
smoothly in real spacFig. 1(c)]. Such strain fluctuations
result from dislocations, grain or twin structures, and other
structural defects.

In the backscattering geometry, according to the standard
momentum conservation law, an optical phonon excited by
light has twice the momentum of the incident photon and
“sees” the smooth strain averaged over distances of the or-
der of the collecting spot. This is typically of the order of the
light wavelength, which is large in the interatomic scale.
Performing such an average, we obtédiesides the smooth

FIG. 1. Schematic drawing of the various strain distributionsstrain the effect of the fluctuating strain in the second order
encountered near two semiconductors heterointerfa@ess con-  Of the perturbation theory. We show that the fluctuating
stant strain which corresponds with the standard approximation fostrain induces botan inhomogeneous broadenifig™ and
bulk material,(b) a smoothly relaxing term, an@) a fluctuating,  a shift Ao of the Raman line. To the best of our knowl-
nonhomogeneous, component. edge, the influence of such a disorder on the Raman modes

has never been considered up to n@ither for the TO or
dictions and the experimental data, we find that theLO component even if it is absolutely necessary in order to
inhomogeneous contribution can be either short range, for get a clear understanding of the strain relaxation near two
three-dimensional growth-type material, or long-range, forsemiconductor heterointerfaces.

Strain

Distance from interface

better optimizedmore two-dimensionalgrowth conditions From the theoretical point of view, this problem has two
and post-grown annealed samples. peculiar features. First, because of the small uniform split-
ting of the normally degenerated phonons, interbranch pho-
IIl. PROBING THE STRAIN RELAXATION non scattering becomes allowed. Of course, this scattering is
BY RAMAN SPECTROSCOPY driven by the static strain fluctuations. Second, the momen-

tum transfer from the light to phonons remains relatively

From the experimental point of view, Raman scattering issmall. Then one has to calculate the phonon shift and width
by far one of the most popular techniques to investigate th@ear the extrema of the optical phonon branches. We will see
residual strain, both in bulk materials and in multilayeredthat the inhomogeneous shift and width have singularities at
semiconductor structures. However, only the line shift resultthe top of the branches. As a result, the shift and width be-
ing from the uniform strain approximatidsee Fig. 1a)]has  come frequency dependent. Therefore, the phonon mode ac-
been investigated in detdif. quires an asymmetric line shape.

In many cases this approach is far from sufficient, This asymmetry has no relation to the so-called Fano in-
both from the experimental and theoretical point of view.terference effect, which is also known as the Breit-Wigner
For instance, the strain induced by the differences of latticgesonance in nuclear physics. Indeed, starting from the most
constants and thermal coefficients between two adjacerfeneral viewpoint, Raman spectra result from a very com-
layers is known to relax when moving from the interface toplex picture of a photon-electron-phonon interactiewen if
the free surface. This is shown along tkedirection in  full attention to their very subtle aspects has only been paid
Fig. 1(b). Because such a strain changes its value on a largecently. It was first discovered that the interaction of the
scale one can observe the smooth strain variation in an hephonon resonance with the electron-hole continuum can lead
eroepitaxial material system, by displacing a laser spot ofio characteristic changes in the shape of the resonance line.
the lateral surfacéon both parts of the interfateand by  Concerning SiC, this Fano interference effect was discussed
measuring the phonon line shifto("". Typical results have for n-type 6H SiC in Ref. 7 and, more recently, in Ref. 8 for
been reported in Ref. 6. We call this effettte uniform  4H and 6H polytypes. Another example of this behavior is
shift the asymmetric 340 cm! line in superconducting YBaCuO.

Of course, since there are different layers in the laser spat has been discussed several times in the literdttitand is
with different strain values, the uniform strain relaxation currently considered as an important probe of the electron-
must result in a finte Raman linewidth,['“™  phonon interaction in this prototype superconducting com-
=dd(Aw“M)/ 9z, whered is the laser spot diameter. Typi- pound.
cally since the strain relaxes over distance$0 xm and Since the phonon Raman scattering is determined by the
induces a line shifA w(“"~2 cm™?, using the experimental phonon Green'’s function averaged over the static strain fluc-
resolutiond=1 um and the uniform shift approximation, tuations, we write the appropriate Dyson’s equation for the
one finds a broadenirig(“”~0.2 cm™~1. This is negligible in  Green’s function considering the interaction of phonons with
comparison with the experimental linewidth, which is usu-the strain fluctuations. Then the integral equations for the
ally of the order of several cm'. width and shift, which are functions of the frequency trans-

We have recently show(see Ref. Bthat the strain fluc- fer, are solved self-consistently. We find the inhomogeneous
tuations located near a semiconductor heterointerface aldoroadening and shift in terms of the strain correlation func-
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Raman line shape.

The proposed theory is very similar to the theory of the
conductivity of metals with impurities, but the effect of
branch extrema is essential. Our method can be applied t
the scattering of optical phonons by imperfectidasd other
problems if the momentum transfekk is comparable to the
value determined by the collision rate. This problem has
physical significance due to a small value of the dimension-
less parameteaAk=\I'/wy<<1, wherea is the lattice con-
stant,'=2-5 cm !, and wy=600-1000 cm! (these are
typical values for the optical phonon width and frequency,
respectively. We will see that the scale of fluctuations

tion and, using the obtained width and shift, we calculate the k@)H K

ro/a=\wo/T'/m (i.e., moderately large in the atomic units : 4 Strain
a) is of special interest for the problem under consideration. &
IIl. THEORY ; z

A. Uniform strain

In the long-wavelength approximation, the equation of
motion for the optical phonon displacement$r,w) can be
written in the following form:

FIG. 2. Schematic drawing of the Raman backscattering geom-

(H=—iwT M+ V(r)— o?)u(r,e)=0, (1) etry used in this work to investigate the strain relaxation at the
3C-SiC/Si interface. Both the incident and scattered light propagate
where the matrix elements parallel to the(1 10) direction. The strain relaxation is probed by
) displacing the laser spot in tR@01) direction.
1%
Hij =Xij + Mijim X, X 2 The Raman cross section is obtained using the Green’s

functions of the optical phonornS;;(r,r’,) for which we
represent the long-wave expansion of the dynamical matrikiave the equation
with constant tensorg;; and uiji, . The dampingl ("™ de- . ) , ,
scribes the intrinsic phonon width caused by the phonon- [H=iol"™+V(r) =’ ID(rr"w)=46(r=r"), (4
phonon and electron-phonon interactibiand the matrix  \here the Green's functions have to be averaged as previ-
ously described. Using the diagram technique and summing
Vij (1) =Nijim&im(r) (3 diagrams with the averaged/), we get

takes into account the strain effegt,(r). Expression(3) is
well known and was proposed initiafiyfor the constant- <D(r,r’,w))=D(°)(r—r’,w)=J
strain approximation illustrated in Fig(d.

In cubic crystals there are three optical phonons afithe
point, with a threefold degenerate frequency:1-3). Then,
the tensory;; has only diagonal elementg; = w38; and DOk ,w)=HK) =il M+ (V(r))—w? (5

ve =3 2 .. i -
both \jjm=wg and u;;m have three independent compo The matrix elements arblj; = yi; — ijmkikm and (V;;(r))

nents (€.9., M= Pr Axxyy=0d, and Ny, ~=r). The long-  _ " N i
range Coulomb forces further split the degeneracy of th?er)\rrlimégmt;g/qaéLT((:):%/:nn&?;rlycgfrlg;ﬁoi\;eragéd”> is de

optical phonons in such a way that the LO phonon has a . .
higher frequency than the twofold degenerate TO phonor&.h elf %Pévr?:égéézn;?gy; F;LZ???%EJT >p Ij:e p?gagel o
Let us emphasize that; =0 for the acoustic phonons. This —e, and(sxz)=(syz)=.sA As a coaxsequeygce fﬂ)lr phénons

gives the linear dispersion nde+ 0, instead of the quadratic X - .
. propagating in the plank,= 0, the matrixH +(V) has only
one for optical phonons. The tensey;, has the same order Sthe following five components:

of magnitude for both the acoustic and optical mode

) . : . .
(Mijim==S", whgres is the sound velocity This comes sim Hy+ (Vi) = wi+(p+ q)s||+qsi—Mxxx>J<>2<_Mxxyyk>2w
ply because, if one extrapolates any acoustic branch to the

boundary of the Brillouin zone, one obtains a typical fre- 1 (v \=w2+(p+q)e;+ge, — 2_ 2
quency ;) of the order of magnitude of the value of opti-  °° (Vyg) = @it (P ey ae. ~ ooy ~ oy

3
D(O)(k,w)eik(r—r’),

where

cal phonons. The typical value gf for the axialk direction H,,+(V,)= w2+ 2qe+pe, — u 2
in SiC may be estimated using well-known data for the upper zat (Vo = 05 | LT
optical modet* =970 cm ! atk=0 andw=2885 cm™* at oy (Vi) = = 2tykoKy

k/K max=0.67, wherek,,,= 67r/c and the axial dimension of
the unit cellc=15.12 A. One obtains/u=0.9x 10° cm/s. Hyot (Vi) = HyH (V) =2rey . (6)
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In the case of backscattering fronr{ 810} face(see Fig. 2, Wik-k)
it is useful to turn the coordinate axes in the plane in such D() DO(k) DO(k) D)
a way thatx=(x'—y')/\2 and y=(xX'+y")/\V2 (iLe., A~UC = ~U " + AN
choosingx’ along the light propagation and parallel to the
momentum transfer Then the matrix6) has only two non- D(k;)
zero off-diagonal matrix elementd/, ,)=(V,,)=22re,
which connect the LO(’') and TOg) modes.

Let us consider the particular case of SiC. The Coulom
splitting w o— w7o=100 cm L. Then, in comparison to
(V), the contribution of V,,) to the shift of the LOX") and B. Inhomogeneous broadening in the Born approximation

i 2 20 2 2
TO(Z)Z pzhonorzls IS 0l(V)~(Vyz) /SQO(wLO_ ©To) Let us now consider the effect of the strain fluctuations
NS“’O/(“’L?_“’TO)' As an order of magnitude, we tak®  sv/r)=v/(r)—(V(r)) shown in Fig. ic). Summing again
~Q~r~wpande;;~e. Moreover, in the case under CO?S'd' the important diagrams with the correlataiv sV) (see Ref.
eration the frequencies of optical phonoag~10° cm™*.  3) we get the averaged solution of Eg) shown in Fig. 3.
Finally, from our experimental data, we estimate 10~%in  This solution depends on the coordinates difference’
accordance with Ref. 14. Altogether, this shows that one cagng, for its Fourier transform, we obtain the Dyson’s equa-
safely omit(V,,). In this approximation, the matri¢6) has  tjon
a diagonal form with three nondegenerate eigenvalues:

FIG. 3. Dyson’s equation for the averaged phonon Green'’s
B‘unction(wave line. The strain correlation function is shown by the
dotted line.

: D 1(k,w)=D@Y(k w)—f—dskl Wi (kg —k)
wf_)((l)):w(L%)"_[(p_"Q)S”"'qsi U i ' (2m)3 imlj{R1

= (Myxxxt Mxxyyt 2:"nyxy) k2/2]/2w01 X DKy, o), (9)
W where the matri>Di(]-°)(k,w) is given in Egs(5) and(6) and
WP’ =wot[(p+d)e|+as, Wimii(K) is the Fourier transform of the correlation function:
= (Mt Mxxyy 2Mxyxy)k2/2]/2w0a Wim,j(r—r’)=<6Vim(r)5V|j(r')).
. (O) . . .
W@ = w0+(2q8”+pSL_,vaxyykz)/ZwOa @) The matrix D' is diagonal in our casgsee Eq.(7)].

Moreover in the Born approximation, if the effect of fluctua-

where the superscripte, y', andz denote the phonon po- tONS is comparatively small, one can talRé®) in the inte-
larization, andw(%) differs from w, because of the Coulomb grand instead ob. Then one obtains for the diagonal ele-
ments the expression

forces.
We see immediately from Eq§7), that both the LOX') d3k
and TOf') phonons must have the same uniform strain Dj;(k,w) *=D!”(k,w) 1= f(—)lswjmmj(kl—k)
shift, m J (27
X Dimi(ka), (10)

Aol =20l " =[(p+a)e|+ae, /2w, 8

X y I EEL e which has a transparent meaning. In the absence of disorder,
while the TOg) phonon shift will manifest, as a function of the poles oD{?’~(k,), Eq. (5), give the phonons disper-
strain, a different slope: sion law, Egs(7) and(8):

w?(k)=wf(k=0)-sk>—il'{",

where the parameterg are of order of the sound velocity

Let us apply the preceding resul® to 3C-SiC/Si in the and depend on thik dir_ec_tio_n (we WiII_ ngglect this depen-
case of the geometry shown in Fig. 2. On the SiC side, thdencs. The uniform Sh'(fiit')s included i (k=0). _
Coulomb forces split the optical triplet into a singlet LOY In the limiting casel™"™”— 0, the imaginary part of inte-
and a doublet TQ(') and TOE). This doublet is further 9ral (10),
split by strain and, among the three components, two phonon 43K
branchegLO(x") and TO§') ] must experience an identical cul“}i“h)(k,w)= T f —1ijmj(k1_ k)
strain dependence. In other words their frequencies must de- m (2m)3
crease in the same manner under the effect of the tensile 5 5
strain components which originate from the interfacial X 8(wm(ky) — @), (1D
SiC/Si lattice mismatch. On the Si side, the strain will beang the real part
compressive and no Coulomb forces will exist. Therefore,
the optical triplet will be only split by strain in a singlet (inh) d3k, Wimmj(ki—k)
TO(z) and a doublet LO('), TO(y’). We do not write the 200A 0] (k,w):% 2m° o= (k)
obvious result which can be easily obtained solving the secu- e emi
lar equation with the matrix element§) and taking into  give the phonon inhomogeneous broadening and shift, re-
account(Vy:,). spectively.

Aw(zun)Z (20g+ pe ) 2wq.

(12
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® where the correlator does not vanish shown by a dotted
circle of radiusry . If w?>w?2(k=0), the intraband transi-
tions are not allowed.

C. Inhomogeneous broadening near the top
of phonon branches

If the width I" is large, one cannot use tl&function in

—— Eqg. (11) but, instead, one should hold in the integrand.
Transforming Eq(9) to the diagonal form, we search for the
,»\*k / ky solution
oR)=0o k':x\l_(f_;? W Djit(k,0)= 0 (k,0) sk ~iolj(k,0)—w? (15
/ where o;(k,0)=w;(k=0)+Aw{"™(k,0) and Tj(k,)
. =I{™+T{"™(k, ). Substituting Eq.(15) in Eq. (9) and

taking the imaginary and real parts, we get for the inhomo-

FIG. 4. Mechanisms of intraband and interband phonon scatterdSNEOUS broadenlnﬁl('“h)(k,w) and Sh'ﬁA“’J’(mh)(k"") the
ing induced by the strain fluctuations considered in this work. Thdollowing system of coupled integral equations:
two optical phonon branches, 5(k) are shown near maximum. All (inh)
possible transitions are from an initial state,k) to a final state [ (k,w)
(w,k;) which belongs to the domain of radiug where the strain 4%k
correlation function does not vanish. _ 2 f 1
m

(2m)®

Equation(11) has the form of the “golden” rule, while Eq.

(12) reminds us of the formula of the second-order perturba- y (K1, @) Wjmmi(ki—K)

tion theory. Let us remark that the D|rai:funct|_on in Eq. [wzm(kl,w)—wz—szmkf]ZJr[me(kl,w)]z’

(11) expresses the phonon energy conservation law in the

scattering process by static fluctuations. Then the transition (16)

from a state K, ) is possible only to states with differekt (inh)

values but with the same final energy,(k,) = w. Thus the Awi(k,0)

correlatorWjm,mi(k,1 —k) has then the meaning of a transition

probability (j,k)— (m,k,). -3 f
To make an estimate, we approximate the correlator by a m

Gaussian function

d3k;,
(277)32w0
[w?~ 0F(Ky,®) + SEKEIWmmi(k1— k)

, 2 X .
Wiy (F=1") = £ 20gWipy e~ 720, (13 [w3(ky,0)— 0?—S2kiP+ [0l n(ky,0)]?

where the prefactor is inserted to use a dimensionless param- (17)
eterw which does not depen@h the leading approximation  The right-hand sides of Eq§16) and (17) contain the total
on the yalue of fche average strain. This is the mea”‘.squar%mpingl"m(kl,w)=Fﬂ1m)+l“§,i1”h)(k1,w) and the total shift
fluctuation at point, divided by the squared mean strain andwm(kl,w)=wm(k1=0)+Aw§,i1“h)(k1,w). The uniform shift
the phonon frequency to the fourth power. The correlation, ™(n o . N
. : L : wy'’, Egs.(7) and(8), is included inw,(k;=0).
radiusr defines the average domain size where a strain o Pm forming the int 1€16) and (1 d to tak
order of the mean value exists. The Fourier transform of ' corming the in egral€16) and (17), we need to take
expression(13) gives then into accoynt the band edges. The momentknand fre-
guencyw in Egs.(16) and(17) have the sense of a momen-
tum and frequency transfer for the light scattering. In the
Wim”(k):f dre ™ Wi (1) optical rangek~10° cm~. The frequencies and damping
of the optical phonons in Si and SiC ate,=600—-1000
7k2rg/2. (14) cm~! andI'=2-5 cm 1, respectively; the dispersion pa-
rameters=10° cm/s. Therefore, the conditigk< Jw,I is
In Fig. 4, two phonon bands, (k) have been drawn sche- valid in all experimental cases discussed below. In these con-
matically (the vectork being, of course, three dimensiopal ditionsT'{"(k,®) andAw{"(k,®) can be regarded as in-
and we assume that both branches have a maximukn atdependent ok. Concerningg=k,—Kk, the valuesq2s2/r§
=0. A phonon with momentumk and frequency w determine the final statéshown in Fig. 4 by a dotted circle
= w1(k) can be scattered into states with momentuymand  for phonons scattered by the strain fluctuations. The domain
frequency wi(k;)=w (intraband transition or with fre- g?<w,'/s? is essential in the integrand Green’s functdn
quencyw,(k;) = (interband transition The w plane ink  [see Eq(15)]. This is because we are interested dn— |
space is shown for the cas€< w3(k=0)<w5(k=0). The  =TI". Depending on either the paramete{T/w.r,/a being
only region into which the transitions are possibiee., small or large &= ws/w, being the lattice paramejerwe

= (277)3/282(1)3rgwim|je
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see that two limiting cases are possible. Then all integrals,., X2(x2— 6) )2
can be done analytically and a system of algebraic equationf dx—————e Xm
is found. 0 (6-Xx))%+y°
Let us emphasize that the valyew,/T'/7 is moderately
large. This means that the condition of validity of the present _ V m N
theory (which is defined by the crossover valug/a - TXm_ZT/z[_ O+ (6% +y) 12 (22)

=+ wo/T'/) is indeed satisfied. It means that the radius of

strain imperfections is moderately large in atomic units,we obtain instead of Eq$18) and(19) a system of coupled

which is the basis for achieving a good physical significancealgebraic equations fdf{"(w) andAe{"(w).

of the present results. Let us consider the upper LO-phonon branei? ¢ wfo)
Consider now the two limiting cases separately. in SiC, for which the intraband transitions are only possible.

Then the subscripts ig;,I'j, andw;y,; take only one value

and we can omit them. Using Eq21) and(20), we rewrite

the system(18) and(19) in the form

1. Correlation radius is small

In this case,m[ max(,|o;—))]*2w, Yoo /a<1, which
means thaty/a<10 for the set of parameters mentioned
above. We first notice that, for such values gfa, the suit-
able regiongw; — w| are narrow. In this case, when scatter-
ing on the strain fluctuations, the phonon may experience a
considerable momentum change. As a consequence, in the
convergent integral for the width, we take the correlator at
g=0 and integrate ovek;. In the same way, the leading
contribution in the integral for the shift comes from the large

I (@)= (Alwg) 4wl o= w?+[(0?— wlo)?

+ w2r2]1/2}1l2, (22)

. A\ s 1
Aw('nh)(w)z(—> ( — |- wint w?

(O] \/;ro 2

values q[ womax(l',|w;— |)/<¢?<2/r§], where the width
and shift are not important. The next tergim which the
exponent can be omittgdhould be held, since it depends on

. Then, Eqs(16) and(17) read

A (o)
h Ujm! m
1ﬂJ(In (0)=wo 2, 2 2(12

m |wm_w |

o 2
« f x“dx 19

0 [0(w2— 0 — X212+ ya(w)

, 1
Aw}'”h)(w)= E% Ujm|wr2n_ w2|1/2

fxe—XZ/Xi[ 8( w2 — 0?) —x2]x2dx

0 [O(wi—w?)—x?P+y2(w)

(19
where
_ \/E 2 (,l)oro 3 \/5 ’7Tr0 3
Uim= ;8 ? ijmj_ ;8 ? ijm]!
ol (o)
’)’m(w)_ 2 2 1
| m_w|
s V2 a wl2
Xpm o — = = 0 (20

ro |wr2n_w2|1/2_ o |wm_w|1/2'

a(wﬁ]—wz) is the unit step Heaviside function, ang,>0.

For simplicity, we omit the argument in w,().
Performing the integrals,

2
o x“dx T
— 2 2\1/291/2
fO (0—x2)2+'y2_23/27[0+(0 +F)/) 2] ’

+[(w2_ wEO)2+ w2r2]1/2}l/2) , (23)

where the constant

2 6 6
v r woro v 7Tro
A= ?U2w022w084( T) szz w084(7> W2
(24)

is related to the phonon scattering on strain fluctuations. For
simplicity we omit the argumentw of functions I'(w)
=T+ MM (p) and o o(w) = o(k=0)+Ae"(v)
[see definitions after Eq15)].
The numerical solutions of the coupled systé?@) and
(23) (the total width and inhomogeneous shiis a function
of the frequency transfer, together with Intk,w), have
been already displayed at length in Ref. 3 for several values
of the interaction consta®X. They will not be repeated here.
The center of the line is determined by the equation
wo(w)=w [see Eq(15) with k=0] and using Eq(22) one
finds the total width at the center of line=w g:

I'(w=o0.0)=TM"+AR2+[(A2)2+T A2 (25

Then, if the intrinsic widthl'"<A/4, the total width re-
duces to

INw=wo)=A+2I0M, (26)

while, in the opposite case,

I'(0=w )= TMA+T ), (27)

One can see from Eq$26) and (27) that there exists an
interference effect between the disorder width and the intrin-
sic collision rate—they are not additiveFor the large strain
fluctuations[see Eq.(26)], the intrinsic contribution is mul-
tiplied by a factor of 2, while in the opposite casee Eq.
27)], the strain fluctuations involve a contribution propor-
tional to the square root of the intrinsic width.
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The width essentially depends @nand increases below 2 2p2_ (. 2 N2
- Sm 0T~ (wn— 09
the top of the phonon branch. Far from the top, i.e., for +3|— 5 TS EL (3D
|w o— |>T/2, we find Mo/ [(op= )"+ T]
() wherev im=&Wjmmi, andl', and e, are functions ofw.
Again, examples of numerical solutions for the coupled
4+ \2A(wls— 0?) wg for wo—w?> wl, system(30) and (31), which give the total width and the

=1 iy — s 2 inhomogeneous shift as a function of frequency transfer to-
L1+ VAwy/2(w?— wio)] for w’=wfo>wl, gether with the Raman cross section Dk, ), have been
(2g)  shown at length in Ref. 3.
Similar to the previous case, these equations can be
which means clearly that the Raman line becomes asymmesolved analytically for the center of line positiom € w o)
ric as soon a#\ becomes comparable ia. The explanation and for the wings. This gives correspondingly
of this behavior is to be found in the LO-phonon density of . ,
states. It is equal to zero fap’>w?, (if T'™—-0) and I'=T72+[(0(M/2)2+B2]M2 (32)
proportional to \/szo—wz below the top of the branch. ,nq
Then, for any phonon scattered by the strain fluctuation, the
final density of states increases below the top and results in B2 2
an increased inhomogeneous width: the resonance curve F:F“”t)( 1+ 2—0) ) (33
drops more slowly on the low-frequency side of the peak.

(U)Lo_wz)2
For the inhomogeneous shift of the line, one can hold 2 9 2 . _ .
only the leading first term in Eq23): where B“=e“wgw. The important point is that, while the

line shape is still non-Lorentzian, it appears much more sym-

(inhy _ 1 metric than it was in the previous case of the short-range
Aw ((,L) U)Lo) (A/’]Ta)o) 2S/ro, (29) disorder.

but the influence of the second term remains substantial. This The center line position is determined by the equation

is because it moves in the opposite direction the high«Lo=®, Which shows that only the last term in E(B1)

frequency part of the resonance cufize., from high to low  contributes to the line shift:

frequency. Of course, in every case, the total inhomoge- (inhy, B 2

neous shif(23) increases with increasing value of the disor- Aw'"™(0=w0)=1.58B/rl')wg

der parameteA. ~1.5wq(aB/mrol)?, (34)

Formulas(18) and (19) also apply[see Eq.(21)] to the _ _
optical phonon doubletin SiC) and to the triplet modeén ~ wherel is obtained from Eq(32). N
Si) but, in this case, several constants, should appear Coming again to the degenerate case, the splitting can be

instead ofv. Let us now consider the case of a large correfound easily with the help of Eq31). This gives for the
lation radius. doublet TO modesi&1,2)

~ 2

i _Ui2 g
AwfV=5—5 :
2 wo— W1q

2. Correlation radius is large(w\I'/ wgro/as>1)

This corresponds to a long-range disorder and, conse-

qguently, a small-angle scattering of phonons by the strain . _ . .
fluctuations. In this case, it is more convenient to introduce _ 1© conclude this section, let us emphasize the most sig-

; ol ificant differences which separate the two limiting cases.
the variableq=k,—k in Egs.(16) and (17). The correlator ™ , _ ,
becomes a sharp function and the phonon Green’s functioh©" the short-range disordésec. 1l C ), the line shape is

in the integrand should be expanded in a power seriag of asymmetric._ This can be seen_from Eag)' However, the
The zeroth-order term gives the final result in Etp) while, asymmetry is smaller than the line shift due to the parameter

in Eq. (17), terms to the second order are needed. Indeed” VI /@olo/@<1.In the degenerate case, the splitting is also
since the correlator is an even function, the first-order ternpmaller than the common shift. Both the shift and broading

(35

vanishes. Performing the integral depend on the correlation radius. For the long-range disorder
(Sec. Il C 2, the line shape remains symmetric, but non-
4 4 Lorentzian, and the top of the line becomes flat. In the de-
f q 9PW, -(q)=382ﬁw- _ generate case, both the broadenidg and splitting(35) are
(2m)3 ! r3 mme independent of the correlation radius. Finally whatever is the
type of disorder, in both cases, it raises the top of the phonon
we rewrite Egs(16) and(17) as branchegsee Eqs(29) and(34)]. This is in very good agree-
ment with standard quantum mechanics arguments. By con-
I, - [l 23 Vimlm 30 tras(tdn?ecause _this i_s inrs_t-order correction, the uniform shift
i— L 04 (wﬁq—wz)erwzl“ﬁq' A"V has an indefinite sigfsee Egs(7) and(8)].
o2 WP 0 D. Anisotropic two-dimensional disorder
Aw™M=—% Eim{ 5 We assumed so far that the disorder was isotropic. How-
2w (0p= )"+ T, ever, in the presence of a heterointerface, the strain correla-
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FIG. 5. Theoretical Raman intensity computed as a function of FIG. 6. Same as Fig. 5 but now in the case of a large correlation
the frequency transfer f@n) a singlet andb) a doublet mode in the radiusrywy/s=40.
case of a small correlation radius. The phonon transitions are pos-
sible into larger region than the one determined by the phonomhat, in Fig. §b), the constant splitting of the two TO modes
width. The frequency transfer is measured in units of the phononpecomes more and more difficult to resolve because of the
mode frequency wo (relative unit3. The intrinsic width  single line broadening, which increases rapidly fréan to
I0M/w=2.3x10"°. The correlation radiusew,/s=20. Finally, (c) [see Fig. Ba)]. Performing a close comparison with the
a, b, andc are for three values of the sgrain disorder. They gi"eisotropic case of long-range disordeee Sec. Il Cwe find
total widthsT'/eyg = 2.9, 3.8, and 44107, respectively. that, in both cases, introducing a finite value of the coupling

. : . _— constant results in the appearance of a slowly decreasing
tion function should have different behaviors(at least two low-energy tail. The main difference comes when comparing

different directions. One is perpendicular to the interface; the,, high-energy one. It drops more slowly for the two-

other one is tangent. As a consequence, we consider a Prginensional2D) anisotropic case than it does for the isotro-

totype system with a large correlation radius in the normal ic one This is because of the weaker dependence of the line
direction (,/a>wo/I'/1r), while making no assumption gp;ft coming from Eq.(37).

about the correlation radiug, for the directions parallel to If ry is as large as, (i.e., satisfies the same condition

the interface. For small values of the radiug (ro/a e come back to the long-range disorder case. In other
<\Vwo/I'/m<r,/a), one can imagine this case like a set of yords, we do not see any anisotropy anymore. Typical re-

columnar structuresor domaing growing perpendicular to  syits are shown in Fig. 6. They concern both the LO singlet
the interface. and TO doublet and, again, three different values of the cou-

In the integral (9) with k=0, one can putk;,=0 in  pling parameter have been considered. The striking point is
Dmi(ky,w). Then, omitting the exponent, the logarithmic in- that, even if non-Lorentzian, the overall line shape stays

tegzralz overky, can be done between the two limits 0 and again much more symmetric than it was in the previous case
2s%/rj. One obtains for the inhomogeneous width and shiftof a small correlation radius. The direct consequence is a

of the phonon singlet much better resolution of the TO doublet, especially in the
) 5 case of the highest value of the coupling constant.
() = C arctarﬁ Wo~ W ) Finally, the conditions of validity for the basic equation
ol (9) should be mentioned. The line shape on wif2® and

(33) can be obtained in the Born approximatiéhl) and
(12). At the center of lines, the diagrams with intersections
of the correlator lines make a contribution of the order of the
diagram shown in Fig. 3 and a more sophisticated theory is
_ C (282124 w?— wlg)?+ T2 needed. Then, one should consider E).as a sensible in-
Ao (@)= Zn , (37) terpolation between the two extreme limits.

25%r3— wio+ »?
ol

. (30

+ arctar(

(02— wfo)z-i- »’T?

whereC = g2w3rjw/2s?. E. Raman cross section

For small values of the correlation radiug, the overall The effective Hamiltonian for the Raman scattering has
line shape remains asymmetric. This is shown in Hg) ®r  the form
the LO singlet and in Fig. ®) for the TO doublet modes. In
theses figures, three different values of the coupling constant 2 ¢ KOk
have been used. They correspond to a small cougling 7 — £ U g U (KD —KE)A (kD) A (KS)
a), an intermediate case of finite inhomogenéliye b), and mc? (2m)8 TP p ’ ’
a strongly disordered systeftine c). The striking point is (39
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whereA4(k() andA,(k(®) are the vector potentials of the 9000 . . . .
incident and scattered light, respectively. The cross section
for the light scattering into a solid ang#)® and in the
frequency intervablw(®, which is found by using the effec-
tive Hamiltonian(38), reads

8000

2 4l

1-exp—fhwl/kgT)

c2imo

do 3 2e?w®
dw®dO® N

X gaﬂye(ﬁl)e(ys)garﬁryre(p:?e(ys,)lm Daar(k,w),
(39

wheree(}) ande’? are polarization vectors.

Equation(39) shows that this is the imaginary part of the
phonon Green’s function which is measured in the Raman
experiments. With respect to the interface, the paraflel

phonon is excited in the configuratiod(zy')x’. It is still
transverse, both in SiC and in Si, if the light beam makes a
finite (smal) angle with respect to the interfa¢the excited
phonon has indeed the double momentum of incident and
scattered light in the backscattering geomgtin the con-

figurationx’(y’y’)? thez phonon is also excited. But if the
incidence on the SiC side has a small angle with respect to

Raman intensity (cts/s

the interface, this phonon has now a longitudinal component 0 790 795 800 80

on the Si side. Therefore, the corresponding Raman line frequency transfer (1/cm)

should be less intense than the correspondifigphonon .

mode. Finally, we can see from E@8) that the longitudinal FIG. 7. Experimental Raman spec{feO mode$ collected on a

x' phonon should not be found when the light propagates "}8-,um-thi<_:k 3C-SiC layer deposited on silicon. Starting from the
thex' direction; see Fig. 2. This is opposite to most eXperi_lnterface(llne a), two components resolve up to Quam (line b).
] e . . The solid lines are fits to Eq$36) and (37). The intrinsic width is
mental fln(_jlngs and we only See this forbldden phonon_b_e-l 8 cm! for all lines; the (?fr?;e)lation( r;)diusow /s=20. All re-
cause the incident and collected light directions make a f'n't?ﬁaining fitting paraméters are listed in Table |° '
angle with the perfecx’ direction. Of course, the scattered '

intensity is weak. sample geometry has already been described in Sec. Il A

and, for convenience, has been schematically drawn in Fig.
IV. COMPARISON WITH EXPERIMENTAL RESULTS 2. The excitation was provided by the AB145 A line of a
A. Samples and scattering geometry mixed argon-krypton ion laser. The scattered intensity was
detected using a Jobin-Yvon T64000 spectrometer equipped
with a cooled charge-coupled dio€CD) camera. Because
of the high sensitivity of the detection, we could perform

We focused on three differentC3SiC layers grown by
CVD on{100-oriented silicon wafers. First was one sample

obtained from CRHEA in ValbonnéFrance. Most details  \o50naply fast measurements using a low-power excitation

about Fhe growth process can be fouqd in Ref. 15 a.”d ‘?nlYntensity. Usually, less than 50QW incident power was
two points should be briefly outlined. First, the carbonlzauonfocused on the sample.

temperature was 1400 °C. Second, because the growth pa- As already discussetsee Sec. Il & using a confocal

rameters are very difficult to stabilize in the long term,imn microscope both the incidence and collection angles are

situ monitoring t(_achnique was USEd_' This resulte_d in a rathe{}vide. This allows a finite departure from the perfect selection
homogeneous single crystal film, with about 461 in thick-

; . S . rules but, at the same time, defines a reasonably good back-
ness, very well suited for investigation of the strain relax-oaytering configuration. Moreover, this ensures a spot size
ation effects. The second sample was also noncommercial. (lfimension(spatial resolutionof the order of 1um. Then,

was 6um thick and obtained from LETI-CEA, in Grenoble . 56 of this higtspatia) resolution, one can easily move

(France. Full details about the growth technique and optlml—th | b the | o ; | thé00

zation of the buffer(carbonizatioh layer have been already 1€ laser béam on the ¢ eav[afrﬂ. } surtace along €00)
direction. In this way, focusing at finite distances from the

; 6,17 ; ; ;
givent®!”and will not be repeated here. The main points are e ) .
first, a lower carbonization temperature (1200 °C, instead o C-SIC/ S|_|nterface_, we cou_ld collect different specira at dif-
' ) erent (residua) strain magnitudes.

1400 °C in the case of the process used by CRHEAd,
second, a post-growth sacrificial oxidation that resulted in

some improvement of the overall optical properties. Finally, B. Strain-induced splitting of the TO modes
a 3um-thick commercial E-SiC/Si sample was obtained  \ve consider, first, the thick sample from CRHEA and the
from Cree Research Iri€. experimental results displayed in Fig. 7. From bottom to top,

Our Raman scattering experiments have been done @e six different spectra correspond to six different spot po-
room temperature, on cleavéd 10} sample surfaces. The sitions on the surfac&leaved edgeof the sample. First, line
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TABLE I. Final values(cm™1) obtained in this work for the line position, width, and fitting parameters
in the case of the @-SiC/Si sample from CRHEAsee experimental spectra displayed in Fig.Gnly the
uniform shift is included inw; 5(0). Thefinal line position and the widtlfat the center of the linewhich
result from strain fluctuations have been denaigd(c) andI'; c), respectively. The adjusted coupling
parameter<,,, Cy, andCy, are listed in the last column.

Distance from TOL1 line Total TO2 line Total width Intraband, interband
interface @m) 01(0),w4(€) I'y(c) w5(0),w5(C) I'5(c) interactions

0 (a) 793.7, 794.0 3.57 796, 796.5 3.12 1.8,1.4;0.3
0.5 (b) 795.0, 795.3 3.33 796.6, 797.0 3.07 1.4,1.3;0.3
1.0 (¢) 795.2, 795.4 2.43 796.5, 796.8 2.34 0.5,0.5; 0.1
2.0 @) 796.0, 796.1 2.09 797.0, 797.1 2.04 0.2, 0.2; 0.05
5.0 (e) 796.9, 797.0 2.03 797.7, 797.8 1.97 0.2, 0.15; 0.01
9.0 (f) 796.9, 797.0 2.01 797.5, 797.6 1.95 0.1, 0.1; 0.07

a, is the spectrum collected when focusing near the Since we have already seen that an asymmetric line with a

3C-SiC/Si interface. The striking feature in this case is along low-energy wing indicates a short-range disorder, we

doublet feature, with a first structufat about 795 cm?) have attempted to fit all doublet components with the fluc-

and a broader shoulder at slightly higher energy. This doutuation model of Secs. Ill C 1 and Ill D. We have found that

blet structure is nothing but the consequence of the interfathe anisotropic castSec. Ill D) gives better results. This is

cial strain® because all theoretical curves in Sec. Il C 1 drop too sharp
Starting from the interface and moving the spot by step®n the high-frequency side.

of 0.5 «m toward the SiC surface, we get the two next spec- The final comparison of theoretical results with experi-
tra ilabeled b and ¢) which ha\;e been shifted by 250 mental data is shown as solid lines in Fig. 7. The correspond-

counts/s for clarity. Two points should be noticed. First, be_ing series of fitting parameters is listed in Table I. The agree-

. ) . ment is quite satisfactory, but calls for the following
cause we collect more and more scattered intensity comin
- . o omments.
from the SiC layer, the overall intensity increases. Second,

. : . . First, on the different curves, attempting to treat the in-
the high-energy shoulder which comes from the m'[erfamakrinsiC line widthT'(™ as an adiustable parameter. we have
strain still reveals at about 0.am from the interface. It J P '

disappears around Am. This is nothing but clear evidence found that the best fit was always achieved using values in

. _1 . . . .
of the uniform strain relaxation schematically drawn in Fig.the interval 1.B0.1 i~ Th'$ |_n_d|cates both the_quallty of
1(b). sample (and/or the reproducibility of the experimentas

The last three spectra have been collected at about 2, g/ell as the correctness of the theory. As a consequence, the

(int) _ —1 ;
and 9 um distance from the SiC/Si interface, respectively,avggggn\éalgof the dloﬁtjg]t Iin\gis tthaekreeni;c’; ?gtlrl:;?sv.veak de-
and have been shifted by 1, 2.5, and>41®° counts/s for ’ '

clarity. In this case, the interesting results é@jehat, starting pendenpe of th_e complex line shape on the final v_alue of the
. . . correlation radius. As a consequence, this quantity has not

2 pm from the interface, the collected intensity is roughly been adjusted. It was only extracted from the adjustment of

speaking independent of the spot position &ndthat, start- J ' y !

ing about 5um from the interface, both the energy position ;5

and width of the Raman line do not change anymore. This

evidences that @more or less constant strain regime has 3i
been achieved inside the SiC material.

While the strain regime is more or less uniform, it is not 55l * T |
yet homogeneous. This is evidenced by considering theg o - douolet
asymmetric line shape, which is better seen for casds =

8 2r SIC/Si - CRHEA

where the splitting of the TO doublet is small. The line ap-
pears rather sharp on the high-energy side and muc
smoother on the low-energy one. While the step frequency is
constant, there is, for instance, much less experimental point
on the right side of the pealigh energy than there are on 1t
the left one(low energy. This asymmetric line shape, which

is just the opposite to the one found close to the interface
cannot come from the remaining value of the uniform strain
(if any). Obviously, it demonstrates that local strain fluctua-

et

1.51

ng

coupli

' 0.5F

tions do exist. In other words, we find that, in the region 0 1 2 3 4 5 6 7 8 9

. .. distance from interface (micrometer;
where the uniform strain is more or less constant, there are ( )

still large local fluctuations on the scale of the laser spot and FIG. 8. Strain relaxatioritaken from the results of Table for
that, because of these local fluctuations, the line shape i®e coupling constant€,;+ C,, plotted as a function of the dis-
asymmetric. tance from the SiC/Si interface.
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' ' ' ' TABLE Il. Same as Table | but for the LO phonon Raman
spectra shown in Fig. 9.

Distance from LO line Total width Intraband interaction
interface wm) ®(0),w(c) I'(c) coupling
0 (a) 971.3, 971.6 4.02 1.5
0.5 (b) 972.0, 972.4 3.86 1.3
1.0 (¢) 972.0, 972.3 3.62 1.0
2.0 (d) 972.3, 9725 3.45 0.7
5.0 (e) 972.9, 973.0 2.88 0.18
9.0 (f) 973.1, 973.2 2.80 0.1

C. Effect of strain fluctuations on the LO phonon

Raman intensity (cts/s)

The effect of strain fluctuations on the LO-phonon Raman
spectrum has been already discussed at length in the case of
LETI and Cree samples in Ref. 3 and, in this case, both
effects of short-range and long-range disorders have been
demonstrated. Independent evidence of the short-range dis-
order effect, which affects the very thick sample from
CRHEA, can also be found by inspection of the LO-phonon

o - e Raman spectrum in Fig. 9.
. . . . Similar to Fig. 7, we display the series of spectra taken
965 970 975 980 from the interface(line a) to about 9um away from the
frequency transfer (1/cm) interface(line f). Again, they have been shifted for clarity.

As already discussed in Sec. Il D, the small signal intensity
comes because the LO-phonon modes are forbidden in this
backscattering configuration. The nice point is that, again,
the line shape is asymmetriwith a more pronounced low-
the longitudinal phonon modes collected in the same(see  energy wing. In this case, fitting all results with the theoret-
Fig. 8 and the same value {wy/s=20 which corresponds ical equationg36) and (37) of Sec. Ill D, we get the theo-
with aboutr,/a=6) was taken in all cases. retical spectra displayed as solid lines in Fig. 9 and the series

The only adjustable parameters appear to be the magndf parameters listed in Table II.
tude of the doublet splittingwhich resolves experimentally Obviously the agreement is very satisfactory and supports
in Fig. 7, linea, close to the interfageand the interaction the anisotropic short-range disorder picture obtained from
constant with the strain fluctuations. Typically, in both caseghe consideration of the TO modes. For the relaxation law we
of (a) the interface spectrum ar(@) the spectrum collected obtain nowa=0.76+0.25. Within experimental uncertainty,
0.5 um away from the interface, a doublet splitting of the this is in very good agreement with our previous determina-
order of 2 cm'! was found. Both the homogeneous straintion.
and the strain fluctuations contribuf®r about half of the
total value to this splitting. For additional information, see
Table I.

Since the three constants given in the last colu@p, Investigating, both theoretically and experimentally, the
= &3l gWjmm/2s? (j,m=1,2), describe the phonon dou- TO- and LO-phonon Raman scattering in strained crystals,
blet interactions with the strain fluctuatiofisompare Egs. we have found that different strain regimes do coexist. First
(36) and(37) with Eq. (9)], plotting the change in interaction is the averagéhomogeneoysstrain which relaxes smoothly
constant(mean square of the homogeneous sjraiersus  when moving away from the interface. Next are fluctuations,
distance to the SiC/Si interface should be proportional to thehe range of which extends ovéypically) the range of op-
change in strain magnitude. Such a plot is shown in Fig. 8tical wavelengths. Both kinds of resulting shift and broaden-
Qualitatively speaking, we find a fast relaxation regimeing have been experimentally observed by displacing a laser
which starts right at the interface and extends up to about 8pot on the lateral side of differentC3SiC/Si samples and
um. Then the relaxatiofwhich still continug become less by measuring the Raman cross section as a function of the
drastic. We have attempted to fit the data with & depen- separation from the heterointerface. Depending on the
dence(solid line). The final value obtained from a least- samples, one can find evidence of either a short-range disor-
mean-square fit procedure gives-1.0=0.2. We emphasize der (this work and Fig. 2 in Ref. Bor a long-range disorder
that the two formula$36) and(37) give the observed values (see Fig. 4 in Ref. B
for the width and shift withw=1. Then, if we useyw/s The theoretical model is based on the solution of Dyson’s
=20 andC=2 cm™ ! as an average value at about 02,  equation for the averaged phonon Green’s function. A first
from the interface, we come out with a typical value for the (standard contribution to the phonon frequency shiee
homogeneous strain af=10"3. Egs. (7) and (8)] comes from the averaged strain that does

FIG. 9. Same as Fig. 7 but for the LO-phonon singlet. All pa-
rameters are listed in Table II.

V. CONCLUSIONS
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exist because of any external stress or interface mismatchance line drops more slowly on the low-frequency side,
This contribution may be positive or negative, whether thebecause the phonon density of states increases below the top
stress is compressive or tensile. For instance, in the case ofod branches. In cas@ ), the resonance line is more symmet-
SiC/Si interface, it is tensile in SiC and compressive in sili-ric but non-Lorentzian.
con. While very similar, because of the triple phonon degen- Because it would appear natural for the disorder to be
eracy, the theoretical analysis of the experiment data in thanisotropic in the presence of an interface, we have also
case of silicon is slightly more complicated. It was not pre-considered the case of a 2D disorder. The correlation radius
sented in this work but is currently in progress. A secondwas taken to be much smaller for the directions parallel to
contribution comes from the static strain fluctuations due tahe interface than it was for the direction perpendicular to the
dislocations, grain or twin structure, and other structural deinterface. We have found that the resulting resonance line
fects. Because all other phonon states are at lower energy,dbes not drop so sharply on the high-frequency side as it
is always positive for the top of a phonon singlsee Eqs. does in the corresponding case of a short-range 3D disorder
(29), (34), and(37)]. The opposite result would be true for a (i). This 2D model gives the best fit to the experimental data
minimum of the branch. The sum of these two contributionsfor the anisotropic phonon lines. Moreover, we have found
is positive for Si and negative for SiCand relatively that, in this case, the intensity of the disorder, more pre-
smalle). The phonon broadening results only from the straincisely, the mean-squared stragirops(starting from the in-
fluctuations. terface according to an approximate ' dependence. Of
Two limiting regimes have been found, depending oncourse, incomplete strain relaxation occurs in thin samples.
whether the range of strain disordgris small or large. The This was found in Ref. 3 for a commercial sample with about
crossovelcritical) valuer ;=a+wq/I'/ 7 is moderately large 3 um thickness.
in the atomic unitsa. This is of special interest for the prob-  Finally, we would like to point out the difference between
lem under consideration sineg should be of the order of the present theory and the mechanism of the Fano resonance
the strain fluctuatiorii.e., the potential radius of the imper- in any conducting system. The asymmetric line shape in the
fectiong. This is the existence of a small value for the pa-Fano resonance comes as a result of the electron-phonon
rameter \I'/w, which provides the physical basis for the interactions. It arises from the imaginary part of the electron
present theory. loop and does not depend on the phonon density of states.
For the short-range disordér), the phonon momentum
varies over wide limits in the scattering by strain fluctuations
with comparison to the interval determined by the phonon
width. If ry—0, the influence of the strain fluctuations on the  The authors thank A. Leycuras from CRHEA and C. Jaus-
line width and shift decreas¢see Eqs(27), (29), and(24)]. saud from LETI-CEA for the gift of samples used in the
In the opposite case of a long-range disor(ier the phonon  present work. They also thank H. Capellmann, V. Fateev, G.
is only scattered by the strain fluctuations on a small angleGuntherodt, A. losselevich, and G. Pikus for discussions.
In this case we can consider very largg The linewidth  One of us(L.A.F.) was supported in the framework of the
does not depend o, [see Eq.32)] but the line shift(34) INTAS program 0101-CT93-0023. He greatly thanks J.L.
decreases when, increases. Different line shapes can beRobert and A. Neveu for warmly offering hospitality in
observed in the two different regimes. In cdge the reso-  Montpellier.
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