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Uniqueness of the complex diffraction amplitude in x-ray Bragg diffraction

A. Yu. Nikulin*
Department of Physics, Monash University, Clayton, Victoria 3168, Australia

~Received 22 September 1997!

The concept of the complex diffraction amplitude for x-ray Bragg diffraction is discussed in terms of a
unique product of its zeros. This formalism allows the inverse scattering problem in x-ray Bragg diffraction to
be solved unambiguously. The phase-retrieval technique, via a logarithmic dispersion relation, has associated
with it the problem of localization of zeros of the complex diffraction amplitude. The mathematical approach
predicts an infinite number of zeros of the complex diffraction amplitude. However, a physical~discrete!
representation of the inversion technique limits the number of zeros that should be considered and allows one
to obtain a unique solution for the structure-factor profile. Practical examples of the analytical continuation of
the complex diffraction amplitude are presented. Distinctions between the artificial, mathematical, and the true,
physical, features of the analytical continuation are elucidated.@S0163-1829~98!07017-9#
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I. INTRODUCTION

X-ray Bragg diffraction is a powerful diagnostic tool fo
the nondestructive analysis of crystalline materials. T
widely used method of least-squares fitting of a calcula
reflectivity to the experimental diffraction profile relies on a
a priori model of crystal-lattice deformation; see, e.g., Re
1 and 2. The method works well for a relatively large class
crystalline structures and allows one to obtain informat
about the crystal-lattice strain profiles. However, there is
evidence that the solution obtained through least-square
ting is unique, since it is an intensity that is fitted, while t
phase information~representing half of the information! is
not taken into account. Since the crystal structure factor
complexfunction, the analysis of the intensity profile alon
which is a real function, is not able to give a physicall
sound result for a structure factor. Regardless of the relat
ship between the crystal structure factor and the comp
diffraction amplitude profiles, the modulus and phase of
complex diffraction amplitude should be considered in
crystal structure-factor calculation. For instance, Bragg
fraction and specular reflection formalisms have quite diff
ent mathematical representation for correspondence betw
the structure factor and the complex diffraction amplitude

A method for the solution of the inverse problem based
the calculation of the reflectivity phase profile via a logari
mic dispersion relation3–5 has been suggested for x-ra
Bragg diffraction.6 Phase-retrieval techniques based on
use of a logarithmic dispersion relation are complicated
the problem of the localization of zeros of the complex d
fraction amplitude.3–6 A self-consistent method for a mode
independent determination of the crystal-lattice strains i
single crystal based on this theoretical approach6 was re-
cently developed experimentally.7–10 The technique uses
logarithmic dispersion relation to retrieve the phase of
x-ray wave diffracted by a single crystal under Bragg con
tion. The method has been applied successfully to determ
the structure of one- and two-dimensional lattice-strain d
tributions in silicon crystals that have been implanted w
high-energy ions7–8 and in SiGe/Si superlattices.9,10 The
problem of localization of zeros of the reflection amplitu
570163-1829/98/57~18!/11178~6!/$15.00
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was not solved in Refs. 7–10, and therefore the techni
did not give a unique solution. Often there were two resu
ing strain profiles that were very similar but not identical.8,9

A new approach to the unambiguous solution of the inv
sion problem has been developed recently.11,12 It was sug-
gested that one must distinguish between the physical
mathematical zeros of the complex diffraction amplitude
ing experimental data collected for two radiation energi
Only the true zeros should be used in the complete ph
profile calculation.11,12 Complications in the formalism aris
ing from the nonuniform attenuation in the damaged la
have been addressed in Ref. 12.

The present paper aims to represent the concept of
complex diffraction amplitude in x-ray Bragg diffraction as
unique product of its zeros. We show how physically reas
able assumptions about the complex diffraction amplitu
allow us to formulate the inversion procedure3–6 in terms of
a discrete~physical! representation. This discrete formalism
which corresponds directly to an experiment, allows one
obtain a unique solution for the structure-factor profi
which is consistent with the experimental observations. A
practical example, the formalism is applied to x-ray Bra
diffraction data collected at two different radiation energie

II. AMBIGUITY IN PHASE RETRIEVAL VIA A
LOGARITHMIC DISPERSION RELATION

The possibility of retrieving phase from the radiation sc
tered by an object~in the case of a one-dimensional mod
lation of the structure-factor distribution! relies on the as-
sumption that the complex diffraction amplitudeR(Q) and
its logarithm ln$R(Q)% are analytic functions.3–6 It is impor-
tant to note that the primary meaning of analyticity is th
physically this expresses the belief that it is possible to o
tain the ‘‘lost’’ phase of the scattered intensity. In oth
words, the modulus and phase of the complex diffract
amplitudeare not independent. This assumption works di-
rectly within the framework of the kinematical theory of x
ray scattering. The problem of the applicability of this phas
retrieval technique to be used for x-ray-diffraction da
11 178 © 1998 The American Physical Society
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57 11 179UNIQUENESS OF THE COMPLEX DIFFRACTION . . .
exhibiting dynamical features has been addres
elsewhere.13

Mathematically, analyticity of the complex diffractio
amplitude means that the Cauchy-Riemann equations are
isfied ~see, e.g., Ref. 14!:

]u

]qr
5

]n

]qi
,

]u

]qi
52

]n

]qr
, ~1!

where R(Q)5u(qr ,qi)1 in(qr ,qi) and qr ,qi are the real
and imaginary parts of the complex scattering vectorQ
5qr1 iqi . It is then possible to retrieve the phasew(Q) of
the experimentally observed x-ray-diffraction intens
I (Q)5uR(Q)u2 via a logarithmic dispersion relation~i.e., a
logarithmic Hilbert transform!:3–6

w~Q!52
1

p
PE

2`

` lnuR~Q8!u
Q82Q

dQ812(
m

arg~Q2Qm!

5wmin~Q!1(
m

wm~Q!, ~2!

whereQm (m50,1,2, . . . ,M21) are the zeros ofuR(Q)u in
the upper half of the complex plane~uhp!, that is, Im(Qm)
.0, and P is the Cauchy principal value of the integral. T
first term in Eq.~2! can be evaluated simply using a relatio
ship between the Hilbert and Fourier transforms~see, e.g.,
Ref. 15!. The second term presents the major difficulty f
the one-dimensional inverse problem based on the phas
trieval via the logarithmic dispersion relation. It is impo
sible to a priori say whether any zero occurs in th
diffraction-amplitude profile. We show below that it is n
feasible to perform an adequate experiment to determine
occurrence of zeros directly from the intensity measu
ments. This second term in Eq.~2!, which involves the prob-
lem of location of the zeros, is the main source of the am
guity in the one-dimensional inversion formalism.3–6

The zeroesQm of unknownnumberM are the true, physi-
cal, zeros of the complex diffraction amplitude that mig
occur due to interference suppression of the scattered x
wave under certain circumstances. In an experiment,
complex scattering vectorQ should be represented asQ
5q1 im, whereq is the scattering vector length andm is the
linear attenuation coefficient. Here theq andm variables are
defined to be dimensionless, corresponding to the numbe
Darwin half-widths for the reflectionh, so that Re(Q)
5Du sin 2u/uxhu and Im(Q)5xoi /uxhu, whereDu is the angu-
lar deviation from the exact Bragg positionu and xoi and
uxhu are the imaginary part and the modulus of the cor
sponding Fourier coefficients of the dielectric susceptibi
of the crystal, respectively. Expressions for the real a
imaginary parts of the complex scattering vector are writ
for a symmetric Bragg reflection and can be easily exten
to the asymmetric case. Hence, a complex zeroQm can have
real, Re(Q)5qm, and imaginary, Im(Q)5mm, parts which cor-
respond to somea priori uncertain point in the complex
plane. To observe a zero in the diffraction amplitude pro
we have to perform an enormous number of scans along
scattering vectorq for a large set of radiation energies, i.e
different m. This is the only procedure for determining th
true zero locations experimentally. In such an experiment
d
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can cover a reasonably large range of the scattering an
that is along theq coordinate and of the radiation energi
that is along them coordinate. Such a mesh scan is not fe
sible since it would take an inordinately long experimen
time. However, the fundamental problem is that this set
mesh points is alwaysfinite. The general mathematical for
malism implies that the number of zeros is infinite.3–6 Thus,
we cannot determine all the true zeros experimentally
the second term in Eq.~2! cannot be calculated unambigu
ously. A formal continuousconsideration of the problem
does not suggest a way to obtain a unique solution to
inversion problem. To resolve this problem we have to co
sider the complex diffraction amplitude as a unique prod
of its zeros in its physical,discrete representation.

III. DISCRETE REPRESENTATION OF THE COMPLEX
DIFFRACTION AMPLITUDE

Analyticity of the complex diffraction amplitude is a
physical property. However, as we saw above it has b
efited us in a mathematical expression that can be use
retrieve a so-called minimal-phase profile, namely, the fi
term in Eq.~2!, from the experimentally measured intensi
distribution. The same analytical nature of the complex d
fraction amplitude allows us to represent it as a comp
polynomial function of a complex variable~see, e.g., Ref.
14!.

In an experiment we collect a certain numberK of data
points for a reflectivity profile. Then, the complex diffractio
amplitudeR(Q) can be represented as a complex polynom
function of the degreeK:

R~Q!5 )
k50

K21

~Q2Qk!, ~3!

where k denotes the indices. The major advantage of t
representation is that due to its analyticity the complex d
fraction amplitude is nowuniquelydefined by its zeros,Qm

in Eq. ~3!. In addition, we now have only limited number o
zeros to consider. The number of zeros cannot exceed
number of experimentally measured pointsK.

Thus, to obtain the complex diffraction amplitude profi
in the polynomial form~3!, first, we collect an experimenta
intensity profileI (Q) for a range of the scattering vector,q
at a particular radiation energy, i.e., fixedm. Second, we
calculate a minimal-phase profilewmin(Q) according to

wmin~Q!52
1

p
PE

2`

` lnAI ~Q8!

Q82Q
dQ8. ~4!

Third, we combine a minimal-phase diffraction amplitud
profile, Rmin(Q)5AI (Q) exp@iwmin(Q)#. This profile is a
‘‘slice’’ of the complex diffraction amplitudeR(Q) along
the real axisq of the complex plane at a fixed position on th
imaginary axism. Finally, we perform ananalytical continu-
ation of the complex diffraction amplitude in the whole com
plex plane. This procedure is a representation of
minimal-phase diffraction-amplitude profileRmin(q) in the
complex polynomial form~3!. Mathematically, we have to
interpolate the profileRmin(q) with a complex polynomial
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11 180 57A. YU. NIKULIN
function and calculate the roots of this polynomial. This p
cedure can be done using standard interpolation routi
see, e.g., Ref. 16.

Once we have collected an experimental Bragg diffract
profile I (Q) as a function of scattering vector lengthq, we
have the data represented in a definite range,Dq2max<q
<Dq1max, of wave numbers. It should be noted that the v
uesDq2max andDq1max do not necessarily have to be equ
The influence of asymmetry in the valuesDq2max and
Dq1max was addressed in Ref. 17. Due to restrictions i
posed by the sampling theorem18,19 we cannot resolve any
feature in the resulting structure-factor profile with a spa
resolution DT greater than DT5(Dq2max1Dq1max)21.
Hence, the maximum total thicknessT of the analyzed layer
that can be considered isT5DTK/2. The number 2 appear
because real space is divided into two equal halves—vac
and matter. Thus, we have to divide the layer of thicknessT,
in which we would want to determine the structure-fac
profile, into not morethan K/2 sublayers. We have to con
sider that the structure factor in every individual sublay
ck5uckueifk, is uniform within the thicknessDT. It is im-
possible to resolve a feature within such a sublayer.

We cannot evaluate zeros outside the rangeDq2max<q
<Dq1max simply because we do not have the experimen
data outside this range. This fact strictly limits the spa
resolutionDT that can be achieved in an experiment. Ho
ever, all zeros of the complex diffraction amplitude th
should be considered are within the rangeDq2max,Re(Qm)
,Dq1max, and the maximum number of these zeros,N
5K/2, is limited by the number of data points. Hence, f
experimental data we always have afinite number of zeros
that needs to be considered in evaluating the structure-fa
profile. It should be noted, however, that the magnitude
the imaginary part Im(Qm), corresponding to the zeros, is a
unrestricted quantity.

Following this procedure we determine all the zeros of
complex diffraction amplitude that should be taken into a
count to calculate thecompletephase profile~2!. However,
all the roots of the polynomial interpolation of the minima
phase diffraction amplitude profileRmin(Q) are in the lower
half of the complex plane~lhp!.6 This half plane correspond
to a negative imaginary part of the complex scattering v
tor, hence negative attenuation. Therefore, these zeros
not physically meaningful. The calculated roots~zeros! of
the complex polynomial interpolation~3! are always located
in the lhp and represent mathematical zeros of the diffrac
amplitude profile. We refer to them as the virtual zeros of
complex diffraction amplitude.

The complete phase profile~2! requires that only physica
zeros be included in the second term(mwm(Q) that may
occur in the complex diffraction amplitude profile due to t
interference suppression of the scattered wave. These z
can only occur in the uhp where attenuation is positive. W
the use of the logarithmic dispersion relation~4! and analyti-
cal continuation~3!, the zeros of the complex reflection am
plitude may be calculated. However, so far they are ma
ematical zeros of the polynomial interpolation of th
minimal-phase diffraction amplitude profileRmin(Q) located
in the lhp. If one or more true zeros occur in the uhp, th
should have imaginary parts that are the complex conjug
of the mathematical~virtual! zeros in the lhp. This is the
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critical point of the formalism. Due to its analytical prope
ties the complex diffraction amplitude is uniquely dete
mined by its zeros from the analytical continuation into t
whole complex plane~3!. Some of these zeros are the phy
cal zeros that occur in the uhp that is where the attenuatio
positive. The rest of the calculated zeros obtained from
complex interpolation are in the lhp. These latter zeros
pear only because of the formal use of the polynomial r
resentation of the complex diffraction amplitude. We do n
have to include all zeros in the complete phase profile~2!.
However, we do not know which zeros in the uhp are t
true ones and which are simply formed by the mirror refle
tion ~‘‘flipping’’ ! of the virtual zeros.

Unfortunately, the 2N solutions for the complex diffrac-
tion amplitudeRm(Q) obtained via ‘‘flipping’’ of the com-
plex polynomial roots from the lhp into the uhp according

Rm~Q!5Rmin~Q!)
l

M
Q2Q̃l

Q2Ql ~5!

have the same modulus on the real axisq5Re(Q̃l)5Re(Ql).
Here a tilde denotes complex conjugation. The problem
that u(Q2Q̃l)/(Q2Ql)u[1, but arg$(Q2Q̃l)/(Q2Ql)%
Þconst. Therefore,uRm(Q)u[uRmin(Q)u and, thus, experi-
mental intensity profiles cannot be distinguished. Howev
arg$Rm(Q)%Þarg$Rmin(Q)% and, thus, the resulting structur
factor should be different. Thus, we obtain the same inten
profile for both theRm(Q) and Rmin(Q) diffraction ampli-
tudes. The indexl stands for any combination ofM zeros
selected from the total number ofN. For instance,l can be 3,
5, and 22, henceM53, while N can be any value from 3 to
a very large yet finite number. Therefore, according to E
~5! we obtain 2N complex diffraction amplitudes that hav
the same modulus and, thus, the same intensity profile.
the common case ofN5100 the number of possible comple
diffraction amplitude profiles is more than 1030. Generating
and analyzing one solution per second we would spend a
331022 years to obtain a result using this inversion proc
dure. The fact that we can obtain an enormous numbe
identical diffraction intensity profiles, which can be calc
lated for the same number of crystal structure-factor dis
butions, shows explicitly the hopelessness of the lea
squares-fitting methodology.

Sequential trial of all possible generated solutions o
tained via the phase-retrieval formalism does not seem to
feasible either. The problem is that the complex interpolat
~3!, namely, analytical continuation of the complex diffra
tion amplitude in the whole complex plane, automatica
gives us only negative imaginary parts for the polynom
roots. There is no mathematical criterion for determini
whether a particular zero is a virtual or true zero. Thus,
have to determine which zeros are the true by other mea

It was suggested in Refs. 11 and 12 to perform a serie
experiments with the same sample for at least two radia
energies in order to determine the true zeros of the comp
diffraction amplitude. Here we would like to substantiate t
physical meaning of this procedure and, most importantly
clarify what is true and artefact in the analytical continuati
of the complex diffraction amplitude performed at two rad
tion energies.
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IV. ANALYTICAL CONTINUATION OF THE COMPLEX
DIFFRACTION AMPLITUDE FOR TWO RADIATION

ENERGIES

Figures 1 and 2 represent the analytical continuation
the uhp of the complex diffraction amplitude calculated
the ‘‘high-low’’ SiGe/Si sample in the vicinity of the Si~400!
reflection for 1.54- and 0.71-Å radiation, respectively.12 The
experimental intensity profiles have been collected at
equally stepped points each along the real axis withinq
5Re(Q)>63800. These experimental parameters cor
spond to the depth resolution obtained for a structure-fa
profile of DT515 Å, which is a record for a nondestructiv
diagnostic technique.12 Since the lhp corresponds to a neg
tive absorption coefficient, which does not make physi
sense, we present the modulus@Figs. 1 and 2~a!# and phase
@Figs. 1 and 2~b!# of the calculated complex diffraction am
plitude profiles only in the uhp. Both modulus and pha
distributions are plotted on a rectangular grid with 512350
equal steps along the real and imaginary axes, respecti
Analytical continuation of the diffraction amplitude, show
in Figs. 1 and 2, are calculated for a polynomial function
degreeN555.

There is a minimum number of sublayers and, thus, po
nomial roots, that needs to be considered. This number

FIG. 1. Analytical continuation of the complex diffraction am
plitude evaluated using a logarithmic dispersion relation:~a! is the
modulus~on a logarithmic scale! and ~b! is the phase of the ana
lytically continued Bragg diffracted profile collected from th
Si12xGex /Si sample for 1.54-Å radiation~Ref. 12!. Interpolation
has been implemented by a complex polynomial function of deg
N555.
n
r

2
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or
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e
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be determined from the ‘‘tail’’ of the Fourier transform o
the normalized experimental intensity.9,17 However, im-
proved confidence in the resulting crystal structure-fac
profile is obtained by analyzing a slightly larger number
sublayers that is equal to the number of polynomial ro
evaluated from the analytical continuation of the comp
diffraction amplitude. A larger number of roots, cons
quently a large number of points in the crystal depth, allo
one to explicitly observe a fragment in the resulting crys
structure-factor profile that corresponds to the perfect str
ture in the substrate. The minimum number of layers that
be analyzed was found to be about 40.12 The degree of the
polynomial function that was used to interpolate the comp
diffraction amplitude was selected to beN555.

Having two radiation energies and, thus, two different
tenuation coefficientsm1 andm2 we can measure two sets o
experimental intensity profiles within the same~or very
close! range of wave numbers:11,12

I j~Qj !5uRj~Qj !u25uRj~q1 im j !u2. ~6!

The phase ofRj (Qj ), where j 51 or 2, can be determined
via a logarithmic-dispersion relation~2! that in this case has
the following form:

e

FIG. 2. Analytical continuation of the complex diffraction am
plitude evaluated using a logarithmic dispersion relation:~a! is the
modulus~on a logarithmic scale! and ~b! is the phase of the ana
lytically continued Bragg diffracted profile collected from th
Si12xGex /Si sample for 0.71-Å radiation~Ref. 12!. Interpolation
has been implemented by a complex polynomial function of deg
N555.
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11 182 57A. YU. NIKULIN
w j~Qj !52
1

p
PE

2`

` lnuRj~Qj8!u
Qj82Qj

dQj812(
m

arg~Qj2Qj
m!

5w j
min1(

m
w j

m . ~7!

In practice it is preferable to use the normalized experime
intensity R̂(Q)52 iQR(Q) ~Refs. 6 and 9! instead of the
directly measuredR(Q)5AI (Q) for the evaluation of the
integral. The modulus of the Fourier transform of the n
malized intensity is zero below a depth corresponding to
thickness of the damaged layer. This useful substitution
the experimentally measured intensity obviously guaran
the convergence of the integral in Eqs.~2!, ~4!, and~7!.9 In
addition, it is impossible in practice to measure the exp
mental intensity profile from minus to plus infinity, as
required for the formal limits of the integral. In practic
however, an evaluation of the integral taken over a ra
wider thanDq2max>Dq1max>100 gives an adequate resu
This problem has been addressed elsewhere.17

The most important question now is what is true and w
is artefact in the analytical continuation presented in Figs
and 2? Since we stated that the analytical continuation~3!
defines the complex diffraction amplitude uniquely, t
modulus and phase should have been identical in the plo
and 2. They are similar in major features indeed, but
identical.

To make explicit the last point of the concept of th
unique representation of the complex diffraction amplitu
via its zeros, we should remember that we do not know a
most importantly, we can never know, all the true zeros
the complex diffraction amplitude. Analytical continuation
~Figs. 1 and 2! were calculated using only one true ‘‘slice
of the modulus of the diffraction amplitude, that is, the e
perimental data profile for each two-dimensional plot. The
fore, most of the zeros occurring in the calculated analyt
continuations~Figs. 1 and 2! are virtual, mathematical, zeros
They do not correspond to the true two-dimensional pro
of the complex diffraction amplitude and they are differe
for each calculation. If, however, there are true zeros in
calculated analytical continuations~Figs. 1 and 2!, then the
latter might have similar general shapes, which is the c
Thus, the only correct information about the complex d
fraction amplitude for these particular calculated analyti
continuations~Figs. 1 and 2! is the measured experiment
intensity and the physical zeros of the complex diffracti
amplitude. They represent a small fraction~or even zero frac-
tion! of the total number of virtual zeros calculated from t
polynomial interpolation~3!. The general shape of the pro
files ~Figs. 1 and 2! is, strictly speaking, incorrect. To dete
mine the correct general shape of the complex diffract
amplitude we must know all the physical zeros, which a
fundamentally unobtainable.

However, to solve the inverse problem, that is, to det
mine the crystal structure factor, it is sufficient to locali
only those true zeros which occur within the measured ra
of the Dq2max,Re(Qm),Dq1max. Thus, the problem now is
to distinguish between the true and virtual zeros in the a
lytical continuations~Figs. 1 and 2!. To resolve this issue we
make another physical assumption, namely, the presence
location of the true zeros due to interference suppressio
al
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the scattered wave within the analyzed layer is intrinsic t
particular discrete representation of the structure-factor p
file c5(k50

N uckueifk. This assumption allows us to dete
mine the true zero locations in the analytical continuation
the complex diffraction amplitude~Figs. 1 and 2!. Since the
true zeros are intrinsic to the structure-factor profile and th
locations do not depend on a mathematical/numerical im
mentation of the technique, analytical continuation of tw
complex diffraction amplitudes, obtained using two differe
radiation energies, should produce thesamelocations for the
true zeros.

Figures 3 and 4 show enlargements of the modulus of
analytical continuations~Figs. 1 and 2! in the lhp—the only
place where the zeros can be calculated. This represent
narrow area around zero No. 21, which was found to be
of the true zeros and was included in the complete ph
profile ~7!.12 Zero No. 21 is in the center of each plot in Fig
3 and 4. To improve the visibility of the plots in order t
allow direct observation of the zeros, calculations were p
formed on a rectangular grid with 3003150 steps along the
real and imaginary axes, respectively. There are other z
that can be seen in the calculated profiles~Figs. 3 and 4!.

FIG. 3. Modulus~on a logarithmic scale! of the analytical con-
tinuation of the complex diffraction amplitude obtained from t
experimentally measured Bragg diffracted profile from t
Si12xGex /Si sample for 1.54-Å radiation~Ref. 12! in the vicinity of
zero No. 21.

FIG. 4. Modulus~on a logarithmic scale! of the analytical con-
tinuation of the complex diffraction amplitude obtained from t
experimentally measured Bragg diffracted profile from t
Si12xGex /Si sample for 0.71-Å radiation~Ref. 12! in the vicinity of
zero No. 21.
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57 11 183UNIQUENESS OF THE COMPLEX DIFFRACTION . . .
However, even the greatly improved spatial resolution u
for the calculation~Figs. 3 and 4! is not sufficient to resolve
the locations of other zeros. The radiation energy mus
selected with very high precision in order to observe a z
of the complex diffraction amplitude in an experiment. Y
this is the only procedure for determining the true zero lo
tions experimentally.

However, we can see from Figs. 3 and 4 that all ot
zeros, except for the central one, have quite different lo
tions in the complex plane. This means that they are vir
~mathematical! zeros which should not be ‘‘flipped’’ in the
uhp. The central zero, No. 21, in the calculation perform
for the polynomial interpolation of degreeN55, seems to be
the true~physical! zero. Indeed, this zero was included, t
gether with a few other true zeros, in the complete ph
profile ~7!.12 The crystal structure factor calculated for th
complex diffraction amplitude gave remarkable agreem
with thea priori knowledge of the sample under analysis a
with results obtained by other means.12

Ideally, every zero calculated from Eq.~3! should be
checked experimentally to determine whether it is locate
the uhp. If the experiment, using the required radiation
ergy, shows a zero in the experimental intensity profile,
zero is the true one. If the experiment does not show
presence of a zero, this zero is not physical, but appears
because of the analytical properties of the complex diffr
tion amplitude and its analytical continuation~3!. The posi-
tion of such a zero in the analytical continuation depends
the numerical procedure used to approximate the solu
However, such a comprehensive experimental proce
does not seem to be feasible.

The problem of the zeros occurring in the experimen
intensity is also intrinsic to other inversion methods, e
using the transport of intensity equation.20,21 Imaging tech-
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niques usually deal with two-dimensional intensity distrib
tions. It was shown in Ref. 22 that in the presence of ze
the phase-reconstruction problem cannot be solved uniqu
It seems that for some cases involving imaging based
inversion methods the suggested multi-energy formalism
be useful.

V. CONCLUSION

The complex diffraction amplitude in Bragg diffraction i
represented as a unique product of its zeros. The analy
property of the complex diffraction amplitude allows th
phase to be retrieved via a logarithmic dispersion relati
However, this creates a large number of virtual zeros that
difficult to distinguish from the true zeros. To determine th
locations of the true zeros of the complex diffraction amp
tude it is necessary to consider the analytical continuation
the diffraction amplitude in the whole complex plane. Sin
an experimental intensity profile always has a discrete rep
sentation, a comprehensive examination of the limited nu
ber of complex zeros allows one to determine the locatio
of the true zeros unambiguously. The inverse problem c
then be solved uniquely, which allows the direct mod
independent characterization of modern sophisticated se
conductor devices with a remarkable spatial resolution
about 10–15 Å.
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