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Strain relaxation at the 3C-SiC/Si interface: Raman scattering experiments
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Using micro-Raman spectroscopy we have investigated both the residual strain and strain relaxation effect in
the heteroepitaxial 3C-SiC/Si system. To get quantitative results, we have developed a theory of inhomoge-
neous shift and broadening for optical phonons, which takes into account the phonon interaction with the static
strain fluctuations. We solved Dyson’s equation for the averaged phonon Green’s function and studied the
solution for a small momentum transfer near the top of the phonon branches. The Raman scattering cross
section is then calculated, including both disorder and the spatial dependence of the average strain with
distance from the interface. It is shown that two regimes of short- and long-range disorder, with different line
shapes, can be observed. In the case of the short-range disorder, a phonon can change its momentum~in the
scattering process due to strain fluctuations! in a range which is larger than the value determined by the phonon
width. The opposite case corresponds to the long-range disorder. We have also considered the case of an
anisotropic~two-dimensional-like! disorder which can be viewed as a set of columns perpendicular to the
heterointerface. The results of our investigations show that all three regimes should have macroscopic scales.
Comparing in great detail the experimental results with the theory, we have obtained a very good agreement in
both cases of the singlet~LO! and doublet~TO! modes, including the cases where the lattice mismatch-induced
splitting is observed. Finally we have found, from the change in coupling constant plotted versus distance from
the interface, that the mean-squared strain relaxes in the bulk of our epitaxial samples according to an approxi-
matez21 dependence.@S0163-1829~98!04318-5#
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I. INTRODUCTION

There is in the modern automotive, avionics, and proce
control industries more and more interest in probing the
vironment at high temperature and under extremely ro
conditions. With this respect, SiC sensors would be v
much welcome. However, it will be a long way to go befo
6H or 4H polytyps, grown on 6H or 4H substrates, can en
this very lucrative market.1 This is not the case for 3C-SiC
or Si. Despite a very large~about 20%! nominal lattice mis-
match, it is now well established that cubic (3C) silicon
carbide can be grown on large~4–6 in.! silicon wafers using
heteroepitaxial chemical vapor deposition~CVD!
techniques.2 By creating a regular misfit dislocation patter
most of the lattice mismatch is accommodated near
SiC/Si interface and only a few percent of the nominal str
remains in the two different materials. This is still a proble
for mass-market applications. Indeed, in many cases,
~small! amount of residual strain induces a large bending
the initial wafer which precludes any further processing st
This makes useless the deposited SiC material. As a co
quence controlling and, next, lowering the residual strain
pear of fundamental technical interest.

In this work we focus on the investigation of the residu
strain~and strain relaxation! in the 3C-SiC/Si heteroepitaxia
semiconductor system. We use micro-Raman spectrosc
as a probe and, to account for the asymmetric line sh
experimentally observed, develop in full details a theoreti
model which takes into account the finite effect of stre
570163-1829/98/57~18!/11283~12!/$15.00
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inhomogeneities near the interface. Finally, focusing on th
3C-SiC/Si samples coming from different origins, we sho
that every time the residual strain relaxes with an appro
matez21 dependence.

This paper is organized as follows. In Sec. II, we discu
the physics of probing the strain by Raman spectroscopy.
make clear the difference which does exist between
constant-strain approximation~which is the standard one
only considered in the literature up to now! and both the
homogeneous and inhomogeneous strain approximati
These two complementary features where recen
introduced3 in order to take into account the spatial fluctu
tions which generally exist in the bulk of any epitaxial lay
anda fortiori close to the interfaces. In Sec. III, we recapit
late the motion equation of optical phonons in the long-wa
approximation including the strain~Sec. III A! while, in Sec.
III B, the Green’s functions method is applied to consider t
effect of the strain fluctuations in very much detail. We o
tain the inhomogeneous broadening and shift in terms of
strain correlation function. A Gaussian strain correlator
used~in Sec. III C! to perform final estimations. The Rama
cross section is finally given in Sec. III E, where the sele
tion rules are discussed. The comparison with experime
data for 3C-SiC deposited on silicon is given in Sec. IV. W
show that, in this particular material system where the latt
mismatch between SiC and Si is about 20%, there exist b
homogeneous strain with a smooth relaxation and a not
able inhomogeneous contribution to the Raman spectra.
forming a detailed comparison between the theoretical p
11 283 © 1998 The American Physical Society
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11 284 57L. A. FALKOVSKY, J. M. BLUET, AND J. CAMASSEL
dictions and the experimental data, we find that
inhomogeneous contribution can be either short range, f
three-dimensional growth-type material, or long-range,
better optimized~more two-dimensional! growth conditions
and post-grown annealed samples.

II. PROBING THE STRAIN RELAXATION
BY RAMAN SPECTROSCOPY

From the experimental point of view, Raman scattering
by far one of the most popular techniques to investigate
residual strain, both in bulk materials and in multilayer
semiconductor structures. However, only the line shift res
ing from the uniform strain approximation@see Fig. 1~a!# has
been investigated in detail.4,5.

In many cases this approach is far from sufficie
both from the experimental and theoretical point of vie
For instance, the strain induced by the differences of lat
constants and thermal coefficients between two adja
layers is known to relax when moving from the interface
the free surface. This is shown along thez direction in
Fig. 1~b!. Because such a strain changes its value on a la
scale one can observe the smooth strain variation in an
eroepitaxial material system, by displacing a laser spot
the lateral surface~on both parts of the interface! and by
measuring the phonon line shiftDv (un). Typical results have
been reported in Ref. 6. We call this effectthe uniform
shift.

Of course, since there are different layers in the laser s
with different strain values, the uniform strain relaxatio
must result in a finite Raman linewidth,G (un)

5d](Dv (un))/]z, whered is the laser spot diameter. Typ
cally since the strain relaxes over distances;10 mm and
induces a line shiftDv (un);2 cm21, using the experimenta
resolutiond.1 mm and the uniform shift approximation
one finds a broadeningG (un);0.2 cm21. This is negligible in
comparison with the experimental linewidth, which is us
ally of the order of several cm21.

We have recently shown~see Ref. 3! that the strain fluc-
tuations located near a semiconductor heterointerface

FIG. 1. Schematic drawing of the various strain distributio
encountered near two semiconductors heterointerfaces:~a! a con-
stant strain which corresponds with the standard approximation
bulk material,~b! a smoothly relaxing term, and~c! a fluctuating,
nonhomogeneous, component.
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lead to a broadening~and shift! of the Raman lines. This is a
very large effect which comes because the strain fluctuat
destroy the perfect lattice symmetry and allow a coupling
phonon states with differentk values. In this work we show
that, every time, the strain consists of a spatial fluctuat
component superimposed on the term which redu
smoothly in real space@Fig. 1~c!#. Such strain fluctuations
result from dislocations, grain or twin structures, and oth
structural defects.

In the backscattering geometry, according to the stand
momentum conservation law, an optical phonon excited
light has twice the momentum of the incident photon a
‘‘sees’’ the smooth strain averaged over distances of the
der of the collecting spot. This is typically of the order of th
light wavelength, which is large in the interatomic sca
Performing such an average, we obtain~besides the smooth
strain! the effect of the fluctuating strain in the second ord
of the perturbation theory. We show that the fluctuati
strain induces bothan inhomogeneous broadeningG (inh) and
a shift Dv (inh) of the Raman line. To the best of our know
edge, the influence of such a disorder on the Raman mo
has never been considered up to now~either for the TO or
LO component!, even if it is absolutely necessary in order
get a clear understanding of the strain relaxation near
semiconductor heterointerfaces.

From the theoretical point of view, this problem has tw
peculiar features. First, because of the small uniform sp
ting of the normally degenerated phonons, interbranch p
non scattering becomes allowed. Of course, this scatterin
driven by the static strain fluctuations. Second, the mom
tum transfer from the light to phonons remains relative
small. Then one has to calculate the phonon shift and w
near the extrema of the optical phonon branches. We will
that the inhomogeneous shift and width have singularitie
the top of the branches. As a result, the shift and width
come frequency dependent. Therefore, the phonon mode
quires an asymmetric line shape.

This asymmetry has no relation to the so-called Fano
terference effect, which is also known as the Breit-Wign
resonance in nuclear physics. Indeed, starting from the m
general viewpoint, Raman spectra result from a very co
plex picture of a photon-electron-phonon interaction~even if
full attention to their very subtle aspects has only been p
recently!. It was first discovered that the interaction of th
phonon resonance with the electron-hole continuum can
to characteristic changes in the shape of the resonance
Concerning SiC, this Fano interference effect was discus
for n-type 6H SiC in Ref. 7 and, more recently, in Ref. 8 f
4H and 6H polytypes. Another example of this behavior
the asymmetric 340 cm21 line in superconducting YBaCuO
It has been discussed several times in the literature9–11and is
currently considered as an important probe of the electr
phonon interaction in this prototype superconducting co
pound.

Since the phonon Raman scattering is determined by
phonon Green’s function averaged over the static strain fl
tuations, we write the appropriate Dyson’s equation for
Green’s function considering the interaction of phonons w
the strain fluctuations. Then the integral equations for
width and shift, which are functions of the frequency tran
fer, are solved self-consistently. We find the inhomogene
broadening and shift in terms of the strain correlation fun

or
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57 11 285STRAIN RELAXATION AT THE 3C-SiC/Si . . .
tion and, using the obtained width and shift, we calculate
Raman line shape.

The proposed theory is very similar to the theory of t
conductivity of metals with impurities, but the effect o
branch extrema is essential. Our method can be applie
the scattering of optical phonons by imperfections~and other
problems! if the momentum transferDk is comparable to the
value determined by the collision rate. This problem h
physical significance due to a small value of the dimensi
less parameteraDk.AG/v0!1, wherea is the lattice con-
stant,G.2 –5 cm21, and v0.600–1000 cm21 ~these are
typical values for the optical phonon width and frequen
respectively!. We will see that the scale of fluctuation
r 0 /a.Av0 /G/p ~i.e., moderately large in the atomic uni
a) is of special interest for the problem under considerati

III. THEORY

A. Uniform strain

In the long-wavelength approximation, the equation
motion for the optical phonon displacementsui(r ,v) can be
written in the following form:

~H2 ivG~ int!1V~r !2v2!u~r ,v!50, ~1!

where the matrix elements

Hi j 5x i j 1m i j lm

]2

]xl]xm
~2!

represent the long-wave expansion of the dynamical ma
with constant tensorsx i j andm i j lm . The dampingG (int) de-
scribes the intrinsic phonon width caused by the phon
phonon and electron-phonon interactions12 and the matrix

Vi j ~r !5l i j lm« lm~r ! ~3!

takes into account the strain effect« lm(r ). Expression~3! is
well known and was proposed initially4 for the constant-
strain approximation illustrated in Fig. 1~a!.

In cubic crystals there are three optical phonons at thG
point, with a threefold degenerate frequency (i 51–3!. Then,
the tensorx i j has only diagonal elementsx i j 5v0

2d i j and
both l i j lm.v0

2 and m i j lm have three independent comp
nents ~e.g., lxxxx5p, lxxyy5q, and lxyxy5r ). The long-
range Coulomb forces further split the degeneracy of
optical phonons in such a way that the LO phonon ha
higher frequency than the twofold degenerate TO phon
Let us emphasize thatx i j 50 for the acoustic phonons. Thi
gives the linear dispersion neark50, instead of the quadrati
one for optical phonons. The tensorm i j lm has the same orde
of magnitude for both the acoustic and optical mod
(m i j lm.s2, wheres is the sound velocity!. This comes sim-
ply because, if one extrapolates any acoustic branch to
boundary of the Brillouin zone, one obtains a typical fr
quency (v0) of the order of magnitude of the value of opt
cal phonons. The typical value ofm for the axialk direction
in SiC may be estimated using well-known data for the up
optical mode:13 v5970 cm21 at k50 andv5885 cm21 at
k/k max50.67, wherekmax56p/c and the axial dimension o
the unit cellc515.12 Å. One obtainsAm50.93106 cm/s.
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The Raman cross section is obtained using the Gre
functions of the optical phononsDi j (r,r 8,v) for which we
have the equation

@H2 ivG~ int!1V~r !2v2#D~r,r 8,v!5d~r2r 8!, ~4!

where the Green’s functions have to be averaged as pr
ously described. Using the diagram technique and summ
diagrams with the averaged^V&, we get

^D~r,r 8,v!&5D ~0!~r2r 8,v!5E d3k

~2p!3
D ~0!~k,v!eik„r2r8),

where

D ~0!21~k,v!5H„k…2 ivG~ int!1^V~r !&2v2. ~5!

The matrix elements areHi j 5x i j 2m i j lmklkm and ^Vi j (r )&
5l i j lm^« lm(r )&. The symmetry of the averaged^« i j & is de-
termined by the experimental conditions.

If a twofold symmetry is preserved in the plane parallel
the interface ~see Fig. 2!, then ^«xx&5^«yy&5« i , ^«zz&
5«' , and^«xz&5^«yz&5«D . As a consequence, for phonon
propagating in the planekz50, the matrixH1^V& has only
the following five components:

Hxx1^Vxx&5v0
21~p1q!« i1q«'2mxxxxkx

22mxxyyky
2 ,

Hyy1^Vyy&5v0
21~p1q!« i1q«'2mxxxxky

22mxxyykx
2 ,

Hzz1^Vzz&5v0
212q« i1p«'2mxxyyk

2,

Hxy1^Vxy&522mxyxykxky ,

Hxz1^Vxz&5Hyz1^Vyz&52r«D . ~6!

FIG. 2. Schematic drawing of the Raman backscattering ge
etry used in this work to investigate the strain relaxation at
3C-SiC/Si interface. Both the incident and scattered light propag

parallel to thê 1 1̄0& direction. The strain relaxation is probed b
displacing the laser spot in the^001& direction.
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In the case of backscattering from a$1 1̄0% face~see Fig. 2!,
it is useful to turn the coordinate axes in thexy plane in such
a way that x5(x82y8)/A2 and y5(x81y8)/A2 ~i.e.,
choosingx8 along the light propagation and parallel to th
momentum transfer!. Then the matrix~6! has only two non-
zero off-diagonal matrix elements^Vx8z&5^Vzx8&52A2r«D

which connect the LO(x8) and TO(z) modes.
Let us consider the particular case of SiC. The Coulo

splitting vLO2vTO.100 cm21. Then, in comparison to
^V&, the contribution of̂ Vx8z& to the shift of the LO(x8) and
TO(z) phonons is dv/^V&;^Vx8z&

2/«v0
2(vLO

2 2vTO
2 )

;«v0
2/(vLO

2 2vTO
2 ). As an order of magnitude, we takep

;q;r;v0
2 and« i j ;«. Moreover, in the case under consi

eration the frequencies of optical phononsv0;103 cm21.
Finally, from our experimental data, we estimate«;1023 in
accordance with Ref. 14. Altogether, this shows that one
safely omit^Vx8z&. In this approximation, the matrix~6! has
a diagonal form with three nondegenerate eigenvalues:

vLO
~x8!5vLO

~0!1@~p1q!« i1q«'

2~mxxxx1mxxyy12mxyxy!k
2/2#/2v0 ,

vTO
~y8!5v01@~p1q!« i1q«'

2~mxxxx1mxxyy22mxyxy!k
2/2#/2v0 ,

vTO
~z!5v01~2q« i1p«'2mxxyyk

2!/2v0 , ~7!

where the superscriptsx8, y8, andz denote the phonon po
larization, andvLO

(0) differs fromv0 because of the Coulom
forces.

We see immediately from Eqs.~7!, that both the LO(x8)
and TO(y8) phonons must have the same uniform str
shift,

Dvx8
~un!

5Dvy8
~un!

5@~p1q!« i1q«'#/2v0 , ~8!

while the TO(z) phonon shift will manifest, as a function o
strain, a different slope:

Dvz
~un!5~2q« i1p«'!/2v0 .

Let us apply the preceding results~7! to 3C-SiC/Si in the
case of the geometry shown in Fig. 2. On the SiC side,
Coulomb forces split the optical triplet into a singlet LO(x8)
and a doublet TO(y8) and TO(z). This doublet is further
split by strain and, among the three components, two pho
branches@LO(x8) and TO(y8)# must experience an identica
strain dependence. In other words their frequencies mus
crease in the same manner under the effect of the ten
strain components which originate from the interfac
SiC/Si lattice mismatch. On the Si side, the strain will
compressive and no Coulomb forces will exist. Therefo
the optical triplet will be only split by strain in a single
TO(z) and a doublet LO(x8), TO(y8). We do not write the
obvious result which can be easily obtained solving the se
lar equation with the matrix elements~6! and taking into
account̂ Vx8z&.
b
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B. Inhomogeneous broadening in the Born approximation

Let us now consider the effect of the strain fluctuatio
dV(r )5V(r )2^V(r )& shown in Fig. 1~c!. Summing again
the important diagrams with the correlator^dVdV& ~see Ref.
3!, we get the averaged solution of Eq.~4! shown in Fig. 3.
This solution depends on the coordinates differencer2r 8
and, for its Fourier transform, we obtain the Dyson’s equ
tion

Di j
21~k,v!5Di j

~0!21~k,v!2E d3k1

~2p!3
Wiml j~k12k!

3Dml~k1 ,v!, ~9!

where the matrixDi j
(0)(k,v) is given in Eqs.~5! and~6! and

Wiml j (k) is the Fourier transform of the correlation functio

Wiml j~r2r 8!5^dVim~r !dVl j ~r 8!&.

The matrix D (0) is diagonal in our case@see Eq.~7!#.
Moreover in the Born approximation, if the effect of fluctu
tions is comparatively small, one can takeD (0) in the inte-
grand instead ofD. Then one obtains for the diagonal el
ments the expression

D j j ~k,v!215D j j
~0!~k,v!212(

m
E d3k1

~2p!3
Wjmm j~k12k!

3Dmm
~0! ~k1!, ~10!

which has a transparent meaning. In the absence of diso
the poles ofD j j

(0)21(k,v), Eq. ~5!, give the phonons disper
sion law, Eqs.~7! and ~8!:

v j
2~k!5v j

2~k50!2sj
2k22 ivG j

~ int! ,

where the parameterssj are of order of the sound velocit
and depend on thek direction ~we will neglect this depen-
dence!. The uniform shift is included inv j

2(k50).
In the limiting caseG (int)→0, the imaginary part of inte-

gral ~10!,

vG j
~ inh!~k,v!5p(

m
E d3k1

~2p!3
Wjmm j~k12k!

3d„vm
2 ~k1!2v2

…, ~11!

and the real part

2v0Dv j
~ inh!~k,v!5(

m
E d3k1

~2p!3

Wjmm j~k12k!

v22vm
2 ~k1!

~12!

give the phonon inhomogeneous broadening and shift,
spectively.

FIG. 3. Dyson’s equation for the averaged phonon Gree
function~wave line!. The strain correlation function is shown by th
dotted line.
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Equation~11! has the form of the ‘‘golden’’ rule, while Eq
~12! reminds us of the formula of the second-order pertur
tion theory. Let us remark that the Diracd function in Eq.
~11! expresses the phonon energy conservation law in
scattering process by static fluctuations. Then the transi
from a state (k,v) is possible only to states with differentk1

values but with the same final energyvm(k1)5v. Thus the
correlatorWjmm j(k12k) has then the meaning of a transitio
probability (j ,k)→(m,k1).

To make an estimate, we approximate the correlator b
Gaussian function

Wiml j~r2r 8!5«2v0
4wiml je

2~r2r8!2/2r 0
2
, ~13!

where the prefactor is inserted to use a dimensionless pa
eterw which does not depend~in the leading approximation!
on the value of the average strain. This is the mean-squ
fluctuation at pointr , divided by the squared mean strain a
the phonon frequency to the fourth power. The correlat
radiusr 0 defines the average domain size where a strain
order of the mean value exists. The Fourier transform
expression~13! gives then

Wiml j~k!5E d3re2 ik–rWiml j~r !

5~2p!3/2«2v0
4r 0

3wiml je
2k2r 0

2/2. ~14!

In Fig. 4, two phonon bandsv1,2(k) have been drawn sche
matically ~the vectork being, of course, three dimensiona!
and we assume that both branches have a maximumk
50. A phonon with momentumk and frequencyv
5v1(k) can be scattered into states with momentumk1 and
frequency v1(k1)5v ~intraband transition! or with fre-
quencyv2(k1)5v ~interband transition!. The v plane ink
space is shown for the casev2,v1

2(k50),v2
2(k50). The

only region into which the transitions are possible~i.e.,

FIG. 4. Mechanisms of intraband and interband phonon sca
ing induced by the strain fluctuations considered in this work. T
two optical phonon branchesv1,2(k) are shown near maximum. Al
possible transitions are from an initial state (v,k) to a final state
(v,k1) which belongs to the domain of radiusr 0 where the strain
correlation function does not vanish.
-
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where the correlator does not vanish! is shown by a dotted
circle of radiusr 0

21. If v2.v1
2(k50), the intraband transi-

tions are not allowed.

C. Inhomogeneous broadening near the top
of phonon branches

If the width G is large, one cannot use thed function in
Eq. ~11! but, instead, one should holdG in the integrand.
Transforming Eq.~9! to the diagonal form, we search for th
solution

D j j
21~k,v!5v j

2~k,v!2sj
2k22 ivG j~k,v!2v2, ~15!

where v j (k,v)5v j (k50)1Dv j
(inh)(k,v) and G j (k,v)

5G j
(int)1G j

(inh)(k,v). Substituting Eq.~15! in Eq. ~9! and
taking the imaginary and real parts, we get for the inhom
geneous broadeningG j

(inh)(k,v) and shiftDv j
(inh)(k,v) the

following system of coupled integral equations:

G j
~ inh!~k,v!

5(
m

E d3k1

~2p!3

3
Gm~k1 ,v!Wjmm j~k12k!

@vm
2 ~k1 ,v!2v22sm

2 k1
2#21@vGm~k1 ,v!#2

,

~16!

Dv j
~ inh!~k,v!

5(
m

E d3k1

~2p!32v0

3
@v22vm

2 ~k1 ,v!1sm
2 k1

2#Wjmm j~k12k!

@vm
2 ~k1 ,v!2v22sm

2 k1
2#21@vGm~k1 ,v!#2

.

~17!

The right-hand sides of Eqs.~16! and ~17! contain the total
dampingGm(k1 ,v)5Gm

(int)1Gm
(inh)(k1 ,v) and the total shift

vm(k1 ,v)5vm(k150)1Dvm
(inh)(k1 ,v). The uniform shift

Dvm
(un), Eqs.~7! and ~8!, is included invm(k150).

Performing the integrals~16! and ~17!, we need to take
into account the band edges. The momentumk and fre-
quencyv in Eqs.~16! and~17! have the sense of a momen
tum and frequency transfer for the light scattering. In t
optical range,k;105 cm21. The frequencies and dampin
of the optical phonons in Si and SiC arev0.600–1000
cm21 and G.2–5 cm21, respectively; the dispersion pa
rameters.106 cm/s. Therefore, the conditionsk!Av0G is
valid in all experimental cases discussed below. In these c
ditions G j

(inh)(k,v) andDv j
(inh)(k,v) can be regarded as in

dependent ofk. Concerningq5k12k, the valuesq2<2/r 0
2

determine the final states~shown in Fig. 4 by a dotted circle!
for phonons scattered by the strain fluctuations. The dom
q2<v0G/s2 is essential in the integrand Green’s functionD
@see Eq.~15!#. This is because we are interested inuv j2vu
.G. Depending on either the parameterpAG/v0r 0 /a being
small or large (a.ps/v0 being the lattice parameter!, we

r-
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see that two limiting cases are possible. Then all integ
can be done analytically and a system of algebraic equat
is found.

Let us emphasize that the valueAv0 /G/p is moderately
large. This means that the condition of validity of the pres
theory ~which is defined by the crossover valuer 0 /a
5Av0 /G/p) is indeed satisfied. It means that the radius
strain imperfections is moderately large in atomic un
which is the basis for achieving a good physical significan
of the present results.

Consider now the two limiting cases separately.

1. Correlation radius is small

In this case,p@max(G,uvj2vu)#1/2v0
21/2r 0 /a!1, which

means thatr 0 /a,10 for the set of parameters mention
above. We first notice that, for such values ofr 0 /a, the suit-
able regionsuv j2vu are narrow. In this case, when scatte
ing on the strain fluctuations, the phonon may experienc
considerable momentum change. As a consequence, in
convergent integral for the width, we take the correlator
q50 and integrate overk1. In the same way, the leadin
contribution in the integral for the shift comes from the lar
values q@v0max(G,uvj2vu)/s2,q2,2/r 0

2#, where the width
and shift are not important. The next term~in which the
exponent can be omitted! should be held, since it depends o
v. Then, Eqs.~16! and ~17! read

G j
~ inh!~v!5v0(

m

v jmGm~v!

uvm
2 2v2u1/2

3E
0

` x2dx

@u~vm
2 2v2!2x2#21gm

2 ~v!
, ~18!

Dv j
~ inh!~v!5

1

2(m v jmuvm
2 2v2u1/2

3E
0

`e2x2/xm
2
@u~vm

2 2v2!2x2#x2dx

@u~vm
2 2v2!2x2#21gm

2 ~v!
,

~19!

where

v jm5A2

p
«2S v0r 0

sm
D 3

wjmm j.A2

p
«2S pr 0

a D 3

wjmm j ,

gm~v!5
vGm~v!

uvm
2 2v2u

,

xm5
sm

r 0

A2

uvm
2 2v2u1/2

.
a

pr 0

v0
1/2

uvm2vu1/2
, ~20!

u(vm
2 2v2) is the unit step Heaviside function, andv jm.0.

For simplicity, we omit the argumentv in vm(v).
Performing the integrals,

E
0

` x2dx

~u2x2!21g2
5

p

23/2g
@u1~u21g2!1/2#1/2,
ls
ns

t

f
,
e

a
the
t

E
0

`

dx
x2~x22u!

~u2x2!21g2
e2x2/xm

2

5
Ap

2
xm2

p

23/2
@2u1~u21g2!1/2#1/2, ~21!

we obtain instead of Eqs.~18! and~19! a system of coupled
algebraic equations forG j

(inh)(v) andDv j
(inh)(v).

Let us consider the upper LO-phonon branch (v2;vLO
2 )

in SiC, for which the intraband transitions are only possib
Then the subscripts insj ,G j , andwiml j take only one value
and we can omit them. Using Eqs.~21! and~20!, we rewrite
the system~18! and ~19! in the form

G~ inh!~v!5~A/v0!1/2$vLO
2 2v21@~v22vLO

2 !2

1v2G2#1/2%1/2, ~22!

Dv~ inh!~v!5S A

v0
D 1/2S s

Apr 0

2
1

2
$2vLO

2 1v2

1@~v22vLO
2 !21v2G2#1/2%1/2D , ~23!

where the constant

A5
p2

8
v2v05

p

4
v0«4S v0r 0

s D 6

w2.
p

4
v0«4S pr 0

a D 6

w2

~24!

is related to the phonon scattering on strain fluctuations.
simplicity we omit the argumentv of functions G(v)
5G (int)1G (inh)(v) and vLO(v)5vLO(k50)1Dv (inh)(v)
@see definitions after Eq.~15!#.

The numerical solutions of the coupled system~22! and
~23! ~the total width and inhomogeneous shift! as a function
of the frequency transfer, together with ImD(k,v), have
been already displayed at length in Ref. 3 for several val
of the interaction constantA. They will not be repeated here

The center of the line is determined by the equat
vLO(v)5v @see Eq.~15! with k50# and using Eq.~22! one
finds the total width at the center of linev5vLO :

G~v5vLO!5G~ int!1A/21@~A/2!21G~ int!A#1/2. ~25!

Then, if the intrinsic widthG (int)!A/4, the total width re-
duces to

G~v5vLO!5A12G~ int!, ~26!

while, in the opposite case,

G~v5vLO!5AG~ int!A1G~ int!. ~27!

One can see from Eqs.~26! and ~27! that there exists an
interference effect between the disorder width and the int
sic collision rate—they are not additive. For the large strain
fluctuations@see Eq.~26!#, the intrinsic contribution is mul-
tiplied by a factor of 2, while in the opposite case@see Eq.
27!#, the strain fluctuations involve a contribution propo
tional to the square root of the intrinsic width.
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The width essentially depends onv and increases below
the top of the phonon branch. Far from the top, i.e.,
uvLO2vu@G/2, we find

G~v!

5H G~ int!1A2A~vLO
2 2v2!/v0 for vLO

2 2v2@v0G,

G~ int!@11AAv0/2~v22vLO
2 !# for v22vLO

2 @v0G,

~28!

which means clearly that the Raman line becomes asym
ric as soon asA becomes comparable toG. The explanation
of this behavior is to be found in the LO-phonon density
states. It is equal to zero forv2.vLO

2 ~if G (int)→0) and
proportional toAvLO

2 2v2 below the top of the branch
Then, for any phonon scattered by the strain fluctuation,
final density of states increases below the top and resul
an increased inhomogeneous width: the resonance c
drops more slowly on the low-frequency side of the peak

For the inhomogeneous shift of the line, one can h
only the leading first term in Eq.~23!:

Dv~ inh!~v5vLO!5~A/pv0!1/2s/r 0 , ~29!

but the influence of the second term remains substantial.
is because it moves in the opposite direction the hi
frequency part of the resonance curve~i.e., from high to low
frequency!. Of course, in every case, the total inhomog
neous shift~23! increases with increasing value of the diso
der parameterA.

Formulas~18! and ~19! also apply@see Eq.~21!# to the
optical phonon doublet~in SiC! and to the triplet modes~in
Si! but, in this case, several constantsv im should appear
instead ofv. Let us now consider the case of a large cor
lation radius.

2. Correlation radius is large„pAG/v0r 0 /a@1…

This corresponds to a long-range disorder and, con
quently, a small-angle scattering of phonons by the str
fluctuations. In this case, it is more convenient to introdu
the variableq5k12k in Eqs. ~16! and ~17!. The correlator
becomes a sharp function and the phonon Green’s func
in the integrand should be expanded in a power series oq.
The zeroth-order term gives the final result in Eq.~16! while,
in Eq. ~17!, terms to the second order are needed. Inde
since the correlator is an even function, the first-order te
vanishes. Performing the integral

E d3q

~2p!3
q2Wimmi~q!53«2

v0
4

r 0
2

wimmi ,

we rewrite Eqs.~16! and ~17! as

G i2G i
~ int!5v0

4(
m

ṽ imGm

~vm
2 2v2!21v2Gm

2
, ~30!

Dv i
~ inh!5

v0
3

2 (
m

ṽ imF v22vm
2

~vm
2 2v2!21v2Gm

2

r

et-

f

e
in
ve

d

is
-

-

-

e-
in
e

n

d,

13S sm

r 0
D 2 v2Gm

2 2~vm
2 2v2!2

@~vm
2 2v2!21v2Gm

2 #2G , ~31!

where ṽ im5«2wimmi, andGm andvm are functions ofv.
Again, examples of numerical solutions for the coupl

system~30! and ~31!, which give the total width and the
inhomogeneous shift as a function of frequency transfer
gether with the Raman cross section ImD(k,v), have been
shown at length in Ref. 3.

Similar to the previous case, these equations can
solved analytically for the center of line position (v5vLO)
and for the wings. This gives correspondingly

G5G~ int!/21@~G~ int!/2!21B2#1/2 ~32!

and

G5G~ int!S 11
B2v0

2

~vLO
2 2v2!2D , ~33!

where B25«2v0
2w. The important point is that, while the

line shape is still non-Lorentzian, it appears much more sy
metric than it was in the previous case of the short-ran
disorder.

The center line position is determined by the equat
vLO5v, which shows that only the last term in Eq.~31!
contributes to the line shift:

Dv~ inh!~v5vLO!51.5~sB/r 0G!2/v0

.1.5v0~aB/pr 0G!2, ~34!

whereG is obtained from Eq.~32!.
Coming again to the degenerate case, the splitting ca

found easily with the help of Eq.~31!. This gives for the
doublet TO modes (i 51,2!

Dv12
~ inh!57

ṽ 12

2

v0
2

v22v1
. ~35!

To conclude this section, let us emphasize the most
nificant differences which separate the two limiting cas
For the short-range disorder~Sec. III C 1!, the line shape is
asymmetric. This can be seen from Eq.~28!. However, the
asymmetry is smaller than the line shift due to the param
pAG/v0r 0 /a!1. In the degenerate case, the splitting is a
smaller than the common shift. Both the shift and broad
depend on the correlation radius. For the long-range diso
~Sec. III C 2!, the line shape remains symmetric, but no
Lorentzian, and the top of the line becomes flat. In the
generate case, both the broadening~32! and splitting~35! are
independent of the correlation radius. Finally whatever is
type of disorder, in both cases, it raises the top of the pho
branches@see Eqs.~29! and~34!#. This is in very good agree
ment with standard quantum mechanics arguments. By c
trast, because this is a first-order correction, the uniform s
Dv (un) has an indefinite sign@see Eqs.~7! and ~8!#.

D. Anisotropic two-dimensional disorder

We assumed so far that the disorder was isotropic. Ho
ever, in the presence of a heterointerface, the strain corr
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tion function should have different behaviors in~at least! two
different directions. One is perpendicular to the interface;
other one is tangent. As a consequence, we consider a
totype system with a large correlation radius in the normaz
direction (r z /a@Av0 /G/p), while making no assumption
about the correlation radiusr 0 for the directions parallel to
the interface. For small values of the radiusr 0 (r 0 /a
!Av0 /G/p!r z /a), one can imagine this case like a set
columnar structures~or domains! growing perpendicular to
the interface.

In the integral ~9! with k50, one can putk1z50 in
Dml(k1 ,v). Then, omitting the exponent, the logarithmic i
tegral overk1' can be done between the two limits 0 a
2s2/r 0

2. One obtains for the inhomogeneous width and s
of the phonon singlet

G~ inh!~v!5CFarctanS vLO
2 2v2

vG D
1arctanS 2s2/r 0

22vLO
2 1v2

vG D G , ~36!

Dv~ inh!~v!5
C

4
ln

~2s2/r 0
21v22vLO

2 !21v2G2

~v22vLO
2 !21v2G2

, ~37!

whereC5«2v0
3r 0

2w/2s2.
For small values of the correlation radiusr 0, the overall

line shape remains asymmetric. This is shown in Fig. 5~a! for
the LO singlet and in Fig. 5~b! for the TO doublet modes. In
theses figures, three different values of the coupling cons
have been used. They correspond to a small coupling~line
a), an intermediate case of finite inhomogeneity~line b), and
a strongly disordered system~line c). The striking point is

FIG. 5. Theoretical Raman intensity computed as a function
the frequency transfer for~a! a singlet and~b! a doublet mode in the
case of a small correlation radius. The phonon transitions are
sible into larger region than the one determined by the pho
width. The frequency transfer is measured in units of the phon
mode frequency v0 ~relative units!. The intrinsic width
G (int)/v052.331023. The correlation radiusr 0v0 /s520. Finally,
a, b, and c are for three values of the strain disorder. They g
total widthsG/v0 5 2.9, 3.8, and 4.431023, respectively.
e
ro-

f

ft

nt

that, in Fig. 5~b!, the constant splitting of the two TO mode
becomes more and more difficult to resolve because of
single line broadening, which increases rapidly from~a! to
~c! @see Fig. 5~a!#. Performing a close comparison with th
isotropic case of long-range disorder~see Sec. III C! we find
that, in both cases, introducing a finite value of the coupl
constant results in the appearance of a slowly decrea
low-energy tail. The main difference comes when compar
the high-energy one. It drops more slowly for the tw
dimensional~2D! anisotropic case than it does for the isotr
pic one. This is because of the weaker dependence of the
shift coming from Eq.~37!.

If r 0 is as large asr z ~i.e., satisfies the same condition!,
we come back to the long-range disorder case. In ot
words, we do not see any anisotropy anymore. Typical
sults are shown in Fig. 6. They concern both the LO sing
and TO doublet and, again, three different values of the c
pling parameter have been considered. The striking poin
that, even if non-Lorentzian, the overall line shape sta
again much more symmetric than it was in the previous c
of a small correlation radius. The direct consequence i
much better resolution of the TO doublet, especially in t
case of the highest value of the coupling constant.

Finally, the conditions of validity for the basic equatio
~9! should be mentioned. The line shape on wings~28! and
~33! can be obtained in the Born approximation~11! and
~12!. At the center of lines, the diagrams with intersectio
of the correlator lines make a contribution of the order of t
diagram shown in Fig. 3 and a more sophisticated theor
needed. Then, one should consider Eq.~9! as a sensible in-
terpolation between the two extreme limits.

E. Raman cross section

The effective Hamiltonian for the Raman scattering h
the form

Ĥ5
e2

mc2E d3k~s!d3k~ i !

~2p!6
gabgua~k~ i !2k~s!!Ab~k~ i !!Ag~k~s!!,

~38!

f

s-
n

n-

FIG. 6. Same as Fig. 5 but now in the case of a large correla
radiusr 0v0 /s540.
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whereAb(k( i )) andAg(k(s)! are the vector potentials of th
incident and scattered light, respectively. The cross sec
for the light scattering into a solid angledV (s) and in the
frequency intervaldv (s), which is found by using the effec
tive Hamiltonian~38!, reads

ds

dv~s!dV~s!
5S 2e2v~s!

c2\mv~ i !D 2
4/p

12exp~2\v/kBT!

3gabgeb
~ i !eg

~s!ga8b8g8eb8
~ i !eg8

~s!Im Daa8~k,v!,

~39!

whereeb
( i ) andeg

(s) are polarization vectors.
Equation~39! shows that this is the imaginary part of th

phonon Green’s function which is measured in the Ram
experiments. With respect to the interface, the parallely8

phonon is excited in the configurationx8(zy8) x̄8. It is still
transverse, both in SiC and in Si, if the light beam make
finite ~small! angle with respect to the interface~the excited
phonon has indeed the double momentum of incident
scattered light in the backscattering geometry!. In the con-
figurationx8(y8y8) x̄8 thez phonon is also excited. But if the
incidence on the SiC side has a small angle with respec
the interface, this phonon has now a longitudinal compon
on the Si side. Therefore, the corresponding Raman
should be less intense than the correspondingy8-phonon
mode. Finally, we can see from Eq.~38! that the longitudinal
x8 phonon should not be found when the light propagate
the x8 direction; see Fig. 2. This is opposite to most expe
mental findings and we only see this forbidden phonon
cause the incident and collected light directions make a fi
angle with the perfectx8 direction. Of course, the scattere
intensity is weak.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

A. Samples and scattering geometry

We focused on three different 3C-SiC layers grown by
CVD on ^100&-oriented silicon wafers. First was one samp
obtained from CRHEA in Valbonne~France!. Most details
about the growth process can be found in Ref. 15 and o
two points should be briefly outlined. First, the carbonizat
temperature was 1400 °C. Second, because the growth
rameters are very difficult to stabilize in the long term, anin
situ monitoring technique was used. This resulted in a rat
homogeneous single crystal film, with about 18mm in thick-
ness, very well suited for investigation of the strain rela
ation effects. The second sample was also noncommerci
was 6mm thick and obtained from LETI-CEA, in Grenobl
~France!. Full details about the growth technique and optim
zation of the buffer~carbonization! layer have been alread
given16,17and will not be repeated here. The main points a
first, a lower carbonization temperature (1200 °C, instead
1400 °C in the case of the process used by CRHEA! and,
second, a post-growth sacrificial oxidation that resulted
some improvement of the overall optical properties. Fina
a 3-mm-thick commercial 3C-SiC/Si sample was obtaine
from Cree Research Inc.18

Our Raman scattering experiments have been don

room temperature, on cleaved$1 1̄0% sample surfaces. Th
n
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sample geometry has already been described in Sec.
and, for convenience, has been schematically drawn in
2. The excitation was provided by the Ar15145 Å line of a
mixed argon-krypton ion laser. The scattered intensity w
detected using a Jobin-Yvon T64000 spectrometer equip
with a cooled charge-coupled diode~CCD! camera. Because
of the high sensitivity of the detection, we could perfor
reasonably fast measurements using a low-power excita
intensity. Usually, less than 500mW incident power was
focused on the sample.

As already discussed~see Sec. III E!, using a confocal
microscope both the incidence and collection angles
wide. This allows a finite departure from the perfect select
rules but, at the same time, defines a reasonably good b
scattering configuration. Moreover, this ensures a spot
dimension~spatial resolution! of the order of 1mm. Then,
because of this high~spatial! resolution, one can easily mov
the laser beam on the cleaved$11̄0% surface along thê001&
direction. In this way, focusing at finite distances from t
3C-SiC/Si interface, we could collect different spectra at d
ferent ~residual! strain magnitudes.

B. Strain-induced splitting of the TO modes

We consider, first, the thick sample from CRHEA and t
experimental results displayed in Fig. 7. From bottom to t
the six different spectra correspond to six different spot
sitions on the surface~cleaved edge! of the sample. First, line

FIG. 7. Experimental Raman spectra~TO modes! collected on a
18-mm-thick 3C-SiC layer deposited on silicon. Starting from th
interface~line a), two components resolve up to 0.5mm ~line b).
The solid lines are fits to Eqs.~36! and~37!. The intrinsic width is
1.8 cm21 for all lines; the correlation radiusr 0v0 /s520. All re-
maining fitting parameters are listed in Table I.
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TABLE I. Final values~cm21) obtained in this work for the line position, width, and fitting paramet
in the case of the 3C-SiC/Si sample from CRHEA~see experimental spectra displayed in Fig. 7!. Only the
uniform shift is included inv1,2(0). Thefinal line position and the width~at the center of the line! which
result from strain fluctuations have been denotedv1,2(c) and G1,2(c), respectively. The adjusted couplin
parametersC11, C22, andC12 are listed in the last column.

Distance from TO1 line Total TO2 line Total width Intraband, interban
interface (mm! v1(0),v1(c) G1(c) v2(0),v2(c) G2(c) interactions

0 (a) 793.7, 794.0 3.57 796, 796.5 3.12 1.8, 1.4; 0.3
0.5 (b) 795.0, 795.3 3.33 796.6, 797.0 3.07 1.4, 1.3; 0.3
1.0 (c) 795.2, 795.4 2.43 796.5, 796.8 2.34 0.5, 0.5; 0.1
2.0 (d) 796.0, 796.1 2.09 797.0, 797.1 2.04 0.2, 0.2; 0.05
5.0 (e) 796.9, 797.0 2.03 797.7, 797.8 1.97 0.2, 0.15; 0.01
9.0 (f ) 796.9, 797.0 2.01 797.5, 797.6 1.95 0.1, 0.1; 0.07
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a, is the spectrum collected when focusing near
3C-SiC/Si interface. The striking feature in this case is
doublet feature, with a first structure~at about 795 cm21)
and a broader shoulder at slightly higher energy. This d
blet structure is nothing but the consequence of the inte
cial strain.6

Starting from the interface and moving the spot by ste
of 0.5 mm toward the SiC surface, we get the two next sp
tra ~labeled b and c) which have been shifted by 25
counts/s for clarity. Two points should be noticed. First, b
cause we collect more and more scattered intensity com
from the SiC layer, the overall intensity increases. Seco
the high-energy shoulder which comes from the interfac
strain still reveals at about 0.5mm from the interface. It
disappears around 1mm. This is nothing but clear evidenc
of the uniform strain relaxation schematically drawn in F
1~b!.

The last three spectra have been collected at about
and 9mm distance from the SiC/Si interface, respective
and have been shifted by 1, 2.5, and 4.53103 counts/s for
clarity. In this case, the interesting results are~i! that, starting
2 mm from the interface, the collected intensity is rough
speaking independent of the spot position and~ii ! that, start-
ing about 5mm from the interface, both the energy positio
and width of the Raman line do not change anymore. T
evidences that a~more or less! constant strain regime ha
been achieved inside the SiC material.

While the strain regime is more or less uniform, it is n
yet homogeneous. This is evidenced by considering
asymmetric line shape, which is better seen for casesc–f ,
where the splitting of the TO doublet is small. The line a
pears rather sharp on the high-energy side and m
smoother on the low-energy one. While the step frequenc
constant, there is, for instance, much less experimental po
on the right side of the peak~high energy! than there are on
the left one~low energy!. This asymmetric line shape, whic
is just the opposite to the one found close to the interfa
cannot come from the remaining value of the uniform str
~if any!. Obviously, it demonstrates that local strain fluctu
tions do exist. In other words, we find that, in the regi
where the uniform strain is more or less constant, there
still large local fluctuations on the scale of the laser spot
that, because of these local fluctuations, the line shap
asymmetric.
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Since we have already seen that an asymmetric line wi
long low-energy wing indicates a short-range disorder,
have attempted to fit all doublet components with the flu
tuation model of Secs. III C 1 and III D. We have found th
the anisotropic case~Sec. III D! gives better results. This is
because all theoretical curves in Sec. III C 1 drop too sh
on the high-frequency side.

The final comparison of theoretical results with expe
mental data is shown as solid lines in Fig. 7. The correspo
ing series of fitting parameters is listed in Table I. The agr
ment is quite satisfactory, but calls for the followin
comments.

First, on the different curves, attempting to treat the
trinsic line widthG (int) as an adjustable parameter, we ha
found that the best fit was always achieved using value
the interval 1.860.1 cm21. This indicates both the quality o
sample ~and/or the reproducibility of the experiments! as
well as the correctness of the theory. As a consequence
average valueG (int)51.8 cm21 was taken for all lines.

Second, for the doublet lines, there is a rather weak
pendence of the complex line shape on the final value of
correlation radius. As a consequence, this quantity has
been adjusted. It was only extracted from the adjustmen

FIG. 8. Strain relaxation~taken from the results of Table I! for
the coupling constantsC111C22 plotted as a function of the dis
tance from the SiC/Si interface.
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the longitudinal phonon modes collected in the same run~see
Fig. 8! and the same value (r 0v0 /s520 which corresponds
with aboutr 0 /a.6) was taken in all cases.

The only adjustable parameters appear to be the ma
tude of the doublet splitting~which resolves experimentall
in Fig. 7, line a, close to the interface! and the interaction
constant with the strain fluctuations. Typically, in both cas
of ~a! the interface spectrum and~b! the spectrum collected
0.5 mm away from the interface, a doublet splitting of th
order of 2 cm21 was found. Both the homogeneous stra
and the strain fluctuations contribute~for about half of the
total value! to this splitting. For additional information, se
Table I.

Since the three constants given in the last column,Cjm

5«2v0
3r 0

2wjmm j/2s2 ( j ,m51,2), describe the phonon dou
blet interactions with the strain fluctuations@compare Eqs.
~36! and~37! with Eq. ~9!#, plotting the change in interactio
constant~mean square of the homogeneous strain! versus
distance to the SiC/Si interface should be proportional to
change in strain magnitude. Such a plot is shown in Fig
Qualitatively speaking, we find a fast relaxation regim
which starts right at the interface and extends up to abo
mm. Then the relaxation~which still continue! become less
drastic. We have attempted to fit the data with az2a depen-
dence~solid line!. The final value obtained from a leas
mean-square fit procedure givesa51.060.2. We emphasize
that the two formulas~36! and~37! give the observed value
for the width and shift withw.1. Then, if we user 0v/s
520 andC52 cm21 as an average value at about 0.25mm
from the interface, we come out with a typical value for t
homogeneous strain of«.1023.

FIG. 9. Same as Fig. 7 but for the LO-phonon singlet. All p
rameters are listed in Table II.
ni-

s

e
.

3

C. Effect of strain fluctuations on the LO phonon

The effect of strain fluctuations on the LO-phonon Ram
spectrum has been already discussed at length in the ca
LETI and Cree samples in Ref. 3 and, in this case, b
effects of short-range and long-range disorders have b
demonstrated. Independent evidence of the short-range
order effect, which affects the very thick sample fro
CRHEA, can also be found by inspection of the LO-phon
Raman spectrum in Fig. 9.

Similar to Fig. 7, we display the series of spectra tak
from the interface~line a) to about 9mm away from the
interface~line f ). Again, they have been shifted for clarity
As already discussed in Sec. III D, the small signal intens
comes because the LO-phonon modes are forbidden in
backscattering configuration. The nice point is that, aga
the line shape is asymmetric~with a more pronounced low
energy wing!. In this case, fitting all results with the theore
ical equations~36! and ~37! of Sec. III D, we get the theo-
retical spectra displayed as solid lines in Fig. 9 and the se
of parameters listed in Table II.

Obviously the agreement is very satisfactory and supp
the anisotropic short-range disorder picture obtained fr
the consideration of the TO modes. For the relaxation law
obtain nowa50.7660.25. Within experimental uncertainty
this is in very good agreement with our previous determi
tion.

V. CONCLUSIONS

Investigating, both theoretically and experimentally, t
TO- and LO-phonon Raman scattering in strained cryst
we have found that different strain regimes do coexist. F
is the average~homogeneous! strain which relaxes smoothly
when moving away from the interface. Next are fluctuatio
the range of which extends over~typically! the range of op-
tical wavelengths. Both kinds of resulting shift and broade
ing have been experimentally observed by displacing a la
spot on the lateral side of different 3C-SiC/Si samples and
by measuring the Raman cross section as a function of
separation from the heterointerface. Depending on
samples, one can find evidence of either a short-range d
der ~this work and Fig. 2 in Ref. 3! or a long-range disorde
~see Fig. 4 in Ref. 3!.

The theoretical model is based on the solution of Dyso
equation for the averaged phonon Green’s function. A fi
~standard! contribution to the phonon frequency shift@see
Eqs. ~7! and ~8!# comes from the averaged strain that do

-

TABLE II. Same as Table I but for the LO phonon Rama
spectra shown in Fig. 9.

Distance from LO line Total width Intraband interactio
interface (mm! v(0),v(c) G(c) coupling

0 (a) 971.3, 971.6 4.02 1.5
0.5 (b) 972.0, 972.4 3.86 1.3
1.0 (c) 972.0, 972.3 3.62 1.0
2.0 (d) 972.3, 972.5 3.45 0.7
5.0 (e) 972.9, 973.0 2.88 0.18
9.0 (f ) 973.1, 973.2 2.80 0.1
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exist because of any external stress or interface misma
This contribution may be positive or negative, whether t
stress is compressive or tensile. For instance, in the case
SiC/Si interface, it is tensile in SiC and compressive in s
con. While very similar, because of the triple phonon deg
eracy, the theoretical analysis of the experiment data in
case of silicon is slightly more complicated. It was not pr
sented in this work but is currently in progress. A seco
contribution comes from the static strain fluctuations due
dislocations, grain or twin structure, and other structural
fects. Because all other phonon states are at lower energ
is always positive for the top of a phonon singlet@see Eqs.
~29!, ~34!, and~37!#. The opposite result would be true for
minimum of the branch. The sum of these two contributio
is positive for Si and negative for SiC~and relatively
smaller!. The phonon broadening results only from the stra
fluctuations.

Two limiting regimes have been found, depending
whether the range of strain disorderr 0 is small or large. The
crossover~critical! valuer 0.aAv0 /G/p is moderately large
in the atomic unitsa. This is of special interest for the prob
lem under consideration sincer 0 should be of the order of
the strain fluctuation~i.e., the potential radius of the imper
fections!. This is the existence of a small value for the p
rameterAG/v0 which provides the physical basis for th
present theory.

For the short-range disorder~i!, the phonon momentum
varies over wide limits in the scattering by strain fluctuatio
with comparison to the interval determined by the phon
width. If r 0→0, the influence of the strain fluctuations on th
line width and shift decreases@see Eqs.~27!, ~29!, and~24!#.
In the opposite case of a long-range disorder~ii !, the phonon
is only scattered by the strain fluctuations on a small an
In this case we can consider very larger 0. The linewidth
does not depend onr 0 @see Eq.~32!# but the line shift~34!
decreases whenr 0 increases. Different line shapes can
observed in the two different regimes. In case~i!, the reso-
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nance line drops more slowly on the low-frequency sid
because the phonon density of states increases below th
of branches. In case~ii !, the resonance line is more symme
ric but non-Lorentzian.

Because it would appear natural for the disorder to
anisotropic in the presence of an interface, we have a
considered the case of a 2D disorder. The correlation rad
was taken to be much smaller for the directions parallel
the interface than it was for the direction perpendicular to
interface. We have found that the resulting resonance
does not drop so sharply on the high-frequency side a
does in the corresponding case of a short-range 3D diso
~i!. This 2D model gives the best fit to the experimental da
for the anisotropic phonon lines. Moreover, we have fou
that, in this case, the intensity of the disorder~or, more pre-
cisely, the mean-squared strain! drops~starting from the in-
terface! according to an approximatez21 dependence. Of
course, incomplete strain relaxation occurs in thin samp
This was found in Ref. 3 for a commercial sample with abo
3 mm thickness.

Finally, we would like to point out the difference betwee
the present theory and the mechanism of the Fano reson
in any conducting system. The asymmetric line shape in
Fano resonance comes as a result of the electron-pho
interactions. It arises from the imaginary part of the electr
loop and does not depend on the phonon density of state
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