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Derivation of the proper basis of quasicrystals
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A method based on the physical space Pattefgair correlation function is derived which allows the
determination of the correct-D Bravais lattice of quasicrystal§Hereafter, we will abbreviata-D for n
dimensional. We will also calperpendicular spacéhe (n—3)-D orthogonal space that is added to physical
3D space to form th@-D embedding spackThe optimum unit cell can be chosen and therefore the proper
indexing of the diffraction pattern. The size of the integrated maxima of the Patterson function depends on their
multiplicity and on their perpendicular space component. Lifting the positions of these maxinmangpace
allows the set of “quasilattice” vectors to be distinguished from the set of decoration vectors. This procedure
leads to a uniqua-D lattice. Taking advantage of scaling symmetries, the best choice ofihenit cell can
be found. A detailed analysis of the decoration vectors reveals all possible positions of the hyperatoms therein.
This powerful technique is illustrated on simulated data of a decorated Fibonacci chain and on experimental
data of decagonal A Mn,s Pd;5 quasicrystals|S0163-18208)02918-X]

[. INTRODUCTION Several methods for indexing the diffraction patterns of
quasicrystals have been develogeti Most of them simply
Within the past 13 years structure analysis of quasicrystry to index strong diffraction spots with the lowest possible
tals has been improved drastically and many average strutadexes. However, they all suffer from the problem of self-
tures have been solvédHowever, up to now none of the similarity (scaling symmetry of the Bragg peak positions
existing structure solutions achieved the standards of corwhich is a common feature for diffraction patterns of quasi-
ventional crystal structure determination. The reason is thatrystals. This is especially a problem in the case of
quasicrystals are not periodic and they need to be describesliperstructuré$ where in reciprocal space the safhenod-
in ann-D space (6> 3) to obtain periodicity[In the case of ule describes the Bragg peak positions. In fact, in contrast to
guasicrystals the noncrystallographic symmetry group is no8D crystallography, the diffraction patterns of sub- and su-
compatible with lattice periodicity in 3D space. However, it perstructures do not differ in the position of peaks but only in
is possible to recover lattice periodicity inraD space i their intensity distribution. This constitutes a new problem
>3) of which physical 3D space must be an invariant subthat is not fully solvable based on a reciprocal space analysis
space] only. Lanmn et al,*® have shown that misindexing the dif-
This has severe effects on the following steps of structurdraction pattern, i.e., choosing a wrong unit cell, leads to bad
determination. The first step is the indexing of all Braggpartitioned atomic surfaces and a severely averaged structure
peaks. For conventional crystals this step is straightforwardh real space. To stress the problem it has to be recalled that
and unambiguous while for quasicrystals it is not. The secfor quasiperiodic structures Bragg peaks can be considered
ond is the reconstruction of the phases of the structure anas projections onto reciprocal physical space ohab re-
plitudes and here the difficulty is comparable. In the lastciprocal lattice. Although the intensity distribution allows
step, the three-dimension@D) structure and the atomic co- only a finite subset to be observable, Bragg peaks are a dense
ordinates have to be found. For ordinary crystals this is donset in reciprocal physical space. For this reason as well as for
by a simple Fourier transform while quasicrystals require ahe self-similarity, in physical reciprocal space scaling con-
complex procedure to derive the atomic surfacesnid stitutes a symmetry group whose elements are the scaling
space.[In the n-D description the atoms becomgper  factorso”, neZ, where, e.g., in decagonal or icosahedral
atoms. These are thought as the convolution of atomic physijuasicrystalsr is a given power of thgolden meanr= (1
cal space electron densities with a density function defined- \5)/2. In direct physical space the existance of smallest
on (n—3)-D surfaces(atomic surfacesparallel to perpen- interatomic distance§.e., of a smallest physical scale, the
dicular space and invariant under the space-group symmetatomic scalgbreaks this symmetry. The information on both
operations|. the smallest interatomic distance as well as the smallest
Most research has been focused on the second part. Setguasilattice” vectors (unit tiles will be included in the
eral powerful structure solution techniques as well as refineelectron pair correlation function of the structure. This func-
ment programs have been developetAll promising tech-  tion is just the Fourier transform of the scattered x-ray inten-
niques use ther-D embedding approaéfi to recover the sity and crystallographers usually call it the Patterson func-
phases. Up to now no unigue method for choosingrtdiz  tion.
unit cell could be derived. The aim of this contribution is to It will be shown how the different multiplicities of inter-
present a method that allows theD Bravais lattice to be atomic decoration vectors and quasilattice vectors allow the
determined unambiguously and an optimum basis to be chdatter ones to be separated and thE lattice to be assigned
sen. uniquely. Consequently the Bravais lattice can be determined
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within the chosen embeddin@e., within the invariant sub- consider the family of equal hypervectdtattice hypervec-
space structure connected to the point gjo@ased on scal- tors) centered at the origin and in every lattice node. Here we
ing symmetry one can select the optimum setting of the unihave the highest Patterson densities with global maxima in
cell, and therefrom the proper indexing in reciprocal spacehe center. Hence the 3D physical Patterson function will
can be determined. Finally, based on th® space group, have only one global maximurtat the origin while the
all possible centers of the hyperatoms can be deternfined:translation equivalent” peaks show different decays de-

The technique will be demonstrated on a simulated Fi'pending on the Center-to-cutpoiﬁ{ié distance. The same

bonacci chain with superstructuas for superstructures in- gecay holds for peaks corresponding to the remaifiiiego-
dexing is most effectively troublesortfgand on real data of ration) hypervectors.

a decagonal quasicrystal. On the other side, if we consider a large number of peaks
we will have a sampling of the Patterson density on the
Il. BASIC CONCEPTS hypervectors on a large number of poiniste. Conse-

guently, plotting the integrated maxima of the 3D Patterson
MRinction versus their perpendicular compondh{sféﬂ will
esult in a set of smooth branches describing the radial
atterson density on the different hypervectors. They will be
rseparated by a gap according to the respective multiplicities.
" . ) . ) The topmost branctthe branch containing the global Patter-
d;, ... d; is not unique. Different choices can result also son maximumis assigned to the lattice hypervectors of the
in different lattice parameters; , . .. @ in physical recip- n-D Patterson map. So weearly identifya set of lattice
rocal space. This is the reason for the well-known scalingnodes. Based on this subset of Patterson maxima the embed-
symmetry concerning diffraction patterns of quasicrystalsding matrix as well as th@-D metrics is derived. We call
While the projected reciprocal lattice is a dense set in physithe embedding matrix the matrix transforming the vector

Quasicrystals can be described with few parameters usi
then-D embedding methot® Within this approach thd-D
(d<n) reciprocal space is considered to be a projection o
an n-D lattice. Given a primitive lattice im-D reciprocal

cal space, a smallest distance and a “finest” tiling exist incomponents from th@-D lattice basisd,, ... d, (usually
direct space. So the scaling symmetry is only a semigroupalledD basi$ to another basis\( basig, which is obtained
based on a set of smallest unit tiles. as an extension to the-D space of a canonicdCartesiah

The Patterson function is the inverse Fourier transform oframe in physical space. Depending on the geometry the
the scattered intensity. Provided that all observable Braggnost convenient setting of th@D unit cell can be chosen
peaks are included in the calculation, this function is totallybetween the scaling equivalent ones. The optimum choice is
independent from indexingn fact, reciprocal space coordi- the one with the perpendicular space projection of rikig
nates appear only as integration variables in the Fouriennit cell enveloping the origin peak. Hence, all Bragg reflec-
transform. tions can be(re)indexed andn-D Patterson deconvolution

The Patterson function shows a peak for any interatomigechniques may be applied to locate all positions of the hy-
vector in the structure weighted by its multiplicity and the peratoms in thea-D unit cell.
product of the corresponding atomic cross sections. In ordi-
nary crystals a family of equal Patterson peaks, which have
the highest multiplicity and consequently are an infinite set Il DECORATED ONE-DIMENSIONAL TILINGS

of global maxima, is found at the origin and at any other  rpiq section deals with a simple 1D quasiperiodic struc-
lattice node. This allows the lattice to be easily identified. e gerived by decorating a Fibonacci chain. The decoration
In quasiperiodic structures, however, the situation is dif-gpstrcture is obtained by applying once the substitution
ferer_1t. In then-D descrlpt_lon the Patterson function can_bg rule (Ref. 13 L—LLSL andS— SL Son the Fibonacci chain
obtained as the convo_lutlon of_ all thg hyperatoms. So it i nd rescaling the lattice parameter by a facter2= 72+ 1.
repre_sented by a density function defined on_the convolute The Fibonacci chain can be embedded in 2D space. The
atomic surfaceghereafterhypervectors Atomic surfaces qin ig an irrational cut of a 2D square lattice with physical

are parallel to perpendicular space and consequently th@pace. The hyperatoms have the shape of segments perpen-
holds for hypervectors as well. The Patterson density on jqjar to the cut. The cut axis and the perpendicular direc-

hypzrvector .hﬁs its ma_xmg_m In thef centehr and shov;sr]a liNfion form a Cartesian frame. With respect to the associated
ear decay with increasing distance from the center. Physical,,onicq| basis the lattice is spanned by the vectors
space intersects some of the hypervectors. Let us take a hy-

pervector. On any selected embedding basis allowed by the
space group, tha-D coordinates of its center will be found a

to befC=AH

T

()

c l

1 a
fe®fc. Suppose it intersects physical space, the 4 c2yc?r —CT>’ =214
intersection point will bef,=fgea@. In physical space we
will find a Patterson peak centeredidt, whose height will Wherec is an arbitrary factor for perpendicular spabere-
be given by the Patterson density on the hypervector evaliafterc=1) anda/ (\/m'). is the lattice parameter. This set-
ated at the distance vectefit from the center. All Patter- ting defines the embedding matrix
son peaks can be thought of in the same way. The vectors
—ié will always be different, due to the irrational slope of T— 1 1 7) @
the crystal basis with respect to physical space. In particular, 247\ -7 1)’
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(a) (b)

FIG. 1. (a) The embedding 2D latticéull lines) and the decoration sublatti¢dotted lineg are shown. The horizontal and vertical axes
are the parallel and perpendicular spaces, respectively. The hyperatoms are shown as vertiballhersorresponding Patterson function
is shown. The contour lines show the decay of the hypervectors.

i.e., the vector components transformation from {te,d,} indexing the diffraction pattern. The scattered intenmq}‘)
basis to the canonical one. For the decorated chain the 2ldas sampled on a convenient gridqﬂ (the transferred mo-
lattice contains five hyperatoms per unit cell which are re-mentum wave vectdvalues. The inverse Fourier transform
lated to a sublattic¢Figs. Xa) and Xb)] which can be ob- was calculated by numerical integration on this grid.
tained from the main lattice by the transformation matrix

I

. 1( 3 —1) 100% :
M 5l 1 5] 3

The simulation of a diffraction experiment yields a dif-
fraction pattern comparable with the one obtained from a not
decorated Fibonacci chaifrig. 2). Considering only the ge-
ometry of the diffraction pattern, i.e., the positions of the
Bragg peaks, the two systems are not distinguishable. How-
ever, the scattered intensity distribution is quite different.
The decorated chain shows a large number of weak and me-
dium Bragg reflections.

For our simulation, we assumed realistic experimental
conditions as given for a standard four-circle diffractometer
(dynamical range of the detector ®)0giving 1311 observ-

able unique reflections. For comparison with previous

results!® a data set with an intensity cutoff at 6% of the oz Il JL """""" [ 1

strongest peakdynamical range less than 4 @ith only 12 OO ol UL, "' '2
h

observable reflectionswas used as well. The results are
completely equivalent, in spite of the severe truncation ef- gig. 2. Simulated diffraction pattern of the decorated Fibonacci
fects which do not affect the effectiveness of this techniquegnain assuming experimental conditions comparable with the four-

In a first step the 1D Patterson functiéxfr!l) was calcu-  circle diffractometer at the beamline D3 HASYLA®Ref. 19. The
lated (Fig. 3). The superscripl] identifies the(single) physi-  units for the horizontal axis are &. The cutoff threshold for the
cal space coordinate. The calculation was performed withoutecond simulatiortRef. 13 is shown.
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FIG. 3. A section of the Patterson map resulting from our simu-
lation of the decorated Fibonacci chain. In this simulation we sup- FIG. 4. Plot of the integrated Patterson maxima versus the per-
pose a dynamical range of &@or intensity measures resulting in pendicular space component of the centefihgiodule. The top-
1311 observable reflections. On top of the picture the upper line ofost branch(asterisks is easily identified. A complete separation

segments marks the points of the lattitenodule, the lower line  from the othergdiamond$ can be made by the analysis of coinci-
the points of the decoratidh module. dence between the lattice and decorattomodules or exploiting

the results of the lifting.

After this, all maxima ofP(r”) were located and inte-
grated. Given the quasiperiodicity of the structure, all theto perform this tasR.At the end we have a unit cell deco-
Patterson peaks are bound to stay on one or more conveated with one or more hypervectors. In our case the decora-
niently scaled Fibonacci chains, depending on the decoraion forms a sublattice so we could match all Patterson peaks
tion. In our case, as the decoration could be referred to aith one Z module. This results in lifting in the sublattice
sublattice in the 2D embedding space, only one chain waanit cell containing only one hypervector in the origin. If this
sufficient. This chain can be described witt¥.anodule of  sublattice was assumed as the proper lattice, the structure
rank two. If we denote Witthl (gkl) the physical(per-  would be roughly averaged. .
pendiculay space projections ofl, the elements of thig As a further step now we can plot the integrated Patterson
module areg”=aa”(nlgg+nzg!), with ny,n,eZ and the pegk vaIues'versus the respective perpendlcula( components.

. Lo o n This plot (Fig. 4) shows several branches which can be

complementa-lryz mOdP'e will beg. ._a‘f (ma + ). clearly distinguished from each other. Based on concepts de-
[A Z module is dense in space so it is necessary to bound th&eq in sec. II, all(and only the maxima belonging to the
norm of the complementary module, restricting tor{1,n)  topmost branch are to be considered quasilattice péaks
couples such thdtu*||<A for a conveniently large.] o'l belonging to lattice hypervectars
ando™* are a convenient couple of scaling factors. The first The process of centering the peaks with tha@odule was
module is easily graphically matched with the existingrepeated but now only on these quasilattice peaks, acting on
Patterson map peakby adjusting the value of the product the scaling factors couplesa{,o"). Consequently, the
aoll, at this pointa is supposed unknownTaking advantage proper embedding lattice was found. Due to the multiplicities
of the self-similarity ofZ modules a small number of trials is of the “translation vectors” in physical space, one of the
sufficient. In the case the decoration was not related to 8trongest Patterson peaks can be assigned to the edge length
sublattice, so matching all peaks with the safhenodule  of an arbitrarily shaped unit tile. This will lead to the proper
would not be possible. In this case, however, it is alwaydattice parametea. [These couples are not completely arbi-
possible to match at least a subset of the Patterson peaks, t&ry. In fact, a couplec(-”,ai) defines a new lattice and the
the subset corresponding to the lattice hypervectors. ThgansformationM ~* between the old and new lattices. Self-
greater peak heights often allow this subset to be detectesimilarity in physical space requires the new lattice to cover
visually. completely the old one or vice versa. Further restrictions in

The next step idifting all peak positions_JH into the first  higher dimensional cases come from the necessity to pre-
unit cell, defined as’={x;d;+x,d,|0<x;,X,<1} in 2D  serve the invariant subspace structure induced by the space
embedding space. This is easier and numerically conveniegiroup. Hence the allowed couples form a discreteunt-
for peaks which could be formerly matched by anodule as  able set and can be easily calculated. Then it is easy to
they can be immediately related to their respective hyperveddentify the scaling couple such that only quasilattice peaks
tor center via 2D construction. Anyhow, it is always possibleare matched.The lifting of all peaks after setting this new
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FIG. 6. A detail of the xy0) Patterson map section of
Al-Mn-Pd. On this scale the unit length corresponds to 3.851 A.
Iolol : '0‘2' : '0'4' : ‘0'6' : ‘0'8' Levels of 6 and 37% of the origin peak height are contoured. As-

: ' : AU terisks mark the points of thé module (). It can be noticed that it

. . ) . is not possible to center every peak wittY. anodule point. One of
FIG. 5. Plot of the lifted Patterson maxima. The maxima lifted (a5 peaks is marked with an arrow.

onto the hyperatom in the origifsquaresare in a one-to-one cor-
respondence with the topmost branch(Bfg. 4). The othergdia- i o I
monds all belong only to the lower branches. This enforces theSPace. They are the direct sum of these projectidps,a,

distinction between lattice translation vectors and decoration vec® gki . With the physical space projectiog% we can build a
tors. 7 moduleu=3¢_,nad, nceZ Itis useful(see Sec. llito

basis shows the unit cell with the proper hypervector at theseleCt only the pointal’ whose associated perpendicular

L yles4 U ;
origin and four different decoration hypervectoiBig. 5  SP3¢€ normju™], u" =Xi_;nig, , is less than the maximum
centered at the points (0,0§(2,1), £(1,3), £(3,4), £(4,2), perpend|cular space extension of th(.e' hyperatoms. The re-
which can be easily assigned to the atomic positiffig. strictedZ module forms a pentagonal tiling in physical space

1(a)]. For comparison the 2D Patterson map is also reporte@d COvers every quasilattice node without being dense.
[Fig. 1(b)]. In analogy with most decagonal quasicrystals the hypera-

tom centers are bound to stay on the positigpsq(z,s,s.3).

for g=0, ... 4, in the 4Dunit cell. Adding the fivec, trans-

lations to each lattice point we obtain a sublattfoeith a
This technique has been already tested on real diffractiofive times smaller cell volume. It is obtained applying to the

data obtained from several different decagonal crystals, aformer lattice the linear transformation

ways with equivalent results. We have chosen decagonal

IV. DECAGONAL QUASICRYSTALS

Al Mnys Pdi; among these, and in this section we will 2 -1 -4 =2
present the concrete application of our technique on diffrac- 1l 2 4 1 -2
tion data of this alloy. The data have been collected at the M~ 1=— . 4
synchrotron source HASYLAB. From the analysis of the dif- 5 2 4 6 3

fraction pattern as well as the Bijvoet differend&she crys- -3 -1 1 3

tal has been attributed the space gr&0s/mmg and the

Bragg reflexions have been initially indexed following the From this sublattice we can also obtain a new restriéted

usual methods within a 5D embedditiyFrom these data, module, which results in it being identical to the former ex-

various large scale Patterson map sectien200 Ax200 A) ~ cept for a 18 rotation and a scaling factor of (1

orthogonal to the decagonal axis have been calculated.  + 7)/(V2+7) (see Sec. l)l This can also be described in
For the sake of simplicity, the physical coordinatéthe terms of a subtiling® These two systems will be specified

decagonal axjswill be ignored in the following, as we focus with (I) and (1), respectively.

on perpendicular planar sections. So our superspace is now In the first part of our research we have been superimpos-

reduced to four dimensions, while the physical space is 20ng the twoZ modules on the Patterson map sections. We

and the two added dimensions form the perpendicular spacebserved three features. Fir@tig. 6), the points of theZ

The hyperlattice basir D basig vectorsd,, k=1, ...4, module () center many of the local maxima of the map but

have nonzero projections in both physical and perpendiculanot all of them This holds true also when applying any scal-
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FIG. 7. Same as Fig. 6, but now asterisks mark the points of the \M"*- K'*«a.
7 module (1). In this case, in contrast, every peak is centered by 0 ""'”"""‘-»m...::&.%
the Z module. ;
ing factor 7". In particular, the peaks corresponding to the o b b b by b

nearest-neighbor Al-TM distance are not centered. This tells
us that the latticel() is not the decoration sublattice. In this
case every Patterson peak would be centered.

The natural progression was to try themodule (1). In
this caseevery Patterson peak is centergBig. 7). This
holds true in any of the constamtlayers. This confirms that

0.0 0.2 0.4 0.6 0.8 1.0

el

FIG. 9. The integrated peak valugrtical axis, % of the origi-

nal peak heightof the z=0 Patterson map section are plotted as a
function of their perpendicular space distance from physical space
(horizontal axis, arbitrary scaleThe subdivision in three branches

also for this crystal the decoration constitutes a sublattice angd qigent.

that this sublattice is just latticdl().
The third curious feature we observgg. 8 was that, at

visual inspection, every Patterson peak higher than 25% of

the original peak could be indexed with a thirdmodule

12 X X . Lo
| X ) ) LI .~ * ; i (111) obtained from () by multiplying the vectors:_a“l< by 73
x CoX o S X X andglkL by — 7~ 3. This is equivalent to applying to the 4D
* x x % ) o Y ¥ x coordinates ) basis the (S;,)° transformation, wher&,, is
L r D . the matriXx’ representing the operation of scaling byin
L T . S physical spacéand by — 1/7 in perpendicular spageln the
< x Cox X x x * x following we will refer to this operation simply asscaling.
x o x X ¥ x To substantiate this visual impression, we decided to plot
* LT -, " the integrated peak values versus the relevant perpendicular
X X X X . .
Lo “ X X space normju®|. This was done for every peak using the
« X x x Dox module (1) and then transforming back into the setting. (
) "k . * N S B This resulted in a neatly three-branched plBig. 9. The
L X " U T peaks belonging to the topmost branch were those and only
XX X VL those which were centered by th& module (I1). The
x x " x x x branches can be interpreted as the radial decay of the Patter-
) . ¥ x . " § ) " x . son function on each different hypervector for increasing ra-
: . S R X dius. The shape of the curves is smoothed by series trunca-
L . X . X tion effects. As the Patterson function for lattice
0 )

0

X

12

hypervectors must be higher than for decoration hypervec-
tors, lattice (1) is assigned to the actual lattice. It is con-

FIG. 8. A larger detail of thexy0) Patterson map section. Dark nected to lattice I) by 7° scaling. Hence the two descrip-
gray areas indicate values over 25% of the origin peak height. ThéOns are not equVa|ent If we scale the actual lattice by some
crosses mark the points of tiiemodule (11). The correspondence powers of7* (72 for the Patterson density and centrosym-
is almost one-to-one.

metric structure¥), we obtain a completely equivalent de-
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FIG. 11. Same as in Figs. @ and 1Q@b) but now the lifting is
1TFET 7 performed in systeml{). This system is equivalent to system
X, & (111, just the general description is simplified here because the

hypervectors do not exceed very much the cell bound4sied as
the hypeatomsare roughly half this size, they will not exceed it at
all).

scription. Scaling by implies a permutation of the hypera-
toms on thec, positions. This can influence the partitioning
of the atomic surfaces.

Finally, to enforce our conclusions, we show the results of
lifting the Patterson peaks into the hyperunit ¢€ligs. 1Ga)
and 1@b)]. The lifting was performed in thel() system
using then the appropriafe-basis transformation to pass to
the (1) or (lll) system. Peaks belonging to different
branches could be easily marked and followed in the lifting
process. It results th&h) the peaks belonging to the topmost
branch are always lifted into the hypervector at the origin of
the cell, enforcing the conclusion that they belong to the
lattice translation setfb) the remaining two branches are
brought, respectively, into the, ¢, and into thec,, ¢c; po-
sitions on the main body diagonal. This correspondence is
inverted in systemsl|j and (l1). Lifting in system (1)
trivially brings every peak into the origin.

A fourth system was introduce@Fig. 11) for practical
, . ) ) purposes. System ) is scaled byr~ 4 with respect to sys-
_ FIG. 10.(a Lifted plot in the 4D unit cell (). The section plane oy (11, |t is completely equivalent and has the advantage
IS (x,00,0) in the usual 5Ix;,X,, .. . X5 notation for the coordi- according to the shape of thi/{) cell, the hyperatoms
nates in the Can.on'cal basis, wheeg=x, x,=Y, Xs=2 (here ig- lay mostly inside. Therefore the necessity of recomposing
nored span physical space amg, x5 span the perpendicular space. . . L.
The main body diagonal of the cell is also plotted. The lifted peakspa.wtS of hyperatoms coming from different Ce”S. can be mini-

mized. Consequently, the unit cell of systelw] is allowed

form five hypervectors centered on the fifths of the diagonal. ; . .
Squares mark peaks belonging to the topmost brancfigf 9). As and can be considered to be the optimum cell setting. Based

expected they are all on the origin hypervector. Crosses and did" this unit cell the diffraction pattern could be reindexed.
monds mark the lowest and the middle branch peaks, respectively.

Each branch corresponds to a centrosymmetric pair of decoration V. DISCUSSION

hypervectors(b) Same as ifa) but now the lifting is performed in

system (I1). The remarkable difference with the former plot is the It was our aim to show how the ambiguities in indexing
interchange between the decoration hypervector pairs. quasicrystal diffraction patterns, which arise from the self-

|
(b) -8

A
[
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similarity betweenr scaled projected latticeftilings), as  ding matrix which can be obtained in different ways. If the
well as with the projected decoration sublattiseibtiling),  diffraction pattern has been completely indexed with the
can be overcome by a careful inspection of the intensity disusual methods the related embedding matrix can be used for
tribution of the Patterson peaks. The method is based on tH#ting. In the opposite case one can use any suitable embed-
property of the Patterson function of being constituted of ading matrix between the ones compatible with the symmetry-
set of sharp peaks corresponding to the interatomic vectorg)duced invariant subspaces decomposition. Subsequently
which holds for periodic and quasiperiodic structures as wellthe plot of the radial profiles of the hypervectors will always
Among them it is always possible to isolate a subset which j&/low any “trial” embedding to be checked and eventually
positioned or{quasjlattice nodes and is characterized by theporrectgd. If the quality of the data set is sulfficiently good it
highest peak value distribution. This family cafwaysbe IS possible to detect correctly substructures as well as super-

matched in physical direct space with a suitédmodule, ~ Structures. _ o -
which allows us to lift the quasilattice peaks into theD The third and most important point is the possibility of

embedding space leading to a unique Bravais lattice. nggiding at all the fi_rst trial Bragg.peaks indexing. The only
would remark here an important feature of this techniqueSt”Ct requirements is the necessity to collect all observable

which is insensitive inside very broad limits to series trunca—Bragg peaks. With a four-circle diffractometer this may not

tion errors. On one side, these errors will modify the shape oPe ,pOSS'ble as the data colleg‘glon process relies on a good
the branches but the possibility of separation will not peestimate of possible peak positions. State-of-the-art area de-

affected. On the other side, the presence of a large amount ctors allow, instead, all Bragg _peaks to be found and to be
ripple will not hinder the procedure. It can always be Sepa_ocated on any laboratory coordinate system. Based on these
rated after lifting the maxima. There could only be the ne_data a _Patterson map can be always calcullated. It has already
cessity of a more sophisticated technique for locating andeen discussed how the p_roblem qf centering at least a subset
lifting the peaks with or without a matching module as of the. Patterson peaks W'th a suitablemodule, andfor to
discussed later. Moreover, even the presence of higﬁssouate every peak with the relevant hypervector, can be

amounts of structural disorder and related high backgrounmanag?d' Once these steps' have beerj accomplished we can
has no serious consequences. Most Bragg peaks will remagsart with our procedure to find the Iat'glce. Al thes_e proce-
observable and they contain all the information on the averdures presently appear complex and time consuming as de-

age (ordered structure. Hence this technique can be effec_termmed by the available computer power. The advantages

tively employed to detect the average structure are the possibility of a more effective application of area

We will try to focus here on two topics to underline the detectors and also to always collect the most complete Bragg

significance of the proposed technique and the directions dfflection set,'mclut_mng'also satellite reflections or any Bragg
eak whose indexing is troublesome, and then possibly to

further developments. The first point is that the discussior? . X . .
has been limited to the important ca&ep to now the only extract the related information which would otherwise be
case verified in our testsn which the decoration hypervec- lost.
tor centers are part of a sublattice. This gives us the possi-
bility of indexing everyPatterson peak with the same deco-
rationZ module. They can be lifted globally in a very simple  Using all observable Bragg peaks the Patterson function
and numerically convenient way. The radial profiles of thecan be calculated. Embedding all peaks of the Patterson
Patterson hypervectors can be compared and the con@ct  function in any suitable basis allowed by timeD space
lattice is eventually detected. When the set of all decoratiogroup, the integrated peaks can be plotted versus their per-
hypervector centers do not form a sublattice this techniqu@endicular space components. We have shown that the lattice
can be applied as well. It is now, obviously, no longer pos-peaks belong to the topmost branch showing a gap in the
sible to index every Patterson peak with the satmaodule.  decoration peaks. Based on this diagramrike lattice of a

If Patterson maps can be calculated with sufficient accuracydecorated Fibonacci chain as well as the quasilattice of de-
however, it is always possible at least to index the “quasi-cagonal A}ygMn;sPdi3 could be easily derived. This
lattice” peaks. Besides, peaks can be found and integrateghethod also holds for all possible lattice arrangements even
independently of a matching module. Peak positions can as sub- or superlattices. Using state-of-the-art area detectors
also be lifted in the original unit cell without referring toZa  this method may also be suitable as arpriori indexing
module. Lifting only requires the knowledge of an embed-procedure.
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