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Anisotropic cluster model for the short-range order in Cu12xPdx-type alloys
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The split diffuse maxima around the$110% and $100% positions in the diffraction pattern of short-range-
ordered Cu12xPdx alloys (x50.10...0.60) are attributed to small atomic clusters, being part of the underlying
fcc lattice. By analyzing the reciprocal space geometry, our cluster method identifies two prominent cluster
types: the tetrahedron of nearest neighbors and a linear three-points cluster along the^110& directions. Since
both cluster types contain different information on the same nearest-neighbor correlations, local anisotropy has
to be assumed. It is shown that the three interatomic pair interactions within these basic clusters are sufficient
to generate the spot splitting in the diffraction pattern. A ground-state analysis with these interactions repro-
duces the results of the anisotropic next-nearest-neighbor Ising model.@S0163-1829~98!02418-7#
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I. INTRODUCTION

Diffuse intensity in the diffraction patterns of many alloy
is due to substitutional short-range order~SRO!.1–5 In most
cases, the diffuse intensity is located at the highly symme
cal special points of the first Brillouin zone, for example, f

the fcc-based alloys: Ni4Mo at (11
2 0),6–8 Pd3V at ~100!,9,10

and CuPt at (12
1
2

1
2 ).11,12

Cu12xPdx is interesting since it shows fourfold splitting o
the SRO intensity at the$110% positions and twofold splitting
at the $100% positions forx.0.10 ~Refs. 13–16! ~Fig. 1!.
Below the order-disorder transition temperatureTc , a long-
period antiphase boundary~LPAPB! structure is observed fo
these compounds, giving satellite reflections at the same
sitions as in the SRO.17,18 Following the Fermi-surface im
aging theory,19 below Tc , the splitting can be explained b
the flattening of the Fermi surface if its double radius a
proaches too close to the boundaries of the first Brillo
zone. The Fermi-surface imaging theory holds as well for
SRO state:14,20 Ohshima and Watanabe14 describe how the
splitting of the diffuse maxima in the Cu-Pd system increa
with decreasing e/a~electrons per atom! ratio, i.e., with in-
creasing Pd concentration. Other~100!-type systems exhibit-
ing split diffuse maxima are Au-Pd,21,22 Ag-Mg,21

Au-Zn,21,23 Cu-Al,24 Cu-Zn,25 and Cu-Au ~Ref. 2! ~at the
onset to long-range order!.

It should be noted that both diffraction and Fermi surfac
deal with averagestructures and thus are considered w
respect to the full symmetry of the underlying fcc lattice. It
one of the aims of this paper to deduce very local inform
tion that does not necessarily reflect this symmetry. T
present results are hence not necessarily in contradiction
the theory of Fermi-surface imaging.
570163-1829/98/57~18!/11132~9!/$15.00
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In order to build a real-space configuration for the SRO
the Cu-Pd system, different routes can be followed. In R
26, a configuration model was proposed, based on a di
bution ofL12-type microdomains, being in antiphase to ea
other. The average distance in between the domains was
culated from the concentration wave model.4,27 In Ref. 28,
microdomains are indeed observed in Cu3Pd by means of
high-resolution electron microscopy. Rahman29 also con-
cluded from videographic and random-phase simulations
Cu3Au, that an antiphase distribution of domains leads to
diffuse spot splitting.

Recently,16 we studied the SRO in Cu12xPdx by high-
resolution electron microscopy. It was found that tw

FIG. 1. @001# electron-diffraction patterns of Cu12xPdx , where
x50.10 ~a!, 0.30 ~b!, 0.40 ~c!, and 0.50~d!. In ~c!, the contrast is
overenhanced in order to visualize the diffuse streaks, perpendic
to the twofold splitting or connecting the spots in the fourfold sp
ting.
11 132 © 1998 The American Physical Society
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dimensional~2D!-correlation vectors of the typên,1& in the
projected$001% planes are responsible for the splitting. Th
can be brought in agreement with the microdomain mo
when this^n,1& vector is the connection between two d
mains. Moreover, it was argued that these correlation vec
between just single atoms, and not necessarily domains,
also contribute to the split diffuse intensity.

Starting from the SRO parameters, calculated from x-
diffraction, Saha and co-workers15 compared configuration
for the SRO in Cu-Pd alloys with different composition
While the diffuse maxima were clearly split in the expe
mental observations, it could not directly be pointed o
which structure effects in the simulated configuration w
responsible for the splitting.

In the present work, we describe the splitting analytica
by means of the cluster model, developed in Refs. 7
30–33. The principles of this method and its application
electron diffraction on the Cu-Pd system are explained in
next section. The as-found cluster model is then tested
random-phase and videographic simulations~Sec. III!. In
Sec. IV, a ground-state analysis is derived from the occur
clusters. The result is in agreement with the anisotropic n
nearest-neighbor Ising~ANNNI ! model for second-neares
neighbor interactions. A direct link is then made between
spot splitting and the ANNNI model for the SRO state, wit
out the need for long-range interactions.

II. RECIPROCAL SPACE CLUSTER ANALYSIS
OF THE DIFFUSE INTENSITY

A. Outline of the theory

The present analysis of the diffuse intensity will deri
the most apparent clusters that are responsible for the S
The construction of such a cluster model is based on a m
ping function f (g), which is constructed in such a way th
the integral

E
V*

I D~g!u f ~g!u2dg ~1!

is as small as possible.I D(g) represents the diffuse diffrac
tion intensity andV* the volume of the reciprocal space un
cell. For the minimization of Eq.~1!, f (g) is constructed
such that it vanishes on a contour in reciprocal space, wh
covers the maxima ofI D(g). In practice, it turns out that the
summation in the Fourier decomposition off (g),

f ~g!5(
k

vke
22p ig•rk, ~2!

contains a very limited number of terms.
From Eqs.~1! and~2!, one can prove33 that in direct space

« j5(
i 51

M

v is j 1 i ;r j , ~3!

where« j is only a small value if Eq.~1! is small, and it is
called the residue value for sitej . The physical meaning o
minimizing the integral~1! is assigned by this equation:
provides local occupations forM sites, i.e., it describes fre
quently occurringM -points clusters, when Eq.~1! is small.
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In Eq. ~3!, the index j 1 i refers to the siter j1r i of the
underlying lattice.sk is the occupation parameter for the si
r k , defined as follows:34

sk5 H 2mB if the site r k is occupied by anA atom,
mA if the site r k is occupied by aB atom,

~4!

andmA ~resp.mB! is the fraction ofA (B) atoms, i.e.:mA
1mB51. The average of the residue values over the to
number of lattice sitesN is always zero. Its variance can b
proven to be

^u«u2&5
1

N ( u« j u25
1

NV* E
V*

I D~g!u f ~g!u2dg. ~5!

This integral is exactly expression~1!.32 The variance can
only vanish if the mapping functionf (g) is zero on all posi-
tions where the diffuse intensity is nonzero.

Equation~3! gives information about anM -points cluster.
In many cases, this cluster can be occupied by some diffe
configurations ofA andB atoms, in such a way that in Eq
~3! the value« j vanishes. The global configuration of th
alloy then is a conglomerate of these clusters and proba
some others for which« j is nonzero, so that by the use of E
~5!, the variance of the residues is obtained. For an exp
mental analysis including the residues, one needs quan
tive diffraction data. However, when starting from a
electron-diffraction experiment, one usually approxima
the problem by restricting the diffuse intensity to a confin
locus, so that the residue effectively becomes zero. The
sulting clusters then describe approximately the real confi
ration. This purely geometrical approach however does
take dynamical diffraction into account.

B. Tetrahedron of nearest neighbors

Figure 1 shows the@001# electron-diffraction patterns fo
different concentrations of the Cu-Pd alloy. The split diffu
maxima are for all concentrations located on the linesh, k,
or l 5odd. These lines coincide exactly with the contou
f (g)50, where we propose for the mapping function:

f ~g![ f ~h,k,l !511exp@ ip~h1k!#1exp@ ip~h2 l !#

1exp@ ip~k2 l !#. ~6!

From this, the corresponding cluster relation is

s i1s i 1~1/2,1/2,0!1s i 1~1/2,0,1/2!1s i 1~0,1/2,1/2!50 ;r i . ~7!

This relation defines the four lattice sites of a tetrahedron
nearest neighbors@Fig. 2~a!#. The cluster relation~7! can be
fulfilled for an A3B and for anAB composition. When stack
ing, e.g., theA3B clusters, and keeping in mind that Eq.~7!
must hold for all lattice sites, one can build theL12 super-
structure, theDO22 superstructure and many intermedia
variants in between these@Fig. 2~b!#. B-B atom pairs never
occur on nearest-neighbor sites. In Ref. 33, it is inde
proved that the cluster relation~7! is a consequence of repu
sive nearest-neighbor interatomic interactions. In Ref.
this tetrahedron cluster has been applied to the Pt3V system
to describe the transition from the 100 type of SRO to
DO22 superstructure. In the case of theAB composition, Eq.
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~7! also includes theL10 structure and the so-calledA2B2

structure,36 which belongs to the 112 0 type of alloys. For
other compositions, one has to admit nonzero residues in
~7!.

C. Linear three-points cluster

Simultaneous with the splitting, one observes weak d
fuse lines in the diffraction patterns, passing through the
fuse maxima@Fig. 1~c!#. In order to relate a cluster type t
the origin of these diffuse lines, we propose 6 mapping fu
tions, given by the equations

f ~g!5v1exp@ ip~h6 l !#1exp@2 ip~h6 l !#,

f ~g!5v1exp@ ip~k6 l !#1exp@2 ip~k6 l !#,

f ~g!5v1exp@ ip~h6k!#1exp@2 ip~h6k!#. ~8!

The zero contours of these mapping functions are plane
reciprocal space. Their section with the planel 50 is repre-
sented in Fig. 3. The parameterv in Eq. ~8! influences the
distance of splitting and depends only on the compositi
As can be seen in Fig. 3, these planes cover much mor
the reciprocal space than the observed diffuse intensities
expression~1! is still minimized. The associated cluster r
lation will therefore be too general to give a complete d
scription of the real configuration, but one has to keep

FIG. 2. ~a! Tetrahedron~in bold! of nearest neighbors in an fc
cube.~b! Examples of stacking anA3B structure so that Eq.~7! is
fulfilled for all lattice sites. Only two nonoverlapping~001! layers
have been drawn. Empty circles representA atoms, filled circles,B
atoms.
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mind that the tetrahedron of nearest neighbors@Eq. ~7!# si-
multaneously imposes its own conditions on the configu
tion. Ohshima and Watanabe14 observe a slight curvature o
the diffuse lines, which is in correspondence with the Ferm
surface imaging theory. However, these curvatures man
themselves only at the very ends of the diffuse streaks
hence give very weak deviations from the present assu
tions. For most compounds, they are even invisible. T
small deviation thus will result in a residue value, which w
be very small.

From Eq.~8!, we find six equivalent clusters, being line
three-points clusters along the^110& directions~Fig. 4!, de-
scribed by the relation

s i 1a1vs i 1b1s i 1c5« i ;r i . ~9!

For arbitrary values ofv, i.e., for most splitting distances
the residue« i in Eq. ~9! can never vanish. Note that th
original problem is now reduced to six equivalent on
dimensional problems. Thus we have to construct a lin
chain of atoms that minimizes the variance^u«u2& for Eq. ~9!.

For some special values ofv, the residue value in Eq.~9!
may vanish. These values and the corresponding chains
enumerated in Table I. They vary from homogeneous cha
~v522, no splitting!, to an alternation ofA and B atoms
(v52, extreme splitting up to the~110! reflections!. These
chains can now be coupled to their neighboring chains
applying Eq.~7! of the tetrahedron of nearest neighbors. F
ure 5 shows the results for some of the cases from Tab
For a globalAB composition of the alloy,v522 and v
52 result in two different variants of theL10 structure@Figs.
5~a! and 5~c!# andv50 gives theA2B2 structure@Fig. 5~b!#.
For theA3B composition, theL12 structure can be generate
by stacking pureA andAB rows. The diffraction pattern of
the L12 structure can indeed be covered by simultaneou
two mapping functions: one forv522 and one forv

FIG. 3. Contours for which the mapping functionsf (g) from
Eq. ~8! are zero in the@001# section.

FIG. 4. The linear three-points cluster~in bold!, consisting of
the sitesa, b, andc, along one of thê110& directions.
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TABLE I. All possible clusters with vanishing residues for the linear three-points cluster.

v Possibilities for cluster fillings Chain examples Global compositio

22 AAA ...AAAAAAA... A
22 BBB ...BBBBBBBBB... B

0 AAB or ABB or BAA or BBA ...AABBAABB... AB
1 AAB or ABA or BAA ...AABAABAAB... A2B
1 BBA or BAB or ABB ...BBABBABBA... AB2

2 ABA or BAB ...ABABABAB... AB
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52. In the case of SRO, the reflections are diffuse and
residue values are consequently nonzero. Therefore, the
riodic chains from Table I will only have a limited length.

Nonzero residue values have also to be allowed for a
trary splitting distances and for alloy compositions for whi
the cluster relation~9! cannot be fulfilled. A detailed treat
ment of Eq.~9! will provide us with the cluster fillings tha
minimize the variancêu«u2&. Indeed, by the use of definitio
~4!, Eq. ~9! can also be written as

« i52mB~21v!1X1vY, ~10!

whereX is the number ofB atoms on sitesa and c ~thus
X50, 1, or 2! andY is the number ofB atoms on siteb ~thus
Y50 or 1! of the cluster with indexi . In Ref. 33, one proves
that a lower bound for the variancêu«u2& is given by
2« i« i 11 , where« i is the largest negative and« i 11 is the
smallest positive residue value, determined by variation oX
andY in Eq. ~10!. The two cluster types found then have
be used in the chain formation in order to minimize^u«u2&.
Table II summarizes these pairs of minimizing clusters a
some examples of chains;v and mB are found from the
experiment~e.g., from Fig. 1!. In some of the chains, othe
clusters than the minimizing clusters have to be introduc
in order to realize the stacking or to fulfill the global com
position. In such cases, the obtained variance^u«u2& will be
larger than the predicted lower bound2« i« i 11 .

FIG. 5. Some structures, resulting from stacking the linear thr
points clusters, for which the variance is zero.~a! and~c! two vari-
ants ofL10 ~v522 andv52!; ~b! A2B2 (v50). Empty circles
representA atoms, filled circles,B atoms; small and large circle
represent atoms on different heights.
e
pe-

i-

d

d,

Close to the valuev522, the configuration will tend to
separateA- and B-type atoms~within a chain!. These long
homogeneous chains appear inL10 or L12 microdomains.
From v521 on, pairs ofB atoms will occur separately in
the majority ofA atoms~for mA.mB!. Whenv50, the zero

contours of the mapping functions cross the$1 1
2 0% positions.

From Eq. ~10!, it appears that in this particular case, t
value ofY does not influence the residue value, whileX has
to be 0 or 1. It is then possible to build, e.g
...AAABAAAB... chains, which, when combined with th
tetrahedron relation~7!, can give rise to aDO22 micro-
domain. This is globally the expected evolution
Cu12xPdx , wherev remains negative~as can be measure
from Fig. 1!. By varyingv, a continuous series of structure
is thus found, which describe the transition from the~100!-

to the (11
2 0)-type of SRO.

III. DIRECT-SPACE SIMULATIONS

A. Random-phase simulations

The present cluster model cannot predict the size of
ordered chains or the distance in between the microdoma
but the concentration wave model4,27 can. In the one-
dimensional problem, diffuse spot splitting with a spot
position h @see inset in Fig. 6~a! for the definition of the
distanceh#, results in a concentration wave, described by
continuous occupation parameter

s~x!52 1
2 cos~2p ihx1w!, ~11!

wherew is an arbitrary phase factor. Equation~11! gives a
zero residue value in Eq.~9! for v522 cos(ph). The full
three-dimensional problem can be treated by superimpo
all occurring concentration waves~11! for the different di-
rections. Random-phase simulations then put random-ph
factorsw in the different concentration waves. In Fig. 6~a!, a
2D-domain configuration is shown for a splitting distanceh
5 1

16 , obtained by the random-phase method. 2D-correla
vectors of the typên,1& and^n,n11& are found in-between
the domains, wheren51/h andn can be related to the chai
length of the chains described in Table II. The presence
APB’s @Fig. 6~b!# is due to the tetrahedron relation~7!. For
instance, for anAB composition, when a chain ofB atoms
breaks down, a chain ofA atoms has to follow. The neigh
boring row to this one consequently must have the oppo
occupation. In this way, a configuration of domains is bu
by stacking chains of lengthn, combined with the presenc
of APB’s. This generates correlation vectors of th

-
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TABLE II. Clusters that minimizê u«u2& as a function ofv, for the casemA>mB . If mA<mB , the symbolsA and B have to be
interchanged.

v (X,Y) in Eq. ~10! Clusters Chain examples
mB< 1

3 mB> 1
3 mB< 1

3 mB> 1
3 mB< 1

3 mB> 1
3 mB< 1

3 mB> 1
3

22<v<21 ~0,0! AAA ...AAAAABBBBB...
~2,1! BBB

21<v<
mB

mA
21

~1,0! BAA or AAB ...AABBAABBAABB...

~1,1! BBA or ABB

mB

mA
21<v<0

~0,0! AAA ...AABBAABBAABB... or moreA:

~1,1! BBA or ABB ...AAAAABBAAABBAAAAA...

0<v<2
mB

mA

~1,0! ~1,0! BAA or AAB BAAor AAB ...BAABAABAA... ...AABBAABB...

0<v<1 ~0,1! ~1,1! ABA BBAor ABB

2
mB

mA
<v<1

~0,0! AAA ...ABAAAABAA...

~0,1! ABA

1<v<
1

mB
22

~0,0! ~2,0! AAA BAB ...ABAAAABAA... ...ABABABAB...

1<v<2 ~1,0! ~0,1! BAA or AAB ABA

1

mB
22<v<2

~1,0! BAA or AAB ...ABABABAB...

~2,0! BAB
-

t
u
in
i
n
o

th
io
n
di
e

on

nd
lit
e
la

it-
o

g

r

al-

on-
-
-

type ^n,n11,1& in between the domains, which give in pro
jection the 2D correlations in Fig. 6~a!.

B. Videographic simulations

The amplitude of the concentration wave is connected
the intensity of the corresponding diffraction spot and infl
ences therefore the actual size of the ordered microdoma
Since for SRO the intensity is very low, the domain size
expected to be very small, maybe only one or a few u
cells. The size can even be further reduced so that one
tains just a distribution of single atoms connected by
correct correlation vector. From a detailed high-resolut
electron microscopy study,16 evidence is found that this ca
indeed be the case in Cu-Pd alloys. To test this model,
ferent types of unit cells are distributed on an fcc lattic
connected by vectors of the type^n,n11,1&. These simula-
tions are performed by the videographic simulati
method.29,37

For all of these simulations, a diffraction pattern is fou
that exhibits the split diffuse spots with the correct spot sp
ting. Figure 7 shows the extreme case where just singlB
atoms are distributed in a large simulation box. The corre
tion vectors are of the typê4, 5, 1&, as indicated in the
enlarged part of the simulation field@Fig. 7~a!#. The diffrac-
tion pattern@Fig. 7~b!# shows the geometry of the spot spl
ting, similar to Fig. 1. Simulations were also performed f
o
-
s.

s
it
b-
e
n

f-
,

-

-

r

small chains ofB atoms,L12 microdomains, andL10 micro-
domains. They all lead to similar patterns as in Fig. 7~b!.

IV. GROUND-STATE ANALYSIS

A. Outline of the method

Van Dyck et al.32 prove that for an arbitrary mappin
function f (g), one always has

^u«u2&5
1

NV* E
V*

I D~g!u f ~g!u2dg5mAmB(
i ,k

v ia i 2kvk>0,

~12!

where f (g) follows Eq. ~2!. a i 2k is the SRO paramete
~Refs. 1–5! for the interatomic distancer i2r k . The summa-
tion in Eq. ~12! can be written in matrix notation as

^u«u2&5mAmB^vuauv&>0, ~13!

with uv& a vector with elementsv i , and a a matrix with
elementsa i , j5a ( i 2 j ) . From the basic knowledge thatI D(g)
is positive, one finds in Eq.~13! that thea matrix has to be
positive definite, which gives restrictions on the possible v
ues of a. This can be visualized in thea space where an
existency domain or configuration polyhedron can be c
structed wherein Eq.~13! holds. The boundaries of this do
main correspond tô u«u2&50, whereas within the polyhe
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dron ^u«u2&.0. Outside the domain, it is impossible to sta
any structure with the givena’s. This method has been ap
plied in order to construct the existency domain in ma
types of basic structures.33,38 An alternative method for the
ground-state analysis is constructing the Kanamori inequ
ties for the clusters.39 The derivation of the interatomic in
teractions is then done in dual space, which is similar to w
we will do in Sec. V.

B. Tetrahedron of nearest neighbors

In Ref. 33, one derives the existency domain for the
rahedron of nearest neighbors. Since only nearest neigh
are present within this small cluster, thea space is one di-
mensional, and the boundaries of the polyhedron are defi
by

2 1
3 <a1<1. ~14!

At the boundarya152 1
3 , the corresponding eigenvector

defined by the elementsv15v25v35v451. This eigen-
vector defines exactly the mapping function of Eq.~6!.

C. Linear three-points cluster

Within the linear three-points cluster, the nearest and
fourth-nearest neighbor on the fcc lattice are present, t
SRO parameters being denoted here byb1 , resp.b2 . The
matrix of SRO parameters then is

FIG. 6. ~a! 2D random-phase simulation forh5
1

16. Full white
pixels representA atoms, full black representsB. The indicated
arrows are of the typên,1& or ^n,n11&, and are hence perpen
dicular to the APB’s in between the small domains. The inset sh
the diffraction pattern.~b! APB formation in theL10 structure.
Resulting from the stacking rule of the tetrahedron, Eq.~7!, an APB
is formed at the spot where the horizontal homogeneous ch
break down.
y

li-
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S 1
b1

b2

b1

1
b1

b2

b1

1
D . ~15!

The existency domain is bound by the curves 12b250 and
122b1

21b250 and is shown in Fig. 8 in (b1 ,b2) space.
For b251, the corresponding eigenvector is (1,0,21). For
the boundary 122b1

21b250, the corresponding eigenvec
tor is ~1,v,1!, v522b1 . This eigenvector results in th
mapping functions~8!. Note that the relationshipv5
22b1 only holds exactly on the boundaries, i.e., wh
^u«u2&50. For SRO, it is thus not possible to deriveb1 from
the splitting distance.

For a configuration exactly at the boundary of the exi
ency domain, the diffracted intensity has to appear strictly
the zero contours of the mapping function. At the corners
the existency domain, superstructure reflections will he
occur for a structure having the corresponding SRO par
eters. For Fig. 8, the resulting superstructures are mentio
They are exactly the ones that also result from the ANN
model with second-nearest-neighbor interactions.5,40

V. DISCUSSION: CORRESPONDENCE
TO THE ANNNI MODEL

The parametersa1 in the nearest-neighbor tetrahedro
and b1 in the linear three-points cluster both give inform

s

ns

FIG. 7. ~a! Part of the simulation field of a 3D videograph
simulation. Points are distributed with preference for the correlat
vectors ^4,5,1&. Some of these vectors are indicated.~b! Corre-
sponding diffraction pattern for the full simulation. The spot spl
ting is clearly present.
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tion on the same type of correlation. In the present mo
they are uncoupled however, so that we have to assume
anisotropy to apply the model. Within the framework
Ising models for alloys, the ANNNI model provides the po
sibility to introduce anisotropy. In order to prove that o
anisotropic cluster model is equivalent to the ANNNI mod
we have to ‘‘translate’’ our results in function of the inte
atomic pair interactions.

In a binary fcc alloy, the internal energyU per fcc unit
cell is given by2

U5mAmB(
i 51

p

Zia iVi , ~16!

whereZi is the number of lattice sites in thei th neighboring
shell, a i the corresponding SRO parameter, andVi the cor-
responding pair interaction parameter. Equation~16! repre-
sents a hyperplane in thep-dimensionala space. Upon or-
dering, the internal energy decreases and the plane~16!
moves parallel to itself to one of the corners in the existe
domain, until a superstructure is realized. This relations
between existency domain, superstructures, and interac
parameters results in a phase diagram that subdivides
interaction space in different regions, indicating which pha
is expected to be the ground state.4,5,33,41

For the easy case of nearest-neighbor interactions wi
the tetrahedron, the phase diagram discerns onlyV1,0, cor-
responding to segregation in pureA and pureB phases, and
V1.0, which can, e.g., result inL10 , L12 , or DO22.

From the positions of the three superstructures in the
istency domain of the linear three-points cluster, the ph
diagram in (J1 ,J2) space is derived~Fig. 9!. The interaction
parameters are now denoted byJ in order not to be confused
with V1 .42 The phase diagram discerns the phase segrega
^`& ~....AAA... coexisting with ...BBB..., equivalent to fer-
romagnetism!, the phasê 1& ~...ABABAB..., or antiferro-
magnetism! and the phasê2& (...AABBAABB...). Exactly
the same ground-state phase diagram has been calculate

FIG. 8. Existency domain for the linear-chain problem with tw
neighbors. Within the figure, it is possible to build one-dimensio
configurations with the corresponding SRO parameters (b1 ,b2).
Out of the figure, it is mathematically impossible to stack the c
responding structure. At the edges, the corresponding supers
tures are mentioned.
el
cal
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the ANNNI model with second-nearest-neighb
interactions.5,40 Within the concept of the Ising model, on
has the possibility to examine the configuration for nonz
temperatures and it has been shown that the occurrenc
LPAPB structures, which are stable belowTc for a broad
composition range in Cu-Pd alloys, can be explained by
ANNNI model.40 This justifies that anisotropic interaction
also can be introduced for the SRO.

In order to prove that this limited set of interactionsV1 ,
J1 , andJ2 can account for the split diffuse intensity in th
SRO state, we calculate the minima of the potentialV(g) in
reciprocal space. Consider therefore a chain along the@011#
direction, starting from the central black atom in Fig. 10~a!.
Two sites for each of the interactionsJ1 andJ2 and 12 near-
est neighbors for interactionV1 are available, so that

V~g!522J1cos@p~k1 l !#22J2cos@2p~k1 l !#

12V1$cos@p~h1k!#1cos@p~h2k!#

1cos@p~h1 l !#1cos@p~h2 l !#

1cos@p~k1 l !#1cos@p~k2 l !#%. ~17!

This function is represented in Fig. 10~b! @and the profile for
h51 in Fig. 10~c!# in the @001# section. Its minima repro-
duce part of the split intensities in the diffraction pattern. T
other split spots are obviously obtained when the other ch
directions are included. The mathematical analogy betw
Eq. ~17! and the construction of the different mapping fun
tions ~6! and ~8! is also apparent.

When the internal energyU in Eq. ~16! decreases, the line
of constant energyU can shift in Fig. 8 until it coincides
with the tangent of the parabola. The tangent line can
described as

b2522vb11C, ~18!

whereC is a constant. On the other hand, Eq.~16! shows a
similar linear dependence between the SRO parameterb1
andb2 , from which follows

l

-
uc-

FIG. 9. Phase diagram for the one-dimensional Ising prob
with second-nearest-neighbor interactions. The ANNNI model
hibits the same diagram.
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J1

J2
52v, ~19!

which also results from a straightforward calculation of t
minima of Eq.~17!. This relationship between the parame
v and the interaction parametersJ can be used to confirm
another standard result of the ANNNI model: close toTc ,
concentration waves in the SRO~or paramagnetic! state are
found to occur with a characteristic wavelength

qc5cos21S J1

4uJ2u D with
J1

uJ2u
<4. ~20!

With the use of Eq.~19!, Eq. ~20! exactly reproduces the
zero contours of the mapping functions~8!.

The strength of the above conclusion lies in the fact th
if anisotropy is introduced, only very few parameters a
needed for the generation of diffuse split diffraction maxim
The split intensities can be reproduced in isotropic model
well, but it is then to be expected that many interatom
interactions have to be taken into account, even 30 or m
as one can conclude from, e.g., Ref. 15. In Ref. 43 one h

FIG. 10. ~a! V1 , J1 , and J2 in a specific example. Small an
large dots represent atoms on different heights.~b! Plot of V(g) in
the @001# section ~V1510.30, J1510.25, J2520.10, arbitrary
units!. ~c! Profile of ~b! for h51.
r

t,
e
.
s

c
re
-

ever shows that a simple isotropic Hamiltonian can rep
duce many of the features of the phase diagram of
ANNNI model. With just a small set of interplanar intera
tions ~essentially four!, they simulate many characteristics
the LPAPB’s in the Cu-Pd system. It should be noticed t
these interplanar interactions are to be interpreted as a
rametrization of many interatomic interactions—the auth
mention that one should make calculations up to at least
40th neighbor effective pair interaction. The success of
use of interplanar interactions is to be found in the fact t
the dimensionality of the problem is reduced, which is
essence the introduction of an anisotropic effect. A cor
spondence with the ANNNI model has indeed been drawn
Ref. 43, and it has been concluded that the interplanar in
actions are equivalent to the interactions of the ANN
model. This sustains the observations of the present pap

VI. CONCLUSIONS

It is well known that multiple scattering gives an impo
tant contribution to electron diffraction. Electron-diffractio
patterns can therefore not be used to derive detailed qu
tative results. The mapping function in the present clus
method uses in first instance only the loci of the diffu
intensity, not the numerical value of this intensity. It is ther
fore a very suitable, but only qualitative, method for t
interpretation of SRO in electron diffraction.

The cluster analysis first gives the almost trivial tetrah
dron of nearest neighbors which, as much as possible, ha
be filled out with the macroscopic composition. From t
ground-state analysis, this means that the interatomic po
tial for nearest-neighbor lattice sites is repulsive for chem
cally equivalent atoms.

The splitting of the diffuse intensity maxima is introduce
in the model by the linear three-points cluster via the para
eterv. Variation of the value ofv allows a continuous tran
sition between different one-dimensional chain occupatio
which results in a transition from the~100!- to the

(1 1
2 0)-type of SRO. The occupation of the chain can alt

natively be governed by a concentration wave model. T
concentration wave is, for most values ofv, incommensurate
with respect to the fcc structure and hence gives site oc
pations that are not purelyA or B. The cluster analysis is
therefore closer to a realistic description, but has to allow
nonzero variancêu«u2&.

Combining the tetrahedron cluster and the linear thr
points cluster, the importance of the correlation vect
^n,n11,1& is derived and illustrated by direct-space simu
tions.

The ground-state analysis for the linear three-points c
ter proves that the ANNNI model with second-neare
neighbor interactions provides the basic features of the
tem, also in its SRO state. An immediate and cau
connection is hence drawn between a specific type of S
diffuse intensity contours and the possibility of an anis
tropic interaction model for the Hamiltonian of the alloy.
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