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Stationary points of the Thouless-Anderson-Palmer free energy

Andrea Cavagna,* Irene Giardina,† and Giorgio Parisi‡

Dipartimento di Fisica, Universita` di Roma I ‘‘La Sapienza,’’ P.le A. Moro 5, 00185 Roma, Italy
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In the context of thep-spin spherical model, we introduce a method for the computation of the number of
stationary points of any nature~minima, saddles, etc.! of the Thouless-Anderson-Palmer free energy. In doing
this we clarify the ambiguities related to the approximations usually adopted in the standard calculations of the
number of states in mean-field spin-glass models.@S0163-1829~98!00118-0#
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I. INTRODUCTION

Mean-field spin-glass models are characterized in th
low-temperature phase by the great number of metastab
well as equilibrium states. A question which naturally aris
in this context is the computation of the numberN of these
states or, more precisely, the analysis of how this num
increases with the sizeN of the system.

In models with a continuous transition, such as t
Sherrington-Kirkpatrick~SK! model,1 the equilibrium ther-
modynamics is dominated by a number of states that rem
finite whenN→`, while there is an exponentially high num
ber of metastable states,2 which do not contribute to the ther
modynamics of the system. On the other hand, models wi
discontinuous transition, such as thep-spin spherical
model,3–5 exhibit a temperature range where the number
metastableand equilibrium states with a given energy de
sity E grows exponentially, i.e.,N(E);exp@NS(E)#.6,7 In
this last case knowledge of thecomplexityS(E) is crucial,
since it gives a finite entropic contribution to the global fr
energy.8 It is therefore particularly important in this case
have a well-defined method to compute the number of st
of the system.

The standard strategy to perform this calculation
grounded on the formulation of mean-field equations for
local magnetizations, the Thouless-Anderson-Palmer~TAP!
equations.9 The solutions of these equations are identifi
with equilibrium or metastable states of the system, a
therefore one simply resorts to counting the number of th
solutions.

This standard approach contains, however, some amb
ities. The TAP solutions can be viewed as the station
points of a TAP free energyf TAP , a function of the
magnetizations.2,6–8 Therefore only the minima of this fre
energy can actually be identified with metastable or equi
rium states of the system. Yet there are surely many o
kinds of stationary points different from minima. When
the standard approach one counts the number of TAP s
tions, it is not clear whether only the genuine states of
system are taken into consideration.

Moreover, a typical approximation of the standard meth
is related to the modulus of the determinant of the fr
energy Hessian~i.e., the Jacobian of the equations!, which
appears in the integral over all the solutions.10 The presence
of this modulus is fundamental to avoid a trivial result: if o
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tries to count the number of stationary points of a functi
without this modulus, each stationary point is weighted w
the sign of the Hessian and one obtains a simple topolog
constant, by virtue of the Morse theorem.11 Nonetheless, in
the standard approach this modulus is always disregarde
simplify the computation.

From what is said above we are led to say that the s
dard procedure is not really under control. Nonetheless
least in the case of thep-spin spherical model, this standar
calculation gives a result7 that has been exactly confirmed b
a completely different approach.12 This result is therefore
correct, although all the approximations involved are n
well justified. On the other hand, for the case of the S
model there is no confirmation of the standard result of R
2.

The aim of this paper is to clarify this subject, at least
the case of thep-spin spherical model. In the context of th
replica approach, we show that different solutions of t
saddle-point equations for the overlap matrix are related
different kinds of stationary points~minima, saddles, etc.!.
Grouping them into classes characterized by the numberk of
their instable directions, we find that each class has a dif
ent complexitySk(E). By virtue of this result, we are able t
extract separately from the total number of solutions the c
tribution of minima and of saddles of various indicesk, dis-
covering that there is an ordering of the complexitiesSk(E):
at a generic energyE, only one kind of stationary point
~minimum or saddles, depending on the energy! is exponen-
tially dominant over all the others, so that in the thermod
namic limit the weight of the sign of the determinant has
influence. Only at exceptional energies do we find that all
stationary points give an equal contribution to the compl
ity. Therefore, as long as the energy is kept fixed, the mo
lus can be disregarded and the standard approach give
correct result. The results of the present work give also so
insights into the nature of the glassy transition for this ki
of system.

II. COMPLEXITY

The p-spin spherical model is defined by the Hamiltoni

H~s!52 (
i 1,¯, i p

Ji 1¯ i p
si 1

¯si p
. ~2.1!
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The spinss are real variables satisfying the spherical co
straint ( isi

25N, where N is the size of the system. Th
couplingsJ are Gaussian variables with zero mean and v
ancep!/2Np21. In the context of the TAP approach,9 one
formulates a set of mean-field equations for the local m
netizationsmi5^si&. In Ref. 8 a free energy densityf TAP has
been introduced, a function of the magnetizationsmi . The
minimization of f TAP with respect tomi gives the TAP equa-
tions of the system. We can express the magnetization ve
m in terms of its angular parts and of its self-overlapq
51/N( imi

2:

mi5Aqs i , s•s5(
i

s i
25N. ~2.2!

The TAP equation fors reads8

052p (
i 2,¯, i p

Jl ,i 2¯ i p
s i 2

¯s i p
2pEs l5

def
T l~s;E!,

l 51,...,N, ~2.3!

whereE is the zero-temperature energy density,

E52
1

N (
i 1,¯, i p

Ji 1¯ i p
s i 1

¯s i p
. ~2.4!

In the following we shall always refer to the zero
temperature energy density. The equations fors do not de-
pend on the temperature, while the equation forq does.8

Moreover, theq equation has a solution as long as the ene
density is lower than a maximum value of the energy, cal
lu-
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the thresholdenergyEth . The dependence on temperature
the set of TAP solutions$m(T)%a51,...,N comes entirely from
q, while their multiplicityN is encoded in Eq.~2.3! and thus
does not depend on the temperature. It turns out that the
an exponentially high number of solutions of Eq.~2.3! for
each given value of the energy densityE, N(E)
;exp@NS(E)#, whereS(E) is the complexity, computed fo
this model in Ref. 7.S(E) is an increasing function ofE,
which reaches a finite value forE5Eth . To avoid any con-
fusion, we note that the TAP free-energy density of a so
tion at temperatureT is unambiguously determined by it
zero-temperature energy densityE. Therefore in the follow-
ing we shall always useE to label TAP solutions.

We start our analysis with the computation ofS(E), pay-
ing special attention to the nature of the stationary poi
actually considered. By definition we write

S~E!5
def

lim
N→`

1
N ln N~E!. ~2.5!

We average the logarithm ofN since this is the extensive
quantity. To perform this average it is necessary to introd
replicas already at this level of the calculation. However
can be shown that the correct ansatz for the overlap matr
symmetric and diagonal, and this is equivalent to aver
directly the numberN of the solutions. Therefore we wil
perform the annealed computation

S~E!5 lim
N→`

1

N
ln N~E!. ~2.6!

In terms of the angular parts~2.2!, we have
S~E!5 lim
N→`

1

N
ln E Dsd~s•s2N!)

l 51

N

d„T l~s;E!…udetH~s;E!u, ~2.7!
ood.
een
l

the
is

he

-

whereH(s;E) is the Hessian of the TAP equations eva
ated in the solutions of energy densityE. It is given by

Hr ,l~s;E!5
]T r~s;E!

]s l

52p~p21! (
i 3,¯, i p

Jr ,l ,i 3¯ i p
s i 3

¯s i p
2pEd r ,l .

~2.8!

We stress that by means of formula~2.7! we are counting
only the solutions with agiven energy densityE. This is a
crucial point: the principal effort of our discussion will be
show that, as long asE,Eth , if we keep the energy fixed
the modulus in Eq.~2.7! can be dropped without affectin
the result in the limitN→`. We shall return to this poin
with greater detail at the end of our discussion. We theref
perform the calculation without the modulus, showinga pos-
teriori which are the justifications of this procedure. Let
introduce a bosonic representation both for the determin
and thed functions that implement the TAP equations:
re

nt

detH5 lim
n→22

$detH%2n/2

5 lim
n→22

E Dfa expS 2
1

2 (
a51

n

~faHfa!D

)
l 51

N

d„T l~s;E!…5E Dm exp~ imT !, ~2.9!

where the sums over repeated site indices are underst
The average over the disorder generates couplings betw
the fieldsf, s, andm. A crucial approximation is to set equa
to zero the couplingsfa

•s andfa
•m which depend on one

replica index and which break the rotational invariance in
space of the replicas. We will see that this approximation
consistent with all the solutions we shall consider for t
saddle-point equations. Thus we retain only the termsfa
•fb , m•m, andm•s. It is easy to see that this approxima
tion is equivalent to writing
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S~E!5 lim
N→`

1

N
ln E Dsd~s•s2N!

3)
l 51

N

d„T l~s;E!…detH~s;E!. ~2.10!

Once averaged over the disorder, because of the sphe
constraint, the part of the determinant does not depend os
any more. Therefore we have

S~E!5A~E!1B~E!, ~2.11!

A~E!5 lim
N→`

1

N
ln E Dsd~s•s2N!E Dm exp~ imT !,

B~E!5 lim
N→`

1

N
ln E Dsd~s•s2N!

3 lim
n→22

E Dfa expS 2
1

2 (
a51

n

~faHfa!D .

~2.12!

The first integral does not involve replicas and gives
contribution

A~E!5
1

2
2

1

2
ln

p

2
2E2. ~2.13!

The second integral is more subtle to solve because it c
tains replicas and an appropriate ansatz has to be chos
solve the saddle-point equations. Moreover, this integra
the one related to the Hessian of the TAP solutions, and
it contains information on the nature of the solutio
~minima, saddles, or maxima! that we are counting. Onc
averaged over the disorder and introducing the overlap
trix Qab52p(p21)(fa

•fb)/2N, we obtain

B~E!5 lim
N→`

1

N
ln lim

n→22
E DQab expH 2NS TrQ2

2p~p21!

1
1

2
ln det~2pE1Q! D J . ~2.14!

As an ansatz for the matrixQ, we takeQab5qadab . In this
way the exponent of Eq.~2.14! splits into n independent
parts, each one giving the same saddle-point equation forqa ,
whose possible solutions are

qa5q65
p

2
~E6AE22Eth

2 !, Eth52A2~p21!

p
.

~2.15!

We restrict our discussion toE<Eth , so thatq6 are real.
Note that q15q2 at the threshold energyE5Eth . Since
each qa can assume one of these two values, we hav
multiplicity of different solutions. The analysis of the fluc
tuations shows that there is a stable solutionS0 , given by

S0 : qa5q1 , a51,...,n. ~2.16!
cal

e

n-
to

is
us

a-

a

This solution is invariant under rotations in the replica spa
and thus the approximation we made setting to zero
terms depending on one replica index turns out to be con
tent. The solutionS0 gives the complexity

S0~E!5
q1

2

p~p21!
1 ln~2pE1q1!1A~E!, ~2.17!

with A given in Eq.~2.13!. This is the known result of Ref
7. It is important to note that this result has been confirm
in the analysis of Refs. 12 and 13 where, by means o
completely different method, it has been shown thatS0 is
equal to the logarithm of the number of genuine states of
system and, thus, thatS0 is the complexity of theminimaof
the TAP free energy.

Nonetheless, we note the presence of many other s
tions of the saddle-point equations, involving both the valu
q6 . In particular, we are interested in the solutionS1 with
the lowest degree of instability, that is,

S1 : q15q2 , qa5q1 , a52,...,n ~2.18!

~and permutations!. This solution presents a one-step brea
ing of the rotational invariance in the replica space. The
fore one can be concerned about the fact that we have d
garded terms breaking this invariance. To check this po
we have performed the whole computation retaining
termsfa

•s and fa
•m and we have looked for a solutio

breaking the rotational invariance in the replica space.
found analytically that the saddle-point equations give a
unique solutionfa

•s50 andfa
•m50 and thus that solu-

tion S1 is recovered. The complexityS1 arising fromS1 is

S1~E!5
3

2

q1
2

p~p21!
2

1

2

q2
2

p~p21!
1

3

2
ln~2pE1q1!

2
1

2
ln~2pE1q2!1A~E!, ~2.19!

which is lower thanS0 , sinceuq2u>uq1u,

S1~E!,S0~E! for E,Eth , ~2.20!

while

S1~Eth!5S0~Eth!. ~2.21!

In this context it is not clear which is the physical meani
of the complexityS1 or if there is one. Moreover, apart from
the fact that the complexityS0 is confirmed by a different
method to be related to the number of minima, we ha
given no justification for dropping the modulus in the orig
nal formula. We shall see in the next sections that the an
sis of the average spectrum of the TAP Hessian gives
answer to both these questions.

III. HESSIAN SPECTRUM

In the previous section we made the approximation
setting to zero the couplingsfa

•s andfa
•m. We stress that

this approximation is consistent when considering the so
tionsS0 andS1 . As a consequence, what appears in expr
sion ~2.10! is the Hessian function evaluated in ageneric
vectors, and not in a TAP solution. This means that, in t
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context of this approximation, the properties of the TA
Hessian that are relevant in determining the behavior oS
are well encoded in the matrixH(s;E), which has the same
functional form of the TAP Hessian, but requiress only to
satisfy the spherical constraint. The average spectrum is
defined in the following way:

r~l;E!5 lim
N→`

E Ds d~s•s2N!rJ~l;s!, ~3.1!

whererJ(l;s) is the spectrum for a given realization of th
disorder whose expression is

rJ~l;s!52
1

Np
Im Tr~H2l1 i e!21. ~3.2!

We can write the trace in the following way:

Tr~H2l1 i e!215(
l 51

N

@~H2l1 i e!21# l l

5 lim
n→0

E Dfaf1
•f1

3expH 2
1

2 (
a51

n

fa~H2l1 i e!faJ .

~3.3!

Once averaged over the disorderJ and the spherical con
straint ons is exploited, this computation becomes ana
gous to the one of the average spectrum of a Gaussian
semble of symmetric random matrices.14 If we introduce the
overlap matrixQab52p(p21)(fa•fb)/2N, we finally get

r~l;E!5 lim
N→`

2
1

Np
Im lim

n→0
E DQab~2pE2l1Q!11

21

3expH 2NS TrQ2

2p~p21!
1

1

2
ln det(2pE2l1Q) D J .

~3.4!

It is important to note the great similarity between Eqs.~3.4!
and ~2.14!. If we choose once again a diagonal ansatzQab
5wadab , we get the following solutions of the saddle-poi
equations:

wa5w6~l!5
p

2 S l

p
1E6AS l

p
1ED 2

2Eth
2 D , ~3.5!

whereEth is the same as in Eq.~2.15!. For l50 the inte-
grand in Eq.~3.4! is identical to the one of Eq.~2.14! and
w6(0)5q6 . As in the case of the complexity, we have
multiplicity of different solutions. To get a finite contributio
to r, it is necessary that the argument of the exponentia
Eq. ~3.4! be zero. Sincen→0, this can be achieved takin
the same value for eachwa . Moreover, the conditionr>0
shows that we must take the solution

S0 : wa5w1~l!, a51,...,n, ~3.6!

which is exactly the same kind of solution that led toS0 . If
we look at Eq.~3.5!, we can see that the nonzero contrib
en

-
n-

in

-

tion to r comes from the region2pE1pEth,l,2pE
2pEth , wherew1 develops an imaginary part. Thus

r0~l;E!5
1

pp~p21!
Ap2Eth

2 2~l1pE!2. ~3.7!

We stress that the solutionS0 is the only one that gives a
finite contributionr0 to r. Formula~3.7! is the well-known
Wigner semicircle law,15 which can be obtained for symme
ric Gaussian random matrices also without using replica14

This result tells us that forE,Eth the averaged spectrum ha
a strictly positive support, and thus the typical determinan
the Hessian is positive, i.e., that the dominant part of T
solutions with energy densityE,Eth are minima. On the
other hand, whenE approachesEth the lowest eigenvalue
l5p(Eth2E) goes to zero. Therefore the typical solutio
with E5Eth have some flat directions.16

We understand now the reason why the complexity of E
~2.17! is related to the number of minima: the solutionS0
of the saddle-point equations leading toS0 is exactly the
same as the one leading to the eigenvalue distributionr0 ,
which has positive support.

The important thing is that in this context it is possible
give a precise physical interpretation of the solutionS1 of
Eq. ~2.18!: as we are going to show in the next section,S1
is related to the exponentially small corrections to the dis
bution r0 and therefore gives information on those TAP s
lutions which are not minima.

IV. EXPONENTIAL TAILS AND COMPLEXITY
OF THE SADDLES

For an ensemble of symmetric random matrices with
Gaussian distribution, it is possible to compute corrections
the semicircle law, whenN is large but finite. In particular, it
is possible to compute the correction to the averaged s
trum related to the probability of having a single eigenva
outside the semicircle support.

In the context of our calculation, this can be achieved
considering solutions of the saddle-point equations forr dif-
ferent fromS0 . In particular, we are interested in correctio
to r0 in the eigenvalue region on the left of the semicirc
region, i.e., forl,2pE1pEth , since this tail contains the
contribution of the negative eigenvalues. In this region
consider the solutionS1 ,

S1 : w15w2~l!, wa5w1~l!, a52,...,n ~4.1!

~and permutations!; from Eq. ~3.4!, we get

r1~l,E!5r ~l,E!e2ND~l,E!,

D~l,E!.0 for l,2pE1pEth , ~4.2!

which goes exponentially to zero asN→`. In the computa-
tion of r1 , a crucial role is played by the fluctuations arou
the saddle-point solutionS1 , since the fluctuations matrix
has an instable direction which provides the imaginary p
necessary forr1 to be nonzero outside the semicircle. O
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can easily check that bothr (l,E) andD(l,E) coincide with
the expressions obtained for the Gaussian random mat
with other methods.14 This is therefore a correct result. Th
important quantity for our analysis isD(l,E),

D~l,E!5
w2

2

2p~p21!
2

w1
2

2p~p21!
1

1

2
lnS 2l2pE1w2

2l2pE1w1
D .

~4.3!

SolutionS1 then gives the exponentially vanishing left ta
due to the probability of having one eigenvalue outside
semicircle. Since this tail is different from zero also in t
negative semiaxis, we can calculate the probability of hav
a negative eigenvalue, i.e., the exponentially small proba
ity of finding a TAP solution which is a saddle with on
negative eigenvalue and has energy densityE. This probabil-
ity is

P~2 !5E
2`

0

dl r1~l,E!;e2ND~0,E!, N→`. ~4.4!

In this context solutionS1 has a clear physical interpreta
tion: it is related to the contribution of TAP saddles wi
one negative eigenvalue, in the energy rangeE,Eth . Given
this, we can try to push further this interpretation. As w
have seen in Sec. II, the same solutionS1 gives rise to a
complexity S1 smaller thanS0 , whose meaning was no
clear. Now we can make the hypothesis thatS1 is the com-
plexity of the saddles with one negative eigenvalue.
prove this statement we note that once we have the num
N1(E);exp@NS1(E)# of saddles with one negative eige
value and energy densityE, we can easily compute the prob
ability P(2) of having one of these saddles,

P~2 !5
N1~E!

Ntotal~E!
5

eNS1~E!

eNS0~E!1eNS1~E! ;e2N@S0~E!2S1~E!#,

~4.5!

where we used the relationS0(E).S1(E). From a compari-
son between Eqs.~4.5! and ~4.4!, we see that

D~0,E!5S0~E!2S1~E! ~4.6!

must hold. It is not difficult to see from Eqs.~2.17!, ~2.19!,
and ~4.3! that this equation is fulfilled. Our hypothesis
therefore correct, and we can then write

S1~E!5 lim
N→`

1

N
ln N1~E!, ~4.7!

where, as already said,N1(E) is the number of TAP solu-
tions of energy densityE, which are saddles with one neg
tive eigenvalue. This result can be generalized. If we c
sider the following solutionSk of the saddle-point equation
for S,

Sk : qa5q2 , a51,...,k, qa5q1 , a5k11,...,n
~4.8!

~and permutations!, we obtain from Eq.~2.14! the complex-
ity
es

e

g
il-

o
er

-

Sk~E!5
k12

2

q1
2

p~p21!
2

k

2

q2
2

p~p21!
1

k12

2
ln~2pE1q1!

2
k

2
ln~2pE1q2!1A~E!. ~4.9!

It is not a surprise the fact thatSk is related to the number o
TAP solutions which are saddles withk negative eigenval-
ues. Indeed, the probability of finding such a solution is

P~k,2 !5@P~2 !#
k;e2NkD~0,E!, ~4.10!

so that to prove our assertion it is sufficient to verify that t
relation

kD~0,E!5S0~E!2Sk~E! ~4.11!

holds, as it does. In writing Eq.~4.10! we can disregard the
correlations between different negative eigenvalues, as l
ask is much smaller thanN. We conclude that, as a gener
result,Sk(E) is the complexity of TAP saddles withk nega-
tive eigenvalues and energy densityE.

Since forE,Eth uq2u.uq1u holds @see Eq.~2.15!#, we
have from Eq. ~4.9! that S0(E).S1(E).¯.Sk(E)
.Sk11(E)¯ . Thus all the TAP solutions, also those wi
some negative eigenvalues, are exponentially numerou
N. Nevertheless, the number of minima is exponentia
higher than the number of saddles with one negative eig
value, which is exponentially higher than the number
saddles with two negative eigenvalues, and so on. This is
very reason why, as long asE,Eth , the approximation of
dropping the modulus in Eq.~2.7! is justified. In Fig. 1 we
have plottedS0 , S1 , andS2 as a function ofE.

From Eq.~4.9! we note thatSk(Eth)5S0(Eth), for each
k, sinceq15q2 at the threshold energy@see Eq.~2.15! and
Fig. 1#. This equality is very important. If we try to count th
total number of solutions neglecting the modulus in E

FIG. 1. ComplexityS0 of the TAP minima~solid line! and the
complexitiesS1 and S2 of the TAP saddles with one and tw
negative eigenvalues~respectively, dotted and dot-dashed lines!, as
a function of the zero-temperature energy densityE. The three
curves reach the same value at the threshold energy, which isEth

521.1547, forp53. The minimum saddle energy, whereS150,
is E0521.1688.
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~2.7!, a trivial result is obtained,10 since we are weighting
each stationary point with the sign of the determinant~this is
the Morse theorem!. This is the reason why we considere
solutions with agiven fixed energyE. Yet for what is said
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above, if we integrate our result over all the energiesE, we
must recover the result predicted by the Morse theorem.
membering that theq part of the TAP equations admits so
lutions only forE,Eth , we have, from our calculations,
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In this formula we must introduce all theSk’s coming from
all the solutions of the saddle-point equations forS, which
refer to stationary points of any nature. One can easily
from Eq. ~4.9! that all theSk’s are monotonously increasin
functions ofE which reach their maximum value atEth , so
that we can substitute the integral in Eq.~4.12! with the
maximum of the integrand. The prefactorsa0 ,a1 ,... come
from the fluctuations around each saddle-point solution
contain the sign of the determinant. It is exactly the com
nation of these signs that gives rise to the Morse theor
From Eq.~4.12! it is then clear that a necessary condition
get a trivial topological constant is thatS0(Eth)5S1(Eth)
5S2(Eth)5¯ , so that we can sumall the terms on the
same footing. As said above, this necessary condition is
filled by our calculation.

Besides, from Eq.~4.12! it is finally clear what the role is
of the modulus in the calculation: takingudetHu is equiva-
lent to taking the absolute value of the prefactorsak , thus
preventing us from obtaining a trivial result. Yet at fixe
energy E,Eth , one of the terms exp@NSk(E)# is always
strictly greater than all the others, and therefore in the li
N→` the signs of the prefactorsak have no influence on the
final result. As we have said, this dominant term turns ou
be the one withk50, which gives exactly the contribution o
the minima.

We note that it should be possible to show thatSk is
related to the number of saddles with ak negative eigenvalue
directly from Eq.~2.14!. If we keepn finite, this integral is
equivalent to(detH)n. Taking the saddle-point solutionSk
and appropriately computing the Gaussian fluctuati
around it, it should be possible to single out a fac
(21)kn related to the sign of the determinant. Unfortunate
we did not succeed in performing this quite complex co
putation.

From Fig. 1 we see that there is a minimum energy d
sity E0 below which no saddles with finite complexity a
found. Therefore, when considering a state with energy d
sity E,E0 , the valueDE5E02E is a lower bound for the
energy density barrier between this state and any other
of the system. In Ref. 13 a potential function has been in
duced, whose minima are by construction equivalent
metastable or equilibrium states of the system. With t
method it has therefore been possible to give an estimate
the barriers separating two states.17 It turns out that this es-
timate is fully consistent with the result of the present wo

V. CONCLUSIONS

The main result of this paper concerns the organization
the stationary points of the TAP free energy in thep-spin
e
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spherical model. If we classify these points according to
numberk of negative eigenvalues of their Hessian, we fi
that each class is characterized by a complexitySk(E),
which gives the exponentially high number of TAP solutio
of energyE in that class,Nk(E);exp@NSk(E)#. In the en-
ergy rangeE,Eth , we find thatSk(E).Sk11(E) for each
value ofk. This means that in this energy range minima a
exponentially dominant in number over all the other statio
ary points.

From what is said above, we conclude two things: First
we compute, even in the most rigorous way, the complex
S(E) at a given fixed energy, according to formula~2.5!, we
automatically recoverS0(E), i.e., the complexity of the
minima. Second, the modulus of the determinant simply c
tributes to the sign of the prefactor of the dominant con
bution, since at fixed energy all the other terms are vanish
in the thermodynamic limit. Therefore, when such a struct
of the stationary points is present, it is clear that the na
calculations which do not discriminate among minim
saddles, etc., and which disregard the modulus are, notw
standing this, consistent.6,7,18

We stress that it is crucial to keep the energy fixed in
calculation, but more important is the fact that all the co
plexities are different, so that only one of them survives
the limit N→`. This becomes clear whenE is equal to the
threshold energyEth : here all theSk’s are equal and a trivia
result is recovered.

From a technical point of view, we note that the use o
bosonic representation for the determinant and the co
quent replica approach introduces a degree of arbitrarines
the choice of the saddle-point solutions which makes it p
sible to extract the contributions of different classes of s
tionary points.

The results stated above give us a rigorous way to ana
the behavior of the Hessian spectrum. This turns out to
particularly interesting for the description of the dynamic
transition which occurs in this kind of model. At high tem
perature equilibrium is given by the ergodic paramagne
state. This phase corresponds to a Hessian spectrum w
has a nonvanishing contribution in the negative semiaxis
that many escape directions~negative eigenvalues! exist. At
the dynamical transition temperatureTd , equilibrium is
given by threshold TAP solutions.8,16,19As we have shown,
at the threshold energy all the complexitiesSk coincide~see
Fig. 1!, so that the free-energy landscape at the transitio
strictly related to the point where the complexities of all t
different TAP stationary points bifurcate. Here the Hess
spectrum exits the negative semiaxis and has a comple
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positive support, so that escape directions become expo
tially hard to find, while minima dominate the landscape: t
system is trapped and a dramatic slowing down of the
namics occurs.
en-
e
y-

To conclude, it would be intriguing to describe the glas
transition also in structural glasses simply in terms of t
evolution of the Hessian spectrum, by means of an analy
similar to the one we have performed here.
n-
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