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Unigueness of the complex diffraction amplitude in x-ray Bragg diffraction
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The concept of the complex diffraction amplitude for x-ray Bragg diffraction is discussed in terms of a
unique product of its zeros. This formalism allows the inverse scattering problem in x-ray Bragg diffraction to
be solved unambiguously. The phase-retrieval technique, via a logarithmic dispersion relation, has associated
with it the problem of localization of zeros of the complex diffraction amplitude. The mathematical approach
predicts an infinite number of zeros of the complex diffraction amplitude. However, a phydisatete
representation of the inversion technique limits the number of zeros that should be considered and allows one
to obtain a unique solution for the structure-factor profile. Practical examples of the analytical continuation of
the complex diffraction amplitude are presented. Distinctions between the artificial, mathematical, and the true,
physical, features of the analytical continuation are elucidd®@163-182@08)07017-9

I. INTRODUCTION was not solved in Refs. 7-10, and therefore the technique
did not give a unigue solution. Often there were two result-
X-ray Bragg diffraction is a powerful diagnostic tool for ing strain profiles that were very similar but not identi¢al.
the nondestructive analysis of crystalline materials. TheA new approach to the unambiguous solution of the inver-
widely used method of least-squares fitting of a calculatecsion problem has been developed recehtf?. It was sug-
reflectivity to the experimental diffraction profile relies on an gested that one must distinguish between the physical and
a priori model of crystal-lattice deformation; see, e.g., Refs.mathematical zeros of the complex diffraction amplitude us-
1 and 2. The method works well for a relatively large class ofing experimental data collected for two radiation energies.
crystalline structures and allows one to obtain informationOnly the true zeros should be used in the complete phase-
about the crystal-lattice strain profiles. However, there is ngyrofile calculation'>*? Complications in the formalism aris-
evidence that the solution obtained through least-squares filng from the nonuniform attenuation in the damaged layer
ting is unique, since it is an intensity that is fitted, while the have been addressed in Ref. 12.
phase informatior(representing half of the informatipns The present paper aims to represent the concept of the
not taken into account. Since the crystal structure factor is @omplex diffraction amplitude in x-ray Bragg diffraction as a
complexfunction, the analysis of the intensity profile alone, unique product of its zeros. We show how physically reason-
which is areal function, is not able to give a physically able assumptions about the complex diffraction amplitude
sound result for a structure factor. Regardless of the relatiorgllow us to formulate the inversion procedtifein terms of
ship between the crystal structure factor and the compley discretgphysica) representation. This discrete formalism,
diffraction amplitude profiles, the modulus and phase of theyhich corresponds directly to an experiment, allows one to
complex diffraction amplitude should be considered in thepbtain a unique solution for the structure-factor profile,
crystal structure-factor calculation. For instance, Bragg difwhich is consistent with the experimental observations. As a
fraction and specular reflection formalisms have quite diﬁer-practica| examp|e, the formalism is app||ed to x-ray Bragg

ent mathematical representation for correspondence betwegiffraction data collected at two different radiation energies.
the structure factor and the complex diffraction amplitude.

A method for the solution of the inverse problem based on
th_e ca!culatipn of the_reiISectivity phase profile via a logarith- II. AMBIGUITY IN PHASE RETRIEVAL VIA A
mic dlspersm_n gelatlo?tw ha_s been su_ggested for x-ray LOGARITHMIC DISPERSION RELATION
Bragg diffraction? Phase-retrieval techniques based on the
use of a logarithmic dispersion relation are complicated by The possibility of retrieving phase from the radiation scat-
the problem of the localization of zeros of the complex dif- tered by an objectin the case of a one-dimensional modu-
fraction amplitudé”.‘6A self-consistent method for a model- lation of the structure-factor distributiprrelies on the as-
independent determination of the crystal-lattice strains in @umption that the complex diffraction amplituéRQ) and
single crystal based on this theoretical appr6asfas re- its logarithm IHR(Q)} are analytic functions:® It is impor-
cently developed experimentalfy® The technique uses a tant to note that the primary meaning of analyticity is that
logarithmic dispersion relation to retrieve the phase of thephysicallythis expresses the belief that it is possible to ob-
x-ray wave diffracted by a single crystal under Bragg condi-tain the “lost” phase of the scattered intensity. In other
tion. The method has been applied successfully to determingords, the modulus and phase of the complex diffraction
the structure of one- and two-dimensional lattice-strain disamplitudeare not independenfThis assumption works di-
tributions in silicon crystals that have been implanted withrectly within the framework of the kinematical theory of x-
high-energy ion5® and in SiGe/Si superlattic@s® The  ray scattering. The problem of the applicability of this phase-
problem of localization of zeros of the reflection amplituderetrieval technique to be used for x-ray-diffraction data
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exhibiting dynamical features has been addressedan cover a reasonably large range of the scattering angles
elsewherg? that is along theg coordinate and of the radiation energies

Mathematically, analyticity of the complex diffraction that is along thew coordinate. Such a mesh scan is not fea-
amplitude means that the Cauchy-Riemann equations are saible since it would take an inordinately long experimental

isfied (see, e.g., Ref. 14 time. However, the fundamental problem is that this set of
mesh points is alwayBnite. The general mathematical for-
ou  dv  du v malism implies that the number of zeros is infiMt&.Thus,
3_Qr= 3_Qi' ¢9_Qi= - t?_Qr’ (D we cannot determine all the true zeros experimentally and

the second term in Eq2) cannot be calculated unambigu-
where R(Q)=u(q,,q;) +i»(q,,q;) andq,,q; are the real ously. A formal continuousconsideration of the problem
and imaginary parts of the complex scattering vedr does not suggest a way to obtain a unique solution to the
=q,+iq;. It is then possible to retrieve the phagéQ) of inversion problem. To resolve this problem we have to con-
the experimentally observed x-ray-diffraction intensity sider the complex diffraction amplitude as a unique product
1(Q)=|R(Q)|? via a logarithmic dispersion relatiofi.e., a  of its zeros in its physicaljiscrete representation
logarithmic Hilbert transform®-®

, Ill. DISCRETE REPRESENTATION OF THE COMPLEX
o(Q)=— i pfw % dQ'+2> argQ—Qm DIFFRACTION AMPLITUDE
i “ " Analyticity of the complex diffraction amplitude is a
i m physical property. However, as we saw above it has ben-
-¢ (Q)*'% ¢™Q), (2 efited us in a mathematical expression that can be used to
retrieve a so-called minimal-phase profile, namely, the first
whereQ™ (m=0,1,2 ... ,M—1) are the zeros dR(Q)| in term in Eq.(2), from the experimentally measured intensity
the upper half of the complex plartehp), that is, ImQ™) distribution. The same analytical nature of the complex dif-
>0, and P is the Cauchy principal value of the integral. Thefraction amplitude allows us to represent it as a complex
first term in Eq.(2) can be evaluated simply using a relation- Polynomial function of a complex variablesee, e.g., Ref.
ship between the Hilbert and Fourier transforfsse, e.g., 14).
Ref. 15. The second term presents the major difficulty for ~In an experiment we collect a certain numbérof data
the one-dimensional inverse problem based on the phase rgoints for a reflectivity profile. Then, the complex diffraction
trieval via the logarithmic dispersion relation. It is impos- amplitudeR(Q) can be represented as a complex polynomial
sible to a priori say whether any zero occurs in the function of the degre&:
diffraction-amplitude profile. We show below that it is not
feasible to perform an adequate experiment to determine the
occurrence of zeros directly from the intensity measure- RQ=[I (Q-qQ", (€)
ments. This second term in E@), which involves the prob- k=0

'e”_‘ OT location of _the ZEr0S, 1S the mair sour(_:e_of the amb"vvherek denotes the indices. The major advantage of this
guity in the one-dimensional inversion formalisnt.

. representation is that due to its analyticity the complex dif-
The zeroe™ of unknownnumberM are the true, physi- fracti - . : : ; m
. - . ' . raction amplitude is nowniquelydefined by its zero
cal, zeros of the complex diffraction amplitude that might b quely y *Q

due 1o interf . £ th ttered in Eq. (3). In addition, we now have only limited number of
occur dué 1o Interference suppression ot the scattered xX-ray, ¢ 1, consider. The number of zeros cannot exceed the
wave under certain circumstances. In an experiment, th

. fiumber of experimentally measured poi#ts
comp_lex scattermg vecto ShOUId be represented &3 Thus, to obtain the complex diffraction amplitude profile
=(q+iu, whereq is the scattering vector length apds the

. : > : in the polynomial form(3), first, we collect an experimental
linear attenuation coefficient. Here thjeand . variables are poly m3) P

defingd to be d_imensionless, corresponding to the number : tteansrgtﬁ:rgll‘;? Irg%?ai?orna gﬁg?gey’ofi.g?? f?fggegggo\rl]%?tgé
Darwin half-widths for the reflectiorh, so .that ReQ)  .alculate a minimal-phase profile™™(Q) according to
=A#sin 20/| xp| and ImQ)= x.i/|xnl, whereAd is the angu-

lar deviation from the exact Bragg positicghand y,; and -

|xn| are the imaginary part and the modulus of the corre- ©MN(Q) = — 1 PJ“ InVI(Q") 40’ 4
sponding Fourier coefficients of the dielectric susceptibility m ) Q'=Q '

of the crystal, respectively. Expressions for the real and

imaginary parts of the complex scattering vector are writtenhird, we combine a minimal-phase diffraction amplitude
for a symmetric Bragg reflection and can be easily extendegrofile, R™(Q)=1(Q) exdie™(Q)]. This profile is a
to the asymmetric case. Hence, a complex £gfocan have “slice” of the complex diffraction amplitudeR(Q) along
real, ReQ)=q™, and imaginary, ImQ)=u"™, parts which cor- the real axigj of the complex plane at a fixed position on the
respond to some priori uncertain point in the complex imaginary axisw. Finally, we perform armanalytical continu-
plane. To observe a zero in the diffraction amplitude profileation of the complex diffraction amplitude in the whole com-
we have to perform an enormous number of scans along thalex plane. This procedure is a representation of the
scattering vector for a large set of radiation energies, i.e., minimal-phase diffraction-amplitude profilB™"(q) in the
different «. This is the only procedure for determining the complex polynomial form(3). Mathematically, we have to
true zero locations experimentally. In such an experiment wénterpolate the profileR™"(g) with a complex polynomial

K-1
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function and calculate the roots of this polynomial. This pro-critical point of the formalism. Due to its analytical proper-
cedure can be done using standard interpolation routinegies the complex diffraction amplitude is uniquely deter-
see, e.g., Ref. 16. mined by its zeros from the analytical continuation into the
Once we have collected an experimental Bragg diffractiorwhole complex plang3). Some of these zeros are the physi-
profile 1(Q) as a function of scattering vector lengih we  cal zeros that occur in the uhp that is where the attenuation is
have the data represented in a definite rang, "™<q  positive. The rest of the calculated zeros obtained from the
<Aq"™ of wave numbers. It should be noted that the val-complex interpolation are in the lhp. These latter zeros ap-
uesAq "> andAq*™*do not necessarily have to be equal. pear only because of the formal use of the polynomial rep-
The influence of asymmetry in the valuesq™ ™ and resentation of the complex diffraction amplitude. We do not
Agq*™ was addressed in Ref. 17. Due to restrictions im-have to include all zeros in the complete phase praéle
posed by the sampling theorét® we cannot resolve any However, we do not know which zeros in the uhp are the
feature in the resulting structure-factor profile with a spatiatrue ones and which are simply formed by the mirror reflec-
resolution AT greater than AT=(Aq ™>+Aq™)~1  tion (“flipping” ) of the virtual zeros.
Hence, the maximum total thickne$sof the analyzed layer Unfortunately, the ¥ solutions for the complex diffrac-
that can be considered 5= ATK/2. The number 2 appears tion amplitudeR™(Q) obtained via “flipping” of the com-
because real space is divided into two equal halves—vacuufl€x polynomial roots from the lhp into the uhp according to
and matter. Thus, we have to divide the layer of thickrigss

in which we would want to determine the structure-factor _ M Q_a
profile, into not morethan K/2 sublayers. We have to con- R”‘(Q)sz'”(Q)H o—a (5)

sider that the structure factor in every individual sublayer,
=€ %, is uniform within the thicknesaT. It is im- ~
possible to resolve a feature within such a sublayer. have the same modulus on the real axisReQ)=ReQ).

We cannot evaluate zeros outside the radge ™¥<q Here a tilde_denotes complex conjugation. The problem is
<Aq™™ simply because we do not have the experimentathat [(Q—Q")/(Q—Q")|=1, but arg(Q-Q)/(Q—-Q)}
data outside this range. This fact strictly limits the spatial#const. Therefore|R™(Q)|=|R™"(Q)| and, thus, experi-
resolutionAT that can be achieved in an experiment. How-mental intensity profiles cannot be distinguished. However,
ever, all zeros of the complex diffraction amplitude that argR™(Q)}#argR™"(Q)} and, thus, the resulting structure
should be considered are within the range”"><Re@™)  factor should be different. Thus, we obtain the same intensity
<Ag"™* and the maximum number of these zerds, profile for both theR™(Q) and R™Y(Q) diffraction ampli-
=K/2, is limited by the number of data points. Hence, fortudes. The index stands for any combination d¥l zeros
experimental data we always havdimite number of zeros selected from the total number Nf For instancel, can be 3,
that needs to be considered in evaluating the structure-fact@; and 22, henc® =3, while N can be any value from 3 to
profile. It should be noted, however, that the magnitude ofa very large yet finite number. Therefore, according to Eq.
the imaginary part Im@™), corresponding to the zeros, is an (5) we obtain 2' complex diffraction amplitudes that have
unrestricted quantity. the same modulus and, thus, the same intensity profile. For

Following this procedure we determine all the zeros of thethe common case =100 the number of possible complex
complex diffraction amplitude that should be taken into ac-diffraction amplitude profiles is more than *f0 Generating
count to calculate theompletephase profilg2). However, and analyzing one solution per second we would spend about
all the roots of the polynomial interpolation of the minimal- 3Xx 1072 years to obtain a result using this inversion proce-
phase diffraction amplitude profilB™"(Q) are in the lower dure. The fact that we can obtain an enormous number of
half of the complex planéhp).® This half plane corresponds identical diffraction intensity profiles, which can be calcu-
to a negative imaginary part of the complex scattering vectated for the same number of crystal structure-factor distri-
tor, hence negative attenuation. Therefore, these zeros abeitions, shows explicitly the hopelessness of the least-
not physically meaningful. The calculated rodieros of  squares-fitting methodology.
the complex polynomial interpolatiof8) are always located Sequential trial of all possible generated solutions ob-
in the lhp and represent mathematical zeros of the diffractioained via the phase-retrieval formalism does not seem to be
amplitude profile. We refer to them as the virtual zeros of thefeasible either. The problem is that the complex interpolation
complex diffraction amplitude. (3), namely, analytical continuation of the complex diffrac-

The complete phase profi(@) requires that only physical tion amplitude in the whole complex plane, automatically
zeros be included in the second telip,e™(Q) that may gives us only negative imaginary parts for the polynomial
occur in the complex diffraction amplitude profile due to theroots. There is no mathematical criterion for determining
interference suppression of the scattered wave. These zerahether a particular zero is a virtual or true zero. Thus, we
can only occur in the uhp where attenuation is positive. Withhave to determine which zeros are the true by other means.
the use of the logarithmic dispersion relati@) and analyti- It was suggested in Refs. 11 and 12 to perform a series of
cal continuation(3), the zeros of the complex reflection am- experiments with the same sample for at least two radiation
plitude may be calculated. However, so far they are mathenergies in order to determine the true zeros of the complex
ematical zeros of the polynomial interpolation of the diffraction amplitude. Here we would like to substantiate the
minimal-phase diffraction amplitude profikR™"(Q) located physical meaning of this procedure and, most importantly, to
in the Ihp. If one or more true zeros occur in the uhp, theyclarify what is true and artefact in the analytical continuation
should have imaginary parts that are the complex conjugatesf the complex diffraction amplitude performed at two radia-
of the mathematicalvirtual) zeros in the Ihp. This is the tion energies.
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FIG. 2. Analytical continuation of the complex diffraction am-

FIG. 1. Analytical continuation of the complex diffraction am- Plitude evaluated using a logarithmic dispersion relati@nis the
plitude evaluated using a logarithmic dispersion relatianis the ~ Modulus(on a logarithmic scajeand (b) is the phase of the ana-
modulus(on a logarithmic scaleand (b) is the phase of the ana- Iy_tlcally co_ntlnued Bragg dlffracte(_j _proflle collected from the
lytically continued Bragg diffracted profile collected from the Sii-xG&/Si sample for 0.71-A radiatiorRef. 12. Interpolation
Si,_,Ge,/Si sample for 1.54-A radiatiofRef. 12. Interpolation has been implemented by a complex polynomial function of degree
has been implemented by a complex polynomial function of degreé\‘:55'
N=55.
be determined from the “tail” of the Fourier transform of
the normalized experimental intensity’ However, im-
proved confidence in the resulting crystal structure-factor
profile is obtained by analyzing a slightly larger number of

Figures 1 and 2 represent the analytical continuation irsublayers that is equal to the number of polynomial roots
the uhp of the complex diffraction amplitude calculated forevaluated from the analytical continuation of the complex
the “high-low” SiGe/Si sample in the vicinity of the 8100) diffraction amplitude. A larger number of roots, conse-
reflection for 1.54- and 0.71-A radiation, respectivilythe  quently a large number of points in the crystal depth, allows
experimental intensity profiles have been collected at 512ne to explicitly observe a fragment in the resulting crystal
equally stepped points each along the real axis witlpin Structure-factor profile that corresponds to the perfect struc-
=Re(@Q)=+3800. These experimental parameters correiure inthe substrate. The minimum number of layers that can
spond to the depth resolution obtained for a structure-factope analyzed was found to be about*40rhe degree of the
profile of AT=15 A, which is a record for a nondestructive Polynomial function that was used to interpolate the complex
diagnostic techniqu& Since the lhp corresponds to a nega-diffraction amplitude was selected to be=55.
tive absorption coefficient, which does not make physical Having two radiation energies and, thus, two different at-
sense, we present the modul[isgs. 1 and 23)] and phase tenuation coefficients, andu, we can measure two sets of
[Figs. 1 and ®)] of the calculated complex diffraction am- experimental intensity profiles within the santer very
plitude profiles only in the uhp. Both modulus and phaseclose range of wave numbers:*?
distributions are plotted on a rectangular grid with 5150
equal steps along the real and imaginary axes, respectively.
Analytical continuation of the diffraction amplitude, shown
in Figs. 1 and 2, are calculated for a polynomial function of
degreeN=55. The phase oR;(Q;), wherej=1 or 2, can be determined

There is a minimum number of sublayers and, thus, polyvia a logarithmic-dispersion relatia2) that in this case has
nomial roots, that needs to be considered. This number cathe following form:

IV. ANALYTICAL CONTINUATION OF THE COMPLEX
DIFFRACTION AMPLITUDE FOR TWO RADIATION
ENERGIES

11(Q)=IR;(Q)I12=|R(a+iu;)|?. (6)
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1 (= In[R(Q))] log| R(Q) |
i ~:——PJ ———dQ/+2 argQ;— Q™

e(Q)=-7P| ~oq d9+22 agQi-qQD y

min m A

=@ +> ®j - (7
m ~7

In practice it is preferable to use the normalized experimental ~1g
intensity R(Q)= —iQR(Q) (Refs. 6 and Pinstead of the “ ’
directly measured®(Q)=I1(Q) for the evaluation of the A,i N
integral. The modulus of the Fourier transform of the nor- <
malized intensity is zero below a depth corresponding to the
thickness of the damaged layer. This useful substitution of  Im(Q) NG 10*Re(Q)
the experimentally measured intensity obviously guarantees -7
the convergence of the integral in Eqg), (4), and(7).° In FIG. 3. Modulus(on a logarithmic scaleof the analytical con-

addition, it is impossible in practice to measure the experitinuation of the complex diffraction amplitude obtained from the
mental intensity profile from minus to plus infinity, as is experimentally measured Bragg diffracted profile from the
required for the formal limits of the integral. In practice, Si,_,Ge,/Sisample for 1.54-A radiatiofRef. 12 in the vicinity of
however, an evaluation of the integral taken over a rangeero No. 21.

wider thanAq~ ™=Aq"™*=100 gives an adequate result.

This problem has been addressed e!sewﬁer_e. the scattered wave within the analyzed layer is intrinsic to a

~ The most important question now is what is true and whaaticular discrete representation of the structure-factor pro-

is artefact in the analytical continuation presented in Figs. ile ¢=E,E‘ ol /€ ?. This assumption allows us to deter-
2 Sj i i ) = o . . . .

ano_l 2? Since we stated_ that _the analy_tlcal con_tlnua(m)n mine the true zero locations in the analytical continuation of

defines the complex diffraction ampl_ltude_ un_|quely, thet e complex diffraction amplitudéFigs. 1 and 2 Since the

modulus and phase should have been identical in the plotsJ;u

42 Th nilar | or feat indeed. but e zeros are intrinsic to the structure-factor profile and their
%r:antic.al ey are similar in major features indeed, but Nofy:4iions do not depend on a mathematical/numerical imple-

- . mentation of the technique, analytical continuation of two
To make explicit the last point of the concept of the d Y

. . , ) . complex diffraction amplitudes, obtained using two different
unique representation of the complex diffraction amplitude

o adiation energies, should produce gamnelocations for the
via its zeros, we should remember that we do not know am{'rue 7er0s
most importantly, we can never know, all the true zeros o '

h lex diffracti litude. Analvtical - ) Figures 3 and 4 show enlargements of the modulus of the
the complex difiraction amplitude. Analytical continuations , v tica| continuationéFigs. 1 and 2in the Ihp—the only
(Figs. 1 and 2were calculated using only one true “slice

: X . . lace where the zeros can be calculated. This represents the
of the modulus of the diffraction amplitude, that is, the ex-p b

) . . ! narrow area around zero No. 21, which was found to be one
perimental data profile for each two-dimensional plot. There- f the true zeros and was included in the complete phase

fore, most of the zeros occurring in the calculated analyticagrofile (7).12 zero No. 21 is in the center of each plot in Figs
continuationgFigs. 1 and 2are virtual, mathematical, zeros. 3 and 4. To improve the visibility of the plots in order to
They do not correspond to the true two-dimensional profile

. . : . allow direct observation of the zeros, calculations were per-
of the complex diffraction amplitude and they are dlfferentformed on a rectangular grid with 380150 steps along the
for each calculation. If, however, there are true zeros in th

§eal and imaginary axes, respectively. There are other zeros
calculated analytical continuatioriBigs. 1 and 2 then the ginary ' P y

) o A that b in th Iculated profilgys. 3 and 4
latter might have similar general shapes, which is the case. at can be seen in the calculated profisgs. 3 and 4

Thus, the only correct information about the complex dif-
fraction amplitude for these particular calculated analytical  |og ] R(Q) |
continuations(Figs. 1 and 2 is the measured experimental “1
intensity and the physical zeros of the complex diffraction
amplitude. They represent a small fracti@n even zero frac- 4
tion) of the total number of virtual zeros calculated from the
polynomial interpolation3). The general shape of the pro-

files (Figs. 1 and 2is, strictly speaking, incorrect. To deter- "o

mine the correct general shape of the complex diffraction “

amplitude we must know all the physical zeros, which are ,fj -

fundamentally unobtainable. -7
However, to solve the inverse problem, that is, to deter-

mine the crystal structure factor, it is sufficient to localize Im(Q) S 10*Re(Q)

only those true zeros which occur within the measured range

of the Ag™ "™<Re@™)<Aq"™> Thus, the problem now is FIG. 4. Modulus(on a logarithmic scaleof the analytical con-
to distinguish between the true and virtual zeros in the anainuation of the complex diffraction amplitude obtained from the
lytical continuationgFigs. 1 and 2 To resolve this issue we experimentally measured Bragg diffracted profile from the
make another physical assumption, namely, the presence agi _,Ge, /Si sample for 0.71-A radiatiofRef. 12 in the vicinity of
location of the true zeros due to interference suppression ofero No. 21.
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However, even the greatly improved spatial resolution usediques usually deal with two-dimensional intensity distribu-
for the calculationFigs. 3 and #is not sufficient to resolve tions. It was shown in Ref. 22 that in the presence of zeros
the locations of other zeros. The radiation energy must b¢he phase-reconstruction problem cannot be solved uniquely.
selected with very high precision in order to observe a zerdt seems that for some cases involving imaging based on
of the complex diffraction amplitude in an experiment. Yet, inversion methods the suggested multi-energy formalism can
this is the only procedure for determining the true zero locabe useful.
tions experimentally.

However, we can see from Figs. 3 and 4 that all other
zeros, except for the central one, have quite different loca-
tions in the complex plane. This means that they are virtual The complex diffraction amplitude in Bragg diffraction is
(mathematical zeros which should not be “flipped” in the represented as a unique product of its zeros. The analytical
uhp. The central zero, No. 21, in the calculation performedoroperty of the complex diffraction amplitude allows the
for the polynomial interpolation of degréé55, seems to be phase to be retrieved via a logarithmic dispersion relation.
the true(physica) zero. Indeed, this zero was included, to- However, this creates a large number of virtual zeros that are
gether with a few other true zeros, in the complete phasdifficult to distinguish from the true zeros. To determine the
profile (7).12 The crystal structure factor calculated for that locations of the true zeros of the complex diffraction ampli-
complex diffraction amplitude gave remarkable agreementude it is necessary to consider the analytical continuation of
with thea priori knowledge of the sample under analysis andthe diffraction amplitude in the whole complex plane. Since
with results obtained by other meal?s. an experimental intensity profile always has a discrete repre-

Ideally, every zero calculated from E@3) should be sentation, a comprehensive examination of the limited num-
checked experimentally to determine whether it is located irber of complex zeros allows one to determine the locations
the uhp. If the experiment, using the required radiation eneof the true zeros unambiguously. The inverse problem can
ergy, shows a zero in the experimental intensity profile, thigthen be solved uniquely, which allows the direct model-
zero is the true one. If the experiment does not show théndependent characterization of modern sophisticated semi-
presence of a zero, this zero is not physical, but appears ontyonductor devices with a remarkable spatial resolution of
because of the analytical properties of the complex diffracabout 10-15 A,
tion amplitude and its analytical continuati¢®). The posi-
tion of such a zero in the analytical continuation depends on
the numerical procedure used to approximate the solution.
However, such a comprehensive experimental procedure The author appreciates discussions with M. J. Morgan and
does not seem to be feasible. T. E. Gureyev. This work was supported by Monash Univer-

The problem of the zeros occurring in the experimentalsity and the Australian Research Council via the Large Grant
intensity is also intrinsic to other inversion methods, e.g.support(“Precision diffraction studies of non-periodic struc-
using the transport of intensity equatigt?! Imaging tech-  tures”).

V. CONCLUSION
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