PHYSICAL REVIEW B VOLUME 57, NUMBER 18 1 MAY 1998-II

Anisotropic cluster model for the short-range order in Cu,_,Pd,-type alloys
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The split diffuse maxima around tH@10 and {100 positions in the diffraction pattern of short-range-
ordered Cy_,Pd, alloys (x=0.10...0.60) are attributed to small atomic clusters, being part of the underlying
fcc lattice. By analyzing the reciprocal space geometry, our cluster method identifies two prominent cluster
types: the tetrahedron of nearest neighbors and a linear three-points cluster alghtthirections. Since
both cluster types contain different information on the same nearest-neighbor correlations, local anisotropy has
to be assumed. It is shown that the three interatomic pair interactions within these basic clusters are sufficient
to generate the spot splitting in the diffraction pattern. A ground-state analysis with these interactions repro-
duces the results of the anisotropic next-nearest-neighbor Ising ni80d/63-182@08)02418-7

[. INTRODUCTION In order to build a real-space configuration for the SRO in
the Cu-Pd system, different routes can be followed. In Ref.
Diffuse intensity in the diffraction patterns of many alloys 26, a configuration model was proposed, based on a distri-
is due to substitutional short-range ord&R0O.1~%In most  bution ofL1,-type microdomains, being in antiphase to each
cases, the diffuse intensity is located at the highly symmetriother. The average distance in between the domains was cal-
cal special points of the first Brillouin zone, for example, for culated from the concentration wave mo#éf.in Ref. 28,
the fcc-based alloys: o at (120),5®PdV at (100,210 mlcrodomalns are indeed gbserved insBd by means of
high-resolution electron microscopy. Rahrfiamlso con-
and CuPt at§33).""*? cluded from videographic and random-phase simulations on
Cu,_,Pd, is interesting since it shows fourfold splitting of Cu,Au, that an antiphase distribution of domains leads to the
the SRO intensity at thE110 positions and twofold splitting  diffuse spot splitting.
at the {100, positions forx>0.10 (Refs. 13—1§ (Fig. 1). Recently*® we studied the SRO in Gu,Pd, by high-
Below the order-disorder transition temperatlitg a long-  resolution electron microscopy. It was found that two-
period antiphase boundatyPAPB) structure is observed for
these compounds, giving satellite reflections at the same po- r
sitions as in the SR8 Following the Fermi-surface im- 020
aging theory!? below T, the splitting can be explained by
the flattening of the Fermi surface if its double radius ap-
proaches too close to the boundaries of the first Brillouin
zone. The Fermi-surface imaging theory holds as well for the 200
SRO staté#?° Ohshima and Watanalfedescribe how the )
splitting of the diffuse maxima in the Cu-Pd system increases
with decreasing e/éelectrons per atopratio, i.e., with in-
creasing Pd concentration. OtHa00)-type systems exhibit-
ing split diffuse maxima are Au-Pd;??2 Ag-Mg,?
Au-Zn 223 Cu-Al?* Cu-Zn? and Cu-Au(Ref. 2 (at the
onset to long-range order
It should be noted that both diffraction and Fermi surfaces (c)
deal with averagestructures and thus are considered with
respect to the full symmetry of the underlying fcc lattice. Itis  FiG. 1. [001] electron-diffraction patterns of Gu,Pd,, where
one of the aims of this paper to deduce very local informax=0.10(a), 0.30(b), 0.40(c), and 0.50(d). In (c), the contrast is
tion that does not necessarily reflect this symmetry. Theverenhanced in order to visualize the diffuse streaks, perpendicular
present results are hence not necessarily in contradiction witlo the twofold splitting or connecting the spots in the fourfold split-
the theory of Fermi-surface imaging. ting.

‘
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dimensional2D)-correlation vectors of the typ@,1) inthe  |n Eq. (3), the indexj+i refers to the siter;+r; of the

projected{00L} planes are responsible for the splitting. This ynderlying lattice oy is the occupation parameter for the site
can be brought in agreement with the microdomain mode},  gefined as follows*

when this(n,1) vector is the connection between two do-

mains. Moreover, it was argued that these correlation vectors [ —mg if the site r, is occupied by anA atom,
between just single atoms, and not necessarily domains, ma§/k~ m, if the site r, is occupied by aB atom,
also contribute to the split diffuse intensity. (4)

Starting from the SRO parameters, calculated from x-ray d ( ) is the fracti fA (B) at .
diffraction, Saha and co-workérscompared configurations andm, (resp.mg) is the fraction ofA (B) atoms, i.e.mj,

for the SRO in Cu-Pd alloys with different compositions. +me: L fTIh::‘t.aver_’;lg; .Of tlhe residue \I/talues.over the tt;)tal
While the diffuse maxima were clearly split in the experi- hum erto ba Ice SItes 1S always zero. 11S variance can be
mental observations, it could not directly be pointed outProven to be
which structure effects in the simulated configuration were 1 1
responsible for the splitting. <|8|2>:N2 |sj|2=Wf Io(9)|f(g)]%dg. (5)

In the present work, we describe the splitting analytically v
by means of the cluster model, developed in Refs. 7 andhis integral is exactly expressioil).*? The variance can
30-33. The principles of this method and its application topnly vanish if the mapping functiof(g) is zero on all posi-
electron diffraction on the Cu-Pd system are explained in theéions where the diffuse intensity is nonzero.
next section. The as-found cluster model is then tested by Equation(3) gives information about aM -points cluster.
random-phase and videographic simulatid&ec. Il). In |0 many cases, this cluster can be occupied by some different
Sec. IV, a ground-state analysis is derived from the occurringonfigurations ofA andB atoms, in such a way that in Eq.
clusters. The result is in agreement with the anisotropic nex3) the valuee; vanishes. The global configuration of the
nearest-neighbor ISinANNNI) model for second-nearest- gjloy then is a conglomerate of these clusters and probably
neighbor interactions. A direct link is then made between the,ome others for which; is nonzero, so that by the use of Eq.
spot splitting and the ANNNI model for the SRO state, with- (5), the variance of the residues is obtained. For an experi-

out the need for long-range interactions. mental analysis including the residues, one needs quantita-
tive diffraction data. However, when starting from an
Il. RECIPROCAL SPACE CLUSTER ANALYSIS electron-diffraction experiment, one usually approximates
OF THE DIFFUSE INTENSITY the problem by restricting the diffuse intensity to a confined

locus, so that the residue effectively becomes zero. The re-

sulting clusters then describe approximately the real configu-
The present analysis of the diffuse intensity will derive ration. This purely geometrical approach however does not

the most apparent clusters that are responsible for the SR@ke dynamical diffraction into account.

The construction of such a cluster model is based on a map-

plng fUﬂCtiOﬂf(g), which is constructed in such a way that B. Tetrahedron of nearest neighbors

the integral

A. Outline of the theory

Figure 1 shows th@001] electron-diffraction patterns for
different concentrations of the Cu-Pd alloy. The split diffuse
J I5(9)|f(g)|?dg (1) maxima are for all concentrations located on the lihe,
v* or I=o0dd. These lines coincide exactly with the contours

is as small as possiblég(g) represents the diffuse diffrac- f(9)=0, where we propose for the mapping function:
tion intensity andv* the volume of the reciprocal space unit . B . .
cell. For the minimization of Eq(1), f(g) is constructed fl@=f(hkh=1+exgim(h+k)]+exdia(h=1)]

such that it vanishes on a contour in reciprocal space, which +exdim(k—1)]. (6)
covers the maxima dfy(g). In practice, it turns out that the . . o
summation in the Fourier decomposition ffg), From this, the corresponding cluster relation is
_ Ot Oi (12,120 T Ti+ (12,0127 Tit01212=0 Vri. (7)
f(Q=2 we 2m97, ®) . . : e
R This relation defines the four lattice sites of a tetrahedron of

nearest neighbolg=ig. 2(a)]. The cluster relatiori7) can be
contains a very limited number of terms. fulfilled for an A;B and for anAB composition. When stack-
From Eqgs(1) and(2), one can prov¥ that in direct space ing, e.g., theAsB clusters, and keeping in mind that E@)
" must hold for all lattice sites, one can build th&, super-
B structure, theDO,, superstructure and many intermediate
81'_;1 wiojsi Yy, (3 variants in between theg€ig. 2(b)]. B-B atom pairs never
occur on nearest-neighbor sites. In Ref. 33, it is indeed
wheree; is only a small value if Eq(1) is small, and it is  proved that the cluster relatidd) is a consequence of repul-
called the residue value for sife The physical meaning of sive nearest-neighbor interatomic interactions. In Ref. 35,
minimizing the integral(1) is assigned by this equation: it this tetrahedron cluster has been applied to th¥ Bystem
provides local occupations foW sites, i.e., it describes fre- to describe the transition from the 100 type of SRO to the
guently occurringM-points clusters, when Edl) is small.  DO,, superstructure. In the case of tA& composition, Eq.
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oY Yo YoX YoX Yo¥ FIG. 3. Contours for which the mapping functiofigg) from
0000000000 Eq. (8) are zero in th¢001] section.
0e0e0e0e0e L1,
0000000000
0000060000 mind that the tetrahedron of nearest neighdds. (7)] si-

O00000OO000 . . . .
multaneously imposes its own conditions on the configura-

tion. Ohshima and Watanalfeobserve a slight curvature of

[eX JoX JeJoXeJojex ] . . . .. . .
0000080800 the diffuse lines, which is in correspondence with the Fermi-
(o} JeoX JojeXelexeX ] L1, +DO i H i
0000080800 27 surface imaging theory. However, these curvatures manifest
000@800000e themselves only at the very ends of the diffuse streaks and
[oXoJoeloX XoX JOXe

hence give very weak deviations from the present assump-
tions. For most compounds, they are even invisible. This

00 .. . . . . .
2 8 8 8 2 8 8 8 ®0 small deviation thus will result in a residue value, which will
2838288828 DOg, be very small.

0080008000 From Eq.(8), we find six equivalent clusters, being linear
[ JoJoXoX XeJeXeX N6

three-points clusters along tH&10 directions(Fig. 4), de-
scribed by the relation
®)

Oiiatwoiytoi.=¢ Vr;. 9
FIG. 2. (a) Tetrahedror(in bold) of nearest neighbors in an fcc Ira b T TiteT ! ©

cube.(b) Examples of stacking aA;B structure so that Eq7) is  For arbitrary values ofv, i.e., for most splitting distances,
fuffilled for all lattice sites. Only two nonoverlappin@0l) layers  the residues; in Eq. (9) can never vanish. Note that the
have been drawn. Empty circles repres&ratoms, filled circlesB original problem is now reduced to six equivalent one-

atoms. dimensional problems. Thus we have to construct a linear
_ chain of atoms that minimizes the variari¢e|?) for Eq. (9).
(7) also includes the-1, structure and the so-calleti,B, For some special values af the residue value in Eq9)

structure®® which belongs to the 40 type of alloys. For may vanish. These values and the corresponding chains are
other compositions, one has to admit nonzero residues in E@numerated in Table |. They vary from homogeneous chains

(7). (w=—2, no splitting, to an alternation oA and B atoms
(w=2, extreme splitting up to thél10) reflections. These
C. Linear three-points cluster chains can now be coupled to their neighboring chains by

) ) . . applying Eq.(7) of the tetrahedron of nearest neighbors. Fig-
Simultaneous with the splitting, one observes weak dif-;ra 5 shows the results for some of the cases from Table I.

fuse lines in the diffraction patterns, passing through the difgg, 4 globalAB composition of the alloyw=—2 andw
fuse mqmma{ﬁg. 1(_c)]. In _order to relate a cluster type 10 _5 result in two different variants of thel, structurg Figs.
t_he origin of these dlffuse_ lines, we propose 6 mapping funcB(a) and 5¢)] andw=0 gives theA,B, structure[Fig. 5(b)].
tions, given by the equations For theA;B composition, thed-1, structure can be generated

_ ; ; by stacking puréA and AB rows. The diffraction pattern of

= -+ _ +

H@=wtexdin(h=D]+exd —im(h=D], the L1, structure can indeed be covered by simultaneously
f(g)=w+exgim(kx1)]+exd —im(kx1)], two mapping functions: one fow=-2 and one forw

f(g=w+exdim(h=k)]+exg—im(h=k)]. (8

The zero contours of these mapping functions are planes in
reciprocal space. Their section with the pldre0 is repre-
sented in Fig. 3. The parameterin Eq. (8) influences the
distance of splitting and depends only on the composition.
As can be seen in Fig. 3, these planes cover much more of
the reciprocal space than the observed diffuse intensities, but
expression1) is still minimized. The associated cluster re-
lation will therefore be too general to give a complete de- FIG. 4. The linear three-points clustén bold), consisting of
scription of the real configuration, but one has to keep inthe sitesa, b, andc, along one of thé110 directions.
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TABLE I. All possible clusters with vanishing residues for the linear three-points cluster.

) Possibilities for cluster fillings Chain examples Global composition
-2 AAA ...AAAAAAA.. A
-2 BBB ...BBBBBBBBB.. B

0 AAB or ABB or BAAor BBA ...AABBAABB.. AB

1 AAB or ABAor BAA ...AABAABAAB.. A,B

1 BBA or BAB or ABB ...BBABBABBA.. AB,

2 ABAor BAB ...ABABABAB.. AB

=2. In the case of SRO, the reflections are diffuse and the Close to the values= —2, the configuration will tend to
residue values are consequently nonzero. Therefore, the pseparateA- and B-type atoms(within a chain. These long
riodic chains from Table | will only have a limited length. homogeneous chains appearlid, or L1, microdomains.

Nonzero residue values have also to be allowed for arbiFrom w=—1 on, pairs ofB atoms will occur separately in
trary splitting distances and for alloy compositions for whichthe majority ofA atoms(for m,>mg). Whenw=0, the zero

the cluster relatiqr(g) cannot be_fulfilled. A detai[ed treat- ~ontours of the mapping functions cross {A& 0} positions.
ment of Eq.(9) will prowczie us with the cluster fillings that £, £q. (10), it appears that in this particular case, the
minimize the variancé|e| >_. Indeed, by the use of definition | ;e ofY does not influence the residue value, whildas
(4), Eq. (9) can also be written as to be 0 or 1. It is then possible to build, e.g.,
...AAABAAAB.. chains, which, when combined with the
gi=—Mg(2+w) +X+wY, (100 tetrahedron relatior(7), can give rise to aO,, micro-
domain. This is globally the expected evolution in
where X is the number oB atoms on sites andc (thus  Cu,_,Pd,, wherew remains negativéas can be measured
X=0, 1, or 2 andY is the number oB atoms on sitd (thus  from Fig. 1). By varying v, a continuous series of structures
Y=0 or 1) of the cluster with index. In Ref. 33, one proves is thus found, which describe the transition from th€0)-
that a lower bound for the variancle|?) is given by g the (150)-type of SRO.
—e¢&igij+1, Whereg; is the largest negative ang . ; is the
smallest positive residue value, determined by variatioX of
andY in Eg. (10). The two cluster types found then have to
be used in the chain formation in order to minimige|?).
Table 1l summarizes these pairs of minimizing clusters and ] ]
some examples of chaingy and mg are found from the The present cluster model cannot predict the_ size of t_he
experiment(e.g., from Fig. 1 In some of the chains, other ordered chains or th_e distance in between the microdomains,
clusters than the minimizing clusters have to be introduceddUt the concentration wave modél can. In the one-
in order to realize the stacking or to fulfill the global com- dimensional problem, diffuse spot splitting with a spot at

position. In such cases, the obtained variafie¢”) will be ~ Positionh [see inset in Fig. @ for the definition of the
larger than the predicted lower bountk;e; ;. distanceh], results in a concentration wave, described by a

continuous occupation parameter

Ill. DIRECT-SPACE SIMULATIONS

A. Random-phase simulations

(A XN XN XX KX ]
Qo0o00O00Q00O0
(a) 000000000
OoOo0000C000
(A XX XN XN KX ]
0000000000

o(x)=—13 cog2mihx+ @), (11)

where ¢ is an arbitrary phase factor. Equati¢hl) gives a
zero residue value in Eq9) for o= —2 cosgrh). The full
three-dimensional problem can be treated by superimposing

00l e el all occurring concentration wavedl) for the different di-

®) c®@e00@e0O® rections. Random-phase simulations then put random-phase
0e50%e0200, factorse in the different concentration waves. In Figab a
®0cOe@cOe@®0 2D-domain configuration is shown for a splitting distarice

()

[N JeN Noi Nei JNoN J
[ JoN NN NN JeN N
N NN N JNoN JNoN J
[ NN NN el Jel Jel
[N NN NN NN JN-¥ J
[ JoN NN NN JoN e

=i, obtained by the random-phase method. 2D-correlation
vectors of the typén,1) and(n,n+ 1) are found in-between
the domains, whera=1/h andn can be related to the chain
length of the chains described in Table Il. The presence of
APB's [Fig. 6b)] is due to the tetrahedron relatigr). For
instance, for arAB composition, when a chain & atoms

FIG. 5. Some structures, resulting from stacking the linear threePreaks down, a chain ok atoms has to follow. The neigh-

points clusters, for which the variance is zef@.and (c) two vari- ~ boring row to this one consequently must have the opposite
ants ofL1, (w=—2 andw=2); (b) A,B, (w=0). Empty circles  0ccupation. In this way, a configuration of domains is built
representA atoms, filled circlesB atoms; small and large circles by stacking chains of length, combined with the presence
represent atoms on different heights. of APB's. This generates correlation vectors of the
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TABLE Il. Clusters that minimize(|e|?) as a function ofw, for the casemy=mg. If my<mg, the symbolsA and B have to be
interchanged.

® (X,Y) in Eqg. (10 Clusters Chain examples
Mp<3 Mg= 3 Me<3 M= 3 Me<3 M= 3 Mg<3 M= 3
—2=w=-1 (0,0 AAA ...AAAAABBBBB..
2,9 BBB
mg (1,0 BAA or AAB ...AABBAABBAABB.
—lsps—--1
My
1, BBA or ABB
(0,0 AAA ...AABBAABBAABR. or moreA:
——1<w<0
A
1,2 BBA or ABB ...AAAAABBAAABBAAAAA
(1,0 (1,0 BAA or AAB BAAor AAB ...BAABAABAA.. ..AABBAABB..
Osws2—
A
O=sw=<1 (0,2 1,1 ABA BBAor ABB
(0,0 AAA ...ABAAAABAA..
2—=w=<1
A
(0,1 ABA
1 (0,0 2,0 AAA BAB ...ABAAAABAA.. ..ABABABAB..
Ispws—-2
Isw=<?2 (1,0 0,1 BAA or AAB ABA
(1,0 BAA or AAB ...ABABABAB..
——2=@w<2
(2,0 BAB

type(n,n+1,1) in between the domains, which give in pro- small chains oB atoms,L1, microdomains, anél 1, micro-

jection the 2D correlations in Fig.(8. domains. They all lead to similar patterns as in Figh)7
B. Videographic simulations IV. GROUND-STATE ANALYSIS
The amplitude of the concentration wave is connected to A. Outline of the method

the intensity of the corresponding diffraction spot and influ-

ences therefore the actual size of the ordered microdomainF.
Since for SRO the intensity is very low, the domain size is'Y
expected to be very small, maybe only one or a few unit 1
cells. The size can even be further reduced so that one o 2y _— 24g= o =

tains just a distribution of single atoms connected by the fel") NV* fv*ID(g)If(g)I d9 mAmB% wicti—i>0,
correct correlation vector. From a detailed high-resolution (12

electron microscopy study,evidence is found that this can where f(g) follows Eq. (2). «;_, is the SRO parameter

indeed be the case in Cu-Pd alloys. To test this model, dif(Refs 1-5 for the interatomic distance —r,.. The summa-
ferent types of unit cells are distributed on an fcc Iatt|ce,,[ion in Eq.(12) can be written in matrix notation as

connected by vectors of the tyga,n+1,1). These simula-

Van Dyck et al3? prove that for an arbitrary mapping
nction f(g), one always has

tions are performed by the videographic simulation el =mamelolalw)=0 13
method?9'37 <| | > A B< | | > ’ ( )

For all of these simulations, a diffraction pattern is foundwith |o) a vector with elements;, and @ a matrix with
that exhibits the split diffuse spots with the correct spot split-elementsy; ;= «; ;). From the basic knowledge thi(g)

ting. Figure 7 shows the extreme case where just siBgle is positive, one finds in Eq13) that thea matrix has to be
atoms are distributed in a large simulation box. The correlapositive definite, which gives restrictions on the possible val-
tion vectors are of the typé4, 5, 1, as indicated in the ues ofa. This can be visualized in the space where an
enlarged part of the simulation fie]@Fig. 7(a)]. The diffrac-  existency domain or configuration polyhedron can be con-
tion pattern[Fig. 7(b)] shows the geometry of the spot split- structed wherein Eq13) holds. The boundaries of this do-
ting, similar to Fig. 1. Simulations were also performed formain correspond td|e|2)=0, whereas within the polyhe-
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FIG. 6. (a) 2D random-phase simulation ftr= ﬁs Full white
pixels represenA atoms, full black represent8. The indicated
arrows are of the typén,1) or (n,n+1), and are hence perpen-
dicular to the APB'’s in between the small domains. The inset shows
the diffraction pattern(b) APB formation in thelL1, structure.
Resulting from the stacking rule of the tetrahedron, &y.an APB
is formed at the spot where the horizontal homogeneous chai
break down.

FIG. 7. (a) Part of the simulation field of a 3D videographic
simulation. Points are distributed with preference for the correlation
\éectors (4,5,). Some of these vectors are indicatéd) Corre-

n . . ; . ) .
sponding diffraction pattern for the full simulation. The spot split-
ting is clearly present.

dron(|e|?)>0. Outside the domain, it is impossible to stack

any structure with the givern’s. This method has been ap- 1 B B
plied in order to construct the existency domain in many B 1 Bi]. (15
types of basic structurés:>® An alternative method for the B, B 1

ground-state analysis is constructing the Kanamori inequali- ) o
ties for the clusterd The derivation of the interatomic in- The existency domain is bound by the curves,=0 and

teractions is then done in dual space, which is similar to what — 285+ 8,=0 and is shown in Fig. 8 inf;,,) space.

we will do in Sec. V. For B,=1, the corresponding eigenvector is (}@,). For
the boundary $2ﬂf+,32=0, the corresponding eigenvec-
B. Tetrahedron of nearest neighbors tor is (1,w,1), w=—28;. This eigenvector results in the

) ) ) mapping functions(8). Note that the relationshipw=
In Ref. 33, one derives the existency domain for the tet-_ 283, only holds exactly on the boundaries, i.e., when

rahedron of nearest neighbors. Since only nearest neigth{Fg|2>:0_ For SRO, it is thus not possible to derigg from
are present within this small cluster, thespace is one di- he splitting distanc'e.

mensional, and the boundaries of the polyhedron are defined gq; 5 configuration exactly at the boundary of the exist-

by ency domain, the diffracted intensity has to appear strictly on

<a<1 (14 the zero contours of'the mapping function. At' the corners of

TR the existency domain, superstructure reflections will hence

At the boundarya; = — %, the corresponding eigenvector is OCcur for a structure havin_g the corresponding SRO param-

defined by the elements; = w,= w;=w,=1. This eigen- eters. For Fig. 8, the resulting superstructures are mentioned.

vector defines exactly the mapping function of Egj. They are exactly the ones tha.t also r_esult frpm the ANNNI
model with second-nearest-neighbor interactioffs.

W=

C. Linear three-points cluster
V. DISCUSSION: CORRESPONDENCE

Within the Iinegr three-points cluster_, the nearest and tht_e TO THE ANNNI MODEL
fourth-nearest neighbor on the fcc lattice are present, their
SRO parameters being denoted heredy resp.B,. The The parametersy; in the nearest-neighbor tetrahedron

matrix of SRO parameters then is and B; in the linear three-points cluster both give informa-
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AAAAA.. T,
BZ or
...ABABABAB... ...BBBBB...
1
..ABABABABAB... ..AAAAA.., ..BBBBB...
or or
<1> <oo>
U
1 1
By
..AABBAABBAABBAA...
or <2>
FIG. 9. Phase diagram for the one-dimensional Ising problem
with second-nearest-neighbor interactions. The ANNNI model ex-
1 hibits the same diagram.

..AABBAABBAA...

FIG. 8. Existency domain for the linear-chain problem with two the ~ ANNNI model with  second-nearest-neighbor
neighbors. Within the figure, it is possible to build one-dimensionalinteractions#° Within the concept of the Ising model, one
configurations with the corresponding SRO parametgs,8,).  has the possibility to examine the configuration for nonzero
responding structure. At the edges, the corresponding superstrutpappg structures, which are stable beldw for a broad
tres are mentioned. composition range in Cu-Pd alloys, can be explained by this

i i . ; lation. In th ¢ model NN model*® This justifies that anisotropic interactions
ion on the same type of correlation. In the present modelic . can be introduced for the SRO.

they are uncoupled however, so tha_t we have to assume loca In order to prove that this limited set of interactiovs,
ar)lsotropy to apply the model. Within the fr.amework of J;, andJ, can account for the split diffuse intensity in the
Is_lng mod(_als for aIons,_ the ANNNI model provides the POS-SRO state, we calculate the minima of the potentigd) in
S'b.'“ty to_lntroduce amso_tropy._ln order to prove that our reciprocal space. Consider therefore a chain alondQhé|
anisotropic cluster model is equwalgnt to th.e ANNNI mOdel’direction, starting from the central black atom in Fig(d0
we have to “translate” our results in function of the inter- . .. % 0o of the interactiods andJ, and 12 near-

atomic pair interactions. . . est neighbors for interactio; are available, so that
In a binary fcc alloy, the internal enerdy per fcc unit

cell is given by

) V(g)= —2J,c0§ m(k+1)]—2J,c08 2m(k+1)]

U= Zia;V,, 16
MAMg 2, ZienV, (16) +2V{cod m(h+K)]+cog m(h—K)]
whereZ; is the number of lattice sites in théh neighboring +co§ w(h+I1)]+co§w(h—1)]
shell, «; the corresponding SRO parameter, ahdhe cor-
responding pair interaction parameter. Equatib6) repre- +cog§ w(k+1)]+cog w(k—1)]}. (17

sents a hyperplane in thedimensionala space. Upon or-
dering, the internal energy decreases and the pldée : L - .
moves parallel to itself to one of the corners in the existenc rjslfpntl::t!on 1'3 rep_rester:]ntegoT Flg-t(_li) [al?d the profile for
domain, until a superstructure is realized. This relationship, in Fig. 1dc)] In the [.. ] Section. IS minima repro-
CHJCG part of the split intensities in the diffraction pattern. The

between existency domain, superstructures, and interactio h lit i bviouslv obtained when the other chai
parameters results in a phase diagram that subdivides t%él €r SpIit Spots are obviously obtained when the other chain

interaction space in different regions, indicating which phas rections are included. T_he mathem_atlcal analogy hetween

is expected to be the ground stéfe?341 =q. (17) and the.construcuon of the different mapping func-
For the easy case of nearest-neighbor interactions withifions (6) and (_8) is also apparent. .

the tetrahedron, the phase diagram discerns @pty 0, cor- When the internal energy n _Eq. (.16) decre_za;es,_thg line

responding to segregation in pubeand pureB phases, and of_ constant energy) can shift in Fig. 8 until it cc_>|nC|des

V>0, which can, e.g., result in1y, L1,, of DO,,. with t'he tangent of the parabola. The tangent line can be
From the positions of the three superstructures in the exgescrlbed as

istency domain of the linear three-points cluster, the phase

diagram in (;,J,) space is derivedFig. 9. The interaction

parameters are now denoted byn order not to be confused Bo=—2wpB1+C, (18

with V; .*? The phase diagram discerns the phase segregation

() (....AAA... coexisting with ..BBB..., equivalent to fer-

romagnetisiy the phasg1) (...ABABARB.., or antiferro- whereC is a constant. On the other hand, Ef6) shows a

magnetism and the phasé2) (... AABBAABB..). Exactly  similar linear dependence between the SRO paramgters

the same ground-state phase diagram has been calculated &d 8,, from which follows
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ever shows that a simple isotropic Hamiltonian can repro-
duce many of the features of the phase diagram of the
ANNNI model. With just a small set of interplanar interac-
tions (essentially fouy, they simulate many characteristics of
the LPAPB's in the Cu-Pd system. It should be noticed that
these interplanar interactions are to be interpreted as a pa-
rametrization of many interatomic interactions—the authors
mention that one should make calculations up to at least the
40th neighbor effective pair interaction. The success of the
use of interplanar interactions is to be found in the fact that
the dimensionality of the problem is reduced, which is in
essence the introduction of an anisotropic effect. A corre-
spondence with the ANNNI model has indeed been drawn in
Ref. 43, and it has been concluded that the interplanar inter-
actions are equivalent to the interactions of the ANNNI
model. This sustains the observations of the present paper.

(@

(b)

VI. CONCLUSIONS

It is well known that multiple scattering gives an impor-
tant contribution to electron diffraction. Electron-diffraction
patterns can therefore not be used to derive detailed quanti-
tative results. The mapping function in the present cluster
method uses in first instance only the loci of the diffuse
intensity, not the numerical value of this intensity. It is there-
fore a very suitable, but only qualitative, method for the
interpretation of SRO in electron diffraction.

The cluster analysis first gives the almost trivial tetrahe-
dron of nearest neighbors which, as much as possible, has to

« be filled out with the macroscopic composition. From the
L * R ground-state analysis, this means that the interatomic poten-
tial for nearest-neighbor lattice sites is repulsive for chemi-

FIG. 10. (8 V4, J;, andJ, in a specific example. Small and Cally equivalent atoms.

V, for h=1 and 1=0

©

large dots represent atoms on different heigtids Plot of V(g) in The splitting of the diffuse intensity maxima is introduced
the [001] section (V;=+0.30, J;=+0.25, J,= —0.10, arbitrary  in the model by the linear three-points cluster via the param-
units). (c) Profile of (b) for h=1. eterw. Variation of the value ofv allows a continuous tran-
sition between different one-dimensional chain occupations,
3 which results in a transition from th€100- to the
J—2=2w, (19 (110)-type of SRO. The occupation of the chain can alter-

natively be governed by a concentration wave model. This
concentration wave is, for most valuesafincommensurate
with respect to the fcc structure and hence gives site occu-
pations that are not purelx or B. The cluster analysis is
therefore closer to a realistic description, but has to allow a
nonzero variance|s|?).

Combining the tetrahedron cluster and the linear three-
points cluster, the importance of the correlation vectors
(n,n+1,1) is derived and illustrated by direct-space simula-
[ A tions.

g.=CoS (W) with m$4. (20 The ground-state analysis for the linear three-points clus-
2 2 ter proves that the ANNNI model with second-nearest-
neighbor interactions provides the basic features of the sys-
With the use of Eq(19), Eq. (20) exactly reproduces the tem, also in its SRO state. An immediate and causal
zero contours of the mapping functio(®. connection is hence drawn between a specific type of SRO

The strength of the above conclusion lies in the fact thatdiffuse intensity contours and the possibility of an aniso-
if anisotropy is introduced, only very few parameters aretropic interaction model for the Hamiltonian of the alloy.
needed for the generation of diffuse split diffraction maxima.
The split intensities can be reproduced in isotropic models as
well, but it is then to be expected that many interatomic
interactions have to be taken into account, even 30 or more M.R. acknowledges IUAP 48 and IUAP 4/10 for financial
as one can conclude from, e.g., Ref. 15. In Ref. 43 one howsupport during his stay at EMAT-RUCA.

which also results from a straightforward calculation of the
minima of Eq.(17). This relationship between the parameter
o and the interaction parametedscan be used to confirm
another standard result of the ANNNI model: closeTig,
concentration waves in the SROr paramagnetjcstate are
found to occur with a characteristic wavelength
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