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Electrical transport in junctions between unconventional superconductors:
Application of the Green’s-function formalism
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We present a general Green’s-function-based method that can be used to describe the electrical transport
properties of junctions with arbitrary coupling strength involving superconductors with unconventional pairing
symmetry and arbitrary band structures. Our method correctly takes into account the midgap surface states that
arise ind-wave superconductors due to sign change of the order parameter. In the tunneling limit, we present
simple expressions that describe the effect of the midgap states on the dc and ac components of the Josephson
current including their temperature dependence. A numerical example is presented for a junction between two
d-wave superconductors with arbitrary coupling strength showing a feature originating from the sign change of
the order parameter, namely, for some orientations ofdtheave order parameter relative to the surface, the
current-phase relation may remain nonsinusoidal even when the coupling is quite weak.
[S0163-182698)03217-2

I. INTRODUCTION the misorientation angles of th@-wave superconductors
and 1T temperature dependence of the midgap component

It is by now well known that the electrical transport prop- of the Josephson current. This result is used in Ref. 5 to
erties of unconventional superconductors are qualitativelypredict the effect of midgap states on the flux quantization in
different from the conventiona-wave superconductors. For the tricrystal ring experimenf In Sec. IV, we present a
example, the change in sign of the order parametdrwave  numerical example illustrating a feature originating from the
superconductors gives rise to effects such as midgap surfasgn change of the order parameter. Unlike/ave junctions,
state$™® that do not have any analog fsrwave supercon- where the current phase relatipi{ )] changes from nonsi-
ductors. Therefore, in modeling junctions between unconnusoidal to sinusoidal dependence as the coupling is reduced,
ventional superconductors, a straightforward generalizatiofor some orientations of thd-wave order parametdi( ¢)
of the existing methods for the-wave superconductors is may remain nonsinusoidal even for weakly coupled
not possible. In this paper, we present a general and powerfiinctions'* Some evidence of similar behavior has been seen
numerical method to model junctions between unconvenexperimentally” and our theory should provide motivation
tional superconductors that correctly accounts for the surfactor further experiments in this direction.
effects. Our method can easily include any unconventional In the context of low¥. superconductors, the scattering
pairing symmetry, arbitrary coupling strength and bandtheory>~18of transport has been fairly successful in describ-
structureqdSec. I) and therefore will be useful in comparing ing junctions between two superconductors with arbitrary
theory and experiment for junctions between high-coupling. This method has recently been extended to super-
temperature superconductifTSC) materials. In the tun- conductors  with  unconventional order parameter
neling limit, our method gives simple expressions includingsymmetry>*° Although the scattering formalism is concep-
temperature dependence for the dc Josephson current, thetaally simple, it is difficult to apply it to complicated geom-
Josephson current, and the quasiparticle cur(8et. Il)  etries or to include arbitrary spatial variations and band
which provide greater insight than a purely numerical calcustructures because of the need to calculate the precise eigen-
lation based on the full theoyThese general expressions state spectrum. The nonequilibrium Green’'s-function
can be used for any unconventional pairing symmetry suciNEGPF formalism provides a more general framework for
asd+s, d, d+id, s+id, etc., and provide unified under- the treatment of electrical transport in superconducting junc-
standing of a wide class of anomalous phenomena. The efions. It has been applied successfully to junctions between
pression for the quasiparticle current explains all the tunnels-wave superconductof$?® In this paper we extend the
ing limit features due to midgap states discussed in Ref. NEGF method to unconventional superconductors by prop-
with simple “back-of-the-envelope” calculations. In addi- erly including the surface effects such as midgap states aris-
tion, it predicts other features that were not discussed in Refng from the sign change of the order parameter. We use a
9, such as negative conductance near zero bias for a junctidight-binding description which can handle unconventional
between twod-wave superconductors. Moreover, the tem-pairing symmetry and also include arbitrary band structures
perature dependence of all these features are included in oifrnecessary. In the absence of dephasing processes, NEGF
expression, whereas the calculation in Ref. 9 is only at zerformalism is equivalent to the scattering method and yields
temperature. The expression for the dc Josephson curreitentical answers. This equivalence has been shown in Ref.
shows the sin&;sin26, angular dependenc@{ and 6, being 21 for normal conductors and the proof can be extended for
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superconductors in a straightforward manner. Compared tc® electron current

scattering theory, the advantage of the NEGF based metho: LEADI |  DEVICE { LEAD2

presented here lies in the ease with which it can handle vari- XX XXX txxxxxx xxxxx AY

ous surface-related complexities which play a significant role XXX X XXX X XXX X XXKXXX

in HTSC junctions. Also it should be noted that we do not XX X X XiX X X X X X XX X XXX -
. . . . X X X X X:Xx X x X X X X:X X X X X

use the quasiclassicéAndreey approximation(coherence

length much larger than the Fermi wavelengtised in the POTENTIAL PROFILE.

quasiclassical Green’s-function metHod; >>which is of re-
duced validity in HTSC’s due to their substantially shorter €V - T
coherence lengtf?. We believe the method presented here

will be helpful in performing detailed quantitative compari- ,

sons with experiments on HTSC junctions.

Il. THEORETICAL FORMULATION
_ _ . © *DDDDD DD 2
In this section we present our method for computing the

dc and ac components of the currérfor a biasV across a FIG. 1. (8 A structure consisting of a normal device region
junction between two unconventional superconductors. Th&onnected between two uniform semi-infinite superconducting
discussion in this section is completely general and specifile2ds- We model it in the discrete space, where the structure is
cases are considered in Secs. Ill and IV. We start from th&ePresented by set of lattice points marked as X in the figure. A
Bogoliubov—de Genne@dG) equatioﬁ6 [Eq. (2)] to model voltageV is applied between the leads. The gi_ven pptential profile
the superconductors and compute the current as follGays: for the. system is also Showfb.) Con(’feptua”%a) 1S equ'va.lem. toa
We compute the retarded Green’s functioB)(from the one-dimensional layer of lattice points, where the device is repre-

. o . sented by a finite set of lattice points marked, while contacts 1
2x2 BdG Hamiltonian in Eq(2) (Sec. Il B. G contains the and 2 are represented by infinite set of lattice points marked as 1

same physics that is described by the wave fqnctions in the g 2, respectively. Each poif,, 1, and 2 represents a layer of
scattering approaclib) We compute the correlation function e structure(c) The semi-infinite contacts can be effectively mod-

. . '2 . i
G*= from G using the NEGF formalisfit?’ (Sec. 11Q. (©)  eled by the single points*land 2, that take the effect due to the
We obtain all quantities of interest such as the electron der\Nh0|e contact correctly into account.

sity and the current fronG = (Sec. Il D).
_ In this paper, we represent the BdG equation ona Qiscretmerature§,22—25is an approximate form of Eq2) valid only
tight-binding lattice. One advantage of choosing discreten the guasiclassical limit. In Eq2), H is the one-electron
tlght-blr_u_jmg representation is that arbitrary band_stru@?_ljre Hamiltonian andA is the operator representing the pair po-
and pairing symmetry can be modeled by choosing suitablg,ntia| (order parametgincluding the phase of the supercon-
matrices to represent the Hamiltonieand the pair poten-  qyctor; it is zero in the normal device region. The reference
tial A [see Eq.(2)]. The specific example in Sec. IV shows potential up is constant everywherd) is the electrostatic
how we model al-wave pair potential in tight-binding form.  gtential as shown in Fig.(): it is constant in the super-
conducting leads but spatially varying in the device region.
A. Outline w is the chemical potential with respect to the reference level
We consider a planar structure consisting of a normal dektr - # IS constant in the superconducting leads 1 and 2 and
vice region sandwiched between two uniform semi-infinite€dual tou; and u,, respectively, withu, —u,=eV. The
superconducting leadd and 3 [Fig. 1(@]. Our aim is to normal region may be S|gn|f|cantly o_ut of equn_lbrlum and
compute the current for a potential difference/ between May not have any well-defined chemical potenjialHow-
the leadgsee potential profile in Fig.(@]. When both the €Ver, this does not matter since is zero anyway. In our
leads are superconducting, a dc voltagapplied between formulation, we start with givetd, U, u, A, ug, and com-

the leads gives rise to an ac curférif:20:2 pute the current. In a complete calculation bathand A
need to be computed self-consisterith7:?° However the
* _ self-consistency equation far andA depends on the micro-
()= > Iyelkeo, (1) scopic theory for the pairing interaction and represents a
k=-e separate story that we will not consider in this paper.
where wy=2eV/7 is the Josephson frequency. In E@), For our computation we work in the energy domain rather
| _y=1% for the current to be real. Our objective is to calcu- than the time domairfEq. (2)], starting from an equation
late the different , for a givenV. which is the Fourier transform of Egj?). Although ideally
Quasiparticle motion in this structure is described by theN€ energy ranges from < to =, sufficient numerical accu-
Bogoliubov—de Gennes equati8r® given as racy can be achieved at low bias by considering the energy

values within a few multiples of the maximum superconduct-
ing gap. We consider an energy rand€,(,,Ema and dis-
} (2)  cretize it inNg points. Also we discretize the system in real
spacgFig. 1(a)]. We consideN, andN, points in the device
Physically Eq.(2) describes the motion of up-spin electronsin the x andy directions, respectively. The leads have infi-
and down-spin holes coupled togeth®rThe Eilenberger nite number of points in the direction andN, points in the
equation, used alternatively as a starting point in they direction. All operators in our formulation are matrices
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having matrix elements between eveny (y,,E;,S;) and LEAD
(X5,¥2,E>,s,) where ;,y;,E;,s;) represents X coordi- B [3+ v
nate,y coordinate, energy, spimf a point. Band indices are
implicitly included iny; . x
o a a .........................
B. Retarded Green'’s function
The retarded Green’s functid® is defined as FIG. 2. Since each of the lead is uniform, the lead Hamiltonian
can be described by two terms—the Hamiltonian matrix for each
G:(EM_HBdG+i 7])—1, (3) layer () and the matrix representing the coupling between two
neighboring layers 8). Arbitrary band structures and pair poten-
where tials in the lead can be modeled by choosing appropeasnd 3.
EM(XlrylvElrSl:XZvyZaEZvSZ):E15E1,E25x1,x26y1,y2551,52

GPYE) G(E)
GM(E) GM(E)

and HBYC js the energy domain representation of the time- Gi(E)=

dependent BAG Hamiltonian in E(). &, ,, is the Kronecker

delta function which is 1 ik=b and 0 ifa#b. Since we are (E+in)l—H +ur —A -1
considering an open system consisting of semi-infinite leads, = + . N ,
the matrix on the right-hand side of E) is of infinite —A (E+in)l+H{ —ue 7—0

dimension and cannot be inverted directly. In the literature (5)
this problem is often avoided by using periodic boundary
condition. However, this would give rise to a discrete specwhereH, andA are the single-electron Hamiltonian and the

trum rather than a continuous spectrum appropriate for aBair potential in the IeacG_i(E) is transformed back to the
open system. In this paper we take the infinite leads Co”ec“)énergy—depender@i(El,E2) using

into account following a procedure initiated by Caroli for

normal conductord® We are not interested in the Green’s

function inside the contacts. Therefore, we define an “effec-
tive device” consisting of the given device region and also _
one extra layer from each lead immediately connecting the Gie“(E’,E)z 5E/'E+2HiG$h(E+Mi),
device[layers I and 2° in Fig. 1(c)], and compute only the
part of G for this region[ Gp] using the following equation
that can be derived from E¢3):3!

GE(E',E) =g/ eGPHE— i),

GI'(E',E)= 8¢/ g2, GI"(E— ),

;' -mn o] GM(E’ E)= g cGM(E+ wy). (6)
N I S B
Gop= R T2 : ) When u; is zero, these transformations are not necessary.
0 - TE 92_1 Since the lead Hamiltonian is infinite, the inversion in Eq.
(5) cannot be done directly. Ferwave superconductors this
is not necessary, because the surface Green's function is

h ded G s f - ¢ the isolated devi ; equal to the bulk Green’s functiofGreen’s function of an
the retarded Green's function of the isolated device regipn. ;e lead that can be obtained easily by other meth&ts.

|fs the coupling bﬁtweep the device afmd the I?Ve%bt"’_“n?d However, for unconventional superconductors, the surface
rom H"". g; is the surface Green's function for the isolated geey's function can be qualitatively different from the bulk
leadi on the layeii*. We describe a procedure to compute it reen's function. Here we present a general method to com-
in the following paragraphGp in Eq. (4) is @ matrix of ;e the surface Green’s function for any arbitrary supercon-
dimension 20,+2)NyNe.. If g, andg, are calculated cor-  q,ctor, We note that in Eq4) we only needy; rather than
rectly, Gp, is exact. Our method is numerically efficient since ho \wholeG . and therefore we do not need to invert the
. . . . s i

for different systems with identical leads the lead Green'§finite Hamiltonian matrix for the lead. Since we have as-
functions need to be computed only once and saved for res;med the lead to be uniform throughout its length, the

use. , L . Hamiltonian for the lead can be written in terms of just two
The surface Green’s functiag) in Eq. (4) is the value of  apicesthe Hamiltonian for each layem] and the

the lead Green's functio®; at the surface Igyeir*.Bd%i IS Hamiltonian coupling successive layerg) (Fig. 2. To
obtained from an e.qua'qon S|m|lar_to E@) with H re- compute g;(E;,E,), we first solve for the energy-
placed by the Hamiltonian for the isolated lead. The Hamil-. —

independenty;(E) from

tonian of a superconducting lead has nonzero matrix ele-
ments between different energielcheck the Fourier

In Eqg. (4), rows (columng 1, 2, and 3 correspond to layer
1*, device region, and layer-2respectively. Thereforgp is

transform of the Hamiltonian in E42)] and soG;(E; ,E,) is 91(E)=[(E+in)l— a1~ B1:(E)B1], 0. @
computed in two steps. Since the lead has constant chemical o -
potential u;, the lead Hamiltonian is first locally gauge gz(E)=[(E+i77)|—az—ﬁzgz(E)ﬁz];io, (8)

transformed to an energy-independent fojgenoted by an
overling. The Green’s function of this energy-independentusing an iterative procedufeee Appendix Bjland then use
Hamiltonian is computed from transformations as given by E(p).
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C. Correlation functions nents in Eqg.(1) are given by the elements of the current-
In order to compute the current, it is enough to know thePPerator diagonal or off-diagonal in the energy space:
part of the correlation function for the “effective device” AE

region_[GS]. In equilibrium (_V=O) the system is described Ik(V):ZN_E gy, E—khwo,ey,Ee)], (14
by a single chemical potential. If we choose it to be equal to yy.E

: < 1,27
the reference potentiagl, Gy is related toGp by? where AE= (E,u—Eni)/Ne. 1,(V) in Eq. (14) is ex-

<_ At pressed in terms of current or mode. Electron-hole symmetry
Gp=(Gp~Gp)f(E), ©) is used to simplify Eq(14).

where f is the Fermi function. In the presence of nonzero

applied biasV, the device region does not have any well- ll. TUNNELING LIMIT

defined chemical potential and therefore we need to use i .
NEGF formalismi*?’ to obtain the following relation be- One advantage of the Green’s function based method pre-

tweenG= andGn sented in Sec. Il over scattering theory is that the expression
D D for current simplifies significantly for weakly coupled “tun-

GS:GDESGT , (10) nel”.junctions..Such_ weakly coupled junctions have been
studied extensively in the context of lows: superconduct-
where ors, but in the present context they are particularly relevant.
This is because the effect of the midgap states is most promi-
o 0 O nent for weakly coupled junctions, whoke/ characteristics

s<—| 0 o0 o 11 can be modeled with a much simpler first order theory that
D™ ' (11 provide greater insight than a purely numerical calculation
0 0 o, based on the full theoryIn this section, we present such a

- . theory which could be described as a generalized tunneling
Similar to Eq.(4), rows (columnsg 1, 2, and 3 in Eq(11)

X . " Hamiltonian formalism. Expanding the Green’s functions of
correspond to layer], device region, and layer2 respec-  gec || in perturbation series and keeping only the first order

tively. The quantitiesry” and o5 represent the in-scattering terms, simple expressions for the dc Josephson cufant
functions from leads 1 and 2, respectively, and depend on thg g)], first harmonidEq. (18)], and the quasiparticle current
respective chemical potentials;” has matrix elements cou- [Eq.(17)] are obtained. Equatior{46)—(18) are very general
pling different energies similar tg;s’'s in the previous sub- and can be applied for superconductors with any unconven-
section. Therefore using the fact that the leads are locally ifional pairing symmetryq, d+id, s+id, etc) providing a
equilibrium with constant chemical potential;, the in-  unified understanding of a wide class of observable anoma-
scattering functions in the transformed domain are given byies associated with the unconventional order parameter. For
a tunnel junction between a normal metal and-aave su-

<71<(E)=f(E),BI[E{(E)—g_l(E)]Bl, perconductor, the expression for the quasiparticle current
[Eq. (17)] reproduces the theory of midgap states given in
o5 (E)=f(E)B[g3(E)—g,(E)1B5. (12  Ref. 2. When one or both of the superconductors have

d-wave symmetry, it provides a simple explanation for the
To return to the untransformed representation, we usé@tq. features due to midgap states obtained in Ref. 9 from full
with g replaced byrfz. Since two leads have differep;’s,  calculation based on scattering theory. Additionally, it pre-
they will be transformed back differently. This is where the dicts other features in thieV characteristics such as nega-
effect due to the applied potentidl is being taken into ac- tive conductance near zero bias that were not discussed in
count. Ref. 9. Moreover, the temperature dependence of all these
features can be obtained from the same expression, whereas
D. Current operator the calculation in Ref. 9 is only at zero temperature. The
) ) expression for the dc Josephson curiétg. (16)] shows the
In our formulanqn, all the different components O.f the,sinZﬁlsinzez angular dependence andT1ltemperature de-
current can be obtalned fromi the current operator defined iRendence of the midgap component of the Josephson current.
terms of the correlation function s This result is used in Ref. 5 to predict effect of midgap states
on the flux quantization in the tricrystal experiméft.
For s-wave junctions, Eqs(15)—(18) reduce to the con-
ventional tunneling Hamiltonian expressiotigzor example,
the quasiparticle currernty is expressed as the product of
the density of state@OS) for the two electrodegnote that

wherex; andx; ., represent points in the adjacent layers of DOS=a°9), while the dc and ac Josephson currégndi,

the device in thex direction. We use the notation are expressed as the product of the pair correlation functions
Gp(Xi X +1) to indicate part ofGp couplingx; andx;,;  g°" andg®". The main difference for unconventional super-
(i.e., layers andi+ 1) that includes aly;’s, E;'s, and spins.  conductors is simply that all the quantities appearing in our
Therefore, the current operator is a square matrix of dimenexpressions represent surface quantities while it is customary
sion 2NyNg with terms asl,(y1,E1,S1,Y2,E2,S;), where  to use bulk quantities. Fewave superconductors this is not
y=(1Ny), E=(1Ng), s=(e,h). Different current compo- an issue, since the surface and bulk Green’s functions have

e
Iop:ﬁ[HEdG(Xi Xi+1)Gp (Xi+1,%)

—Gp (X X+ )HB (X4 1,%)], (13)
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essentially the same functional form. However, for uncon- [f(E)—f(E+V)] (17)
ventional superconductors whose pair potential changes sign. i L

in different directions, the surface and bulk Green's func-hile the first harmonic is given by
tions can be qualitatively different. Depending on the surface .
orientation, the former could show midgap peaks that are 1a(
absent in the bulk Green’s function and it is these midgap —h
peaks that are responsible for diverse anomalies such as the *{gz (E=V k) HT(E). (18
unusual temperature dependence and 4Bi@2¢, angular  All higher harmonics are zero to this order. We have as-
dependence of Josephson current and negative differentighmed the structure to be uniform in thedirection so that
conductance. All these phenomena are understood easiplutions with differenk, are decoupled and their contribu-
from Eqgs.(16)—(18) if we use the surface Green’s function, tions to the overall current can be summed as indicated.

but notif we use the bulk Green’s function. In Egs.(16)—(18), g; andg, represent the surface Green’s

We consider a short tunnel junction between two unconynetions for electrodes 1 and 2, respectively, when they are

ventional superconductors, where the coupling between th%olatedg anda. are the corresponding spectral functions:
superconductors is given by tunneling matrix elembht = “1 2 P gsp :

Starting from the general theory in Sec. I, expanding the?i =i(8i—9;). Each of these is represented by>a2Nambu
Green’s functions in powers ofl and keeping only the first Matrix whose components are |_nd|cated by the superscripts
order termg(derivation given in Appendix /A we obtain the €& €h, he, andhh. If the expression for the surface Green’s

harmonicl, of the current(note thatl _,;=1%): can readily use Eqs§16)—.(18). In Appendix B1 we present a
general method to obtain the surface Green'’s function of any

e~ = dk, ). unconventional superconductor. In this section we discuss
loa(V)= Hf dEj E' M(ky)|%i04(E,ky,V). only the cases fos-wave andd-wave symmetry. The surface
o o (15) Green’s function for ars-wave superconductor is given by
the standard BCS relation
The dc term is given by the sum of a zero-bias dc Joseph-

E.ky)=—2i[a3"(E,k){0S(E+V,ky)*}+al%(E k,)

son componenti; and a quasiparticle componerit E A
resent under bi
(P x o) —2isirPkea | VE?—A%  JE?—A? 19
11(E.ky) =4 REQI(E,ky)G5"(E ky) FE T A E |
e 2 2 2 2
~g(E kG5 (EK)IF(E),  (16) VET-A% VER-A
_ —e —e whereas the surface Green’s function fat-wave supercon-
iqr(E.ky,V)=2[a;(E+V,ky)a; (E k)] ductor is given agderived in Appendix BP
|
) u+u+v+v) 2iu,v_
. —cotkja—i| ——— -_——
T Ek)— 2sirtk;a JU_—v v U u_—v,u_ 20
9al(E.ky)= fivg 2iv,u_ _ u+u_+v+v_) 20
- cotkkia—i| ——
U+U,—U+U, U+U,—U+U,
|
whereu.. andv. are defined as as (p=tlty, 74: dephasing time, we assume is positive
andA _ is negative without loss of generaljty
U =u(A.) =€\ (E+ VEP— |A. [2)/2E — .
==U(A=) ( 1419 — 4A(ky)sin2kfa 1 i
and 9a(E—0ky)= hvg(E+in) i 1] 21
vi=v(Ai)=\/(E_‘/EZ_|A+|?)/2E. where A= |A,||A_|/(|A;|+|A_]) and the corresponding
B spectral function as
A, andA _ are the gaps in directions and — «, wherea
=sin‘1(ky/kf) (see Fig. 3 If A, andA _ have the same sign  __ 4A_(ky)sin2kfa 27 -
then the surface Green’s function from E@d) looks similar ag(E—0ky)= - (22
hvf E2—|— 7’2 | 1

to that for ans-wave superconductor with two gags, and
A_. Butif A, andA _ have opposite signs then the quantity —
(u,u_—v.,v_) appearing in Eq(20) vanishes forE=0 __ Josephson currenBy factoring out the phases gf"and
giving rise to a singularity or “midgap peak.” In that case, g"¢, Eq. (16) can be written as a sum of sip{—¢,) and
close toE=0, we can writeg from Eq. (20) approximately  cos(®;— ¢») components, wherg,; and ¢, are the phases of



57 ELECTRICAL TRANSPORT IN JUNCTIONS BETWER.. .. 10977

the superconducting leads. Using the surface Green’s funtics for thed,-2-dy, junction looks similar to the DOS of a
tion from Egs.(19)-(22) in the sine componerithe cosine  d,-2-wave superconductor, both of which are in agreement
component is usually zeyowe have shown in Ref. 5 that the with the previous discussion. Using the same argument one
midgap contribution to the critical current at a Josephsorcan show that thé-V characteristics fod,-d,, junction
junction between twal-wave superconductors with misori- should have a sharp peak near zero bias resulting in negative
entations 4, and 6, has an orientation dependence of conductance. The scattering theory based calculation in Ref.
sin26;sin26, that is exactly orthogonal to the Sigrist and Rice 9 does not show this feature. The reason is that the scattering
relation cos2,cos, commonly used to describe the orien- theory based calculation in Ref. 9 did not use any broadening
tation dependence of the Josephson curfefihe midgap  so that the peak was infinitely sharp and easily missed. Since
contribution to the Josephson current also has an anomalotise experimental system has finite broadening, we believe
temperature dependence that goes as Which has been this feature will show up in experimental system and may
noted by a number of authot$:**We can obtain this result have already been seen in the measurements of Ref. 36.
analytically with a simple “back-of-the envelope” calcula-  acJosephson currenThe ac current between twbwave
tion from Egs.(15) and(16), as shown earlier in Refs. 5,35. superconductorfgiven by Eq.(18)] also has a strong peak
It is also evident from this calculation that théllihcrease in  near zero bias. This follows readily from E(L8), noting
the Josephson current at low temperatures is ultimately limthat the midgap singularities for superconductors 1 and 2 get
ited by the value ofn which is set by the dephasing progressively misaligned as the bidsis increased from
processes. zero. This strong bias dependence of the ac Josephson cur-
Note that if the intrinsic broadening is very small, then rent is absent is-wave superconductors and should provide
the assumption thaMg|<1 is violated even for small val- convincing evidence for the presence of a singularity in the
ues ofM due to the sharp singularity ig. It is then neces- pair-correlation function. However this may be difficult to
sary to go to higher orders and the Josephson current wilhbserve experimentally because of the high Josephson fre-
then contain significant contributions from thé*, M® and  quency~1 THz associated with a bias ef1 mV. As with
higher terms, in addition to the usull? term considered the dc Josephson current, the peak decreaseslés.
here. Since the normal state resistafgeremains propor-
tional to M2, we can expect that theR,, product for such

junctions will not be constant at low temperatures. Noncon- V. NUMERICAL ILLUSTRATION: JOSEPHSON

stantl ;R,, products based on this mechanism should be dis- CURRENT OF STRONGLY COUPLED

tinguishable experimentally from those due to other causes d-WAVE JUNCTIONS

through the temperature dependefce. In the discussion of the previous section, we assumed that

Quasipa_rticle current The expression for the quasiparti— the tunneling matrix element is small (Mg|<1) and
cle currentigp [Eq. (17)] states that the current is propor- werefore we used a first-order theory. We also pointed out
tional to the product of the surface DOS of the two elec'thatdue to sharp singularity @ originating from the midgap
trodes, a fact that is commonly assumed by many,e, this first-order theory may not holdM/7>1. One

experimentalists in interpreting their experimental datajneresting consequence of the breakdown of first-order
However, an interesting consequence of midgap peaks th"f\’ieory is the nonsinusoidal current phadés)] relation.

follows from Eq.(17) seems to haye gone largely unnOt'C.ed'Such nonsinusoidal relations are well known for strongly
I Wwe assume that ele<_:trode lisa superconductor_ with %oupled junctions, but when midgap peaks are involved it
midgap peak such that its DES(E), then Eq.(16) predicts 4 arise even for weakly coupled junction. Recently it has
that the current should be given by become possible to directly probe thés) of Josephson

_ junctions by applying a magnetic field3’ The measurement

ior=[f(0)—f(V)][a39V)], (23 of I(¢) relation of bicrystal junctions between HTSC's

L . . L (unpublisheawl12 show nonsinusoidal behavior for some ori-

which is proportional to the DOS in electrode 2. This is Very gniations of thel-wave order parameter and sinusoidal be-
different from the usual situation where the differential con-ovior for some other orientations suggesting that the nonsi-
ductanced1/dV is proportional to the DOS. Here the current , sqidality may arise from some factor related to junction
itself (not the conductangas proportional to the DOS. For ientation rather than strong coupling. Since a first-order
example, if electrode 2 is a loW; superconductor with @ theqry does not hold any more, in this section we present a
DOS having peaks at its superconducting gap, then the Cugpcyiation based on the full theory to show the nature of
rent will show peaks at these voltages implyingi@gative  g,ch nonsinusoidal behavior. This calculation also illustrates

differential conductance. Whether such negative conducqqy the tight-binding parameters are chosen to represent a
tances will actually be observed in a given system depends_ave order parameter.

on the sharpness of the midgap peak relative to the peak in \yo compute the (¢) relation for a Josephson junction

the DOS of electrode 2. There is some experimental eVibetween twod-wave superconductorFig. 3. The super-

dence for such negative conductances and a careful analygi§nqyctors are separated by a barrier of variable strength. To
of these anomalous results could help establish the reality g},,4e| the system shown in Fig. 3, we choose followitg

midgap peaks. Also sincB(0)—f(V)~V/kgT, we can ex- "y ‘andA in Eq. (2). H is assumed to be the free-electron
pect the low bias conductance to scale inversely with temg, ionian

perature. Detailed calculations in Ref. 9 show that Ithé
characteristics for thes-d,, junction looks similar to the
DOS of thes-wave superconductor and theV characteris- H=2t[1—cok,a]+2t[1—-cok,a], (29
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superconducting . superconducting A lead 1
lead 1 barrier lead 2 1 ’

A=< 0 device,
A, lead?2,

A=A q4€' %[ cos2g;{cok,a— cok,a}

X X X X X X X X X X X X +sin2¢9isinkxasirkya], (25)

tal
tad

X X X X X X X X X X X X y

X X X X X X X X X X

< x x % x « x x x x x representingd-wave symmetry with misorientationg; and
phase ¢;. The maximum gap value in Eg25) is Ag
=Agpe/t. H andA in Egs.(24) and(25) are given in thek
space in a tight-binding form with minimum lattice spacing

tal
>

>
>
>
>
<
>
>
>
fal
=
>
>

FIG. 3. Josephson junction between takavave superconduct-

ors with misorientation angle8, and 8, separated by a barrier of . .
variable strength. We model it in discrete space, where the structurd?ac® and represent the barrier by one ldfe. 3). There-

is represented by set of lattice points marked as X in the figure. wéore the “effective device”(defined in Sec. Il Bconsists of
assume the system to be translationally invariant inytiirection.  three layers including one layer from each I¢ad, D, 2*].

The order parameters of the superconductors at the Fermi surfad@nce we assume the system to be translationally invariant in
(in k spacg are also shown. they direction,k, is a good quantum number. Also at equi-
librium different energies do not couple together. Therefore
it is possible to compute the retarded Green’s functiém
separately for each individu& andk,. To computeGp,

we first calculate the surface Green’s functig for leadi

from Egs.(7) and(8), where

In our computation, we discretize the system in the real

u is zero everywhere implying that the chemical potential is
equal toug . The tunnel barrier is modeled using a uniform
impurity layer of strengthJ,. Also the order parameter is

given as
|
e 4t—2tcokya— ug A 4cos29;cok,a
' | Ajcos2cokja  —4t+2tcokjat ue)’
and
1 . .
—t E(—Adcosm,—lsmzeismkya)
Bi= 1
E(—Adcosm, —isin2gsink a) t

Sincep is zero everywhere, the shifting described by &).is not necessary. Once we hayg for the leadsG, is computed
from Eq. (4) with

E—4t+2tcok,a—Up+ ue 0 -1
0 E+4t—2tcok,a+Ug— ur

-t 0
0 tf
@i, Bi, 9p, 71, andr, given above are derived from the tight-binding formstbfand A in Egs.(24) and (25).8

At equilibrium, only the dc componeijt o] of the current in Eq(1) is nonzero and can be written as the sum of the
components of current for ead¢handk, value[combining Eqs(9), (13), and(14)] as

do=

and

T=T=

2etAE
0= hNk I; RG[GD(Xd,Xl*,e,E)—GD(Xl*,Xd,e,e)+GD(Xd,Xl*,h,h)—GD(Xl*,Xd,h,h)]f(E), (26)
y =fy

whereAE = (Epax— Emin)/Ng and Ny, is the number ok, points in the range{ ke ,kg), wherekga=cos H(1— ug/2t).
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(a) the currenf but when the coupling is higher, the higher-
order terms also become significant leading to nonconstant
I.Ry. Experimental observation of nonconstanRRy in
05 grain-boundary bicrystal junctions between HTSC's suggests
that they may be modeled as strongly coupled junctiGng.
oat S As the coupling becomes weaké&maller T), 1(¢) turns
more sinusoidal for the junction with, = 6,=0°, but for the
., 03} et . junction with 8, =45° andf,= —45° the introduction of the
ccz}qo barrier results in formation of midgap stafesThe resulting
@ ]02 singularity ing makes the produd¥lg large so that thé(¢)
oal 3 remains nonsinusoidal even for sm#l. This effect should
) 4 be observable iM %> 1. Experimentally some orientations
0 . > of the bicrystal junctions have been reported to show more
° o (deg) 150 pronounced nonsinusoidal behavior than other orientdffons
which may be explained by the above observation.
(b)
s V. CONCLUSION
o1 o In this paper, we presented a general and powerful nu-
0.2 1  merical method to model transport experiments between un-
-0.3 1 conventional superconductors. The method in its general
-0.4 ] formis discussed in Sec. Il and specific cases are considered
o | inSecs. lll and IV. By using the surface Green’s functions in
ZFP'S 2 s . the expressions instead of the bulk Green's functions, our
G 106 . T o 1 method correctly accounts for the surface effects such as
-0.7} % e midgap states predicted fdrwave superconductofs® Our
—o.8} N - - method does not make the quasiclassical approximation used
in the quasiclassical Green'’s function method. The choice of
-0.9, 50 100 150 the tight-binding description enables our method to include

any unconventional order parameter and arbitrary band struc-
FIG. 4. Current-phase relation for the junction shown in Fig. 3tures and therefore makes it more versatile than the scatter-
with (8) 6;=6,=0° and (b) #,=45° and §,=—45°. The three ing theory.
plots are for different barrier strengtt{solid: T,=1, dotted: T, The Green’s-function-based description has another ad-
=0.9, dashedT,=0.5). The other parameters in our computation vantage over scattering theory. The expressions from our
areug/t =1.5 andA4/t =0.05. method simplify significantly for weakly coupled “tunnel”
junctions. Such weakly coupled junctions have been studied
In this paper, we plotelRyo/Ag vs ¢ for Ty,  extensively in the context of oW, superconductors, but in
=1, 0.9, 0.5, wher€l, represents the barrier transmission the present context they are particularly relevant. This is be-
probability in the direction normal to the junctiobly and  cause the effect of the midgap states is most prominent for
Ryo are directly related to To given by T,  weakly coupled junctiondwhosel-V characteristics can be
=[{Uo/2tsinka}?+1]* and Ryo=h/2e?T,. Two possible modeled with a much simpler first-order theory that provides
orientations of the order parameter are shdwp=60,=0°  greater insight than a purely numerical calculation based on
in Fig. 4a) and #;=45° and#,= —45° in Fig. 4b)]. the full theory? In Sec. Ill such a first-order theory for the dc
Several features of the plots are discussed belGyv: Josephson current, the ac Josephson current, and the quasi-
When the barrier is lowT~1), | (¢) is nonsinusoidal with  particle current is presented, which could be described as a
a current changing sign rapidly gt= in Fig. 4@ and at generalized tunneling Hamiltonian formalism. Several re-
¢=0 in Fig. 4b). The nonsinusoidal behavior in Fig(al  sults and insights are derived from these expressions.
with a change of the sign of current dt= can be pre- In addition to the tunneling limit, our method can also be
dicted by straightforwardly extending the previous theoriesused to describe junctions with arbitrary coupling. In Sec. IV
for strongly coupleds-wave superconductdisbut the non-  we illustrated this by computing the current-phdsée)]
sinusoidal behavior in Fig.(®) is usual ford-wave super- relation for a junction between twi-wave superconductors
conductors. The extra phase shift in this case occurs due to with arbitrary coupling. Unlike thé(¢) in s-wave junctions
the formation ofzr junction for this orientation. Experimen- that changes from nonsinusoidal to sinusoidal dependence
tal measurements df(¢) for bicrystal junctions between when the junction coupling is reduced, for some orientations
HTSC'’s show similar behavior for certain orientations of theof the d-wave order parameter nonsinusoidal naturé(af)
superconductor¥ (i) Although | .R, is constant in the tun- is maintained even at low coupling. Some evidence of simi-
neling limit.>32it does not remain constant when the barrierlar behavior has been seen experimentélppublished?)
gets lower. This is because in the tunneling limit terms onlyand our theory could provide motivation for further experi-
with the lowest order of the coupling strength contribute toments in this direction.
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73 IS the Pauli matrix in electron-hole spa@kagonal matrix
with 1 for the electron component anell for the hole com-
APPENDIX A: TUNNELING LIMIT EXPANSION ponenj. Expressing all the functions in the current operator
In this appendix, starting from the general formulationin t€rms of the functions in the untransformed domain, we

discussed in Sec. II, we derive simple expressions for the debtain Egs.(15—(18) for the components of curre'?ﬁ.The

and ac components of current for tunnel junctions betweeffansformation ofg is shown in Eq.(6), from which the

unconventional superconductors. In Sec. II, we representef@llowing transformation of is derived. Since in the un-

the system on a tight-binding lattice and computed Green'éransformed domain

function for an “effective device” consisting of the normal

device region and one point from each superconducting lead. a;=g,o gl =if (E)a(E), (A4)

The “effective device” we consider in this specific case con-

sists of_ two pointsfon.e representing each superconducti.r\ghereg:i(g__g’r) is the spectral function, and the transfor-

!ead. Slnc_e the dgwce is short, we do not consider any POINhations of different components of are

in the device region. We also assume the system to be uni-

form in the transversey( direction resulting in decoupling o) ) —

of different k, values. For eactk,, we have a one- a;(E",E)=idg gy (E— u) F(E— u;)

dimensional “effective device” consisting of two lattice . —e ,

points connected by a matrix elemevi(k,). =10g gy (B'— ) F(E" —pi),
The retarded Green'’s function for this two-point device

can be written from Eq(4) as aieh(E,:E):i5E/,E+2,ui§ieh(E+Mi)f(E+/~‘vi)
91*1 —(M) -1 g1 g:Mg, :i6E’,E+2,ui§iQh(E,_/U“i)f(E,_Mi)y
Gp(E ky)= _ ~ .
R B (R P Mo g . . .
(A1) a; (E"\E)=i0g g-2,80 (E— i) F(E—wi)
i Nl ’ ’
g, and g, are the surface Green’s functions of the semi- =10e/ g2, (B +u) F(E" + i),

infinite leads that can be computed from E@8). and (8)
using the procedure described in Sec. B 1. In &) we hh/ s = s ~hh _ _
performed a perturbation expansion in powers/ofind kept o (B B)=10e: gai (E+ i) f(E+ i)
only the terms first order inM. This is valid when the cou- _ “hh =/ /
=idg ga (E"+ u)f(E"+ ;).

pling M is small (Mg;|<1) indicating a large barrier be- £ (B 4+ u) T(E 4 pu)
tween the superconductors.

The current between the superconductors is expressed in APPENDIX B: SURFACE GREEN'S FUNCTION

terms of G*. Using Egs.(10), (11), and (A1), G< can be _
written as In order to apply the method presented in Sec. Il to any

unconventional superconductor we need to have either a nu-
merical method for solving Eq€7) and (8) from givenE,

- of O + a;, andB; matrices or analytical expressions for the surface
G™=Gp 0 oS Gp Green'’s functions. In Sec. B 1 we present a general numeri-
2 cal method for solving Eqg7) and (8) that can be applied
aq aMgl+g:Ma, for any unconventional superconductor with arbitrary pairing
oM as+ Ml , (A2)  symmetry and band structure. Sindavave superconductors
92M e T aM g @2 are more commonly used, in Sec. B 2 we derive exact ana-

Iytical expressiongvalid within the Andreev approximation
Whereaizgiafg;rza;r. o, and o, are the pair-correlation w<<A) for the surface Green’s functions dfwave super-
functions of the individual superconducting leads that in-conductors. The method of Sec. B 2 can also be extended to
clude the effects of their potentials as given by ER). obtain analytical expressions of surface Green'’s function for
Different components of the current can be obtained asther unconventional superconductors, but arbitrary band
diagonal and off-diagonal parts of the current operator. Thestructure cannot be easily included due to difficulty in ob-
current operatofop is a matrix of size Rl given by taining the expressions for eigenstates in such cases.
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1. Numerical method (@
_ Ac -ik(x-x") Ae ik(x-x")

In order to obtain the surface Green's functigi{E) of ——e \ e
leadi from givenE, «;, and B;, we solve Eqs(7) or (8) D = PR -
using an iterative procedure. We start with sogfeas the
initial guess on the right-hand sid®HS) and compute the R
left-hand side(LHS) [g®™]. In the next iteration we use ® T A
(g°+g'™™)/2 on the RHS. The iterations are continued until ﬂ I ‘ T~~~ R
convergence is reached. If we use nonzgravhile solving % © X—
Egs.(7) and(8), the rate of convergence improves at the cost - Srderparameter
of accuracy. Choice of initiaE’ is arbitrary except that it sipermentuer ky

needs to have a positive complex part in order to converge tc ©
the retarded Green’s function. In our computation we choose
g°=a+0.0005! as the initial guess.

A similar iterative procedure can be used to compute the
bulk Green’s function. In this case, we need to consider an
infinite lead instead of the semi-infinite one shown in Fig. 2.

An infinite region can be conceptually broken into two sepa-
rate semi-infinite regionsL and R), for which the surface

Green’s functions g, and gr) are computed using the pro-

cedure outlined above. Ongg andgg are known, the bulk
Green’s function is computed from

surface

FIG. 5. (a) An impulse excitation in an infinite metal at poixt
gives rise to outgoing waveae**~X) in the regionx>x’ and
_ _ _ Ae k&=x) in the regionx<x’. (b) In a semi-infinite metal, the
Ipu(E) =[(E+in)l - a—,BTgL(E),B—,BgR(E),BT];iO. wave traveling from the impulse source in the directionx’ gets
(B1) reflected from the boundary and modifies the total wave amplitudes
at different points(c) We compute the surface and the bulk density
The method presented here is general and can be used fafrstates of a planar superconducting region. The order parameter in
any unconventional superconductor with arbitrary bancdhe superconductdin k spacg hasd-wave symmetry with misori-
structure and pairing symmetry. Given any unconventionagntation angled. The figure also shows the quasiexcitations gener-
band structure and pairing symmetry, we can obtain the&ted from an impulse at poinxt in the superconductor. Solid lines
equivalenta and 8 matrices from the tight-binding represen- show the propagation of the electronlike excitations 1,2,5,7 and

tation and then we can use the method presented above. dotted lines show the propagation of the holelike excitations
3,4,6,8. The figure also shows the quasiexcitations reflected from

the surface.
2. Analytical expression based on scattering theory

Although the numerical method presented in Sec. B1 can \ye consider a planar superconducting region as shown in

be used for any unconventional pairing symmetry, we beFig. 5(c). We assume that the translational symmetry is pre-

lieve that use of analytical expressions for simple cases Pr%arved in the transversg/) direction. Therefore, is con-

vides better understanding of the behavior. In this section we ;
. . . erved and we can treat eagchindependently. The retarded
derive analytical expressions for the surface and the bul , ) .
reen’s function of the superconductor for givenandk,

Green's functions fod-wave symmetrywithin the limits of . . . .
Andreev approximation.>A). The method presented here [G(E ky . x.x )I] |§a2ﬁobta|ned from the Bogoliubov—de
is fairly general and can be used for other types of unconS€nNes Hamiltoni
ventional superconductors.

—A

Ge%(E ky,x,x")  G"(E,k,,x,x")
( _ﬁ_2(9_2 iki_ Ghe(E-kva’X/) th(Evky*X’X')

2m gx2  2m

S(x—x") 0
0 S(x—x")

. (B2)

Physically Eq(B2) describes the motion of electronlike and holelike quasiparticles coupled together by the order pakameter
We chooseA with d-wave symmetry having the following directional dependenck spaceA(6) = Aycos(X—26,), where
0 is the orientation with respect to the axis[Fig. 5(c)].
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To obtain the Green’s function from the scattering pic-particular directions. Here we discuss the propagating waves
ture, we consider the propagation of the quasiexcitationor only the electronlike excitation. The wave functions for
generated from an impulse. Two columns of the Green'sk>x" and forx<x' are given as
function matrix in Eq.(B2) are obtained by considering the
wave amplitude at pointx due to electronlike impulse Pt = g, elkx)
{[8(x—x") 0]’} and holelike impulse{[0 &(x—x")]"}
separately. For any chosen valuestondk,, an impulse  gnd

u U_

] e

+ +a2eik(xx’)[
U+

gives rise to four possible excitations—electronlike excita- ' U _ v,
tion propagating in directions 1 and 2 and holelike excita- W= e KX T g gkOXD) T (B4)
tions propagating in directions 3 and[#ig. 5(c)]. These v U+

guasiexcitations propagate having anglewith the x axis,  whereu,v.=u,v(A.). By matching boundary condition at
where a=sin‘1(ky/kf) [k¢=\2mu/#%?]. Each propagating X=Xx', we get

mode experiences order parameters in its direction of propa- . =
gation. Therefore propagating modes in directions 1 and 4 ay=(uy fitivy) (EINE® =A%),
experience order parametets, =A(«) and propagating ay=(v_litvy) (E/m),
modes in directions 2 and 3 experience order parameters
A_=A(—«a). For ans-wave superconductor with order pa- az=(u_litv,) (E/NE?—|A_|?)
rameterA =|A|e'® andA < u,% the propagating modes at an and

Tariks(x—x' R P
energyE are[u(A) v(A)]Te" X)) (electronlike excita- ar=v, (2 —2) = (v, fihwy) (EINEZ=TA D).

tion) and[v(A) u(A)]Te* i =X) (holelike excitation for

> (<)%’ i = %12 A This allows us to get the first column of the bulk Green’s-
x=(<)x', where u(A)=e \/(E+ E2-[A[)/28, v(A) function matrix. Similarly the second column of the bulk

- ~k.= DM #5216 ; ; : S

= J(E- VE?—[A[})/2E and k~k;=y2mu/h*'® For the  Green’s-function matrix can be obtained by considering the
d-wave superconductor under consideration different waveyropagations of waves generated by a holelike impulse.
components can be written in terms of th@ndv’s in those  Combining them, the bulk Green’s function can be written as

E E A, A
1 \/EZ—A+2+\/E2—A_2 \/E2—A+2+\/E2—A_2

o= 2if0r| A, A E E
\/EZ—A+2+ JE?—A_? \/E2—A+2+ JEZ—A_?

To obtain the surface Green’s function, we need to confe™ (v, u,)T] into electronlike 7[e**(u, v,)"] and
sider the reflection of the waves from the surface. In Figholelike 8[e ™ (v_ u_)T]:
5(c), we have shown the reflection of electronlike excitation
2[e ™(u_ v_)"] into electronlike §e**(u, v.)"] and

. v . , lu
holelike 6[e"kx(v_ U_)T]Z e|kx * —>C€7|kx +de|kx +’ (86)
—ikx| kx| U+ P
g ikx , —agkx . +be kx u | (B5  where c=— (U2 —v%)/(uyu_—v v_) and d=— (v u_
_ n _

—u,v_)/(u u_—v,v_). Combining the contributions of
where a=— (U2 —v2)/(u,u_—v,v_) and b=— (v_u, all waves:® Eq. (20) for the surface Green’s function can be
—u_vy)/(upu_—v,v_) and the reflection of holelike 4 written.
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