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Electrical transport in junctions between unconventional superconductors:
Application of the Green’s-function formalism

Manoj P. Samanta* and Supriyo Datta
School of Electrical and Computer Engineering and the MRSEC for Technology Enabling Heterostructure Materials, Purdue Uni

West Lafayette, Indiana 47907-1285
~Received 28 July 1997; revised manuscript received 6 November 1997!

We present a general Green’s-function-based method that can be used to describe the electrical transport
properties of junctions with arbitrary coupling strength involving superconductors with unconventional pairing
symmetry and arbitrary band structures. Our method correctly takes into account the midgap surface states that
arise ind-wave superconductors due to sign change of the order parameter. In the tunneling limit, we present
simple expressions that describe the effect of the midgap states on the dc and ac components of the Josephson
current including their temperature dependence. A numerical example is presented for a junction between two
d-wave superconductors with arbitrary coupling strength showing a feature originating from the sign change of
the order parameter, namely, for some orientations of thed-wave order parameter relative to the surface, the
current-phase relation may remain nonsinusoidal even when the coupling is quite weak.
@S0163-1829~98!03217-2#
p-
e
r

rfa

on
tio
s
er
en
fa
n
n
g
h

ng
he

cu
s

uc
-
e
e

f.
i-
e

ct
m

o
e
rre

ent
to
in

he

ced,

ed
een
n

g
ib-
ry

per-
ter
p-
-
nd
igen-
on
or
nc-
een

op-
ris-
e a
al
res
EGF
lds
Ref.
for
I. INTRODUCTION

It is by now well known that the electrical transport pro
erties of unconventional superconductors are qualitativ
different from the conventionals-wave superconductors. Fo
example, the change in sign of the order parameter ind-wave
superconductors gives rise to effects such as midgap su
states1–9 that do not have any analog fors-wave supercon-
ductors. Therefore, in modeling junctions between unc
ventional superconductors, a straightforward generaliza
of the existing methods for thes-wave superconductors i
not possible. In this paper, we present a general and pow
numerical method to model junctions between unconv
tional superconductors that correctly accounts for the sur
effects. Our method can easily include any unconventio
pairing symmetry, arbitrary coupling strength and ba
structures~Sec. II! and therefore will be useful in comparin
theory and experiment for junctions between hig
temperature superconducting~HTSC! materials. In the tun-
neling limit, our method gives simple expressions includi
temperature dependence for the dc Josephson current, t
Josephson current, and the quasiparticle current~Sec. III!
which provide greater insight than a purely numerical cal
lation based on the full theory.9 These general expression
can be used for any unconventional pairing symmetry s
as d1s, d, d1 id, s1 id, etc., and provide unified under
standing of a wide class of anomalous phenomena. The
pression for the quasiparticle current explains all the tunn
ing limit features due to midgap states discussed in Re
with simple ‘‘back-of-the-envelope’’ calculations. In add
tion, it predicts other features that were not discussed in R
9, such as negative conductance near zero bias for a jun
between twod-wave superconductors. Moreover, the te
perature dependence of all these features are included in
expression, whereas the calculation in Ref. 9 is only at z
temperature. The expression for the dc Josephson cu
shows the sin2u1sin2u2 angular dependence (u1 andu2 being
570163-1829/98/57~17!/10972~12!/$15.00
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the misorientation angles of thed-wave superconductors!
and 1/T temperature dependence of the midgap compon
of the Josephson current. This result is used in Ref. 5
predict the effect of midgap states on the flux quantization
the tricrystal ring experiment.10 In Sec. IV, we present a
numerical example illustrating a feature originating from t
sign change of the order parameter. Unlikes-wave junctions,
where the current phase relation@ I (f)# changes from nonsi-
nusoidal to sinusoidal dependence as the coupling is redu
for some orientations of thed-wave order parameterI (f)
may remain nonsinusoidal even for weakly coupl
junctions.11 Some evidence of similar behavior has been s
experimentally12 and our theory should provide motivatio
for further experiments in this direction.

In the context of low-Tc superconductors, the scatterin
theory13–18of transport has been fairly successful in descr
ing junctions between two superconductors with arbitra
coupling. This method has recently been extended to su
conductors with unconventional order parame
symmetry.2,4,9 Although the scattering formalism is conce
tually simple, it is difficult to apply it to complicated geom
etries or to include arbitrary spatial variations and ba
structures because of the need to calculate the precise e
state spectrum. The nonequilibrium Green’s-functi
~NEGF! formalism provides a more general framework f
the treatment of electrical transport in superconducting ju
tions. It has been applied successfully to junctions betw
s-wave superconductors.19,20 In this paper we extend the
NEGF method to unconventional superconductors by pr
erly including the surface effects such as midgap states a
ing from the sign change of the order parameter. We us
tight-binding description which can handle unconvention
pairing symmetry and also include arbitrary band structu
if necessary. In the absence of dephasing processes, N
formalism is equivalent to the scattering method and yie
identical answers. This equivalence has been shown in
21 for normal conductors and the proof can be extended
10 972 © 1998 The American Physical Society
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superconductors in a straightforward manner. Compare
scattering theory, the advantage of the NEGF based me
presented here lies in the ease with which it can handle v
ous surface-related complexities which play a significant r
in HTSC junctions. Also it should be noted that we do n
use the quasiclassical~Andreev! approximation~coherence
length much larger than the Fermi wavelength! used in the
quasiclassical Green’s-function method,6,22–25which is of re-
duced validity in HTSC’s due to their substantially shor
coherence length.22 We believe the method presented he
will be helpful in performing detailed quantitative compa
sons with experiments on HTSC junctions.

II. THEORETICAL FORMULATION

In this section we present our method for computing
dc and ac components of the currentI for a biasV across a
junction between two unconventional superconductors.
discussion in this section is completely general and spe
cases are considered in Secs. III and IV. We start from
Bogoliubov–de Gennes~BdG! equation26 @Eq. ~2!# to model
the superconductors and compute the current as follows~a!
We compute the retarded Green’s function (G) from the
232 BdG Hamiltonian in Eq.~2! ~Sec. II B!. G contains the
same physics that is described by the wave functions in
scattering approach.~b! We compute the correlation functio
G, from G using the NEGF formalism21,27 ~Sec. II C!. ~c!
We obtain all quantities of interest such as the electron d
sity and the current fromG, ~Sec. II D!.

In this paper, we represent the BdG equation on a disc
tight-binding lattice. One advantage of choosing discr
tight-binding representation is that arbitrary band structur28

and pairing symmetry can be modeled by choosing suita
matrices to represent the HamiltonianH and the pair poten-
tial D @see Eq.~2!#. The specific example in Sec. IV show
how we model ad-wave pair potential in tight-binding form

A. Outline

We consider a planar structure consisting of a normal
vice region sandwiched between two uniform semi-infin
superconducting leads~1 and 2! @Fig. 1~a!#. Our aim is to
compute the currentI for a potential differenceV between
the leads@see potential profile in Fig. 1~a!#. When both the
leads are superconducting, a dc voltageV applied between
the leads gives rise to an ac current17,19,20,29

I ~ t !5 (
k52`

`

I ke
ikv0t, ~1!

where v052eV/\ is the Josephson frequency. In Eq.~1!,
I 2k5I k* for the current to be real. Our objective is to calc
late the differentI k for a givenV.

Quasiparticle motion in this structure is described by
Bogoliubov–de Gennes equation18,26 given as

i\
]

]tFCe

ChG5F ~H1U2mF! De22imt/\

D†e2imt/\ 2~H* 1U2mF!
GFCe

ChG . ~2!

Physically Eq.~2! describes the motion of up-spin electro
and down-spin holes coupled together.18 The Eilenberger
equation, used alternatively as a starting point in
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literature,6,22–25is an approximate form of Eq.~2! valid only
in the quasiclassical limit. In Eq.~2!, H is the one-electron
Hamiltonian andD is the operator representing the pair p
tential~order parameter! including the phase of the superco
ductor; it is zero in the normal device region. The referen
potential mF is constant everywhere.U is the electrostatic
potential as shown in Fig. 1~b!; it is constant in the super
conducting leads but spatially varying in the device regio
m is the chemical potential with respect to the reference le
mF . m is constant in the superconducting leads 1 and 2
equal tom1 and m2, respectively, withm12m25eV. The
normal region may be significantly out of equilibrium an
may not have any well-defined chemical potentialm. How-
ever, this does not matter sinceD is zero anyway. In our
formulation, we start with givenH, U, m, D, mF , and com-
pute the current. In a complete calculation bothU and D
need to be computed self-consistently.6,22,26 However the
self-consistency equation forU andD depends on the micro
scopic theory for the pairing interaction and represent
separate story that we will not consider in this paper.

For our computation we work in the energy domain rath
than the time domain@Eq. ~2!#, starting from an equation
which is the Fourier transform of Eq.~2!. Although ideally
the energy ranges from2` to `, sufficient numerical accu-
racy can be achieved at low bias by considering the ene
values within a few multiples of the maximum supercondu
ing gap. We consider an energy range (Emin ,Emax) and dis-
cretize it inNE points. Also we discretize the system in re
space@Fig. 1~a!#. We considerNx andNy points in the device
in the x and y directions, respectively. The leads have in
nite number of points in thex direction andNy points in the
y direction. All operators in our formulation are matrice

FIG. 1. ~a! A structure consisting of a normal device regio
connected between two uniform semi-infinite superconduct
leads. We model it in the discrete space, where the structur
represented by set of lattice points marked as X in the figure
voltageV is applied between the leads. The given potential pro
for the system is also shown.~b! Conceptually~a! is equivalent to a
one-dimensional layer of lattice points, where the device is rep
sented by a finite set of lattice points markedDi , while contacts 1
and 2 are represented by infinite set of lattice points marked a
and 2, respectively. Each pointDi , 1, and 2 represents a layer o
the structure.~c! The semi-infinite contacts can be effectively mo
eled by the single points 1* and 2* , that take the effect due to th
whole contact correctly into account.
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having matrix elements between every (x1 ,y1 ,E1 ,s1) and
(x2 ,y2 ,E2 ,s2) where (xi ,yi ,Ei ,si) represents (x coordi-
nate,y coordinate, energy, spin! of a point. Band indices are
implicitly included in yi .

B. Retarded Green’s function

The retarded Green’s functionG is defined as

G5~EM2HBdG1 ih!21, ~3!

where

EM~x1 ,y1 ,E1 ,s1 ,x2 ,y2 ,E2 ,s2!5E1dE1 ,E2
dx1 ,x2

dy1 ,y2
ds1 ,s2

and HBdG is the energy domain representation of the tim
dependent BdG Hamiltonian in Eq.~2!. da,b is the Kronecker
delta function which is 1 ifa5b and 0 ifaÞb. Since we are
considering an open system consisting of semi-infinite lea
the matrix on the right-hand side of Eq.~3! is of infinite
dimension and cannot be inverted directly. In the literat
this problem is often avoided by using periodic bounda
condition. However, this would give rise to a discrete sp
trum rather than a continuous spectrum appropriate for
open system. In this paper we take the infinite leads corre
into account following a procedure initiated by Caroli f
normal conductors.30 We are not interested in the Green
function inside the contacts. Therefore, we define an ‘‘eff
tive device’’ consisting of the given device region and a
one extra layer from each lead immediately connecting
device@layers 1* and 2* in Fig. 1~c!#, and compute only the
part of G for this region@GD# using the following equation
that can be derived from Eq.~3!:31

GD5F g1
21 2t1 0

2t1
† gD

21 2t2

0 2t2
† g2

21
G 21

. ~4!

In Eq. ~4!, rows ~columns! 1, 2, and 3 correspond to laye
1* , device region, and layer 2* respectively. ThereforegD is
the retarded Green’s function of the isolated device regiont i
is the coupling between the device and the layeri * obtained
from HBdG. gi is the surface Green’s function for the isolat
leadi on the layeri * . We describe a procedure to compute
in the following paragraph.GD in Eq. ~4! is a matrix of
dimension 2(Nx12)NyNE . If g1 andg2 are calculated cor-
rectly,GD is exact. Our method is numerically efficient sin
for different systems with identical leads the lead Gree
functions need to be computed only once and saved for
use.

The surface Green’s functiongi in Eq. ~4! is the value of
the lead Green’s functionGi at the surface layeri * . Gi is
obtained from an equation similar to Eq.~3! with HBdG re-
placed by the Hamiltonian for the isolated lead. The Ham
tonian of a superconducting lead has nonzero matrix
ments between different energies@check the Fourier
transform of the Hamiltonian in Eq.~2!# and soGi(E1 ,E2) is
computed in two steps. Since the lead has constant chem
potential m i , the lead Hamiltonian is first locally gaug
transformed to an energy-independent form~denoted by an
overline!. The Green’s function of this energy-independe
Hamiltonian is computed from
-
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Ḡi~E!5F Ḡi
ee~E! Ḡi

eh~E!

Ḡi
he~E! Ḡi

hh~E!
G

5F ~E1 ih!I 2HL1mF 2D

2D† ~E1 ih!I 1HL* 2mF
G

h→0

21

,

~5!

whereHL andD are the single-electron Hamiltonian and th
pair potential in the lead.Ḡi(E) is transformed back to the
energy-dependentGi(E1 ,E2) using

Gi
ee~E8,E!5dE8,EḠi

ee~E2m i !,

Gi
eh~E8,E!5dE8,E12m i

Ḡi
eh~E1m i !,

Gi
he~E8,E!5dE8,E22m i

Ḡi
he~E2m i !,

Gi
hh~E8,E!5dE8,EḠi

hh~E1m i !. ~6!

Whenm i is zero, these transformations are not necessar
Since the lead Hamiltonian is infinite, the inversion in E

~5! cannot be done directly. Fors-wave superconductors thi
is not necessary, because the surface Green’s functio
equal to the bulk Green’s function~Green’s function of an
infinite lead! that can be obtained easily by other methods20

However, for unconventional superconductors, the surf
Green’s function can be qualitatively different from the bu
Green’s function. Here we present a general method to c
pute the surface Green’s function for any arbitrary superc
ductor. We note that in Eq.~4! we only needgi rather than
the wholeGi , and therefore we do not need to invert th
infinite Hamiltonian matrix for the lead. Since we have a
sumed the lead to be uniform throughout its length,
Hamiltonian for the lead can be written in terms of just tw
matrices—the Hamiltonian for each layer (a i) and the
Hamiltonian coupling successive layers (b i) ~Fig. 2!. To
compute gi(E1 ,E2), we first solve for the energy
independentḡi(E) from

ḡ1~E!5@~E1 ih!I 2a12b1
†ḡ1~E!b1#h→0

21 , ~7!

ḡ2~E!5@~E1 ih!I 2a22b2ḡ2~E!b2
†#h→0

21 , ~8!

using an iterative procedure~see Appendix B1! and then use
transformations as given by Eq.~6!.

FIG. 2. Since each of the lead is uniform, the lead Hamilton
can be described by two terms—the Hamiltonian matrix for ea
layer (a) and the matrix representing the coupling between t
neighboring layers (b). Arbitrary band structures and pair poten
tials in the lead can be modeled by choosing appropriatea andb.
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C. Correlation functions

In order to compute the current, it is enough to know t
part of the correlation function for the ‘‘effective device
region@GD

,#. In equilibrium (V50) the system is describe
by a single chemical potential. If we choose it to be equa
the reference potentialmF , GD

, is related toGD by21,27

GD
,5~GD

† 2GD! f ~E!, ~9!

where f is the Fermi function. In the presence of nonze
applied biasV, the device region does not have any we
defined chemical potential and therefore we need to
NEGF formalism21,27 to obtain the following relation be
tweenGD

, andGD :

GD
,5GDSD

,GD
† , ~10!

where

SD
,5F s1

, 0 0

0 0 0

0 0 s2
,
G . ~11!

Similar to Eq.~4!, rows ~columns! 1, 2, and 3 in Eq.~11!
correspond to layer 1* , device region, and layer 2* , respec-
tively. The quantitiess1

, ands2
, represent the in-scatterin

functions from leads 1 and 2, respectively, and depend on
respective chemical potentials.s i

, has matrix elements cou
pling different energies similar togis’s in the previous sub-
section. Therefore using the fact that the leads are locall
equilibrium with constant chemical potentialm i , the in-
scattering functions in the transformed domain are given

s̄1
,~E!5 f ~E!b1

†@ ḡ1
†~E!2ḡ1~E!#b1 ,

s̄2
,~E!5 f ~E!b2@ ḡ2

†~E!2ḡ2~E!#b2
† . ~12!

To return to the untransformed representation, we use Eq~6!
with g replaced bys1,2

, . Since two leads have differentm i ’s,
they will be transformed back differently. This is where t
effect due to the applied potentialV is being taken into ac-
count.

D. Current operator

In our formulation, all the different components of th
current can be obtained from the current operator define
terms of the correlation function as32

I op5
e

h
@HD

BdG~xi ,xi 11!GD
,~xi 11 ,xi !

2GD
,~xi ,xi 11!HD

BdG~xi 11 ,xi !#, ~13!

wherexi andxi 11 represent points in the adjacent layers
the device in the x direction. We use the notatio
GD(xi ,xi 11) to indicate part ofGD coupling xi and xi 11
~i.e., layersi andi 11) that includes allyi ’s, Ei ’s, and spins.
Therefore, the current operator is a square matrix of dim
sion 2NyNE with terms asI op(y1 ,E1 ,s1 ,y2 ,E2 ,s2), where
y5(1,Ny), E5(1,NE), s5(e,h). Different current compo-
e

o

e

he

in

y

in

f

n-

nents in Eq.~1! are given by the elements of the curren
operator diagonal or off-diagonal in the energy space:

I k~V!52
DE

Ny
(
y,E

@ I op~y,E2k\v0 ,e,y,E,e!#, ~14!

where DE5 (Emax2Emin)/NE . I k(V) in Eq. ~14! is ex-
pressed in terms of current or mode. Electron-hole symm
is used to simplify Eq.~14!.

III. TUNNELING LIMIT

One advantage of the Green’s function based method
sented in Sec. II over scattering theory is that the expres
for current simplifies significantly for weakly coupled ‘‘tun
nel’’ junctions. Such weakly coupled junctions have be
studied extensively in the context of low-Tc superconduct-
ors, but in the present context they are particularly releva
This is because the effect of the midgap states is most pro
nent for weakly coupled junctions, whoseI -V characteristics
can be modeled with a much simpler first order theory t
provide greater insight than a purely numerical calculat
based on the full theory.9 In this section, we present such
theory which could be described as a generalized tunne
Hamiltonian formalism. Expanding the Green’s functions
Sec. II in perturbation series and keeping only the first or
terms, simple expressions for the dc Josephson current@Eq.
~16!#, first harmonic@Eq. ~18!#, and the quasiparticle curren
@Eq. ~17!# are obtained. Equations~16!–~18! are very general
and can be applied for superconductors with any unconv
tional pairing symmetry (d, d1 id, s1 id, etc.! providing a
unified understanding of a wide class of observable ano
lies associated with the unconventional order parameter.
a tunnel junction between a normal metal and ad-wave su-
perconductor, the expression for the quasiparticle curr
@Eq. ~17!# reproduces the theory of midgap states given
Ref. 2. When one or both of the superconductors h
d-wave symmetry, it provides a simple explanation for t
features due to midgap states obtained in Ref. 9 from
calculation based on scattering theory. Additionally, it p
dicts other features in theI -V characteristics such as neg
tive conductance near zero bias that were not discusse
Ref. 9. Moreover, the temperature dependence of all th
features can be obtained from the same expression, whe
the calculation in Ref. 9 is only at zero temperature. T
expression for the dc Josephson current@Eq. ~16!# shows the
sin2u1sin2u2 angular dependence and 1/T temperature de-
pendence of the midgap component of the Josephson cur
This result is used in Ref. 5 to predict effect of midgap sta
on the flux quantization in the tricrystal experiment.10

For s-wave junctions, Eqs.~15!–~18! reduce to the con-
ventional tunneling Hamiltonian expressions.33 For example,
the quasiparticle currenti QP is expressed as the product
the density of states~DOS! for the two electrodes~note that
DOS5āee), while the dc and ac Josephson currentsi J andi 1
are expressed as the product of the pair correlation funct
ḡeh and ḡeh. The main difference for unconventional supe
conductors is simply that all the quantities appearing in
expressions represent surface quantities while it is custom
to use bulk quantities. Fors-wave superconductors this is no
an issue, since the surface and bulk Green’s functions h
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essentially the same functional form. However, for unco
ventional superconductors whose pair potential changes
in different directions, the surface and bulk Green’s fun
tions can be qualitatively different. Depending on the surfa
orientation, the former could show midgap peaks that
absent in the bulk Green’s function and it is these midg
peaks that are responsible for diverse anomalies such a
unusual temperature dependence and sin2u1sin2u2 angular
dependence of Josephson current and negative differe
conductance. All these phenomena are understood e
from Eqs.~16!–~18! if we use the surface Green’s functio
but not if we use the bulk Green’s function.

We consider a short tunnel junction between two unc
ventional superconductors, where the coupling between
superconductors is given by tunneling matrix elementM .
Starting from the general theory in Sec. II, expanding
Green’s functions in powers ofM and keeping only the firs
order terms~derivation given in Appendix A!, we obtain the
following equations for the dc componentI 0 and the first
harmonicI 1 of the current~note thatI 215I 1* ):

I 0,1~V!5
e

hE2`

`

dEE
2`

` dky

2p
uM ~ky!u2i 0,1~E,ky ,V!.

~15!

The dc termi 0 is given by the sum of a zero-bias dc Josep
son componenti J and a quasiparticle componenti QP
~present under bias!:

i J~E,ky!54 Re@ ḡ1
he~E,ky!ḡ2

eh~E,ky!

2ḡ2
he~E,ky!ḡ1

eh~E,ky!# f ~E!, ~16!

i QP~E,ky ,V!52@ ā2
ee~E1V,ky!ā1

ee~E,ky!#
ity

e,
-
gn
-
e
e
p
the

tial
ily

-
he

e

-

@ f ~E!2 f ~E1V!# ~17!

while the first harmonic is given by

i 1~E,ky!522i @ ā2
eh~E,ky!$ḡ1

eh~E1V,ky!* %1ā1
he~E,ky!

3$ḡ2
eh~E2V,ky!%# f ~E!. ~18!

All higher harmonics are zero to this order. We have
sumed the structure to be uniform in they direction so that
solutions with differentky are decoupled and their contribu
tions to the overall current can be summed as indicated.

In Eqs.~16!–~18!, ḡ1 andḡ2 represent the surface Green
functions for electrodes 1 and 2, respectively, when they
isolated.ā1 and ā2 are the corresponding spectral function
āi5 i (ḡi2ḡi

†). Each of these is represented by a 232 Nambu
matrix whose components are indicated by the supersc
ee, eh, he, andhh. If the expression for the surface Green
function is given for any unconventional superconductor,
can readily use Eqs.~16!–~18!. In Appendix B1 we present a
general method to obtain the surface Green’s function of
unconventional superconductor. In this section we disc
only the cases fors-wave andd-wave symmetry. The surfac
Green’s function for ans-wave superconductor is given b
the standard BCS relation

ḡs~E!5
22isin2kfa

\v f F E

AE22D2

D

AE22D2

D

AE22D2

E

AE22D2

G , ~19!

whereas the surface Green’s function for ad-wave supercon-
ductor is given as~derived in Appendix B2!
ḡd~E,ky!5
2sin2kfa

\v f F 2cotkfa2 i S u1u21v1v2

u1u22v1v2
D 2

2iu1v2

u1u22v1v2

2
2iv1u2

u1u22v1v2
cotkfa2 i S u1u21v1v2

u1u22v1v2
D G , ~20!
f

whereu6 andv6 are defined as

u65u~D6!5eifA~E1AE22uD6u2!/2E

and

v65v~D6!5A~E2AE22uD6u2!/2E.

D1 andD2 are the gaps in directionsa and2a, wherea
5sin21 (ky /kf) ~see Fig. 5!. If D1 andD2 have the same sign
then the surface Green’s function from Eq.~7! looks similar
to that for ans-wave superconductor with two gapsD1 and
D2 . But if D1 andD2 have opposite signs then the quant
(u1u22v1v2) appearing in Eq.~20! vanishes forE50
giving rise to a singularity or ‘‘midgap peak.’’ In that cas
close toE50, we can writeg from Eq. ~20! approximately
as (h'\/tf , tf : dephasing time, we assumeD1 is positive
andD2 is negative without loss of generality!

ḡd~E→0,ky!5
4D̄~ky!sin2kfa

\v f~E1 ih! F1 2 i

i 1 G , ~21!

where D̄5 uD1uuD2u/(uD1u1uD2u) and the corresponding
spectral function as

ād~E→0,ky!5
4D̄~ky!sin2kfa

\v f
S 2h

E21h2D F1 2 i

i 1 G . ~22!

Josephson current. By factoring out the phases ofḡeh and
ḡhe, Eq. ~16! can be written as a sum of sin(f12f2) and
cos(f12f2) components, wheref1 andf2 are the phases o
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the superconducting leads. Using the surface Green’s fu
tion from Eqs.~19!–~22! in the sine component~the cosine
component is usually zero!, we have shown in Ref. 5 that th
midgap contribution to the critical current at a Josephs
junction between twod-wave superconductors with misor
entations u1 and u2 has an orientation dependence
sin2u1sin2u2 that is exactly orthogonal to the Sigrist and Ri
relation cos2u1cos2u2 commonly used to describe the orie
tation dependence of the Josephson current.34 The midgap
contribution to the Josephson current also has an anoma
temperature dependence that goes as 1/T, which has been
noted by a number of authors.5,6,35 We can obtain this resul
analytically with a simple ‘‘back-of-the envelope’’ calcula
tion from Eqs.~15! and~16!, as shown earlier in Refs. 5,35
It is also evident from this calculation that the 1/T increase in
the Josephson current at low temperatures is ultimately
ited by the value ofh which is set by the dephasin
processes.5

Note that if the intrinsic broadeningh is very small, then
the assumption thatuMgu!1 is violated even for small val
ues ofM due to the sharp singularity ing. It is then neces-
sary to go to higher orders and the Josephson current
then contain significant contributions from theM4, M6 and
higher terms, in addition to the usualM2 term considered
here. Since the normal state resistanceRn remains propor-
tional to M2, we can expect that theI cRn product for such
junctions will not be constant at low temperatures. Nonc
stantI cRn products based on this mechanism should be
tinguishable experimentally from those due to other cau
through the temperature dependence.5

Quasiparticle current. The expression for the quasipart
cle currenti QP @Eq. ~17!# states that the current is propo
tional to the product of the surface DOS of the two ele
trodes, a fact that is commonly assumed by ma
experimentalists in interpreting their experimental da
However, an interesting consequence of midgap peaks
follows from Eq.~17! seems to have gone largely unnotice
If we assume that electrode 1 is a superconductor wit
midgap peak such that its DOS[d(E), then Eq.~16! predicts
that the current should be given by

i QP'@ f ~0!2 f ~V!#@a2
ee~V!#, ~23!

which is proportional to the DOS in electrode 2. This is ve
different from the usual situation where the differential co
ductancedI/dV is proportional to the DOS. Here the curre
itself ~not the conductance! is proportional to the DOS. Fo
example, if electrode 2 is a low-Tc superconductor with a
DOS having peaks at its superconducting gap, then the
rent will show peaks at these voltages implying anegative
differential conductance. Whether such negative cond
tances will actually be observed in a given system depe
on the sharpness of the midgap peak relative to the pea
the DOS of electrode 2. There is some experimental e
dence for such negative conductances and a careful ana
of these anomalous results could help establish the realit
midgap peaks. Also sincef (0)2 f (V);V/kBT, we can ex-
pect the low bias conductance to scale inversely with te
perature. Detailed calculations in Ref. 9 show that theI -V
characteristics for thes-dxy junction looks similar to the
DOS of thes-wave superconductor and theI -V characteris-
c-

n
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ill

-
s-
s

-
y
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at

.
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r-

c-
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-

tics for thedx2y2-dxy junction looks similar to the DOS of a
dx2y2-wave superconductor, both of which are in agreem
with the previous discussion. Using the same argument
can show that theI -V characteristics fordxy-dxy junction
should have a sharp peak near zero bias resulting in neg
conductance. The scattering theory based calculation in
9 does not show this feature. The reason is that the scatte
theory based calculation in Ref. 9 did not use any broaden
so that the peak was infinitely sharp and easily missed. S
the experimental system has finite broadening, we beli
this feature will show up in experimental system and m
have already been seen in the measurements of Ref. 36

acJosephson current. The ac current between twod-wave
superconductors@given by Eq.~18!# also has a strong pea
near zero bias. This follows readily from Eq.~18!, noting
that the midgap singularities for superconductors 1 and 2
progressively misaligned as the biasV is increased from
zero. This strong bias dependence of the ac Josephson
rent is absent ins-wave superconductors and should provi
convincing evidence for the presence of a singularity in
pair-correlation function. However this may be difficult t
observe experimentally because of the high Josephson
quency;1 THz associated with a bias of;1 mV. As with
the dc Josephson current, the peak decreases as'1/T.

IV. NUMERICAL ILLUSTRATION: JOSEPHSON
CURRENT OF STRONGLY COUPLED

d-WAVE JUNCTIONS

In the discussion of the previous section, we assumed
the tunneling matrix elementM is small (uMgu!1) and
therefore we used a first-order theory. We also pointed
that due to sharp singularity ing originating from the midgap
peak, this first-order theory may not hold ifM /h@1. One
interesting consequence of the breakdown of first-or
theory is the nonsinusoidal current phase@ I (f)# relation.
Such nonsinusoidal relations are well known for strong
coupled junctions, but when midgap peaks are involved
can arise even for weakly coupled junction. Recently it h
become possible to directly probe theI (f) of Josephson
junctions by applying a magnetic field.12,37The measuremen
of I (f) relation of bicrystal junctions between HTSC
~unpublished!12 show nonsinusoidal behavior for some o
entations of thed-wave order parameter and sinusoidal b
havior for some other orientations suggesting that the no
nusoidality may arise from some factor related to juncti
orientation rather than strong coupling. Since a first-or
theory does not hold any more, in this section we prese
calculation based on the full theory to show the nature
such nonsinusoidal behavior. This calculation also illustra
how the tight-binding parameters are chosen to represe
d-wave order parameter.

We compute theI (f) relation for a Josephson junctio
between twod-wave superconductors~Fig. 3!. The super-
conductors are separated by a barrier of variable strength
model the system shown in Fig. 3, we choose followingH,
m, U, andD in Eq. ~2!. H is assumed to be the free-electro
Hamiltonian

H52t@12coskxa#12t@12coskya#, ~24!
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m is zero everywhere implying that the chemical potentia
equal tomF . The tunnel barrier is modeled using a unifor
impurity layer of strengthU0. Also the order parameter i
given as

FIG. 3. Josephson junction between twod-wave superconduct
ors with misorientation anglesu1 andu2 separated by a barrier o
variable strength. We model it in discrete space, where the struc
is represented by set of lattice points marked as X in the figure.
assume the system to be translationally invariant in they direction.
The order parameters of the superconductors at the Fermi su
~in k space! are also shown.
s

D5H D1 lead 1,

0 device,

D2 lead 2,

D i5Ddeif i@cos2u i$coskya2coskxa%

1sin2u isinkxasinkya#, ~25!

representingd-wave symmetry with misorientationsu i and
phase f i . The maximum gap value in Eq.~25! is D0

5DdmF /t. H andD in Eqs.~24! and~25! are given in thek
space in a tight-binding form with minimum lattice spacin
a.

In our computation, we discretize the system in the r
space and represent the barrier by one layer~Fig. 3!. There-
fore the ‘‘effective device’’~defined in Sec. II B! consists of
three layers including one layer from each lead@1* , D, 2* #.
Since we assume the system to be translationally invarian
the y direction,ky is a good quantum number. Also at equ
librium different energies do not couple together. Therefo
it is possible to compute the retarded Green’s functionGD

separately for each individualE and ky . To computeGD ,
we first calculate the surface Green’s functiongis for lead i
from Eqs.~7! and ~8!, where

re
e

ce
the
a i5F4t22tcoskya2mF Ddcos2u icoskya

Ddcos2u icoskya 24t12tcoskya1mF
G ,

and

bi5F 2t
1

2
~2Ddcos2ui2isin2uisinkya!

1

2
~2Ddcos2ui2isin2uisinkya! t

G.

Sincem is zero everywhere, the shifting described by Eq.~6! is not necessary. Once we havegis for the leads,GD is computed
from Eq. ~4! with

gD5FE24t12tcoskya2U01mF 0

0 E14t22tcoskya1U02mF
G21

and

t15t25F2t 0

0 t G.
a i , b i , gD , t1, andt2 given above are derived from the tight-binding forms ofH andD in Eqs.~24! and ~25!.38

At equilibrium, only the dc component@ I 0# of the current in Eq.~1! is nonzero and can be written as the sum of
components of current for eachE andky value @combining Eqs.~9!, ~13!, and~14!# as

I 05
2etDE

hNky
(
E,ky

Re@GD~xd ,x1* ,e,e!2GD~x1* ,xd ,e,e!1GD~xd ,x1* ,h,h!2GD~x1* ,xd ,h,h!# f ~E!, ~26!

whereDE5 (Emax2Emin)/NE andNky is the number ofky points in the range (2kF ,kF), wherekFa5cos21(12 mF/2t).
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In this paper, we plot eIRN0 /D0 vs f for T0
51, 0.9, 0.5, whereT0 represents the barrier transmissio
probability in the direction normal to the junction.U0 and
RN0 are directly related to T0 given by T0
5@$ U0/2tsinkfa%211#21 and RN05h/2e2T0. Two possible
orientations of the order parameter are shown@u15u250°
in Fig. 4~a! andu1545° andu25245° in Fig. 4~b!#.

Several features of the plots are discussed below:~i!
When the barrier is low (T'1), I (f) is nonsinusoidal with
a current changing sign rapidly atf5p in Fig. 4~a! and at
f50 in Fig. 4~b!. The nonsinusoidal behavior in Fig. 4~a!
with a change of the sign of current atf5p can be pre-
dicted by straightforwardly extending the previous theori
for strongly coupleds-wave superconductors16 but the non-
sinusoidal behavior in Fig. 4~b! is usual ford-wave super-
conductors. The extrap phase shift in this case occurs due
the formation ofp junction for this orientation. Experimen
tal measurements ofI (f) for bicrystal junctions between
HTSC’s show similar behavior for certain orientations of th
superconductors.12 ~ii ! Although I cRn is constant in the tun-
neling limit,5,33 it does not remain constant when the barri
gets lower. This is because in the tunneling limit terms on
with the lowest order of the coupling strength contribute

FIG. 4. Current-phase relation for the junction shown in Fig.
with ~a! u15u250° and ~b! u1545° andu25245°. The three
plots are for different barrier strengths~solid: T051, dotted:T0

50.9, dashed:T050.5). The other parameters in our computatio
aremF /t 51.5 andDd /t 50.05.
s

r
y

the current,5 but when the coupling is higher, the highe
order terms also become significant leading to noncons
I cRN . Experimental observation of nonconstantI cRN in
grain-boundary bicrystal junctions between HTSC’s sugge
that they may be modeled as strongly coupled junctions.~iii !
As the coupling becomes weaker~smaller T), I (f) turns
more sinusoidal for the junction withu15u250°, but for the
junction withu1545° andu25245° the introduction of the
barrier results in formation of midgap states.1,2 The resulting
singularity ing makes the productMg large so that theI (f)
remains nonsinusoidal even for smallM . This effect should
be observable ifMh@1. Experimentally some orientation
of the bicrystal junctions have been reported to show m
pronounced nonsinusoidal behavior than other orientatio12

which may be explained by the above observation.

V. CONCLUSION

In this paper, we presented a general and powerful
merical method to model transport experiments between
conventional superconductors. The method in its gen
form is discussed in Sec. II and specific cases are consid
in Secs. III and IV. By using the surface Green’s functions
the expressions instead of the bulk Green’s functions,
method correctly accounts for the surface effects such
midgap states predicted ford-wave superconductors.1–9 Our
method does not make the quasiclassical approximation u
in the quasiclassical Green’s function method. The choice
the tight-binding description enables our method to inclu
any unconventional order parameter and arbitrary band st
tures and therefore makes it more versatile than the sca
ing theory.

The Green’s-function-based description has another
vantage over scattering theory. The expressions from
method simplify significantly for weakly coupled ‘‘tunnel’
junctions. Such weakly coupled junctions have been stud
extensively in the context of low-Tc superconductors, but in
the present context they are particularly relevant. This is
cause the effect of the midgap states is most prominent
weakly coupled junctions,2 whoseI -V characteristics can be
modeled with a much simpler first-order theory that provid
greater insight than a purely numerical calculation based
the full theory.9 In Sec. III such a first-order theory for the d
Josephson current, the ac Josephson current, and the q
particle current is presented, which could be described a
generalized tunneling Hamiltonian formalism. Several
sults and insights are derived from these expressions.

In addition to the tunneling limit, our method can also
used to describe junctions with arbitrary coupling. In Sec.
we illustrated this by computing the current-phase@ I (f)#
relation for a junction between twod-wave superconductor
with arbitrary coupling. Unlike theI (f) in s-wave junctions
that changes from nonsinusoidal to sinusoidal depende
when the junction coupling is reduced, for some orientatio
of the d-wave order parameter nonsinusoidal nature ofI (f)
is maintained even at low coupling. Some evidence of si
lar behavior has been seen experimentally~unpublished12!
and our theory could provide motivation for further expe
ments in this direction.
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APPENDIX A: TUNNELING LIMIT EXPANSION

In this appendix, starting from the general formulati
discussed in Sec. II, we derive simple expressions for the
and ac components of current for tunnel junctions betw
unconventional superconductors. In Sec. II, we represe
the system on a tight-binding lattice and computed Gree
function for an ‘‘effective device’’ consisting of the norma
device region and one point from each superconducting le
The ‘‘effective device’’ we consider in this specific case co
sists of two points—one representing each superconduc
lead. Since the device is short, we do not consider any p
in the device region. We also assume the system to be
form in the transverse (y) direction resulting in decoupling
of different ky values. For eachky , we have a one-
dimensional ‘‘effective device’’ consisting of two lattic
points connected by a matrix elementM (ky).

The retarded Green’s function for this two-point devi
can be written from Eq.~4! as

GD~E,ky!5F g1
21 2~M !

2~M†! g2
21 G21

'F g1 g1Mg2

g2M†g1 g2
G .

~A1!

g1 and g2 are the surface Green’s functions of the sem
infinite leads that can be computed from Eqs.~7! and ~8!
using the procedure described in Sec. B 1. In Eq.~A1! we
performed a perturbation expansion in powers ofM and kept
only the terms first order inM . This is valid when the cou-
pling M is small (uMgi u!1) indicating a large barrier be
tween the superconductors.

The current between the superconductors is expresse
terms ofG,. Using Eqs.~10!, ~11!, and ~A1!, G, can be
written as

G,5GDFs1
, 0

0 s2
,GGD

†

5F a1 a1Mg2
†1g1Ma2

g2M†a11a2M†g1
† a2

G , ~A2!

wherea i5gis i
,gi

†5a i
† . s1 ands2 are the pair-correlation

functions of the individual superconducting leads that
clude the effects of their potentials as given by Eq.~12!.

Different components of the current can be obtained
diagonal and off-diagonal parts of the current operator. T
current operatorI OP is a matrix of size 2NE given by
p

l

-
.

c
n

ed
’s

d.
-
ng
nt
ni-

-

in

-

s
e

I OP5
e

h
@~Mg2M†a11Ma2M†g1

†

2M†a1Mg2
†2M†g1Ma2!#

5
e

h
uM ~ky!u2@~t3g2t3a11t3a2t3g1

†2t3a1t3g2
†

2t3g1t3a2!#. ~A3!

t3 is the Pauli matrix in electron-hole space~diagonal matrix
with 1 for the electron component and21 for the hole com-
ponent!. Expressing all the functions in the current opera
in terms of the functions in the untransformed domain,
obtain Eqs.~15!–~18! for the components of current.38 The
transformation ofg is shown in Eq.~6!, from which the
following transformation ofa is derived. Since in the un
transformed domain

ā i5ḡi s̄ i
,ḡi

†5 i f ~E!āi~E!, ~A4!

whereā5 i (ḡ2ḡ†) is the spectral function, and the transfo
mations of different components ofa are

a i
ee~E8,E!5 idE8,Eāi

ee~E2m i ! f ~E2m i !

5 idE8,Eāi
ee~E82m i ! f ~E82m i !,

a i
eh~E8,E!5 idE8,E12m i

āi
eh~E1m i ! f ~E1m i !

5 idE8,E12m i
āi

eh~E82m i ! f ~E82m i !,

a i
he~E8,E!5 idE8,E22m i

āi
he~E2m i ! f ~E2m i !

5 idE8,E22m i
āi

he~E81m i ! f ~E81m i !,

a i
hh~E8,E!5 idE8,Eāi

hh~E1m i ! f ~E1m i !

5 idE8,Eāi
hh~E81m i ! f ~E81m i !.

APPENDIX B: SURFACE GREEN’S FUNCTION

In order to apply the method presented in Sec. II to a
unconventional superconductor we need to have either a
merical method for solving Eqs.~7! and ~8! from given E,
a i , andb i matrices or analytical expressions for the surfa
Green’s functions. In Sec. B 1 we present a general num
cal method for solving Eqs.~7! and ~8! that can be applied
for any unconventional superconductor with arbitrary pairi
symmetry and band structure. Sinced-wave superconductor
are more commonly used, in Sec. B 2 we derive exact a
lytical expressions~valid within the Andreev approximation
m!D) for the surface Green’s functions ofd-wave super-
conductors. The method of Sec. B 2 can also be extende
obtain analytical expressions of surface Green’s function
other unconventional superconductors, but arbitrary b
structure cannot be easily included due to difficulty in o
taining the expressions for eigenstates in such cases.
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1. Numerical method

In order to obtain the surface Green’s functionḡi(E) of
lead i from given E, a i , andb i , we solve Eqs.~7! or ~8!

using an iterative procedure. We start with someḡ0 as the
initial guess on the right-hand side~RHS! and compute the
left-hand side~LHS! @ ḡtemp#. In the next iteration we use
(ḡ01ḡtemp)/2 on the RHS. The iterations are continued un
convergence is reached. If we use nonzeroh while solving
Eqs.~7! and~8!, the rate of convergence improves at the c
of accuracy. Choice of initialḡ0 is arbitrary except that it
needs to have a positive complex part in order to converg
the retarded Green’s function. In our computation we cho
ḡ05a10.0005i I as the initial guess.

A similar iterative procedure can be used to compute
bulk Green’s function. In this case, we need to consider
infinite lead instead of the semi-infinite one shown in Fig.
An infinite region can be conceptually broken into two sep
rate semi-infinite regions~L and R!, for which the surface
Green’s functions (ḡL and ḡR) are computed using the pro
cedure outlined above. OnceḡL and ḡR are known, the bulk
Green’s function is computed from

ḡbulk~E!5@~E1 ih!I 2a2b†ḡL~E!b2bḡR~E!b†#h→0
21 .

~B1!

The method presented here is general and can be use
any unconventional superconductor with arbitrary ba
structure and pairing symmetry. Given any unconventio
band structure and pairing symmetry, we can obtain
equivalenta andb matrices from the tight-binding represe
tation and then we can use the method presented above

2. Analytical expression based on scattering theory

Although the numerical method presented in Sec. B 1
be used for any unconventional pairing symmetry, we
lieve that use of analytical expressions for simple cases
vides better understanding of the behavior. In this section
derive analytical expressions for the surface and the b
Green’s functions ford-wave symmetry~within the limits of
Andreev approximationm@D). The method presented he
is fairly general and can be used for other types of unc
ventional superconductors.
l
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We consider a planar superconducting region as show
Fig. 5~c!. We assume that the translational symmetry is p
served in the transverse (y) direction. Thereforeky is con-
served and we can treat eachky independently. The retarde
Green’s function of the superconductor for givenE and ky

@G(E,ky ,x,x8)# is obtained from the Bogoliubov–d
Gennes Hamiltonian26

FIG. 5. ~a! An impulse excitation in an infinite metal at pointx8

gives rise to outgoing wavesAeik(x2x8) in the regionx.x8 and

Ae2 ik(x2x8) in the regionx,x8. ~b! In a semi-infinite metal, the
wave traveling from the impulse source in the directionx,x8 gets
reflected from the boundary and modifies the total wave amplitu
at different points.~c! We compute the surface and the bulk dens
of states of a planar superconducting region. The order paramet
the superconductor~in k space! hasd-wave symmetry with misori-
entation angleu. The figure also shows the quasiexcitations gen
ated from an impulse at pointx8 in the superconductor. Solid line
show the propagation of the electronlike excitations 1,2,5,7
dotted lines show the propagation of the holelike excitatio
3,4,6,8. The figure also shows the quasiexcitations reflected f
the surface.
eter
F S E1
\2

2m

]2

]x2
2

\2ky
2

2m
1m D 2D

2D† S E2
\2

2m

]2

]x2
1

\2ky
2

2m
2m D G FGee~E,ky ,x,x8! Geh~E,ky ,x,x8!

Ghe~E,ky ,x,x8! Ghh~E,ky ,x,x8!
G

5Fd~x2x8! 0

0 d~x2x8!
G . ~B2!

Physically Eq.~B2! describes the motion of electronlike and holelike quasiparticles coupled together by the order paramD.
We chooseD with d-wave symmetry having the following directional dependence ink space:D(u)5D0cos(2u22u0), where
u is the orientation with respect to thekx axis @Fig. 5~c!#.
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To obtain the Green’s function from the scattering p
ture, we consider the propagation of the quasiexcitati
generated from an impulse. Two columns of the Gree
function matrix in Eq.~B2! are obtained by considering th
wave amplitude at pointx due to electronlike impulse
$@d(x2x8) 0#8% and holelike impulse$@0 d(x2x8)#8%
separately. For any chosen values ofE and ky , an impulse
gives rise to four possible excitations—electronlike exci
tion propagating in directions 1 and 2 and holelike exci
tions propagating in directions 3 and 4@Fig. 5~c!#. These
quasiexcitations propagate having anglea with the x axis,
where a5sin21 (ky /kf) @kf5A2mm/\2#. Each propagating
mode experiences order parameters in its direction of pro
gation. Therefore propagating modes in directions 1 an
experience order parametersD15D(a) and propagating
modes in directions 2 and 3 experience order parame
D25D(2a). For ans-wave superconductor with order pa
rameterD5uDueif andD!m,39 the propagating modes at a

energyE are @u(D) v(D)#Te6 ik f (x2x8) ~electronlike excita-

tion! and @v(D) u(D)#Te7 ik f (x2x8) ~holelike excitation! for
x.(,)x8, where u(D)5eifA(E1AE22uDu2)/2E, v(D)

5A(E2AE22uDu2)/2E and k'kf5A2mm/\2.16 For the

d-wave superconductor under consideration different w
components can be written in terms of theu andv ’s in those
n
ig
n

M

-
s

’s

-
-

a-
4

rs

e

particular directions. Here we discuss the propagating wa
for only the electronlike excitation. The wave functions f
x.x8 and forx,x8 are given as

C15a1eik~x2x8!Fu1

v1
G1a2e2 ik~x2x8!Fv2

u2
G ~B3!

and

C25a3e
2ik~x2x8!Fu2

v2
G1a4e

ik~x2x8!Fv1

u1
G, ~B4!

whereu,v65u,v(D6). By matching boundary condition a
x5x8, we get

a15~u1 / i\vx! ~E/AE22uD1u2!,

a25~v2 / i\vx! ~E/AE22uD2u2!,

a35~u2 / i\vx! ~E/AE22uD2u2!

and

a45v1 /~u1
2 2v1

2 ! 5 ~v1 /i\vx! ~E/AE22uD1u2!.

This allows us to get the first column of the bulk Green
function matrix. Similarly the second column of the bu
Green’s-function matrix can be obtained by considering
propagations of waves generated by a holelike impu
Combining them, the bulk Green’s function can be written
gbulk5
1

2i\v f F E

AE22D1
2

1
E

AE22D2
2

D1

AE22D1
2

1
D2

AE22D2
2

D1

AE22D1
2

1
D2

AE22D2
2

E

AE22D1
2

1
E

AE22D2
2

G .
e

To obtain the surface Green’s function, we need to co
sider the reflection of the waves from the surface. In F
5~c!, we have shown the reflection of electronlike excitatio
2 @e2 ikx(u2 v2)T# into electronlike 5@eikx(u1 v1)T# and
holelike 6 @e2 ikx(v2 u2)T#:

e2 ikxFu2

v2
G→aeikxFu1

v1
G1be2 ikxFv2

u2
G , ~B5!

where a52 (u2
2 2v2

2 )/(u1u22v1v2) and b52 (v2u1

2u2v1)/(u1u22v1v2) and the reflection of holelike 4
-
.
@eikx(v1 u1)T# into electronlike 7 @eikx(u1 v1)T# and
holelike 8 @e2 ikx(v2 u2)T#:

eikxFv1

u1
G→ce2 ikxFv2

u2
G1deikxFu1

v1
G , ~B6!

where c52 (u1
2 2v1

2 )/(u1u22v1v2) and d52 (v1u2

2u1v2)/(u1u22v1v2). Combining the contributions of
all waves,38 Eq. ~20! for the surface Green’s function can b
written.
*Present address: Hewlett-Packard Company, 1501 Page
Road, MS-6LC, Palo Alto, CA 94304-1126.
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