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GeneralizedCP1 model from the t1-t2-J model
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A long-wavelength, low-frequency, effective theory is obtained from thet1-t2-J model. The action is written
in terms of two-component bose spinor fields (CP1 fields! and two spinless Fermi fields. The generalizedCP1

model is invariant under U~1! gauge transformations. The bose fields and one of the Fermi fields have charge
11 while the other Fermi field has charge21 with respect to these transformations. A simple mean-field
theory of a gauge-symmetry breaking, based on a four-fermion interaction, is discussed. An effective theory of
frustrated antiferromagnetism is obtained integrating out the Fermi fields around the mean fields. Another
option is used to parametrize the long-distance fluctuations in thet1-t2-J model, with the help of gauge-
invariant fields. It is argued that the resulting Fermi quasiparticles of thet1-t2-J model have both charge and
spin. The effective action is rewritten in terms of the spin1

2 Fermi spinor, which has the charge of the holes,
and unit vector.@S0163-1829~98!02317-0#
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I. INTRODUCTION

High-Tc superconductivity has given theorists a stro
motivation to work on correlated electrons. Among the ma
electronic models that are being currently studied, the tw
dimensionalt-J model is the simplest one that captures t
essential physics of strongly correlated electronic syste
Anderson1 first applied this model to high-Tc oxides. Zhang
and Rice2 and others3 showed that the one-bandt-J model is
an effective model describing the physics of the three-b
Cu-O model.4

The underlying problem is to create an adequate fi
theory. Usually, the bosonic and fermionic raising and lo
ering operators are used to realize spin-fermion algebra. S
eral approximate techniques have evolved so far to deal
the t-J model. A representation for the electron operat
acting on states with no double occupancy has b
proposed5 in terms of spin-fermion operators and spinle
bosons that keep track of empty sites. Mean-field theory
high-Tc superconductivity based on this representation
been developed.6 The slave-boson technique is widely a
plied to the study of various properties of the model,7 and to
a large range of problems: Hubbard model,8 Kondo lattice
model,5,9 and the Anderson Hamiltonian.10

Mean-field theory based on the alternative Schwin
bosons slave-fermion representation has been worked o11

A similar mean-field approach has been used to investig
the phase diagram of thet1-t2-J model.12

It is important to stress the fact that these theories s
with one and the same Hamiltonian, and use equivalent
resentations of the spin-fermion algebra. But these repre
tations allow different appropriate methods of approxim
calculations that may arrive at completely different descr
tion of the properties of the model. The mean-field appro
mations are self-consistent, but it is difficult to judge ho
close to the true properties of the model the results are.

Numerical calculations have been done using a la
number of techniques.13 The results of these calculations ca
contribute to the acceptance or rejection of mean-field-ba
570163-1829/98/57~17!/10913~10!/$15.00
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theories, and can also indicate directions in which new a
roaches should be developed.

The reduction of the three-band model to the one-bant-
J model is still controversial. Many authors have argued t
the resulting quasiparticles of the three-band model h
both charge and spin. The effective spin-fermion mode
characterized by a Kondo-like coupling of the O holes
localized Cu spins and a Heisenberg antiferromagnetic in
action among Cu spins.14 The long-wavelength limit of the
model has been written in terms of fermionic spinors an
unit vector.15 The dynamics of the order parameter of t
spin background is given by the0(3) nonlinears model,
and the interaction of the mobile holes with the order para
eter is a current-current type of interaction.

The three-band Cu-O model contains strong interactio
and the perturbative calculation of bubble and ladder d
grams are questionable. An analytical method, that seem
be able to handle strong correlations, has been propos16

The photoemission and inverse photoemission spectra
holes calculated by means of the projection technique re
duce the numerical results.

It is widely accepted that the undoped oxides superc
ductors can be modeled rather well by a nearest-neighbs
5 1

2 antiferromagnetic Heisenberg Hamiltonian on a squ
lattice. It has been argued that the long-wavelength, lo
temperature, behavior of the model can be described b
quantum nonlinears model.17 The low-temperature behavio
of the correlation length and the static and dynamic sp
correlation functions have been calculated using
renormalization-group method.18 The results are in good
agreement with the experimental data.

The present work is motivated by the successful appli
tion of the quantum-mechanical nonlinears model to high-
Tc oxides. A long-wavelength, low-frequency, effectiv
theory is obtained from thet1-t2-J model. Under the assump
tion that the antiferromagnetic correlations are importan
introduce two sublattices and divide the spin vector into sl
mode, described by unit vector, and fast mode, described
vector orthogonal to the unit one. Then the two fermions a
the unit vector are considered on an equal footing as smo
10 913 © 1998 The American Physical Society
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10 914 57NAOUM KARCHEV
fields and the fast mode is treated perturbatively. The ac
is expanded in powers of the fast mode and the first th
terms in the respective Taylor expansion are taken into
count. Integrating out the fast mode one obtains the effec
action written in terms of two-component bose spinor fie
(CP1 fields! and two spinless Fermi fields. The generaliz
CP1 model is invariant under U~1! gauge transformation
The bose fields and one of the Fermi fields have charge11
while the other Fermi field has charge21 with respect to
these transformations. A simple mean-field theory of
gauge-symmerty breaking, based on the four-fermion in
action, is discussed. An effective theory of frustrated antif
romagnetism is obtained integrating out the Fermi fie
around the mean fields.

Another option is used to parametrize the long-dista
fluctuations in thet1-t2-J model, with the help of gauge
invariant fields. It is argued that the resulting Fermi qua
particles of thet1-t2-J model have both charge and spin. T
effective action is rewritten in terms of the spin-1

2 Fermi
spinor, which has the charge of the holes, and unit vecto

The paper is organized as follows. Section II is devoted
the derivation of the generalizedCP1 model from thet1-t2-
J one. In Sec. III a dynamical breakdown of the gauge sy
metry is discussed. The effective action is rewritten in ter
of gauge-invariant fields in Sec. IV. The charge and the s
of the Fermi quasiparticles are discussed. Finally, I comm
on the relations to the other effective models.

II. GENERALIZED CP1 MODEL

The t1-t2-J model is defined by the Hamiltonian

h5t1(
^ i , j &

@cis
† cj s1H.c.#1t2 (

^^ i , j &&
@cis

† cj s1H.c.#

1J(
^ i , j &

~Si•Sj2
1
4 ninj !2m(

i
ni . ~1!

The electron operatorscis (cis
† ), the spin operatorsSi ,

and the number operatorni act on a restricted Hilbert spac
where the doubly-ocupied state is excluded. The sums
over all sites of a two-dimensional square lattice,^ i , j & de-
notes the sum over the nearest neighbors, and^^ i , j && denotes
the sum over the next to nearest neighbors.

Let us represent the eight operators by means
Schwinger bosonsw is (w̄ is), s51,2 and slave-fermions
c i (c̄ i)

cis5c̄ iw is , Si5
1
2 w̄ isw i ,

c̄is5c i w̄ is , ni512c̄ ic i , ~2!

wheres are Pauli matrices. The finite-dimensional space
representation is a subspace of the Hilbert space of bo
and fermions defined by the operator consraint

w̄ isw is1c̄ ic i51. ~3!
n
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The partition function can be written as a path integ
over the complex functions of the Matsubara tim
t w is(t)@w̄ is(t)# and Grassmann functionsc i(t)@c̄ i(t)#

Z~b!5E dm~w̄,w,c̄,c!e2S. ~4!

The action is given by the expression

S5E
0

b

dtH(
i

@w̄ is~t!ẇ is~t!1c̄ i~t!ċ i~t!#

1h~ w̄,w,c̄,c!J , ~5!

whereb is the inverse temperature and the Hamiltonian
obtained from Eq.~1! replacing the operators with the func
tions. In terms of Schwinger bosons and slave fermions,
theory is U~1! gauge invariant, and the measure includesd
functions that enforce the constraint Eq.~3! and the gauge-
fixing condition

dm~w̄,w,c̄,c!5 )
i ,t,s

dw̄ is~t!dw is~t!

2p i )
i t

dc̄ i~t!dc i~t!

3)
i t

d~g f ! )
i t

d~w̄ is~t!w is~t!

1c̄ i~t!c i~t!21!. ~6!

I make a change of variables, introducing new Bose fie
f is(t)@ f̄ is(t)# ~Ref. 19!

w is~t!5 f is~t!A12c̄ i~t!c i~t!5 f is~t!@12 1
2 c̄ i~t!c i~t!#,

w̄ is~t!5 f̄ is~t!A12c̄ i~t!c i~t!

5 f̄ is~t!@12 1
2 c̄ i~t!c i~t!#. ~7!

The inverse relations are

f is~t!5w is~t!@11 1
2 c̄ i~t!c i~t!#,

f̄ is~t!5w̄ is~t!@11 1
2 c̄ i~t!c i~t!#, ~8!

and it is easy to see that the new fields satisfy the constr

f̄ is~t! f is~t!51. ~9!

Inserting Eq.~7! into Eqs. ~1!–~6!, one obtains for the
action

S5E
0

b

dtS (
i

$ f̄ is~t! ḟ is~t!@12c̄ i~t!c i~t!#

1c̄ i~t!ċ i~t!%1h~ f̄ , f ,c̄,c! D , ~10!

where the Hamiltonian is
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h52t1(
^ i , j &

@ c̄ i~t!c j~t! f is~t! f̄ j s~t!1c̄ j~t!c i~t! f j s~t! f̄ is~t!#2t2 (
^^ i , j &&

@ c̄ i~t!c j~t! f is~t! f̄ j s~t!

1c̄ j~t!c i~t! f j s~t! f̄ is~t!#2
J

4(
^ i , j &

@12 f̄ i~t!sf i~t! f̄ j~t!sf j~t!#@12c̄ i~t!c i~t!#@12c̄ j~t!c j~t!#

2m(
i

@12c̄ i~t!c i~t!#. ~11!

The partition function can be written as an integral over the fieldsf is(t), f̄ is(t),c i(t),c̄ i(t) and the measure is given by th
equality

dm~ f̄ , f ,c̄,c!5 )
i ,t,s

d f̄ is~t!d fis~t!

2p i )
i t

dc̄ i~t!dc i~t!)
i t

d~g f !)
i t

d@ f̄ is~t! f is~t!21#)
i t

e2c̄ i ~t!c i ~t!, ~12!

where the last multiplier just redefines the chemical potential.
I consider two sublatticesA andB, and impose the gauge-fixing conditions in the form

argf i1~t!50 if i PA,

argf j 2~t!50 if j PB. ~13!

Then one can use the components of the unit vectorni to parametrize the solution of the constraints Eq.~9!

i PA: f i15 f̄ i15
1

A2
~11ni3!1/2,

f i25
1

A2

ni
1

~11ni3!1/2
, f̄ i25

1

A2

ni
2

~11ni3!1/2
,

~14!

j PB: f j 15
1

A2

nj
2

~12nj 3!1/2
, f̄ j 15

1

A2

nj
1

~12nj 3!1/2
,

f j 25 f̄ j 25
1

A2
~12nj 3!1/2,

wherenr
65nr16 inr2.

Now I am going to the derivation of the long-wavelength limit of the model. To that purpose one introduces a ne
vectormi (mi

251) and a vectorL i

ni5A12a2L i
2mi1aL i , if i PA,

nj52A12a2L j
2mj1aL j , if j PB. ~15!

The new spin-vectormi is a smooth field on the lattice anda is the lattice spacing. The constraintni
251 and the

requirement that the new vectormi should obey the same constraintmi
251 demandmi andL i to be orthogonal,

mi•L i50. ~16!

The next step is to substitute Eq.~15! into the fieldsf is(t)@ f̄ is(t)# Eq. ~14!, and then to insert them into the action. Th
yields an action, which depends on the vectorsmi ,L i and the fermionic fields. I expand the action in powers of the vectorL i ,
keeping only the first three terms in the expansion. Integrating out the vectorL i , one obtains the effective action~see
Appendix!

Seff5SCP11SF , ~17!

whereSCP1 is the action of theCP1 model (s model! andSF is the part of the effective action that depends on the vectomi

~complex fieldszis , z̄is) and the fermionic fields
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SF5E
0

b

dtS (
i PA

8c̄ i
A~t!@]t2 z̄isżis#c i

A~t!1 (
j PB

8c̄ j
B~t!@]t1 z̄ j sżj s#c j

B~t!1
J

2 (
i PA,m

8@c̄ i
A~t!c i

A~t!1c̄ i 1am

B ~t!c i 1am

B ~t!#

1
J

2 (
j PB,m

8@c̄ j
B~t!c j

B~t!1c̄ j 1am

A ~t!c j 1am

A ~t!#2t2 (
i PA,l

8@c̄ i
A~t!c i 1el

A ~t!1H.c.#2t2 (
j PB,l

8@c̄ j
B~t!c j 1el

B ~t!1H.c.#

1 i
t1

J (
i PA,m

8~mi3ṁi !•@ ēi ,i 1am
c̄ i 1am

B c i
A1ei ,i 1am

c̄ i
Ac i 1am

B #1 i
t1

J (
j PB,m

8~mj3ṁj !•@ ēj , j 1am
c̄ j

Bc j 1am

A 1ej , j 1am
c̄ j 1am

A c j
B#

2t1 (
i PA,m

8$c̄ i
A~t!c i 1am

B ~t!@2zi1~t!zi 1am2~t!1zi2~t!zi 1am1~t!#1H.c.%2t1 (
j PB,m

8$c̄ j
B~t!c j 1am

A ~t!@2 z̄ j 2~t! z̄ j 1am1~t!

1 z̄ j 1~t! z̄ j 1am2~t!#1H.c.%2t2 (
i PA,l

8$c̄ i
A~t!c i 1el

A ~t!zis~t!@ z̄i 1els~t!2 z̄is~t!#1H.c.%2t2 (
j PB,l

8$c̄ j
B~t!c j 1el

B ~t! z̄ j s~t!

3@zj 1els~t!2zj s~t!#1H.c.%1 (
i PA,m

8H 1

32J
ṁi•ṁi2

J

8
@mi 1am

~t!2mi~t!#2J @c̄ i
A~t!c i

A~t!1c̄ i 1am

B ~t!c i 1am

B ~t!#

1 (
j PB,m

8H 1

32J
ṁj•ṁj2

J

8
@mj 1am

~t!2mj~t!#2J @c̄ j
B~t!c j

B~t!1c̄ j 1am

A ~t!c j 1am

A ~t!#

1
l

4 (
i PA,m

8c̄ i
A~t!c i

A~t!c̄ i 1am

B ~t!c i 1am

B ~t!1
l

4 (
j PB,m

8c̄ j
B~t!c j

B~t!c̄ j 1am

A ~t!c j 1am

A ~t!2m(
i PA

8@12c̄ i
A~t!c i

A~t!#

2m (
j PB

8@12c̄ j
B~t!c j

B~t!# D 1Sadd, ~18!
-
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where

l

4
5

t1
2

J
2

J

2
. ~19!

I have replaced in Eq.~18! er andēr Eq. ~A11! with er ,r 8 and
ēr ,r 8 where

err 815
1

2
~zr1zr 812zr2zr 82!, ērr 815

1

2
~ z̄r1z̄r 812 z̄r2z̄r 82!,

err 825
i

2
~zr1zr 811zr2zr 82!, ērr 825

1

2i
~ z̄r1z̄r 811 z̄r2z̄r 82!,

~20!

err 8352
1

2
~zr1zr 821zr2zr 81!,

ērr 8352
1

2
~ z̄r1z̄r 821 z̄r2z̄r 81!.

The difference is of ordera and it does not affect the long
wavelength physics.

The additional actionSadd contains all terms in highe
order of derivatives and fields. They do not contribute to
long-wavelength physics, and hereafter I shall not cons
them.

Until now the fieldszis ( z̄is) have been viewed as de
fined by Eqs.~A5!. Now, I considerzis ( z̄is) as indepen-
dent Bose fields that satisfy the constraintz̄iszis51 and the
e
er

spin vectormi as defined by the equalitymi5 z̄iszi . Then,
the action~18! is invariant under theU(1) gauge transfor-
mations

zrs8 ~t!5eiar ~t!zrs~t!; z̄rs8 ~t!5e2 iar ~t! z̄rs~t!,

c r8
A~t!5eiar ~t!c r

A~t! if r PA, ~21!

c r8
B~t!5e2 iar ~t!c r

B~t! if r PB.

One can restore the representation~A5! of the fields impos-
ing the gauge-fixing condition argzr150.

An important point in the effective model~18! is the four-
fermion term. In the starting Hamiltonian~11! the four-
fermion interaction is attractive. This, sometimes, leads t
speculative conjecture about superconductivity. But the s
in front of the four-fermion term in Eq.~11! is just an output
of the parametrization. An additional repulsive four-fermio
interaction appears in the effective theory~18! due to the
interaction of the fermions with the ‘‘fast modes’’ of th
spinon (L i). For the parameter rangel.0, it screens the
attractive four-fermion interaction. I shall return to this ter
in the next section.

The effective theory Eq.~18! is a theory of slow spinon
modes defined on a small area around the zero vector,
fermions defined on a whole antiferromagnetic Brillou
zone. All fermionic terms are taken into account exept
those of order equal or higher than six. This permits to
vestigate more special phases, related to the geometry o
lattice.
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To carry out the long-wavelength limit for fermions, on
should know the exact Fermi surface. But for small dopi
it is enough to consider the dispersion of free fermions.
the model Eq.~18! with t2.0, it has minima located at zer
wave vector, and the continuum limit can be achieved
means of a gradient expansion around this point. In this w
one obtains the following continuum theory:

Seff5E d2xdtH 2

g2
@Dtz̄sDtzs1c2Dmz̄sDmzs#1c̄ADt

~A!cA

1
1

2m
Dm

~A!cADm
~A!cA1c̄BDt

~B!cB1
1

2m
Dm

~B!cBDm
~B!cB

2
2t1

J
c̄AcB~z1ż22z2ż1!1

2t1

J
c̄BcA~ z̄1 ż̄22 z̄2 ż̄1!

1t1a2~ c̄A]mcB2]mc̄AcB!~z1]mz22z2]mz1!

2t1a2~ c̄B]mcA2]mc̄BcA!~ z̄1]m z̄22 z̄2]m z̄1!

1
2

g̃
@DtzsDtzs1 c̃2DmzsDmzs#~c̄AcA1c̄BcB!

1la2c̄AcAc̄BcB1m~c̄AcA1c̄BcB!J , ~22!

where

Dlzs5~] l2 z̄s8] lzs8!zs , l 50,x,y,

Dl
~A!cA5~] l2 z̄s8] lzs8!c

A, Dl
~B!cB5~] l1 z̄s8] lzs8!c

B,
~23!

and the parameters are given by the equalitiesg52aAJ, c

5aJ, g̃52AJ, c̃252a2J(2t22J), and 1/2m52t2a2.
To obtain the effective action, Eq.~22!, I have rescaled

the Fermi fields (1/a)cR→cR, (R5A or B) and have used
the identities

~m3] lm!• ē52 i ~ z̄1] l z̄22 z̄2] l z̄1!,

~m3] lm!•e5 i ~z1] lz22z2] lz1!,

1
4 ] lm•] lm5] l z̄s] lzs1 1

4 ~ z̄s] lzs2zs] l z̄s!2

5~ z̄1] l z̄22 z̄2] l z̄1!~z1] lz22z2] lz1! , ~24!

wherel stands fort, x, or y and no sum overl is assumed.

III. GAUGE-SYMMETRY BREAKING

The four-fermion terms in the effective action allow a
appropriate mean-field theory of gauge-symmetry break
To demonstrate this I arrange the Fermi fields in the form

SF45E
0

b

dtH 2
l

4 (
i PAm

8c̄ i
Ac i 1am

B c̄ i 1am

B c i
A

2
l

4 (
j PBm

8c̄ j
Bc j 1am

A c̄ j 1am

A c j
BJ . ~25!
,
n

y
y

g.

Then, by means of the Hubbard-Stratanovich transforma
I introduce new collective complex field
uim

A (t),ūim
A (t),uj m

B (t),ū j m
B (t), and rewrite the exponent in

the form

e2SF45E )
imt

dūim
A ~t!duim

A ~t!)
j mt

dūj m
B ~t!duj m

B ~t!

3expE
0

b

dtH l

4 (
i PAm

8@ ūim
A ~t!uim

A ~t!

2ūim
A c̄ i 1am

B ~t!c i
A~t!2c̄ i

A~t!c i 1am

B ~t!uim
A ~t!#

1
l

4 (
j PBm

8@ ū j m
B ~t!uj m

B ~t!2ū j m
B c̄ j 1am

A ~t!c j
B~t!

2c̄ j
B~t!c j 1am

A ~t!uj m
B ~t!#J . ~26!

The mean-field approximation for the problem is just t
evaluation of the path integral over the new collective fie
by means of the saddle-point approximation. The station
conditions are

dF
duim

A
50,

dF
dūim

A
50,

dF
duj m

B
50,

dF
dū j m

B
50, ~27!

where

F52
l

4bN1
E

0

b

dtF (
i PA,m

8ūim
A ~t!uim

A ~t!

1 (
j PB,m

8ū j m
B ~t!uj m

B ~t!G1F0 , ~28!

andF0 is the free energy of a system with Hamiltonian

hm.f.52t2 (
i PAl

8@c̄ i
Ac i 1el

A 1H.c.#2t2 (
j PBl

8@c̄ j
Bc j 1el

B 1H.c.#

1
l

4 (
i PAm

8@ ūim
A c̄ i 1am

B ~t!c i
A~t!

1c̄ i
A~t!c i 1am

B ~t!uim
A ~t!#

1
l

4 (
j PBm

8@ ū j m
B c̄ j 1am

A ~t!c j
B~t!

1c̄ j
B~t!c j 1am

A ~t!uj m
B ~t!#1m (

i PAm
8c̄ i

ac i
A

1m (
j PBm

8c̄ j
Bc j

B . ~29!

The mean-field equations~27! have a trivial solutionuA

5ūA5uB5ūB50, but, whenl.0 they have and nonzer
solution which leads to the breaking of the gauge symme

In the phase with broken gauge symmetry the norm
Green functions read



s.
a
ti

g
is

n
ts
it

a-
-
o

ry
n
a

de

m

b
/

er
on
m
tio

ive

ly,
ems

less,
-

c-
n-

ds
s
e
f
e

built

i

10 918 57NAOUM KARCHEV
Sk
AA~t2t8!5Sk

BB~t2t8!

5
1

b(
vn

eivn~t2t8!
ivn1«k

~ ivn1«k!
22ugku2

~30!

and for the anomalous Green functions one obtains

Sk
BA~t2t8!5

1

b(
vn

eivn~t2t8!
gk

~ ivn1«k!
22ugku2

,

Sk
AB~t2t8!5

1

b(
vn

eivn~t2t8!
ḡk

~ ivn1«k!
22ugku2

. ~31!

The sum is over the frequenciesvn5(2n11)p/b, «5m

24t2coskx cosky , andgk5ūm
Ae2 iakm1um

Beiakm where the or-
der parametersum

A andum
B are choosen to be homogeneou

Integrating over the fermions around the mean-field v
ues of the order parameters one obtains an effective ac
that is not gauge invariant,

Seff8 5E d2xdtH 2

gr
2 @DtzsDtzs1cr

2DmzsDmzs#

1W̄l~z1] lz22z2] lz1!1Wl~ z̄1] l z̄22 z̄2] l z̄1!

1Zl@~z1]mz22z2]mz1!21~ z̄1]m z̄22 z̄2]m z̄1!2#

1Ml~ z̄s] lzs2zs] l z̄s!2J , ~32!

wherel stands fort,x,y.
The coefficients in front of the terms that break the gau

symmetry (Wl ,Zl ,Ml) are zero if the order parameter
zero. The constantsWl(W̄l) are proportional tot1 and result
from the tadpole diagrams with anomalous Green functio
and special values of the order parameters. The constanZl
andMl are obtained calculating the one-loop diagrams w
two anomalous Green functions.Zl are proportional tot1

2 and
Ml are proportional tot2

2. One can get the renormalized p
rametergr of the CP1 model and the renormalized spin
wave velocitycr calculating the one-loop diagram with tw
normal Green functions, and using Eqs.~24!.

GeneralizedCP1 models with broken gauge symmet
have been largely discussed in the literature. An additio
exitation~thirth Goldstone boson! appears in the theory as
result of gauge-symmetry breaking. A generalizedCP1

model with ‘‘W’’ terms only has been considered as a mo
of the spiral phase of a doped antiferromagnet.20,21 Due to
‘‘ W’’ terms the minimum of the dispersion of thezs ( z̄s)
quanta is not at the zero wave vector, which leads to inco
mensurate order.

The massiveCP1 model with ‘‘M ’’ terms only, has been
investigated as a model of frustrated antiferromagnet,
means of the renormalization-group technique and 1N
expansion.22,23

As was shown above, the effective model of the antif
romagnet, which is frustrated due to the doping, also c
tains terms with constantsZl . These terms split the spectru
of the antiferromagnetic magnons and make the applica
l-
on

e

s,

h

al

l

-

y

-
-

n

of the large-N expansion based on SU~N! group question-
able. Moreover, if one considers a theory without mass
terms (t250), then a large-N expansion based on the Sp~2N!
group is plausible.

The magnon fluctuations influence the fermions strong
and a mean-field theory that treats fermions separately se
to be not an adequate way to solve the model. Neverthe
the effective theory~32! gives a good intuition for investiga
tion of the effective model, Eq.~18!, of doped antiferromag-
nets.

IV. EFFECTIVE THEORY IN TERMS
OF GAUGE-INVARIANT FIELDS

Another option is to parametrize the long-distance flu
tuations with help of gauge-invariant fields. To do this I i
troduce two gauge-invariant Fermi fieldscs( c̄s),

c1~t,x!5z1~t,x!cB~t,x!2 z̄2~t,x!cA~t,x!,

c2~t,x!5 z̄1~t,x!cA~t,x!1z2~t,x!cB~t,x!. ~33!

Under the action of the group of rotations the fiel
cA(t,x),cB(t,x) are singlets and the Bose field
zs(t,x)@ z̄s(t,x)# are spin-12 spinors. One can check that th
Fermi fieldscs(t,x)@ c̄s(t,x)# transform like components o
spin-12 spinor. Then, it is not difficult to guess the invers
relations, because there are only two singlets that can be
up by means of the Fermics(t,x), c̄s(t,x) and Bose
zs(t,x), z̄s(t,x) spinors

cB~t,x!5 z̄1~t,x!c1~t,x!1 z̄2~t,x!c2~t,x!,

cA~t,x!5z1~t,x!c2~t,x!2z2~t,x!c1~t,x!. ~34!

Equations~33! can be regarded as a SU~2! transformation;
cs5Us,s8cs8 (c15cB,c25cA) where U115z1 ; U12

52 z̄2 ; U215z2 ; U225 z̄1. Then, it follows that the Ferm
measure is invariant under the change of variables~33! and
that the following equalities hold:

c̄A~t,x!cA~t,x!1c̄B~t,x!cB~t,x!5 c̄s~t,x!cs~t,x!,

c̄A~t,x!cA~t,x!c̄B~t,x!cB~t,x!

5 c̄1~t,x!c1~t,x! c̄2~t,x!c2~t,x!. ~35!

To get the effective action in terms of the fieldscs( c̄s)
and the unit vectorm5 z̄sz, one has to use the relations

c̄s]tcs5c̄ADt
~A!cA1c̄BDt

~B!cB1c̄AcB~z1]tz22z2]tz1!

2c̄BcA~ z̄1]t z̄22 z̄2]t z̄1!, ~36!

1

2i
c̄sc•~m3]tm!5c̄AcB~z1]tz22z2]tz1!

2c̄BcA~ z̄1]t z̄22 z̄2]t z̄1!, ~37!
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]m c̄s]mcs5Dm
~A!cADm

~A!cA1Dm
~B!cBDm

~B!cB

1DmzsDmzs~c̄AcA1c̄BcB!

1~ c̄B]mcA2]mc̄BcA!~ z̄1]m z̄22 z̄2]m z̄1!

2~ c̄A]mcB2]mc̄AcB!~z1]mz22z2]mz1!,

~38!

~ c̄s]mc2]m c̄sc!•~m3]mm!

524iDmzsDmzs~c̄AcA1c̄BcB!

22i ~ c̄B]mcA2]mc̄BcA!~ z̄1]m z̄22 z̄2]m z̄1!

12i ~ c̄A]mcB2]mc̄AcB!~z1]mz22z2]mz1!, ~39!

wherem stands forx or y. Taking into account the abov
equalities and Eqs.~24! one obtains

Seff5E dtd2xH 1

2g2
~]tm•]tm1c2]mm•]mm!1 c̄s]tcs

1
1

2m
]m c̄s]mcs1 igt c̄sc•~m3]tm!

2 ig r~ c̄s]mc2]m c̄sc!•~m3]mm!1l0c̄1c1c̄2c2

1
1

2g0
2 ~]tm•]tm1c0

2]mm•]mm! c̄scs1m c̄scsJ ,

~40!

where

g52aAJ; c5aJ, g052AJ;

c054a2JS t112t22
J

2D ;

1

2m
52a2t2 ; l05a2S 4t1

2

J
22JD ; gt5

t1

J
1

1

2
;

g r5a2S t1

2
1t2D . ~41!

It follows from the effective theory Eq.~40! that the re-
sulting Fermi quasiparticlescs( c̄s) of the t1-t2-J model
have both charge and spin. Let us trace the origin of
result. In the presence of the next to nearest-neighbor h
ping the dispersion of the charge carriers~holons! has a two-
fold degenerate minimum. One can introduce two sub
tices, and then the charged spinless particles are two,cA and
cB. An unexpected result is that in the long-waveleng
low-frequency limit these fields can be mapped@Eqs. ~33!
and ~34!# onto the spin-12 spinor with the same charge.

Without the four-fermion term the effective action coi
cides with the effective action proposed in Ref. 15. The s
cial point is that the effective model in Ref. 15 is obtain
from spin-fermion one that results from a strong-coupli
expansion of the three band Cu-O model. The Fermi qu
e
p-

t-

,

-

i-

particles have a transparent physical interpretation, whic
not so in the case of model~40!.

V. CONCLUSIONS

In this paper a long-wavelength, low-frequency, effecti
theory of thet1-t2-J model was explicitly derived. The ef
fective action was written as a generalizedCP1 model@Eqs.
~18! and~22!# in terms of bose spinor fields and two spinle
Fermi fields. A mean-field theory of gauge-symmetry brea
ing, based on a four-fermion interaction was discussed
Sec. III. The breakdown of the gauge symmetry leads t
frustration of the antiferromagnetically ordered system, a
the ground state is a long-range spiral state.

Now, let us consider the opposite limit, when the fou
fermion interaction is weak and one can drop it. It is conv
nient to introduce the composite U~1! gauge field Am

52 i w̄s]mws . Integrating out the bosons and fermions o
can perform a large-N expansion, whereN is the number of
bosonic as well as the fermionic fields. In the leading ord
of 1/N a mass of thews bosons is generated dynamicall
Therefore, within a large-N expansion, a doping induce
quantum phase transition from an antiferromagnetically
dered state at zero temperature to a quantum disordered
liquid state takes place.24 The CP1 representation seems t
be preferable in this case because there are reasons to be
that the low-energy excitations in the disordered phase
quantum spin systems are spin one-half deconfi
spinons.25

The two quite different pictures demonstrate that the t
ground state of the model Eq.~22! should be looked for
within an approach that treats the four-fermion interact
and the fermion-boson interaction on an equal footing.

In Sec. IV it was demonstrated that the effective mod
can be rewritten in terms of unit vector that denotes the
tiferromagnetic order parameter for the spin-background
spin-12 fermion Eq.~40!. In the case of weak current-curren
and four-fermion interactions, one obtains that the Fe
quasiparticles of the model have the charge of the holes
spin 1

2. This means that if we consider the low-lying Ferm
states of thet1-t2-J model and those of spin-1

2 quasiparticles,
with appropriate Landau parameters, there is one-to-one
respondence between them. This result was supported by
merical calculations.26 The authors use an exact diagonaliz
tion technique on small clusters to study the moment
distribution function of the lightly dopedt-J model. They
explicitly perform the above-mentioned mapping.

In the physically relevant case, most edequate techni
should be applied. Thes-model part of the action can b
treated in the same way as in Ref. 18. To deal with
four-fermion term by means of the renormalization grou
one has to use techniques described in Ref. 27. The n
trivial point is the current-current interaction that strong
influences both the spinon spectrum and the long-wavelen
behavior of the fermions.

ACKNOWLEDGMENTS

I would like to thank A. Muramatsu and C. Ku¨bert for
useful discussion in the course of the work. The hospita
of the Stuttgart University and the financial support fro



w
S

w
e

s

th

s

in-

e

s
of

he
th,
q.

e-

10 920 57NAOUM KARCHEV
Deutscher Akademischer Austauschdienst are ackno
edged. This work was partially supported by Bulgarian N
under Grant No. F96-647.

APPENDIX

Let us substitute the representation, Eq.~15!, for the spin
vector into the fieldsf is(t)@ f̄ is(t)# Eq. ~14!, and then to
insert them into the action. I shall expand the action in po
ers of the vectorL i , keeping only the first three terms in th
expansion.

To begin with I address the terms with time derivative

Skin5E
0

b

dt(
i

$ f̄ is~t! ḟ is~t!@12c̄ i~t!c i~t!#

1c̄ i~t!ċ i~t!%

5E
0

b

dtS (
i PA

8H i

2
AW ~ni !•ṅi~t!@12c̄ i

A~t!c i
A~t!#

1c̄ i
A~t!ċ i

A~t!J 1 (
j PB

8H i

2
AW ~2nj !•ṅj~t!

3@12c̄ j
B~t!c j

B~t!#1c̄ j
B~t!ċ j

B~t!J D , ~A1!

where

i

2
AW ~nr !5 f̄ rs~nr !

]

]nr
f rs~nr ! ~A2!

is the vector potential of a Dirac magnetic monopol at
center of the unit sphere. It obeys locally

n3AW ~n!5n. ~A3!

Substituting Eq.~15! into Eq. ~A1! and keeping the term
up to ordera, one obtains

Skin5E
0

b

dtH i

2(i
~21! u i uAW ~m!•ṁi~t!

1
i

2
a(

i
S ]Aa

]mib
Lib~t!ṁia~t!1AW ~m!•L̇ i~t! D

1(
i PA

8c̄ i
A~t!@]t2 z̄is~t!żis~t!#c i

A~t!1 (
j PB

8c̄ j
B~t!

3@]t1 z̄ j s~t!żj s~t!#c j
B~t!2

i

2
a(

i PA
8c̄ i

A~t!

3F]Aa~m!

]mib
Lib~t!ṁia~t!1AW ~m!•L̇ i~t!Gc i

A~t!

2
i

2
a(

j PB
8c̄ j

B~t!F]Aa~m!

]mj b
L j b~t!ṁj a~t!

1AW ~m!•L̇ j~t!Gc j
B~t!J , ~A4!

where I have introduced two complex fieldszis(t)@ z̄is(t)#,
l-
F

-

e

zr15 z̄r15
1

A2
~11mr3!1/2,

zr25
1

A2

mr
1

~11mr3!1/2
, z̄r25

1

A2

mr
2

~11mr3!1/2
, ~A5!

which satisfyz̄rszrs51 andmr5 z̄rszr .
The first term in Eq.~A4! is not important in the two-

dimensional case and I ignore it. The second term, after
tegration by parts, can be written in the form

i

2
aE

0

b

(
i

S ]Aa

]mib
Lib~t!ṁia~t!1AW ~m!•L̇ i~t! D

5
i

2
aE

0

b

(
i

S ]Aa

]mib
2

]Ab

]mia
DLib~t!ṁia~t!

5
i

2
aE

0

b

(
i

ebga~m3AW !gLib~t!ṁia~t!

5
i

2
aE

0

b

(
i

~mi3ṁi !•L i , ~A6!

where Eq.~A3! is used.
The last two terms in Eq.~A4! can be canceled by th

transformation

c r
R~t!→ei ~a/2!Dr ~t!c r

R~t!, ~A7!

where

Ḋ r~t!5
]Aa~m!

]mrb
Lrb~t!ṁra~t!1AW ~mr !•L̇r~t! ~A8!

and R stands forA or B. After this transformation phase
appear only in the hopping terms in the form
exp$(i/2)a(D r2D r 8)%. In the continuum limit,D r2D r 8 is of
the order ofa. Hence, the phases give no contribution to t
effective action. This means, that in the long-waveleng
low-frequency limit one can ignore the last two terms in E
~A4!.

Dealing with the hopping terms it is convenient to repr
sent the vectorL i in the form

L i5k̄ iei1k i ēi , ~A9!

where the complex vectorsei and the conjugated vectorēi
are orthogonal to the vectormi and satisfy

ei
25 ēi

250, ēi•ei5
1
2 . ~A10!

The explicit expressions for the vectors are

ei15
1

2
~zi1zi12zi2zi2!, ēi15

1

2
~ z̄i1z̄i12 z̄i2z̄i2!,

ei25
i

2
~zi1zi11zi2zi2!, ēi25

1

2i
~ z̄i1z̄i11 z̄i2z̄i2!,

ei352zi1zi2 , ēi352 z̄i1z̄i2 . ~A11!
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The fields f is(t)@ f̄ is(t)# depend on the vectorsmi(t)
and the fieldsk i(t)@ k̄ i(t)#. I expand them in powers o
k i(t) and k̄ i(t) up to linear terms. This yields

f is f̄ j s.2zi1zj 21zi2zj 11ak i

f j s f̄ is.2 z̄i1z̄ j 21 z̄i2z̄ j 11ak̄ i , ~A12!

if i PA and j 5 i 1am ;

f j s f̄ is.2 z̄ j 2z̄i11 z̄ j 1z̄i21ak̄ j ,

f is f̄ j s.2zj 2zi11zj 1zi21ak j , ~A13!

if j PB and i 5 j 1am ;

f is f̄ j s.11zis~ z̄ j s2 z̄is!,
f j s f̄ is.11 z̄is~zj s2zis!, ~A14!

if i , j PA and j 5 i 1el ;

f j s f̄ is.11 z̄ j s~zis2zj s!,

f is f̄ j s.11zj s~ z̄is2 z̄ j s!, ~A15!

if j ,i PB and i 5 j 1el . The two lattice’s directions (a,0)
and (0,a) are noted byam ,m5x,y, and el5@ax1ay ,ax
2ay#. I have used again the two complex fields defined
Eq. ~A5!.

Collecting the results above, one can write the action
the form

S5S01SL1SLL . ~A16!

The term which does not depend onL reads
S05E
0

b

dtS (
i PA

8c̄ i
A~t!@]t2 z̄isżis#c i

A~t!1 (
j PB

8c̄ j
B~t!@]t1 z̄ j sżj s#c j

B~t!1
J

2 (
i PA,m

8@c̄ i
A~t!c i

A~t!

1c̄ i 1am

B ~t!c i 1am

B ~t!#1
J

2 (
j PB,m

8@c̄ j
B~t!c j

B~t!1c̄ j 1am

A ~t!c j 1am

A ~t!#2t2 (
i PA,l

8@c̄ i
A~t!c i 1el

A ~t!1H.c.#

2t2 (
j PB,l

8@c̄ j
B~t!c j 1el

B ~t!1H.c.#2t1 (
i PA,m

8$c̄ i
A~t!c i 1am

B ~t!@2zi1~t!zi 1am2~t!1zi2~t!zi 1am1~t!#1H.c.%

2t1 (
j PB,m

8$c̄ j
B~t!c j 1am

A ~t!@2 z̄ j 2~t! z̄ j 1am1~t!1 z̄ j 1~t! z̄ j 1am2~t!#1H.c.%

2t2 (
i PA,l

8$c̄ i
A~t!c i 1el

A ~t!zis~t!@ z̄i 1els~t!2 z̄is~t!#1H.c.%

2t2 (
j PB,l

8$c̄ j
B~t!c j 1el

B ~t! z̄ j s~t!@zj 1els~t!2zj s~t!#1H.c.%

1
J

8 (
i PA,m

8@mi 1am
~t!2mi~t!#2@12c̄ i

A~t!c i
A~t!#@12c̄ i 1am

B ~t!c i 1am

B ~t!#

1
J

8 (
j PB,m

8@mj 1am
~t!2mj~t!#2@12c̄ j

B~t!c j
B~t!#@12c̄ j 1am

A ~t!c j 1am

A ~t!#2
J

2 (
i PA,m

8c̄ i
A~t!c i

A~t!c̄ i 1am

B ~t!c i 1am

B ~t!

2
J

2 (
j PB,m

8c̄ j
B~t!c j

B~t!c̄ j 1am

A ~t!c j 1am

A ~t!2m(
i PA

8@12c̄ i
A~t!c i

A~t!#2m (
j PB

8@12c̄ j
B~t!c j

B~t!# D . ~A17!
It is convenient to write the linear term in the form

SL5aE
0

b

dtF (
i PA

8~ k̄ ir i
A1k i r̃ i

A!1 (
j PB

8~ k̄ jr j
B1k j r̃ j

B!G ,
~A18!

where
r i
A5

i

2
~mi3ṁi !•ei2t1(

m
c̄ i 1am

B c i
A ,

r̃ i
A5

i

2
~mi3ṁi !• ēi2t1(

m
c̄ i

Ac i 1am

B ,

~A19!
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r j
B5

i

2
~mj3ṁj !•ej2t1(

m
c̄ j

Bc j 1am

A ,

r̃ j
B5

i

2
~mj3ṁj !• ēj2t1(

m
c̄ j 1am

A c j
B .

Finally, the bilinear term is

SLL5
Ja2

2 E
0

b

dtF (
i PA

8L i
2~12c̄ i

Ac i
A!~12c̄ i 1am

B c i 1am

B !
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