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Derivation of the proper basis of quasicrystals
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A method based on the physical space Patterson~pair correlation! function is derived which allows the
determination of the correctn-D Bravais lattice of quasicrystals.@Hereafter, we will abbreviaten-D for n
dimensional. We will also callperpendicular spacethe (n23)-D orthogonal space that is added to physical
3D space to form then-D embedding space.# The optimum unit cell can be chosen and therefore the proper
indexing of the diffraction pattern. The size of the integrated maxima of the Patterson function depends on their
multiplicity and on their perpendicular space component. Lifting the positions of these maxima inton-D space
allows the set of ‘‘quasilattice’’ vectors to be distinguished from the set of decoration vectors. This procedure
leads to a uniquen-D lattice. Taking advantage of scaling symmetries, the best choice of then-D unit cell can
be found. A detailed analysis of the decoration vectors reveals all possible positions of the hyperatoms therein.
This powerful technique is illustrated on simulated data of a decorated Fibonacci chain and on experimental
data of decagonal Al70.5Mn16.5Pd13 quasicrystals.@S0163-1829~98!02918-X#
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I. INTRODUCTION

Within the past 13 years structure analysis of quasicr
tals has been improved drastically and many average s
tures have been solved.1 However, up to now none of the
existing structure solutions achieved the standards of c
ventional crystal structure determination. The reason is
quasicrystals are not periodic and they need to be descr
in ann-D space (n.3) to obtain periodicity.@In the case of
quasicrystals the noncrystallographic symmetry group is
compatible with lattice periodicity in 3D space. However,
is possible to recover lattice periodicity in an-D space (n
.3) of which physical 3D space must be an invariant s
space.#

This has severe effects on the following steps of struct
determination. The first step is the indexing of all Bra
peaks. For conventional crystals this step is straightforw
and unambiguous while for quasicrystals it is not. The s
ond is the reconstruction of the phases of the structure
plitudes and here the difficulty is comparable. In the l
step, the three-dimensional~3D! structure and the atomic co
ordinates have to be found. For ordinary crystals this is d
by a simple Fourier transform while quasicrystals requir
complex procedure to derive the atomic surfaces inn-D
space.@In the n-D description the atoms becomehyper-
atoms. These are thought as the convolution of atomic ph
cal space electron densities with a density function defi
on (n23)-D surfaces~atomic surfaces! parallel to perpen-
dicular space and invariant under the space-group symm
operations.#

Most research has been focused on the second part.
eral powerful structure solution techniques as well as refi
ment programs have been developed.2–6 All promising tech-
niques use then-D embedding approach7,8 to recover the
phases. Up to now no unique method for choosing then-D
unit cell could be derived. The aim of this contribution is
present a method that allows then-D Bravais lattice to be
determined unambiguously and an optimum basis to be c
sen.
570163-1829/98/57~18!/11223~9!/$15.00
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Several methods for indexing the diffraction patterns
quasicrystals have been developed.9–11 Most of them simply
try to index strong diffraction spots with the lowest possib
indexes. However, they all suffer from the problem of se
similarity ~scaling symmetry! of the Bragg peak positions
which is a common feature for diffraction patterns of qua
crystals. This is especially a problem in the case
superstructures12 where in reciprocal space the sameZ mod-
ule describes the Bragg peak positions. In fact, in contras
3D crystallography, the diffraction patterns of sub- and s
perstructures do not differ in the position of peaks but only
their intensity distribution. This constitutes a new proble
that is not fully solvable based on a reciprocal space anal
only. Lançon et al.,13 have shown that misindexing the di
fraction pattern, i.e., choosing a wrong unit cell, leads to b
partitioned atomic surfaces and a severely averaged struc
in real space. To stress the problem it has to be recalled
for quasiperiodic structures Bragg peaks can be consid
as projections onto reciprocal physical space of ann-D re-
ciprocal lattice. Although the intensity distribution allow
only a finite subset to be observable, Bragg peaks are a d
set in reciprocal physical space. For this reason as well as
the self-similarity, in physical reciprocal space scaling co
stitutes a symmetry group whose elements are the sca
factors sn, nPZ, where, e.g., in decagonal or icosahed
quasicrystalss is a given power of thegolden meant5(1
1A5)/2. In direct physical space the existance of small
interatomic distances~i.e., of a smallest physical scale, th
atomic scale! breaks this symmetry. The information on bo
the smallest interatomic distance as well as the sma
‘‘quasilattice’’ vectors ~unit tiles! will be included in the
electron pair correlation function of the structure. This fun
tion is just the Fourier transform of the scattered x-ray inte
sity and crystallographers usually call it the Patterson fu
tion.

It will be shown how the different multiplicities of inter
atomic decoration vectors and quasilattice vectors allow
latter ones to be separated and then-D lattice to be assigned
uniquely. Consequently the Bravais lattice can be determi
11 223 © 1998 The American Physical Society
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11 224 57A. CERVELLINO, T. HAIBACH, AND W. STEURER
within the chosen embedding~i.e., within the invariant sub-
space structure connected to the point group!. Based on scal-
ing symmetry one can select the optimum setting of the u
cell, and therefrom the proper indexing in reciprocal spa
can be determined. Finally, based on then-D space group,
all possible centers of the hyperatoms can be determin5

The technique will be demonstrated on a simulated
bonacci chain with superstructure~as for superstructures in
dexing is most effectively troublesome12! and on real data o
a decagonal quasicrystal.

II. BASIC CONCEPTS

Quasicrystals can be described with few parameters u
then-D embedding method.7,8 Within this approach thed-D
(d,n) reciprocal space is considered to be a projection
an n-D lattice. Given a primitive lattice inn-D reciprocal
space the choice of the unit cell and of the spanning vec
d1
* , . . . ,dn

* is not unique. Different choices can result al

in different lattice parametersa1
* , . . . ,an

* in physical recip-
rocal space. This is the reason for the well-known scal
symmetry concerning diffraction patterns of quasicrysta
While the projected reciprocal lattice is a dense set in ph
cal space, a smallest distance and a ‘‘finest’’ tiling exist
direct space. So the scaling symmetry is only a semigr
based on a set of smallest unit tiles.

The Patterson function is the inverse Fourier transform
the scattered intensity. Provided that all observable Br
peaks are included in the calculation, this function is tota
independent from indexing. In fact, reciprocal space coord
nates appear only as integration variables in the Fou
transform.

The Patterson function shows a peak for any interato
vector in the structure weighted by its multiplicity and th
product of the corresponding atomic cross sections. In o
nary crystals a family of equal Patterson peaks, which h
the highest multiplicity and consequently are an infinite
of global maxima, is found at the origin and at any oth
lattice node. This allows the lattice to be easily identified

In quasiperiodic structures, however, the situation is d
ferent. In then-D description the Patterson function can
obtained as the convolution of all the hyperatoms. So i
represented by a density function defined on the convolu
atomic surfaces~hereafterhypervectors!. Atomic surfaces
are parallel to perpendicular space and consequently
holds for hypervectors as well. The Patterson density o
hypervector has its maximum in the center and shows a
ear decay with increasing distance from the center. Phys
space intersects some of the hypervectors. Let us take a
pervector. On any selected embedding basis allowed by
space group, then-D coordinates of its center will be foun
to be r̂C5 r̂C

uu
% r̂C

' . Suppose it intersects physical space,

intersection point will ber̂ I5 r̂C
uu

% 0'. In physical space we

will find a Patterson peak centered atr̂C
uu , whose height will

be given by the Patterson density on the hypervector ev
ated at the distance vector2 r̂C

' from the center. All Patter-
son peaks can be thought of in the same way. The vect
2 r̂C

' will always be different, due to the irrational slope
the crystal basis with respect to physical space. In particu
it
e

d.
i-

ng

f

rs

g
.
i-

p

f
g

y

er

ic

i-
e
t
r

-

s
d

is
a
-
al
y-

he

e

u-

s

r,

consider the family of equal hypervectors~lattice hypervec-
tors! centered at the origin and in every lattice node. Here
have the highest Patterson densities with global maxima
the center. Hence the 3D physical Patterson function w
have only one global maximum~at the origin! while the
‘‘translation equivalent’’ peaks show different decays d
pending on the center-to-cutpoint2 r̂C

' distance. The same
decay holds for peaks corresponding to the remaining~deco-
ration! hypervectors.

On the other side, if we consider a large number of pe
we will have a sampling of the Patterson density on
hypervectors on a large number of points2 r̂C

' . Conse-
quently, plotting the integrated maxima of the 3D Patters
function versus their perpendicular componentsi2 r̂C

'i will
result in a set of smooth branches describing the ra
Patterson density on the different hypervectors. They will
separated by a gap according to the respective multiplicit
The topmost branch~the branch containing the global Patte
son maximum! is assigned to the lattice hypervectors of t
n-D Patterson map. So weclearly identify a set of lattice
nodes. Based on this subset of Patterson maxima the em
ding matrix as well as then-D metrics is derived. We cal
the embedding matrix the matrix transforming the vec
components from then-D lattice basisd1 , . . . ,dn ~usually
calledD basis! to another basis (V basis!, which is obtained
as an extension to then-D space of a canonical~Cartesian!
frame in physical space. Depending on the geometry
most convenient setting of then-D unit cell can be chosen
between the scaling equivalent ones. The optimum choic
the one with the perpendicular space projection of then-D
unit cell enveloping the origin peak. Hence, all Bragg refle
tions can be~re!indexed andn-D Patterson deconvolution
techniques may be applied to locate all positions of the
peratoms in then-D unit cell.

III. DECORATED ONE-DIMENSIONAL TILINGS

This section deals with a simple 1D quasiperiodic stru
ture derived by decorating a Fibonacci chain. The decora
substructure is obtained by applying once the substitu
rule ~Ref. 13! L→LLSL andS→SLSon the Fibonacci chain
and rescaling the lattice parameter by a factort125t211.

The Fibonacci chain can be embedded in 2D space.
chain is an irrational cut of a 2D square lattice with physic
space. The hyperatoms have the shape of segments pe
dicular to the cut. The cut axis and the perpendicular dir
tion form a Cartesian frame. With respect to the associa
canonical basis the lattice is spanned by the vectors

d15
a

11c21c2t
S 1

2ct D , d25
a

c2111t
S t

cD , ~1!

wherec is an arbitrary factor for perpendicular space~here-
afterc51) anda/(A21t) is the lattice parameter. This se
ting defines the embedding matrix

T5
1

21tS 1 t

2t 1D , ~2!
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57 11 225DERIVATION OF THE PROPER BASIS OF QUASICRYSTALS
FIG. 1. ~a! The embedding 2D lattice~full lines! and the decoration sublattice~dotted lines! are shown. The horizontal and vertical ax
are the parallel and perpendicular spaces, respectively. The hyperatoms are shown as vertical bars.~b! The corresponding Patterson functio
is shown. The contour lines show the decay of the hypervectors.
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i.e., the vector components transformation from the$d1 ,d2%
basis to the canonical one. For the decorated chain the
lattice contains five hyperatoms per unit cell which are
lated to a sublattice@Figs. 1~a! and 1~b!# which can be ob-
tained from the main lattice by the transformation matrix

M 215
1

5S 3 21

21 2D . ~3!

The simulation of a diffraction experiment yields a d
fraction pattern comparable with the one obtained from a
decorated Fibonacci chain~Fig. 2!. Considering only the ge
ometry of the diffraction pattern, i.e., the positions of t
Bragg peaks, the two systems are not distinguishable. H
ever, the scattered intensity distribution is quite differe
The decorated chain shows a large number of weak and
dium Bragg reflections.

For our simulation, we assumed realistic experimen
conditions as given for a standard four-circle diffractome
~dynamical range of the detector 106) giving 1311 observ-
able unique reflections. For comparison with previo
results,13 a data set with an intensity cutoff at 6% of th
strongest peak~dynamical range less than 102, with only 12
observable reflections! was used as well. The results a
completely equivalent, in spite of the severe truncation
fects which do not affect the effectiveness of this techniq

In a first step the 1D Patterson functionP(r uu) was calcu-
lated~Fig. 3!. The superscriptuu identifies the~single! physi-
cal space coordinate. The calculation was performed with
D
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.
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indexing the diffraction pattern. The scattered intensityI (quu)
was sampled on a convenient grid ofquu ~the transferred mo-
mentum wave vector! values. The inverse Fourier transfor
was calculated by numerical integration on this grid.

FIG. 2. Simulated diffraction pattern of the decorated Fibona
chain assuming experimental conditions comparable with the fo
circle diffractometer at the beamline D3 HASYLAB~Ref. 18!. The
units for the horizontal axis are Å21. The cutoff threshold for the
second simulation~Ref. 13! is shown.
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11 226 57A. CERVELLINO, T. HAIBACH, AND W. STEURER
After this, all maxima ofP(r uu) were located and inte
grated. Given the quasiperiodicity of the structure, all
Patterson peaks are bound to stay on one or more co
niently scaled Fibonacci chains, depending on the dec
tion. In our case, as the decoration could be referred t
sublattice in the 2D embedding space, only one chain
sufficient. This chain can be described with aZ module of
rank two. If we denote withak

uu (ak
') the physical ~per-

pendicular! space projections ofdk the elements of thisZ
module areuuu5as uu(n1a1

uu
1n2a2

uu), with n1 ,n2PZ and the

complementaryZ module will be u'5as'(n1a1
'

1n2a2
').

@A Z module is dense in space so it is necessary to bound
norm of the complementaryZ module, restricting to (n1,n2)
couples such thatiu'i,A for a conveniently largeA.# s uu

ands' are a convenient couple of scaling factors. The firsZ
module is easily graphically matched with the existi
Patterson map peaks~by adjusting the value of the produc
as uu, at this pointa is supposed unknown!. Taking advantage
of the self-similarity ofZ modules a small number of trials i
sufficient. In the case the decoration was not related t
sublattice, so matching all peaks with the sameZ module
would not be possible. In this case, however, it is alwa
possible to match at least a subset of the Patterson peak
the subset corresponding to the lattice hypervectors.
greater peak heights often allow this subset to be dete
visually.

The next step islifting all peak positionsuuu into the first
unit cell, defined asC[$x1d11x2d2u0<x1 ,x2,1% in 2D
embedding space. This is easier and numerically conven
for peaks which could be formerly matched by aZ module as
they can be immediately related to their respective hyperv
tor center via 2D construction. Anyhow, it is always possib

FIG. 3. A section of the Patterson map resulting from our sim
lation of the decorated Fibonacci chain. In this simulation we s
pose a dynamical range of 106 for intensity measures resulting i
1311 observable reflections. On top of the picture the upper lin
segments marks the points of the latticeZ module, the lower line
the points of the decorationZ module.
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to perform this task.5 At the end we have a unit cell deco
rated with one or more hypervectors. In our case the dec
tion forms a sublattice so we could match all Patterson pe
with one Z module. This results in lifting in the sublattic
unit cell containing only one hypervector in the origin. If th
sublattice was assumed as the proper lattice, the struc
would be roughly averaged.

As a further step now we can plot the integrated Patter
peak values versus the respective perpendicular compon
This plot ~Fig. 4! shows several branches which can
clearly distinguished from each other. Based on concepts
rived in Sec. II, all~and only! the maxima belonging to the
topmost branch are to be considered quasilattice peaks~or
belonging to lattice hypervectors!.

The process of centering the peaks with theZ module was
repeated but now only on these quasilattice peaks, actin
the scaling factors couples (s uu,s'). Consequently, the
proper embedding lattice was found. Due to the multiplicit
of the ‘‘translation vectors’’ in physical space, one of th
strongest Patterson peaks can be assigned to the edge l
of an arbitrarily shaped unit tile. This will lead to the prop
lattice parametera. @These couples are not completely arb
trary. In fact, a couple (s uu,s') defines a new lattice and th
transformationM 21 between the old and new lattices. Se
similarity in physical space requires the new lattice to co
completely the old one or vice versa. Further restrictions
higher dimensional cases come from the necessity to
serve the invariant subspace structure induced by the s
group. Hence the allowed couples form a discrete~count-
able! set and can be easily calculated. Then it is easy
identify the scaling couple such that only quasilattice pe
are matched.# The lifting of all peaks after setting this new

-
-

of

FIG. 4. Plot of the integrated Patterson maxima versus the
pendicular space component of the centeringZ module. The top-
most branch~asterisks! is easily identified. A complete separatio
from the others~diamonds! can be made by the analysis of coinc
dence between the lattice and decorationZ modules or exploiting
the results of the lifting.
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57 11 227DERIVATION OF THE PROPER BASIS OF QUASICRYSTALS
basis shows the unit cell with the proper hypervector at
origin and four different decoration hypervectors~Fig. 5!
centered at the points (0,0),1

5 (2,1), 1
5 (1,3), 1

5 (3,4), 1
5 (4,2),

which can be easily assigned to the atomic positions@Fig.
1~a!#. For comparison the 2D Patterson map is also repo
@Fig. 1~b!#.

IV. DECAGONAL QUASICRYSTALS

This technique has been already tested on real diffrac
data obtained from several different decagonal crystals,
ways with equivalent results. We have chosen decago
Al70.5Mn16.5Pd13 among these, and in this section we w
present the concrete application of our technique on diffr
tion data of this alloy. The data have been collected at
synchrotron source HASYLAB. From the analysis of the d
fraction pattern as well as the Bijvoet differences,14 the crys-
tal has been attributed the space groupP105 /mmc, and the
Bragg reflexions have been initially indexed following th
usual methods within a 5D embedding.15 From these data
various large scale Patterson map sections~;200 Å3200 Å!
orthogonal to the decagonal axis have been calculated.

For the sake of simplicity, thez physical coordinate~the
decagonal axis! will be ignored in the following, as we focu
on perpendicular planar sections. So our superspace is
reduced to four dimensions, while the physical space is
and the two added dimensions form the perpendicular sp
The hyperlattice basis~or D basis! vectorsdk , k51, . . . 4,
have nonzero projections in both physical and perpendic

FIG. 5. Plot of the lifted Patterson maxima. The maxima lift
onto the hyperatom in the origin~squares! are in a one-to-one cor
respondence with the topmost branch of~Fig. 4!. The others~dia-
monds! all belong only to the lower branches. This enforces
distinction between lattice translation vectors and decoration v
tors.
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space. They are the direct sum of these projections,dk5ak
uu

% ak
' . With the physical space projectionsak

uu we can build a

Z moduleuuu5(k51
4 nkak

uu , nkPZ. It is useful~see Sec. III! to

select only the pointsuuu whose associated perpendicul
space normiu'i , u'5(k51

4 nkak
' , is less than the maximum

perpendicular space extension of the hyperatoms. The
strictedZ module forms a pentagonal tiling in physical spa
and covers every quasilattice node without being dense.

In analogy with most decagonal quasicrystals the hype
tom centers are bound to stay on the positionscq5q~1

5,
1
5,

1
5,

1
5!,

for q50, . . . 4, in the 4Dunit cell. Adding the fivecq trans-
lations to each lattice point we obtain a sublattice16 with a
five times smaller cell volume. It is obtained applying to t
former lattice the linear transformation

M 215
1

5S 2 21 24 22

2 4 1 22

2 4 6 3

23 21 1 3

D . ~4!

From this sublattice we can also obtain a new restricteZ
module, which results in it being identical to the former e
cept for a 18o rotation and a scaling factor of (1
1t)/(A21t) ~see Sec. III!. This can also be described i
terms of a subtiling.15 These two systems will be specifie
with (I ) and (II ), respectively.

In the first part of our research we have been superimp
ing the twoZ modules on the Patterson map sections. W
observed three features. First~Fig. 6!, the points of theZ
module (I ) center many of the local maxima of the map b
not all of them. This holds true also when applying any sca

c-

FIG. 6. A detail of the (xy0) Patterson map section o
Al-Mn-Pd. On this scale the unit length corresponds to 3.851
Levels of 6 and 37% of the origin peak height are contoured.
terisks mark the points of theZ module (I ). It can be noticed that it
is not possible to center every peak with aZ module point. One of
these peaks is marked with an arrow.
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11 228 57A. CERVELLINO, T. HAIBACH, AND W. STEURER
ing factor tn. In particular, the peaks corresponding to t
nearest-neighbor Al-TM distance are not centered. This t
us that the lattice (I ) is not the decoration sublattice. In th
case every Patterson peak would be centered.

The natural progression was to try theZ module (II ). In
this caseevery Patterson peak is centered~Fig. 7!. This
holds true in any of the constant-z layers. This confirms tha
also for this crystal the decoration constitutes a sublattice
that this sublattice is just lattice (II ).

The third curious feature we observed~Fig. 8! was that, at

FIG. 7. Same as Fig. 6, but now asterisks mark the points of
Z module (II ). In this case, in contrast, every peak is centered
the Z module.

FIG. 8. A larger detail of the (xy0) Patterson map section. Dar
gray areas indicate values over 25% of the origin peak height.
crosses mark the points of theZ module (III ). The correspondence
is almost one-to-one.
ls

nd

visual inspection, every Patterson peak higher than 25%
the original peak could be indexed with a thirdZ module
(III ) obtained from (I ) by multiplying the vectorsak

i by t3

and ak
' by 2t23. This is equivalent to applying to the 4D

coordinates (D basis! the (S10)
3 transformation, whereS10 is

the matrix17 representing the operation of scaling byt in
physical space~and by21/t in perpendicular space!. In the
following we will refer to this operation simply ast scaling.

To substantiate this visual impression, we decided to p
the integrated peak values versus the relevant perpendic
space normiuCi . This was done for every peak using theZ
module (II ) and then transforming back into the setting (I ).
This resulted in a neatly three-branched plot~Fig. 9!. The
peaks belonging to the topmost branch were those and
those which were centered by theZ module (III ). The
branches can be interpreted as the radial decay of the Pa
son function on each different hypervector for increasing
dius. The shape of the curves is smoothed by series tru
tion effects. As the Patterson function for lattic
hypervectors must be higher than for decoration hyperv
tors, lattice (III ) is assigned to the actual lattice. It is co
nected to lattice (I ) by t3 scaling. Hence the two descrip
tions are not equivalent. If we scale the actual lattice by so
powers oft4 (t2 for the Patterson density and centrosym
metric structures17!, we obtain a completely equivalent de

e
y

e

FIG. 9. The integrated peak values~vertical axis, % of the origi-
nal peak height! of the z50 Patterson map section are plotted as
function of their perpendicular space distance from physical sp
~horizontal axis, arbitrary scale!. The subdivision in three branche
is evident.
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57 11 229DERIVATION OF THE PROPER BASIS OF QUASICRYSTALS
FIG. 10. ~a! Lifted plot in the 4D unit cell (I ). The section plane
is (x100x40) in the usual 5Dx1 ,x2 , . . .x5 notation for the coordi-
nates in the canonical basis, wherex15x, x25y, x35z ~here ig-
nored! span physical space andx4, x5 span the perpendicular spac
The main body diagonal of the cell is also plotted. The lifted pe
form five hypervectors centered on the fifths of the diagon
Squares mark peaks belonging to the topmost branch of~Fig. 9!. As
expected they are all on the origin hypervector. Crosses and
monds mark the lowest and the middle branch peaks, respecti
Each branch corresponds to a centrosymmetric pair of decora
hypervectors.~b! Same as in~a! but now the lifting is performed in
system (III ). The remarkable difference with the former plot is th
interchange between the decoration hypervector pairs.
scription. Scaling byt3 implies a permutation of the hypera
toms on thecq positions. This can influence the partitionin
of the atomic surfaces.

Finally, to enforce our conclusions, we show the results
lifting the Patterson peaks into the hyperunit cell@Figs. 10~a!
and 10~b!#. The lifting was performed in the (II ) system
using then the appropriateD-basis transformation to pass t
the (I ) or (III ) system. Peaks belonging to differe
branches could be easily marked and followed in the lifti
process. It results that~a! the peaks belonging to the topmo
branch are always lifted into the hypervector at the origin
the cell, enforcing the conclusion that they belong to t
lattice translation set;~b! the remaining two branches ar
brought, respectively, into thec1, c4 and into thec2, c3 po-
sitions on the main body diagonal. This correspondenc
inverted in systems (I ) and (III ). Lifting in system (II )
trivially brings every peak into the origin.

A fourth system was introduced~Fig. 11! for practical
purposes. System (IV) is scaled byt24 with respect to sys-
tem (III ). It is completely equivalent and has the advanta
that according to the shape of the (IV) cell, the hyperatoms
lay mostly inside. Therefore the necessity of recompos
parts of hyperatoms coming from different cells can be mi
mized. Consequently, the unit cell of system (IV) is allowed
and can be considered to be the optimum cell setting. Ba
on this unit cell the diffraction pattern could be reindexed

V. DISCUSSION

It was our aim to show how the ambiguities in indexin
quasicrystal diffraction patterns, which arise from the se
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FIG. 11. Same as in Figs. 10~a! and 10~b! but now the lifting is
performed in system (IV). This system is equivalent to system
(III ), just the general description is simplified here because
hypervectors do not exceed very much the cell boundaries~and as
the hyperatomsare roughly half this size, they will not exceed it a
all!.
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similarity betweent scaled projected lattices~tilings!, as
well as with the projected decoration sublattice~subtiling!,
can be overcome by a careful inspection of the intensity
tribution of the Patterson peaks. The method is based on
property of the Patterson function of being constituted o
set of sharp peaks corresponding to the interatomic vec
which holds for periodic and quasiperiodic structures as w
Among them it is always possible to isolate a subset whic
positioned on~quasi!lattice nodes and is characterized by t
highest peak value distribution. This family canalwaysbe
matched in physical direct space with a suitedZ module,
which allows us to lift the quasilattice peaks into then-D
embedding space leading to a unique Bravais lattice.
would remark here an important feature of this techniq
which is insensitive inside very broad limits to series trun
tion errors. On one side, these errors will modify the shape
the branches but the possibility of separation will not
affected. On the other side, the presence of a large amou
ripple will not hinder the procedure. It can always be se
rated after lifting the maxima. There could only be the n
cessity of a more sophisticated technique for locating
lifting the peaks with or without a matchingZ module as
discussed later. Moreover, even the presence of h
amounts of structural disorder and related high backgro
has no serious consequences. Most Bragg peaks will rem
observable and they contain all the information on the av
age ~ordered! structure. Hence this technique can be effe
tively employed to detect the average structure.

We will try to focus here on two topics to underline th
significance of the proposed technique and the direction
further developments. The first point is that the discuss
has been limited to the important case~up to now the only
case verified in our tests! in which the decoration hypervec
tor centers are part of a sublattice. This gives us the po
bility of indexing everyPatterson peak with the same dec
rationZ module. They can be lifted globally in a very simp
and numerically convenient way. The radial profiles of t
Patterson hypervectors can be compared and the correctn-D
lattice is eventually detected. When the set of all decora
hypervector centers do not form a sublattice this techni
can be applied as well. It is now, obviously, no longer po
sible to index every Patterson peak with the sameZ module.
If Patterson maps can be calculated with sufficient accura
however, it is always possible at least to index the ‘‘qua
lattice’’ peaks. Besides, peaks can be found and integr
independently of a matchingZ module. Peak positions ca
also be lifted in the original unit cell without referring to aZ
module. Lifting only requires the knowledge of an embe
.
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ding matrix which can be obtained in different ways. If th
diffraction pattern has been completely indexed with t
usual methods the related embedding matrix can be used
lifting. In the opposite case one can use any suitable emb
ding matrix between the ones compatible with the symme
induced invariant subspaces decomposition. Subseque
the plot of the radial profiles of the hypervectors will alwa
allow any ‘‘trial’’ embedding to be checked and eventua
corrected. If the quality of the data set is sufficiently good
is possible to detect correctly substructures as well as su
structures.

The third and most important point is the possibility
avoiding at all the first trial Bragg peaks indexing. The on
strict requirements is the necessity to collect all observa
Bragg peaks. With a four-circle diffractometer this may n
be possible as the data collection process relies on a g
estimate of possible peak positions. State-of-the-art area
tectors allow, instead, all Bragg peaks to be found and to
located on any laboratory coordinate system. Based on th
data a Patterson map can be always calculated. It has alr
been discussed how the problem of centering at least a su
of the Patterson peaks with a suitableZ module, and/or to
associate every peak with the relevant hypervector, can
managed. Once these steps have been accomplished w
start with our procedure to find the lattice. All these proc
dures presently appear complex and time consuming as
termined by the available computer power. The advanta
are the possibility of a more effective application of ar
detectors and also to always collect the most complete Br
reflection set, including also satellite reflections or any Bra
peak whose indexing is troublesome, and then possibly
extract the related information which would otherwise
lost.

VI. SUMMARY

Using all observable Bragg peaks the Patterson func
can be calculated. Embedding all peaks of the Patter
function in any suitable basis allowed by then-D space
group, the integrated peaks can be plotted versus their
pendicular space components. We have shown that the la
peaks belong to the topmost branch showing a gap in
decoration peaks. Based on this diagram then-D lattice of a
decorated Fibonacci chain as well as the quasilattice of
cagonal Al70.5Mn16.5Pd13 could be easily derived. This
method also holds for all possible lattice arrangements e
as sub- or superlattices. Using state-of-the-art area dete
this method may also be suitable as ana priori indexing
procedure.
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