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A long-wavelength, low-frequency, effective theory is obtained fronttkig-J model. The action is written
in terms of two-component bose spinor fiel@®R! fields) and two spinless Fermi fields. The generalig!
model is invariant under (1) gauge transformations. The bose fields and one of the Fermi fields have charge
+1 while the other Fermi field has chargel with respect to these transformations. A simple mean-field
theory of a gauge-symmetry breaking, based on a four-fermion interaction, is discussed. An effective theory of
frustrated antiferromagnetism is obtained integrating out the Fermi fields around the mean fields. Another
option is used to parametrize the long-distance fluctuations intthe-J model, with the help of gauge-
invariant fields. It is argued that the resulting Fermi quasiparticles of;thgJ model have both charge and
spin. The effective action is rewritten in terms of the séiﬁermi spinor, which has the charge of the holes,
and unit vector[S0163-182¢08)02317-(

I. INTRODUCTION theories, and can also indicate directions in which new apr-
roaches should be developed.

High-T. superconductivity has given theorists a strong The reduction of the three-band model to the one-tand
motivation to work on correlated electrons. Among the manyd model is still controversial. Many authors have argued that
electronic models that are being currently studied, the twothe resulting quasiparticles of the three-band model have
dimensionalt-J model is the simplest one that captures theboth charge and spin. The effective spin-fermion model is
essential physics of strongly correlated electronic systemgharacterized by a Kondo-like coupling of the O holes to
Anderso first applied this model to high-, oxides. Zhang localized Cu spins and a Heisenberg antiferromagnetic inter-
and Ricé and otherdshowed that the one-banel model is ~ 2Ction among Cu spiri¥. The long-wavelength limit of the
an effective model describing the physics of the three-ban&nc.’deI hale.,’ee” written in terms of fermionic spinors and a
Cu-O model un_lt vector.” The _dyn_amlcs of the order _parameter of the

The underlying problem is to create an adequate fieldP!" baqurounq is given by .th@(3) “Of?"”eaf” model,
theory. Usually, the bosonic and fermionic raising and IOW_and the interaction of the mobile holes with the order param-

. : : : eter is a current-current type of interaction.
ering operators are used to realize spin-fermion algebra. Sev- The three-band Cu-O model contains strong interactions

eral approximate techniques have evolved so far to deal Witgnd the perturbative calculation of bubble and ladder dia-
the t-J model. A representation for the electron operatorsyams are questionable. An analytical method, that seems to
acting on states with no double occupancy has beeRe gpie to handle strong correlations, has been prop8sed.
proposed in terms of spin-fermion operators and spinlessthe photoemission and inverse photoemission spectra of
bosons that keep track of empty sites. Mean-field theory ofoles calculated by means of the projection technique repro-
high-T. superconductivity based on this representation hagyce the numerical results.
been developeli.The slave-boson technique is widely ap- |t is widely accepted that the undoped oxides supercon-
plied to the study of various properties of the motiahd to  ductors can be modeled rather well by a nearest-neigabor
a large range of problems: Hubbard mo#iédpondo lattice =1 antiferromagnetic Heisenberg Hamiltonian on a square
model®® and the Anderson Hamiltonidfi. lattice. It has been argued that the long-wavelength, low-
Mean-field theory based on the alternative Schwingetemperature, behavior of the model can be described by a
bosons slave-fermion representation has been worket outquantum nonlineas- model’ The low-temperature behavior
A similar mean-field approach has been used to investigatef the correlation length and the static and dynamic spin-
the phase diagram of thg-t,-J model? correlation functions have been calculated using the
It is important to stress the fact that these theories stamenormalization-group methdd. The results are in good
with one and the same Hamiltonian, and use equivalent re@greement with the experimental data.
resentations of the spin-fermion algebra. But these represen- The present work is motivated by the successful applica-
tations allow different appropriate methods of approximatetion of the quantum-mechanical nonlineamodel to high-
calculations that may arrive at completely different descrip-T. oxides. A long-wavelength, low-frequency, effective
tion of the properties of the model. The mean-field approxi-theory is obtained from thig-t,-J model. Under the assump-
mations are self-consistent, but it is difficult to judge howtion that the antiferromagnetic correlations are important, |
close to the true properties of the model the results are. introduce two sublattices and divide the spin vector into slow
Numerical calculations have been done using a largenode, described by unit vector, and fast mode, described by
number of techniques. The results of these calculations can vector orthogonal to the unit one. Then the two fermions and
contribute to the acceptance or rejection of mean-field-basetthe unit vector are considered on an equal footing as smooth
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fields and the fast mode is treated perturbatively. The action The partition function can be written as a path integral
is expanded in powers of the fast mode and the first threever the complex functions of the Matsubara time
terms in the respective Taylor expansion are taken into acz o, (7)[¢;,(7)] and Grassmann functiong (7)[ #i(7)]
count. Integrating out the fast mode one obtains the effective
action written in terms of two-component bose spinor fields
(CP! fields) and two spinless Fermi fields. The generalized Z('B):f du(e, e, ¢, )e S, (4)
CP! model is invariant under (1) gauge transformation.
The bose fields and one of the Fermi fields have charge
while the other Fermi field has chargel with respect to
these transformations. A simple mean-field theory of the
gauge-symmerty breaking, based on the four-fermion inter- B — . — .
action, is discussed. An effective theory of frustrated antifer- S= fo dT[ EI [eia( T ig(T)+ $i(7) i(7)]
romagnetism is obtained integrating out the Fermi fields
around the mean fields. -

Another option is used to parametrize the long-distance the,e. 4, '/’)]’ ®)
fluctuations in thet;-t,-J model, with the help of gauge-
invariant fields. It is argued that the resulting Fermi quasi-where 8 is the inverse temperature and the Hamiltonian is
particles of the,-t,-J model have both charge and spin. The obtained from Eq(1) replacing the operators with the func-
effective action is rewritten in terms of the spinFermi  tions. In terms of Schwinger bosons and slave fermions, the
spinor, which has the charge of the holes, and unit vector. theory is U1) gauge invariant, and the measure includes

The paper is organized as follows. Section Il is devoted tdfunctions that enforce the constraint E§) and the gauge-
the derivation of the generalize@P* model from thet;-t,- fixing condition
J one. In Sec. lll a dynamical breakdown of the gauge sym-
metry is discussed. The effective action is rewritten in terms dor( )d "
of gauge-invariant fields in Sec. IV. The charge and the spin — Piot TEPiol T
of the Fermi quasiparticles are discussed. Finally, | comment dule.e.i, i’/j)_i,l:,[(, ll_T[ dyi(n)dyi(7)
on the relations to the other effective models.

The action is given by the expression

XTI agh [T 8(¢in(7) gin(7)
Il. GENERALIZED CP! MODEL ' '

Thet;-t,-J model is defined by the Hamiltonian + (D (1) 1). (6)

I make a change of variables, introducing new Bose fields

—t12 [cl,cjotH.cl+t, 2 [cl,cptHcl fio(Dfis()] (Ref. 19
(i

Pio(T) = Fig(INL= (D) (D) =T (D[ 1= 2 (7 gi(7)],
QDlo(T w(T)\/l ¢| T)lpl

The electron operators,, (c/,), the spin operator§ , =i, (D[1=34(D (D] (7)
and the number operator act on a restricted Hilbert space : .
where the doubly-ocupied state is excluded. The sums ar];he inverse relations are
over all sites of a two-dimensional square latti¢ej) de-

+J<Z> (S-S—inn)—p ;. (1)
i [

notes the sum over the nearest neighbors (4hil)) denotes fio(7)=i(N[1+ 2 ¢(D (D],
the sum over the next to nearest neighbors. . . .

Let us represent trf eight operators by means of fio(T) =@ (D[1+ 2 (T) (7], (8)
Schwinger bosonspi, (¢i,), 0=12 and slave-fermions .4t is easy to see that the new fields satisfy the constraint
i () N

fio(Dfis(1)=1. ©)
Cio=ti%is, S=37¢i00, Inserting Eq.(7) into Egs.(1)—(6), one obtains for the

action

CI(r l//l(Plrr! nizl_%l/,i! (2) B o ) .
. . o . S:f dT(Z {Fio(Dfic(D[L— (7 hi(7)]
where o are Pauli matrices. The finite-dimensional space of 0 [
representation is a subspace of the Hilbert space of bosons
and fermions defined by the operator consraint + (TR |, (10

Cio@iot Yithi=1. (3)  where the Hamiltonian is
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h= —t% [(D) (D oD T () + (1) wmr)f,-[,(r)f_ig(r)]—tz«iim [(D) (D Fio() T o(7)
_ _ J _ _ _ _
+‘/’j(T)l/fi(T)fjrr(T)fia-(T)]_Z(Z) [1-fi(nofi(Dfi(Dofi(DI[1= (D (D) ][1-¢i(7) (7]
1)

—MZ [1— (D) gi(7)]. (1)

The partition function can be written as an integral over the fiéiIgISr),f_iU( T),zpi(r),%(r) and the measure is given by the
equality

df (r)df

du(f.fp.0=11 T”H dui(ndu(n ] s@nI] At (i (m-1ll enno, a2

I, 7,0
where the last multiplier just redefines the chemical potential.
| consider two sublatticed andB, and impose the gauge-fixing conditions in the form
argfi1(7)=0 if ieA,

argj(1)=0 if jeB. (13)

Then one can use the components of the unit vettdo parametrize the solution of the constraints E9j.

— 1
ieA: f —(1+n;3)Y?

Il_ i1= \/—

n; — n;

1 1 ,
=1  fo="1
TR g T2 (e
(14
1 n. — 1 n;’

= T a5 f']_:_—!
\/E (1_”1'3)1/2 J \/E (l_nj3)1/2

. 1/
fJ2_—fJZ_—_(: _nj3) :
Wi erenr = rl_inrz.

Now | am going to the derivation of the long-wavelength limit of the model. To that purpose one introduces a new unit
vectorm (mi2= 1) and a vectoL;

=\J1-a’L’mi+al;, if ieA,
nj=-vi-a’lim+al;, if jeB. (15)

The new spin-vectom; is a smooth field on the lattice aral is the lattice spacing. The constrainf=1 and the
requirement that the new vector, should obey the same constramf=1 demandm; andL; to be orthogonal,

mi'LiZO. (16)

The next step is to substitute EG.5) into the fieldsf;,(7)[ f;,(7)] Eq. (14), and then to insert them into the action. This
yields an action, which depends on the vectorsL; and the fermionic fields. | expand the action in powers of the vdgtor
keeping only the first three terms in the expansion. Integrating out the vegfoone obtains the effective actidisee
Appendix

Sefr=Scp1t Sk, 17

whereSqp1 is the ac_tion of theC P! model (o mode) andS¢ is the part of the effective action that depends on the veutor
(complex fieldsz;,,,z;,) and the fermionic fields
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B !
SF:f dT<|e %A(T)[ ZIO'ZIO']l?DI (T)+Z i (. +ZJO'ZJO']{//J (7')+ 2 [‘/’l( )‘/’l (7)+¢|+a (T)¢|+a (7)]

0 A

J <o

3, 2 TROFO+ I (D0fa (D]t 2 TR (D4 HC1= 1 2, TUP(D) e, (1) +HeC]
t , - .t ) =

+i_1_ (MXM)-[€ia v Y1 +6 e Y10, ]+|_1_2 (myXm;)-[€+a E}?‘zﬁjﬁa +€+a JjAJra P
‘]IEA/.L M # H " JJeB,,u 12 “ " n

1 2 (IR, (D= 21(D 220,27+ 22(DZisa (DTSt 2 (Do, (D= 21212y a,2(7)

ieAu

+21(NZj10,2(DIHHEY~to 2 LN e (D2 D 21,07~ Zig DI HCI 1o 2 TP, (D210(7)

P |
X[Zj1e,o(N=Zo(D]+H.C}+ X [@mi'mi_g[mwa (D) =m(D P (LR + o (DYEa (7]
ieAu ad " m
K 1. -
+J_EB’M{@ m;- [m]+a(T) m;(7)] ][ (T)¢J(T)+lpj+a(7)¢//]+a(7-)]

N N o o-p — . TA
7 2 WD (Do (DF 7 2 WD (Da (10— 1 2 1= 91 (D) (7]
ieAu L L jeB,u g g ieA

12y T (@D |+ S, (18
|
where spin vectorm; as defined by the equality,= z;oz,. Then,
5 the action(18) is invariant under théJ(1) gauge transfor-
f = t_l _ i (19) mations
4 J 2

2, (1)=€*z,(7); Z[,(1)=e "z ,(7),

I_have replaced in Eq18) e ande_r Eq.(A11) with & ,» and
€ where

Py ()= yl(r) if TeA, (21)
err'lzz(zrlzr’l_erZr’Z)- err'1=§(2r12r'1_2r22r'2): zpr'B(T)=e’i“'(7)z,b?(T) if reB.
i _ 1 — — One can restore the representatié®) of the fields impos-
&r2= 5(ZnZinatZipZ2), 2= 57 (ZnZoat ZiaZia), ing the gauge-fixing condition azg =0.
(20) An important point in the effective modéL8) is the four-

fermion term. In the starting Hamiltoniafll) the four-
1 fermion interaction is attractive. This, sometimes, leads to a
€r13=— E(zrlzr,2+ Z:9Z;11), speculative conjecture about superconductivity. But the sign
in front of the four-fermion term in Eq11) is just an output
1 of the parametrization. An additional repulsive four-fermion
€r13=— =(Zp1219+ Z19Z117). interaction appears in the effective theqd8) due to the
2 interaction of the fermions with the “fast modes” of the

The difference is of ordea and it does not affect the long- spinon L. For th? pgrametgr range>0, it screens the
wavelength physics. attractive four-fermion interaction. | shall return to this term

" . . Lo in the next section.
The additional actionS,y4q contains all terms in higher n - . .
order of derivatives and fields. They do not contribute to the The effective theory Eq(18) is a theory of slow spinon

long-wavelength physics, and hereafter | shall not conside od_es defme_d on a small area ar(_)und the zero vector, _and
them. ermions defined on a whole antiferromagnetic Brillouin

zone. All fermionic terms are taken into account exept for
= those of order equal or higher than six. This permits to in-
fined by Eqgs.(A5). Now, | considerz,, (z;,) as indepen- yestigate more special phases, related to the geometry of the
dent Bose fields that satisfy the constrainjz,,=1 and the lattice.

Until now the fieldsz, (z;,) have been viewed as de-



57 GENERALIZED CP! MODEL FROM THE t;-t,-J MODEL 10917

To carry out the long-wavelength limit for fermions, one Then, by means of the Hubbard-Stratanovich transformation
should know the exact Fermi surface. But for small doping, introduce new collective complex fields
it is enough to consider the dispersion of free fermions. InyA (7) u? (7),uB (7),uf,(7), and rewrite the exponent in

. . - A VAR AR VAN AR AN
the model Eq(18) with t,>0, it has minima located at zero the form
wave vector, and the continuum limit can be achieved by
means of a gradient expansion around this point. In this way S
e” F4:f

one obtains the following continuum theory: I1 dUiAM(T)de\M(T)jl;[T dup,(ndup,(7)

it
Su— | dxdrl Z[D2.D.2,+?D.2.D 2]+ 7ADP A PN s A
eff — xar gz[ 2oV :ZsTC ,uZO' /.LZ(T] T xXexp o dr _igﬂ[ui”(ﬂui“(ﬂ
17— _ 1 — —A B A A,y B A
b DTTADR A+ PO+ LD D ® 8 ST (DD~ R, o (DU ()]

A
2t — . . 2t — > "TuB B y_yB /A B
B ;l‘ﬁ¢8(21zz_2221)+ ‘;l‘ﬁB‘ﬁA(Z122_Zzz1) +4J'€B/L (DD = Uuda, (D95

+ 122591, 9P = 0,0M0P) (220,2,~ 2,9, 2:) — (DY a, (DUR r)]} : (26

2/,,B B
ety aﬂlﬁA 4 W)(Zlaﬂzz 720u71) The mean-field approximation for the problem is just the
2 JRU— — — evaluation of the path integral over the new collective fields
+=[D,z,D,z,+ CZDMZUDMZU]('AA‘AAJF yPyP) by means of the saddle-point approximation. The stationary
9 conditions are

+NQZYAYAUP Y (PP PP ¢ (22 OF o BF o OF o 9F o
SA Y A TY B O oB Y
where Uiy, Ui, Uy, sup,
— where
D1z,= (9~ 2,1012,1)2,, 1=0Xy,
A B
_ _ _ Pt

DI(A)'ﬁA:(m_Za"&IZO")Ma DfB)l/IB:((9|+ZU/O"|ZG./)l(//28é) 7 4[3le0 dr i;A’MUIM(T)u|M(T)

and the parameters are given by the equalijea /J, c +j EB "uP (TP (7) |+ F, (28)
€B,u

=aJl, g=2J, c?=2a%J(2t,—J), and 1/2n=2t,a.
To obtain the effective action, E§22), | have rescaled and 7, is the free energy of a system with Hamiltonian

the Fermi fields (14) yR— R, (R=A or B) and have used

the identities , ,

o hmi=—to 2 '[9l e +H.CI=to 2 "[Uf e +H.C]

(MXam)-e=—i(2,0/Z,— 2,9,27), He AN J=Ba

N
(mXagm)-e=i(z10,2,— 2,9,21), +—i2A [UiA,LZ&a#(TWiA(T)
eAu
SO M= 02,02, + §(Z501 25— 2,012, IR P o (DU(T)]

= (21012, 22021)(210,2,— 2,9121) ,  (24) A S 2 5
) vy [Up ¥ a (T (7)
wherel stands forr, X, ory and no sum over is assumed. jeBu ®

Ill. GAUGE-SYMMETRY BREAKING +y2(7) ¢f+aﬂ(r)uf‘M(7)]+MiEA "Ry
cAu

The four-fermion terms in the effective action allow an
appropriate mean-field theory of gauge-symmetry breaking. +u 2 r@sws (29)
To demonstrate this | arrange the Fermi fields in the form j&Bu 0

B A / The mean-field equation®7) have a trivial solutioru”
Sue f drl —NSuaus B A T an
= o [ ig’# Vithisa, Viva, Vi =uf=uB=uB=0, but, when\>0 they have and nonzero
solution which leads to the breaking of the gauge symmetry.
_ﬁ ,ZBJA fo wBl. (25) In the phase with broken gauge symmetry the normal
4;&8, 7 T riTauTl Green functions read
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(= 7)== 7')

1 . , ilw,+ e
=52 e T (30

(ion+e)?—|%?

and for the anomalous Green functions one obtains

Yk
(iwnt &%= md?’

1 : )
S?A( — 7_/) — _E elwn('r—'r )
@n

1o, . , Vi
S 1) = 23 dentr T
@n

(ioa+e)?—|nl?

The sum is over the frequencie&;n 2n+1)7IB, e=pu
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of the largeN expansion based on $N) group question-
able. Moreover, if one considers a theory without massive
terms ¢,=0), then a largeN expansion based on the @pl)
group is plausible.

The magnon fluctuations influence the fermions strongly,
and a mean-field theory that treats fermions separately seems
to be not an adequate way to solve the model. Nevertheless,
the effective theory32) gives a good intuition for investiga-
tion of the effective model, Eq18), of doped antiferromag-
nets.

IV. EFFECTIVE THEORY IN TERMS
OF GAUGE-INVARIANT FIELDS

Another option is to parametrize the long-distance fluc-

— 4t,c0%, cosky andyk e iak, 4 ;B elakﬂ where the or-  tuations with help of gauge-invariant fields. To do this I in-

der parameters’, andu® are choosen to be homogeneous. troduce two gauge-invariant Fermi fieldg(c,),

Integrating over the ferm|ons around the mean-field val-
ues of the order parameters one obtains an effective action
that is not gauge invariant,

2
= f d2Xd7'| —
Or

Cl( T1X) = Zl( T1X) l/IB( ’T,X) - 22( T7X) w( ’T,X),

o7, X) =23 (7, X) YA, X) + Zo(7, ) YB(7,x). (33

—
2[D2,D:2,+¢:D,2,D,.7,] Under the action of the group of rotations the fields

gbA(T,X),EB(T,X) are singlets and the Bose fields

+W(210,2p— 220,2) + W,( 210, 25— 229, Z1) z,(7,X)[2,(7,X)] are spin} spinors. One can check that the
9, T . T . Fermi fieldsc(,(r,x)[c_(,(r,x)] transform like components of
+21[(210,22— 220, 21) "+ (210,22 — 220, 21)°] spin< spinor. Then, it is not difficult to guess the inverse
relations, because there are only two singlets that can be built
+ M,(z_(,&|z(,—z,,a,z_(,)2} , (320  up by means of the Ferme,(r,X),c,(7,X) and Bose
2,(7.X),Z,(7,X) spinors

wherel stands forr,x,y.
The coefficients in front of the terms that break the gauge
symmetry W,,Z,,M,) are zero if the order parameter is

zero. The constantd/(W,) are proportional td, and result

from the tadpole diagrams with anomalous Green functions,
and special values of the order parameters. The consfants  Equationg33) can be regarded as a &) transformation;
and M, are obtained calculating the one-loop d|agrams withc,, =U; o iy (Y1=9¢B Y=y where U;;=2;; Uy,

two anomalous Green functlorﬁ, are proportional tm1 and  =-z,; Uy,=2,; UZZ_Z_l Then, it follows that the Fermi

M, are proportional t<12 One can get the renormalized pa- measure is invariant under the change of variak®3 and
rameterg, of the CP! model and the renormalized spin- that the following equalities hold:

wave velocityc, calculating the one-loop diagram with two
normal Green functions, and using E¢24).

GeneralizedCP! models with broken gauge symmetry
have been largely discussed in the literature. An additional
exitation (thirth Goldstone bosgrappears in the theory as a
result of gauge-symmetry breaking. A generaliz€dP*
model with “W” terms only has been considered as a model
of the spiral phase of a doped antiferromadgfiét. Due to

“W” terms the minimum of the dispersion of the, (z,)
guanta is not at the zero wave vector, which leads to incom*®
mensurate order.

The massiveC P! model with “M” terms only, has been
investigated as a model of frustrated antiferromagnet, by
means of the renormalization-group technique antll 1/
expansiorf?%

As was shown above, the effective model of the antifer- 1— _ — B
romagnet, which is frustrated due to the doping, also con- ZC"C'(mX 0, = (200,25~ 2,0.21)
tains terms with constan®; . These terms split the spectrum
of the antiferromagnetic magnons and make the application

$B(7,X) = Z,(7,X)€1(7,X) + Z5( 7,X)Co( 7,X),

YA(T,X) =25(7,X)Co( T, X) — Zp( T, X)Cy(7,X).  (34)

WA X) YA, X) + BB (7, X) B 7,X) = C o 7,X)Co( 7,X),

P70 WA (7,0 87, %) ¢

= C1(7,X)€1(7,X) Co( 7,X) Co( 7,X). (35)

(7,X)

To get the effective action in terms of the fieldls(c_(,)
and the unit vectom= zeaz, one has to use the relations

C_(r&ﬂrc(r: JAD(TA) I,Z/_\‘i‘ EBD(TB) (//B+ '7[_/_\1//8(2107722_ 22&721)

—yByYN210,2,— 2,0,2,), (36)

—yByN210,2,— 2,0,2,), (37)
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3,C40,Ca=DPYAD MW yA+ DByBD (B)yB
+D,2,D .2, (P A+ P yP)
+ (PR3, 07— 0, PPN (210,22~ 250,21)
— (YP0,4P~ 3,07 0P) (200,20~ 220,21),
(39)
(cod,c—d,coc)-(MmXd,m)
= —4iD,z,D ,z,(y v + yPy®)
=20 (0,47~ 0, 4P W) (210,25~ 220,21)
+ 20 (Y10,4°— 0,07 P) (210,27, 20,21), (39)

where u stands forx or y. Taking into account the above

equalities and Eqg24) one obtains

1 -
Seff: f deZX[ _(ﬂTm J.m+ CZ&Mm' ﬁ#m) +Cyd,Cq
2g?

1 — —
+ﬁaﬂcgaﬂcg+ i y.coC-(mXd,m)

—i7,(cod,c—3,cac)-(MXa,m)+X\gC1C1CoC;

1 _ —
2
+ —2 5(d,m-9.m+cyd,m-d,m)c,C,+ ,uc(,c(,] ,

Yo
(40)
where
g=2a\J; c=al, go=2VJ;
J
co=4a?] ti+2t— 5

1 at? t, 1

o2 . _a2l 1 . _1 =,

om 2a t2, )\O a J 2J), Yr J + 2

2 U

Yr=a E"‘tz . (41

It follows from the effective theory Eq40) that the re-
sulting Fermi quasiparticles (c,) of the t;-t,-J model

10919

particles have a transparent physical interpretation, which is
not so in the case of modét0).

V. CONCLUSIONS

In this paper a long-wavelength, low-frequency, effective
theory of thet;-t,-J model was explicitly derived. The ef-
fective action was written as a generaliZ2é&* model[Egs.
(18) and(22)] in terms of bose spinor fields and two spinless
Fermi fields. A mean-field theory of gauge-symmetry break-
ing, based on a four-fermion interaction was discussed in
Sec. lll. The breakdown of the gauge symmetry leads to a
frustration of the antiferromagnetically ordered system, and
the ground state is a long-range spiral state.

Now, let us consider the opposite limit, when the four-
fermion interaction is weak and one can drop it. It is conve-
nient to introduce the composite (1) gauge field A,

=—i¢,d,¢,. Integrating out the bosons and fermions one
can perform a larg& expansion, wherél is the number of
bosonic as well as the fermionic fields. In the leading order
of 1/N a mass of thep, bosons is generated dynamically.
Therefore, within a larg®& expansion, a doping induced
quantum phase transition from an antiferromagnetically or-
dered state at zero temperature to a quantum disordered spin-
liquid state takes plac®. The CP! representation seems to

be preferable in this case because there are reasons to believe
that the low-energy excitations in the disordered phase of
quantum spin systems are spin one-half deconfined
spinons?®

The two quite different pictures demonstrate that the true
ground state of the model E@22) should be looked for
within an approach that treats the four-fermion interaction
and the fermion-boson interaction on an equal footing.

In Sec. IV it was demonstrated that the effective model
can be rewritten in terms of unit vector that denotes the an-
tiferromagnetic order parameter for the spin-background and
spin-4 fermion Eq.(40). In the case of weak current-current
and four-fermion interactions, one obtains that the Fermi
quasiparticles of the model have the charge of the holes and
spin 3. This means that if we consider the low-lying Fermi
states of the;-t,-J model and those of spif-quasiparticles,
with appropriate Landau parameters, there is one-to-one cor-
respondence between them. This result was supported by nu-
merical calculationg® The authors use an exact diagonaliza-
tion technique on small clusters to study the momentum
distribution function of the lightly doped-J model. They
explicitly perform the above-mentioned mapping.

In the physically relevant case, most edequate technique

have both charge and spin. Let us trace the origin of thehould be applied. The-model part of the action can be
result. In the presence of the next to nearest-neighbor hogreated in the same way as in Ref. 18. To deal with the

ping the dispersion of the charge carriénslong has a two-

four-fermion term by means of the renormalization group,

fold degenerate minimum. One can introduce two sublatone has to use techniques described in Ref. 27. The non-

tices, and then the charged spinless particles are#vand

trivial point is the current-current interaction that strongly

5. An unexpected result is that in the long-wavelength,influences both the spinon spectrum and the long-wavelength

low-frequency limit these fields can be mappéths. (33)
and(34)] onto the spin spinor with the same charge.

behavior of the fermions.

Without the four-fermion term the effective action coin-
cides with the effective action proposed in Ref. 15. The spe-
cial point is that the effective model in Ref. 15 is obtained | would like to thank A. Muramatsu and C. Kert for
from spin-fermion one that results from a strong-couplinguseful discussion in the course of the work. The hospitality
expansion of the three band Cu-O model. The Fermi quasief the Stuttgart University and the financial support from
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APPENDIX

Let us substitute the representation, Etp), for the spin
vector into the fieldsf; (7)[ fi,(7)] Eq. (14), and then to

NAOUM KARCHEV

— 1
T _ 112
Z1=2Z=—=(1+m3)™%

V2

1 m, — 1 m,
:_—1 22:_—1
V2 (1+m)? T 2 (14 myg)t?

which satisfyz, ,z,,=1 andm,=z, 0z, .

(A5)

Zip

insert them into the action. | shall expand the action in pow- The first term in Eq.(A4) is not important in the two-
ers of the vectot; , keeping only the first three terms in the i ensional case and | ignore it. The second term, after in-

expansion.

To begin with | address the terms with time derivatives

B — . —
S= | 073 (A= B ()]
(7 (7))
B s .
=f dr(E {%A(no-m(r)[l—@(ﬂwi“(r)]
0 ieA

FR@ |+ 3 SA =)y

+>
jeB

><[1—ﬂ3(r>wf‘(r>]+ﬂ3<7)¢?(r>}), (A1)

where

[ — J
EA(nr):frrr(nr)a_nrfr(r(nr) (A2)

is the vector potential of a Dirac magnetic monopol at the

center of the unit sphere. It obeys locally
I X A(n)=n. (A3)

Substituting Eq(15) into Eqg.(Al) and keeping the terms

up to ordera, one obtains
B i il .

San= fo dri 52 (= 1)"LAm)-my(7)
JA” . - )
mLiﬂ(T)mia(T)+A(m)’Li(T)

i
+§a2i

*E( W0, Zio( T Z1 (1) 1N T>+j§B’$f<r>

X[0,4 232310 = 53 )

[&A“(m)
x| —"
&miﬁ

Lig(m)mi (1) +Am) - Li(7) | ¢(7)

dA*(m) .
Wml—jﬁ(ﬂmja(ﬂ

.
‘E"’% yP(7)

+A(m)-Lj(7) (A4)

¢?<T>},

where | have introduced two complex fieldig(r)[z_ig(r)],

tegration by parts, can be written in the form
i B dA* . - )
ZafoEi 7y Lie( M)+ Am)- Li()

i (B [ 0AC
=|—af2 A
2" Jo

( 9AP
i ﬁmi B

ami,

Lig(7)M; o(7)

i B - .
58] X D L)

i B )
=§aJ 2 (myxXmy)-L;, (AB)
0 i
where Eq.(A3) is used.
The last two terms in Eq(A4) can be canceled by the
transformation

YR(1)— @22 yR(7), (A7)
where
=2 i(n 4 Am)-Li(n) (AB)
\7T)= 7 LeglT)T o T k) LT
amg P

and R stands forA or B. After this transformation phases
appear only in the hopping terms in the form of
exp{(i/2)a(A,—A,,)}. In the continuum limitA,— A, is of
the order ofa. Hence, the phases give no contribution to the
effective action. This means, that in the long-wavelength,
low-frequency limit one can ignore the last two terms in Eq.
(A4).

Dealing with the hopping terms it is convenient to repre-
sent the vectot; in the form

Li=kig+ki§, (A9)

where the complex vectors and the conjugated vectcE
are orthogonal to the vecton, and satisfy

¢-e-

The explicit expressions for the vectors are

0, e-e=4i. (A10)

1 _ -
lei(zilzil—zizziz), lez(zilzil—zizziz),

i _ 1 - __
e12:§(Zi12i1+2i22i2), szz(zi12i1+2izzi2),

83=—Z1Z2, 63— —Zi1Zjp. (A11)
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The fieldsfig(r)[f_ia(r)] depend on the vectom,(7)

and the fi_e|dSKi(7')[;i(T)]. | expand them in powers of
ki(7) and «;(7) up to linear terms. This yields

fiafjoz _Zilzj2+ Zizzjl"r‘ aK;

fiofic=—12Zi1Zj2+ Zi2Z)1 +axk;,

ifieAandj=i+a,;

ijfiU:—ijziﬁ- Zjlzi2+aKl' s

fiofio=—252Z11 1712, +axj,

if jeBandi=j+a,;

fi(rf_j(r2 1+ Zio'(z_j(r_z_i(r)!

(A12)

(A13)

f]O'fIO'_1+Z_io-(Zj0'_Zi0')! (A14)

ifi,jeAandj=ite;
fjlrfi(rzl—’_zj(r(zi(r_zj(r)v

fiuf_ja’:l—i_zju’(z_ia'_z_jo’)! (A15)

if j,ieB andi=j+e,. The two lattice’s directions&,0)
and (0a) are noted bya,,u=Xx,y, and e,=[a,+a,,a,
—ay]. | have used again the two complex fields defined by
Eq. (A5).

Collecting the results above, one can write the action in
the form

The term which does not depend brreads

B , _. . — . J o,
So= f dr(E WD, 212 (D) + 2 R0+ 202 JUF (D) + 5 20 TINDY()
0 ieA jeB ieAu

J , ,
e, (NRa (D15 2 TR I (DU, (D1t 2 "TUN(T UL (D H
eEb,u leA,

—tzjEBX’[mr)wﬁeA(mH.c.]—tl, 2 IR (D= 20(DZi10,2(1) + 2i2( D)2 ,2(7) ]+ Hc}
€B, ieAu " 13 13

1 2% LRV, (D= 22121 0,0(NF 22(1) 4,21 ]+ H-C)
eB.,u

—ty 2 DY e (D26 Zi 16 0(7) — Zin()]+H.C

ie A\

|
M

m
w
>

+

eAu

!

+
ol o 0| G

m
@

7

!

IR
m
w
=
:C\UJ

It is convenient to write the linear term in the form

B
SL:af dT
0 ie

where

,%’(KiPiAJF Kipt) +sz,(KjP]B+ Kj;?)},

(A18)

’{J?(r>w,+e (M) Zjo(D[Z1¢,0(7) = Zjo(7)]+H.C}
2 Tma (D =m0 1= DD G (D94 ()]
(M0, (D =m(DIPIL= g (DY (DL 9 a (D0 (1] ZIE PO PFra (DPFra (7)

POV, (e, (1= 2 L= W (DY) 2 T 4R Uf()] | (A17)

i )
PiAZE(miXmi)'eu—tlE ZiB+a#¢{-\'
w

’5 (mlxm | 12 ¢| ¢|+a ’

(A19)
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| . ! B A

pP=z(mxm) =63 fufl, . 2 AN ia) | (A20)
i .=

~B_ _ A B _

py =7 (mxm)-g tl% Yiva, ¥y - whereL?= ki« .

The last step is to integrate over the vedtor The inte-
gral overL; is defined as an integral over the independent
- — A — 5 variablesk;(7) and «;(7). Carrying out the integration, one
iEA Li(1—= ¢ i) (1— ¢i+a#¢i+a#) obtains the action of the effective thedfy7).

Finally, the bilinear term is

Ja? (8
SLL:TJO dr
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