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Stationary points of the Thouless-Anderson-Palmer free energy
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In the context of the-spin spherical model, we introduce a method for the computation of the number of
stationary points of any natufeninima, saddles, efcof the Thouless-Anderson-Palmer free energy. In doing
this we clarify the ambiguities related to the approximations usually adopted in the standard calculations of the
number of states in mean-field spin-glass mod&9163-182@08)00118-7

[. INTRODUCTION tries to count the number of stationary points of a function
withoutthis modulus, each stationary point is weighted with
Mean-field spin-glass models are characterized in theithe sign of the Hessian and one obtains a simple topological
low-temperature phase by the great number of metastable §onstant, by virtue of the Morse theorémNonetheless, in
well as equilibrium states. A question which naturally arisesthe standard approach this modulus is always disregarded to
in this context is the computation of the numberof these ~ simplify the computation.
states or, more precisely, the analysis of how this number From what is said above we are led to say that the stan-
increases with the sizd of the system. dard procedure is not really under control. Nonetheless, at
In models with a continuous transition, such as theleast in the case of the-spin spherical model, this standard
Sherrington-Kirkpatrick(SK) model® the equilibrium ther-  calculation gives a resdithat has been exactly confirmed by
modynamics is dominated by a number of states that remair completely different approacf.This result is therefore
finite whenN— <o, while there is an exponentially high num- correct, although all the approximations involved are not
ber of metastable statsyhich do not contribute to the ther- well justified. On the other hand, for the case of the SK
modynamics of the system. On the other hand, models with Enodel there is no confirmation of the standard result of Ref.
discontinuous transition, such as the-spin spherical 2.
model~° exhibit a temperature range where the number of The aim of this paper is to clarify this subject, at least in
metastableand equilibrium states with a given energy den- the case of th@-spin spherical model. In the context of the
sity E grows exponentially, i.e. V{E)~exgN2(E)].%" In  replica approach, we show that different solutions of the
this last case knowledge of tremplexityS.(E) is crucial, —saddle-point equations for the overlap matrix are related to
since it gives a finite entropic contribution to the global freedifferent kinds of stationary pointéminima, saddles, etc.
energy? It is therefore particularly important in this case to Grouping them into classes characterized by the nurkioér

have a well-defined method to compute the number of state§eir instable directions, we find that each class has a differ-
of the system. ent complexity2 (E). By virtue of this result, we are able to

The standard strategy to perform this calculation isextract separately from the total number of solutions the con-
grounded on the formulation of mean-field equations for theribution of minima and of saddles of various indidgsdis-
local magnetizations, the Thouless-Anderson-Pal&pP)  covering that there is an ordering of the complexilig$E):
equations. The solutions of these equations are identifiedat a generic energf§, only one kind of stationary point
with equilibrium or metastable states of the system, andminimum or saddles, depending on the engiigyexponen-
therefore one simply resorts to counting the number of thestially dominant over all the others, so that in the thermody-
solutions. namic limit the weight of the sign of the determinant has no

This standard approach contains, however, some ambiginfluence. Only at exceptional energies do we find that all the
ities. The TAP solutions can be viewed as the stationarygtationary points give an equal contribution to the complex-
points of a TAP free energyfrap, a function of the ity. Therefore, as long as the energy is kept fixed, the modu-
magnetization$°~8 Therefore only the minima of this free lus can be disregarded and the standard approach gives the
energy can actually be identified with metastable or equilib-correct result. The results of the present work give also some
rium states of the system. Yet there are surely many othénsights into the nature of the glassy transition for this kind
kinds of stationary points different from minima. When in of system.
the standard approach one counts the number of TAP solu-
tions, it is not clear whether only the genuine states of the
system are taken into consideration.

Moreover, a typical approximation of the standard method The p-spin spherical model is defined by the Hamiltonian
is related to the modulus of the determinant of the free-
energy Hessiari.e., the Jacobian of the equatipnsvhich
appears in the integral over all the solutidfighe presence H(s)=— 2
of this modulus is fundamental to avoid a trivial result: if one ip<ree<ip

II. COMPLEXITY

“Sip. (21)
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The spinss are real variables satisfying the spherical con-thethresholdenergyE,. The dependence on temperature of
straint =;s’=N, whereN is the size of the system. The the set of TAP solution$m(T)},_1 _, comes entirely from
couplingsJ are Gaussian variables with zero mean and varid, while their multiplicity Vis encoded in Eg(2.3) and thus
ance p!/Zprl' In the context of the TAP approaemne does not dep_end On the temperature. |t turns out that there is
formulates a set of mean-field equations for the local mag@n €xponentially high number of solutions of EQ.3) for
netizationsm;=(s;). In Ref. 8 a free energy densify,p has ~€ach given value of the energy densit, ME)

been introduced, a function of the magnetizations The  ~ &XAN(E)], whereX (E) is the complexity, computed for
minimization offy.p with respect tam; gives the TAP equa- IS model in Ref. 72 (E) is an increasing function cE,

tions of the system. We can express the magnetization vectéfhich reaches a finite value f@=Ey,. To avoid any con-

m in terms of its angular part and of its self-overla ~ [USion, we note that the TAP free-energy density of a solu-
— NS m2: tion at temperaturd is unambiguously determined by its
I [

zero-temperature energy densily Therefore in the follow-
ing we shall always usg to label TAP solutions.

m=vgo;, o 0= o?=N. (2.2 We start our analysis with the computationXfE), pay-
' ing special attention to the nature of the stationary points
The TAP equation forr read$ actually considered. By definition we write
def def 1
0=—p > Jyj,.i 010 —PEq=7(c;E), S(E)=lim  In ATE). (2.5
ip<<ip p 2 P N— oo
I=1,..N, 2.3 We average the logarithm of since this is the extensive
quantity. To perform this average it is necessary to introduce
whereE is the zero-temperature energy density, replicas already at this level of the calculation. However, it
1 can be shown that the correct ansatz for the overlap matrix is

E=—— > J

L symmetric and diagonal, and this is equivalent to average
N2 Jii oo (2.9
1< <lp

directly the numbetV of the solutions. Therefore we will

In the following we shall always refer to the zero- perform the annealed computation

temperature energy density. The equationsdato not de- 11—

pend on the temperature, while the equation dodoes® 2(B)=Ilim o In ME). 2.9
Moreover, they equation has a solution as long as the energy N=e
density is lower than a maximum value of the energy, calledn terms of the angular part2.2), we have

N

1
3(E)=lim Nln fDa'ﬁ((r-O'—N)H 8(7(o;E))|det H(o;E)|, 2.7
N—o I=1
|
whereH(o;E) is the Hessian of the TAP equations evalu- detH= lim {det} "2
ated in the solutiorr of energy densityE. It is given by n—-2
0.7 (o E 10
Hy(rE) = L0 TE) = lim Jwa exp —5 2 (*He?)
’ 0-'O'| n——2 2 a=1

=-p(p—1) E . ‘]T,|,i3"'ip0-i3'"Uip_pEér,l- N
|3<...<|
p 2.8 11 o7i(o;E)= f Dy expliw.7), (2.9

We stress that by means of formula.7) we are counting

only the solutions with agivenenergy densityfe. This is a where the sums over repeated site indices are understood.
crucial point: the principal effort of our discussion will be to The average over the disorder generates couplings between
show that, as long aB<Ej,, if we keep the energy fixed, the fields¢, o, andu. A crucial approximation is to set equal
the modulus in Eq(2.7) can be dropped without affecting to zero the couplingg?- o and ¢ « which depend on one

the result in the limitN—co. We shall return to this point replica index and which break the rotational invariance in the
with greater detail at the end of our discussion. We thereforspace of the replicas. We will see that this approximation is
perform the calculation without the modulus, showingos-  consistent with all the solutions we shall consider for the
teriori which are the justifications of this procedure. Let ussaddle-point equations. Thus we retain only the tekms
introduce a bosonic representation both for the determinant¢y,, w-u, anduw-o. It is easy to see that this approxima-
and thesé functions that implement the TAP equations: tion is equivalent to writing
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This solution is invariant under rotations in the replica space,
2(BE)=lim - In ijﬁ(U a—N) and thus the approximation we made setting to zero the
N N terms depending on one replica index turns out to be consis-
~ tent. The solutionS, gives the complexity
X.H 8(7(o;E))detH(oE).  (2.10 o
=1 +
3o(E)= ————=+In(—pE+q,)+A(E), (2.1
olB)= o) TN(=PE+a)+AE), (219

Once averaged over the disorder, because of the spherical
constraint, the part of the determinant does not depena on with A given in Eq.(2.13. This is the known result of Ref.

any more. Therefore we have 7. It is important to note that this result has been confirmed
in the analysis of Refs. 12 and 13 where, by means of a
2(E)=A(E)+B(E), (2.1)  completely different method, it has been shown tBatis

equal to the logarithm of the number of genuine states of the
system and, thus, that, is the complexity of theninimaof
A(E)=lim < In fDU5(0 o- N)f Dp expip7), the TAP free energy.
e N Nonetheless, we note the presence of many other solu-
tions of the saddle-point equations, involving both the values
B(E)= lim — In f Dod(o-o—N) g- . In particular, we are in.tgrested _in the solutisn with
the lowest degree of instability, that is,

N—»oc

S11 01=0-, 0z=0:, a=2,...n (2.18

(and permutations This solution presents a one-step break-
ing of the rotational invariance in the replica space. There-
(2.12  fore one can be concerned about the fact that we have disre-
arded terms breaking this invariance. To check this point,
we have performed the whole computation retaining the
terms ¢?- o and ¢?- 1 and we have looked for a solution
11 p breaking the rotational invariance in the replica space. We
A(E)==—= In =—E2 (2.13  found analytically that the saddle-point equations give as a
2 22 unique solutiong?- =0 and ¢?- w=0 and thus that solu-

The second integral is more subtle to solve because it corflon S is recovered. The complexify; arising froms, is
tains replicas and an appropriate ansatz has to be chosen to 2 2
solve the saddle-point equations. Moreover, this integral is (E)= § q+ 1_4a-
the one related to the Hessian of the TAP solutions, and thus 2p(p—1) 2p(p— 1)
it contains information on the nature of the solutions 1

(minima, saddles, or maximahat we are counting. Once — = In(—pE+q_)+A(E), (2.19
averaged over the disorder and introducing the overlap ma- 2

trix Qap=—p(p—1)(¢?- ¢°)/2N, we obtain

1 n
X lim fwa ex —zgl(cﬁampa)).

n—-—2

The first integral does not involve replicas and gives theJ
contribution

3
In( pPE+q.)

which islower than, since|q_|=|q.|,

N TrQ? 3,(E)<3o(E) for E<E (2.20
B(E)=lm = In | DQ, ~N 1 0 th:
® o N nnlnjzj Q bexp{ (2p(p—1) while
+3Inde(~pE+Q) 214 3 1(Ep) =S o(Eg). (2.21

In this context it is not clear which is the physical meaning
As an ansatz for the matri®, we takeQ,,= 0,045 - In this  of the complexityX, or if there is one. Moreover, apart from
way the exponent of Eq(2.14 splits into n independent the fact that the complexity.q is confirmed by a different
parts, each one giving the same saddle-point equation.for method to be related to the number of minima, we have

whose possible solutions are given no justification for dropping the modulus in the origi-
nal formula. We shall see in the next sections that the analy-
p 5 2(p—1) sis of the average spectrum of the TAP Hessian gives an
=0.=7 (Ex\E*~Ey), Ep=- - answer to both these questions.
(2.15
. . . I1l. HESSIAN SPECTRUM

We restrict our discussion tB<E,, so thatq. are real.

Note thatq,=q_ at the threshold energg=E,. Since In the previous section we made the approximation of

eachq, can assume one of these two values, we have &etting to zero the couplings®- o and ¢?- . We stress that
multiplicity of different solutions. The analysis of the fluc- this approximation is consistent when considering the solu-
tuations shows that there is a stable solutifyn given by tions Sy andS; . As a consequence, what appears in expres-
sion (2.10 is the Hessian function evaluated inganeric
So: 9.=0., a=1,..n. (2.16 vector g, and not in a TAP solution. This means that, in the
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context of this approximation, the properties of the TAPtion to p comes from the region-pE+pEn<\<-—pE
Hessian that are relevant in determining the behaviok of —pE,,, wherew. develops an imaginary part. Thus
are well encoded in the matri®¥(o;E), which has the same

functional form of the TAP Hessian, but requiresonly to

satisfy the spherical constraint. The average spectrum is then po(N:E)=

defined in the following way: 7p(p—1)

VP’EG—(A+pE)% (37)

We stress that the solutiof, is the only one that gives a
p(N;E)= lim f Do 8(o-0—=N)ps(N;o), (3D finite contributionp, to p. Formula(3.7) is the well-known
N—e Wigner semicircle law?® which can be obtained for symmet-
wherep;(\ ;o) is the spectrum for a given realization of the ric Gaussian random matrices also without using repfitas.
disorder whose expression is This result tells us that foE<E,, the averaged spectrum has
a strictly positive support, and thus the typical determinant of
the Hessian is positive, i.e., that the dominant part of TAP
solutions with energy densitE<E, are minima On the
other hand, wherkE approache<,, the lowest eigenvalue
N=p(E—E) goes to zero. Therefore the typical solutions

1
pJ()\;U)Z—m Im Tr(H—N+ie) L. (3.2

We can write the trace in the following way:

N with E=E, have some flat directiort§.
TrI(H—N+ie) 1= [(H—\+ie)™ 1]y We understand now the reason why the complexity of Eq.
=1 (2.17 is related to the number of minima: the solutiSp

of the saddle-point equations leading ¥g is exactly the
= lim f Dp2pt- Pt same as the one leading to the eigenvalue distribysipn

n—0 which has positive support.
n The important thing is that in this context it is possible to
1 : [ ise physical interpretation of the soluti®n of
ot arny a give a precise physical interpretation of the soluti®no
Xexp{ 2 321 P(H-AFie)¢%. Eq.(2.18: as we are going to show in the next sectiéh,

is related to the exponentially small corrections to the distri-
(3.3 bution p, and therefore gives information on those TAP so-
Once averaged over the disordgrand the spherical con- lutions which are not minima.
straint ono is exploited, this computation becomes analo-
gous to the one of the average spectrum of a Gaussian en-
semble of symmetric random matricédf we introduce the
overlap matrixQ,p=—p(p—1)(da- ¢p)/2N, we finally get

IV. EXPONENTIAL TAILS AND COMPLEXITY
OF THE SADDLES

For an ensemble of symmetric random matrices with a
Gaussian distribution, it is possible to compute corrections to
the semicircle law, wheN is large but finite. In particular, it
is possible to compute the correction to the averaged spec-
trum related to the probability of having a single eigenvalue

*outside the semicircle support.
In the context of our calculation, this can be achieved by
(3.4) considering solutions of the saddle-point equationspfdif-
It is important to note the great similarity between E(s4)  ferent fromS,. In particular, we are interested in corrections
and (2.14). If we choose once again a diagonal and@tz  t0 po in the eigenvalue region on the left of the semicircle

=w,8,,, We get the following solutions of the saddle-point region, i.e., forh<—pE+ pEy, since this tail contains the
equations: contribution of the negative eigenvalues. In this region we

consider the solutios; ,

N, [\ z
B+E_ E+E) _Eth)’ (3.9 Sii wi=w_(\), w,=w,.(\), a=2,..n (4.)

where Ey, is the same as in Eq2.15. For A=0 the inte-
grand in Eq.(3.4) is identical to the one of Eq2.14 and
w.(0)=q-. As in the case of the complexity, we have a

. 1 H iy
p(NE)=lim N o Im lim JDQab(_pE_)\+Q)111

N— ™ n—0

x p[—N<Tr—QZ+1| det(-pE-1+Q) |
&R ~Nzpp-1 Tz NICPETATQ)

p
Wa=W. ()= 5

(and permutations from Eq. (3.4), we get

multiplicity of different solutions. To get a finite contribution p1(\,E)=r(\,E)e NAE),
to p, it is necessary that the argument of the exponential in
Eq. (3.4) be zero. Sincen—0, this can be achieved taking A(N,E)>0 for A< —pE+pEy,, (4.2)

the same value for eacli,. Moreover, the conditiop=0

shows that we must take the solution which goes exponentially to zero ds—. In the computa-

tion of p4, a crucial role is played by the fluctuations around
the saddle-point solutios;, since the fluctuations matrix

which is exactly the same kind of solution that led3g. If has an instable direction which provides the imaginary part
we look at Eq.(3.5), we can see that the nonzero contribu-necessary fop; to be nonzero outside the semicircle. One

So: Wa=w,(\), a=1,..n, (3.6
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can easily check that bott{\ ,E) andA (\,E) coincide with 0.015 T T -
the expressions obtained for the Gaussian random matrice
with other method$? This is therefore a correct result. The
important quantity for our analysis B5(\,E),

w? w2 1 (—)\—pEJrW

+-In|l————
2p(p—1) 2p(p—1) 2 \—-N—pE+w,
(4.3

Solution S; then gives the exponentially vanishing left tail,
due to the probability of having one eigenvalue outside the
semicircle. Since this tail is different from zero also in the
negative semiaxis, we can calculate the probability of having o E
a negative eigenvalue, i.e., the exponentially small probabil- 147 -1.165 -1.16 -1.155
ity of finding a TAP solution which is a saddle with one E

negative eigenvalue and has energy derisitfhis probabil-
ity is

A(NE)=

0.005

FIG. 1. ComplexityX, of the TAP minima(solid line) and the
complexitiesX, and X, of the TAP saddles with one and two
negative eigenvalugsespectively, dotted and dot-dashed lines
a function of the zero-temperature energy dengity The three
curves reach the same value at the threshold energy, whigl, is
=—1.1547, forp=3. The minimum saddle energy, wheXg=0,
In this context solutionS; has a clear physical interpreta- is E,=—1.1688.
tion: it is related to the contribution of TAP saddles with
one negative eigenvalue, in the energy rakgeE,,. Given k+2 @2 k o> K+ 2
this, we can try to push further this interpretation. As weZ (E)= 5 1 2 1 + >
have seen in Sec. Il, the same solutisp gives rise to a p(p—1) p(p—1)
complexity 3, smaller thanX,, whose meaning was not k
clear. Now we can make the hypothesis tBatis the com- — 5 IN(=pE+q-) +A(E). (4.9
plexity of the saddles with one negative eigenvalue. To
prove this statement we note that once we have the numbefis not a surprise the fact tha, is related to the number of
N1(E)~exdNZ4(E)] of saddles with one negative eigen- TAP solutions which are saddles withnegative eigenval-
value and energy densify, we can easily compute the prob- yes. Indeed, the probability of finding such a solution is
ability P_, of having one of these saddles,

0
P(,)=L d\ pi(N,E)~e NAOBE) T Now, (4.9

In(—pE+q.,)

— k —NKkA(O,
N(E) eNE1(E) P —y=[P(-)]k~e Nka(O08), (4.10

()T Nl ) eV=0® 1 gNE1(E)

~ @ N[Zo(B)=%4(B)] .. - .
' so that to prove our assertion it is sufficient to verify that the

(4.5 relation

where we used the relatidiy(E) > ;(E). From a compari-
son between Eqg$4.5 and (4.4), we see that KA(OE)=2o(E)—2y(E) (4.11

A(OE)=3(E)—34(E) (4.6)  holds, as it does. In writing Eq4.10 we can disregard the

) - correlations between different negative eigenvalues, as long

must hold. It is not difficult to see from Eq&2.17), (2.19,  ask is much smaller thail. We conclude that, as a general
and (4.3 that this equation is fulfilled. Our hypothesis is resylt, s, (E) is the complexity of TAP saddles withnega-

therefore correct, and we can then write tive eigenvalues and energy densiy
Since forE<Ey, |q_|>|q,| holds[see Eq.(2.15], we
[ — have from Eq. (4.9 that 24(E)>2,(E)>:-->3(E)
21(B)=lim < In N1(E), (4.7 >3,,4(E)--- . Thus all the TAP solutions, also those with

N—o

some negative eigenvalues, are exponentially numerous in

where, as already saidy;(E) is the number of TAP solu- N.. Nevertheless, the number of mi_nima is equnent!ally
tions of energy densit§, which are saddles with one nega- higher than the number of saddles with one negative eigen-
tive eigenvalue. This result can be generalized. If we convalue, which is exponentially higher than the number of

sider the following solutiorsy of the saddle-point equations Saddles with two negative eigenvalues, and so on. This is the
for 3, very reason why, as long d&<Ey,, the approximation of

dropping the modulus in Eq2.7) is justified. In Fig. 1 we
_ _ _ _ _ have plotted®,, X, andX, as a function of.
S Ga=0-, a=l..k 0a=0., a—k+1,...(;21 9 From Eqg.(4.9) we note that (Ey) =2 ¢(Ey), for each
' k, sinceq,=q_ at the threshold enerdgee Eq(2.15 and
(and permutations we obtain from Eq(2.14) the complex-  Fig. 1]. This equality is very important. If we try to count the
ity total number of solutions neglecting the modulus in Eg.
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(2.7), a trivial result is obtained® since we are weighting above, if we integrate our result over all the enerdiesve
each stationary point with the sign of the determin@his is  must recover the result predicted by the Morse theorem. Re-
the Morse theorejn This is the reason why we considered membering that the part of the TAP equations admits so-
solutions with agivenfixed energyE. Yet for what is said Ilutions only forE<E,,, we have, from our calculations,

N
Eth
f tdEJ Do 8(o -o—N)[] 8(7(0;E))det H(o;E) = ageN>oEn) + a,eN*1(En) 4 g,eN22Ew) ... . (4.12
=1

In this formula we must introduce all the,’s coming from  spherical model. If we classify these points according to the
all the solutions of the saddle-point equations ¥grwhich  numberk of negative eigenvalues of their Hessian, we find
refer to stationary points of any nature. One can easily Sefhat each class is characterized by a compleXit(E),
]tromt.Eq. (4-]% thﬁ? ?\” thezhk,tsh are monotonouslly mE(;reasmg which gives the exponentially high number of TAP solutions
unctions ofE which reach their maximum value Bt,, SO of energyE in that class,\Vi(E)~exgNS,(E)]. In the en-
that we can substitute the integral in E@.12 with the ergy rangeE<E,,, we find thatS (E)>3,, ,(E) for each

maximum of the integrand. The prefactag,a,,... come alue ofk. This means that in this energy range minima are

from the fluctuations around each saddle-point solution and ; ; . 9y rang .

contain the sign of the determinant. It is exactly the combi-SXPonentially dominant in number over all the other station-
ry points.

nation of these signs that gives rise to the Morse theorenf! . . L
From Eq.(4.12 it is then clear that a necessary condition to FT0m what is said above, we conclude two things: First, if
we compute, even in the most rigorous way, the complexity

get a trivial topological constant is thaly(Eq) =21(Ew)

=3,(E4)="-, so that we can sumall the terms on the 2 (E) atggiven fixed energy, gccording to formlgRaS), we
same footing. As said above, this necessary condition is fulautomatically recoveiXo(E), i.e., the complexity of the
filled by our calculation. minima. Second, the modulus of the determinant simply con-

Besides, from Eq(4.12) it is finally clear what the role is tributes to the sign of the prefactor of the dominant contri-
of the modulus in the calculation: takirjget?| is equiva-  bution, since at fixed energy all the other terms are vanishing
lent to taking the absolute value of the prefactags thus  in the thermodynamic limit. Therefore, when such a structure
preventing us from obtaining a trivial result. Yet at fixed of the stationary points is present, it is clear that the naive
energy E<E;,, one of the terms eXpl2(E)] is always calculations which do not discriminate among minima,
strictly greater than all the others, and therefore in the limitsaddles, etc., and which disregard the modulus are, notwith-
N— oo the signs of the prefactoeg have no influence on the standing this, consisteft8
final result. As we have said, this dominant term turns out to  We stress that it is crucial to keep the energy fixed in the
be the one wittk=0, which gives exactly the contribution of calculation, but more important is the fact that all the com-
the minima. _ _ . plexities are different, so that only one of them survives in

We note that it should be possible to show tBatis  the limit N—c. This becomes clear whe is equal to the
related to the number of saddles with aegative eigenvalue threshold energi,,: here all theS,’s are equal and a trivial
directly from Eq.(2.14). If we keepn finite, this integral is (oIt is recovered.
equivalent to(det)". Taking the saddle-point solutiof, From a technical point of view, we note that the use of a
and appropriately computing the Gaussian fluctuationg,osonic representation for the determinant and the conse-
around it it should be possible to single out a factory, ent replica approach introduces a degree of arbitrariness in
(1) related to the sign of the determinant. Unfortunately,ihe choice of the saddle-point solutions which makes it pos-
we d!d not succeed in performing this quite complex COM-siple to extract the contributions of different classes of sta-
putation. . . - tionary points.

. From Fig. 1 we see that there IS a minimum energy den- The results stated above give us a rigorous way to analyze
sity Eq below which no saddles with finite complexity are y,o penavior of the Hessian spectrum. This turns out to be
found. Therefore, when considering a state with energy dersaicjarly interesting for the description of the dynamical

ag?r;msition which occurs in this kind of model. At high tem-

. . ) rature equilibrium is given by the ergodic paramagnetic
of the system. In Re_f. 13 a potential funcnqn has b.een INtO%tate. This phase corresponds to a Hessian spectrum which
duced, whose minima are by construction equivalent 14,5 5 nonvanishing contribution in the negative semiaxis, so

metastaple or equilibrium states .Of the ;ystem. W'th thISthat many escape directiofisegative eigenvalug®xist. At
method it has therefore been possible to give an estimate f%e dynamical transition temperatufg,, equilibrium is

t_he bar_riers separating two statédt turns out that this es- given by threshold TAP solutiorfst®1°As we have shown,

timate is fully consistent with the result of the present work.at the threshold energy all the complexit®g coincide(see

Fig. 1), so that the free-energy landscape at the transition is

strictly related to the point where the complexities of all the
The main result of this paper concerns the organization oflifferent TAP stationary points bifurcate. Here the Hessian

the stationary points of the TAP free energy in thespin  spectrum exits the negative semiaxis and has a completely

V. CONCLUSIONS
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positive support, so that escape directions become exponen- To conclude, it would be intriguing to describe the glassy

tially hard to find, while minima dominate the landscape: thetransition also in structural glasses simply in terms of the

system is trapped and a dramatic slowing down of the dyevolution of the Hessian spectrum, by means of an analysis
namics occurs. similar to the one we have performed here.
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