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Vortex localization in single crystals of Tl2Ba2CuO61d with columnar defects:
An empirical model

M. A. R. LeBlanc and Daniel S. M. Cameron
Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

~Received 9 June 1997!

The peaks and valleys observed by Nowaket al. @Phys. Rev. B54, R12 725~1996!# in the local magneti-
zationM (x) and local relaxation rateS(x) in a single crystal of Tl2Ba2CuO61d containing columnar defects are
well reproduced by an empirical model where the critical current densityj c is fractionally enhanced in the
vicinity of the matching fieldBf and of a multiple ofBf by superimposing two broad triangular peaks on a
continuous dependence ofj c on the magnetic flux densityB. The dependence ofS(x) on B(x) is well
reproduced by stipulating thatj c decays at a rate' 1

2 slower at the summit of the peaks than at their edges. The
model fits the variety ofM (x) andS(x) data takingBs1 andBs2 , the flux density at the first and second peaks
in j c , to have a ratioBs2 /Bs1'2.5. The model also makes detailed predictions regarding the structure and
location of valleys forS(x) versusB(x) descending in magnitude which were not reported in the above article.
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INTRODUCTION

Nowak et al.1 report a richer variety of structures in th
dependence of the local magnetizationM (x) and local rate
of decayS(x) on the local magnetic flux densityB(x) below
12 K in single crystals of the anisotropic high-temperatu
superconductor Tl2Ba2CuO61d containing columnar defect
than encountered earlier by Beauchampet al.2,3 in untwinned
single crystals of YBa2Cu3O72d. The latter2,3 observed a
rapid descent inuM (x)u and a dip or notch inS(x) versus
B(x) ascending in magnitude in the vicinity ofBf , the
matching field where the density of columnar defects co
sponds to the flux line density. Peaks and valleys obser
by Nowak et al.1 in the graphs ofM (x) and S(x) versus
B(x) are also clearly linked to the matching fieldBf and a
multiple of this quantity. Herem0M (x)5B(x)2m0Ha ,
whereHa is the applied field.

We present a simple empirical model which successfu
reproduces all of the above observations reported by No
et al.1 and their relative positions and magnitudes. T
model superimposes two peaks on the standard monot
dependence of the critical current densityj c on the magnetic
flux densityB. The location, height and width of these pea
in j c(B) as well as the ‘‘background’’ dependence ofj c on B
are chosen to generate curves ofM (x) versusB(x) which
correspond closely to the measured curve whenB(x) is as-
cending in magnitude.1 We then show that this prescriptio
for j c versusB generates a curve forM (x) versusB(x)
descending in magnitude which displays peaks and val
whose location and structure closely match that encount
in the corresponding data curves.1 We stress that these goo
fits are achieved without introducing discontinuities3–5 in the
dependence ofj c on B.

Next, exploiting a simple approach to describe the relat
rate of relaxation of the flux density configurations and
troducing a simple structure in the dependence ofd jc /dt on
B, we reproduce the observations of Nowaket al.1 for S(x)
versusB(x) ascending in magnitude. Our model also gen
570163-1829/98/57~17!/10877~7!/$15.00
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ates detailed predictions for the variation ofS(x) with B(x)
descending in magnitude. In particular, the model pred
that ~i! BV1↓ andBV2↓ the two valleys forS(x) whenB(x)
is descending in magnitude will occur at higher values
B(x) thanBV1↑ andBV2↑ encountered whenB(x) is ascend-
ing in magnitude and~ii ! the ratioBV2↓/BV1↓ will be appre-
ciably smaller thanBV2↑/BV1↑ where the subscripts 1 and
denote the first and second valley.

FRAMEWORK AND RESULTS OF THE MODEL

First we address the hysteresis curvesM (x) versusB(x).
The dependence ofj c on B which we exploit is displayed in
Fig. 1. For simplicity we choose the well known Kim6 type
of expression for the ‘‘background’’ curve ofj c versusB

j c5 j 0S Bref

B1B0
D n

, ~1!

where we visualize that the temperature-dependent par
eters j 0 , Bref , B0 , andn will vary with the previous heavy
ion irradiation.1–3,7–15The two peaks inj c versusB which
are superimposed on this background are, for simplic
chosen to be ‘‘triangular’’ with symmetric slopes on the le
and right of the summits. Therefore we write

j C1L@B~x!#5 j S1S B~x!2BA1

BS12BA1
D , ~2a!

j C1R5 j S1S BB12B~x!

BB12BS1
D ~2b!

for the left and right sides of the first peak and similarly,

j C2L@B~x!#5 j S2S B~x!2BA2

BS22BA2
D , ~3a!

j C2R5 j S2S BB22B~x!

BB22BS2
D ~3b!

for the second peak. Equations~2! and ~3! apply between
their respective boundariesBf1L , Bf1R , Bf2L , andBf2R .
10 877 © 1998 The American Physical Society
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The magnitudes of the critical current densitiesj S1 and j S2 at
the summit of the two peaks as well as the width of the ba
of the peaks and their location are presumably determine
the irradiation which also affects the structure and magnit
of the background curve.1–3,7–15In the modeling, the choice
for these six quantities dictate the values forBA1 , BB1 , BA2 ,
and BB2 . The various parameters which quantitative
specify j c versusB displayed in Fig. 1 are selected to yield
good fit to the data reported by Nowaket al.,1 for M (x)
versusB(x) ascending in magnitude and are listed in t
caption to Fig. 1.

The sequences of critical state profiles ofB(x) versusHa
ascending or descending in magnitude are developed f
Maxwell’s equation ¹3B5m0j , hence, dB/dx5
6m0 j c@B(x)# for an idealized slab geometry ordB/dr5
6m0 j c@B(r )# for an infinite cylinder. We ignore intrinsic
diamagnetism, hence takeB(x)5m0H(x) and the magnetic
flux density just inside the surface of the specimenBi
5m0Ha , whereHa is the applied magnetic field.

It is a straightforward albeit tedious exercise to deve
detailed expressions for the large variety of criticalB(x)
profiles which are encountered as the upward and downw
sweeps ofHa generate configurations which successively
corporate the detailed structure ofj c versusB displayed in
Fig. 1. Some illustrative examples of the sequences ofB(x)
profiles are displayed in Fig. 2 and in the Appendix. Typic
expressions forB(x) versusHa are developed in the Appen
dix and a complete set appears in Ref. 16.

Figure 3 displays the results of our calculation ofM (x)
versusB(x) in a two quadrant format and should be com
pared with the right half of Fig. 1 of Ref. 1. The peak label
P↓ in Fig. 3 is generated by the ‘‘background’’j c(B) func-
tion @i.e., Eq.~1!# which, although affected by the heavy io

FIG. 1. Display ofj C versusB @Eqs.~1!–~3!# used in our mod-
eling of the pertinent observations~Figs. 1 and 3! of Nowak et al.1

For the ‘‘background’’ curve @Eq. ~1!# we chose n5
1
2 , B0

52.5 kG, Bn5(3m0 j 0XBref
1/2/2)2/3512.5 kG and for the triangula

peaks we letBf1L , BS1 , Bf1R , Bf2L , BS2 , and Bf2R equal to
12.5, 15.2, 20, 31.25, 37.14, and 62.5 kG whilej S1

50.75(1010) A/m2 and j S250.44(1010) A/m2. The parameters
were selected to yield a good fit to the curve ofuM (x)u versusB(x)
ascending in magnitude reported by Nowaket al.1 ~see the first and
fourth quadrants of their Fig. 1!. The model addresses idealized sl
or cylinder geometry withX5R5100mm. Triangular peaks were
selected for analytic and computational convenience. We note
BS2 /BS1'2.5.
s
by
e

m

p

rd
-

l

irradiation, is not directly linked to the matching fieldBf .
This peak is also encountered in the measurements of B
champet al.2,3 The choice ofn, Bref , andB0 determine the
structure and location of this peak and its magnitude is fix
by the choice ofj 0 . We note that, in agreement with th
observations, the two peaksP1↑ and P2↑ with uM (x)u ver-
sus Ha ascending are displaced with respect to the co
sponding peaksP1↓ and P2↓, whereHa is descending in
magnitude. Thus, the selection for the location of the tria
gular peaks inj c versusB in our model~Fig. 1! correctly
determines the location of the peaks inuM (x)u versusB(x)
descending and ascending in magnitude.

Close examination of Fig. 3 also shows that the fo
peaks~P1↑, P2↑, P1↓, and P2↓! display asymmetries in
agreement with that exhibited by the measured peaks.
asymmetry in the theoretical peaks ofuM (x)u versusB(x)
arises from the following features in the variation ofj c ver-
susB. The ‘‘background’’ j c @Eq. ~1!# is larger on the left of
a triangular peak than on its right~see Fig. 1!, and, as a
consequence the left side of a triangular peak is narro
than its right side although the magnitude of the two slop
are identical. The asymmetry in the humps ofuM (x)u versus
B(x) is therefore generic in our model and will also appea
exponential, Gaussian, or other centrosymmetric humps
j c versusB were introduced instead of centrosymmetric t
angular peaks.

Decay rates S(x) and R(x) versus B(x). We now exam-
ine the rates of local relaxation of the flux density profil
which can be written

S~x!5
dB~x!

dt
5

dB~x!

d j0

d j0
dt

5R~x!
d j0
dt

, ~4!

at

FIG. 2. Displays an illustrative sequence ofB(x) profiles gen-
erated byj C(B) of Fig. 1. Here after descending in magnitude fro
the ‘‘negative’’ directionm0Ha is now ascending in the opposit
direction from zero throughBf1L , BS1 , and Bf1R , hence across
the first peak ofj C(B). The surface of the specimen is situated
x/X50 and its center atx/X51. The correspondingB(x) profiles
whenm0Ha is descending in magnitude from a large value can
visualized by regarding the surface of the specimen now to be s
ated atx/X51 and the center atx/X50.
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57 10 879VORTEX LOCALIZATION IN SINGLE CRYSTALS OF . . .
where it is assumed thatd j0 /dt does not depend onB(x).
We focus on the relative rateR(x)5dB(x)/(d j0 / j 0) and on
the normalized rateRn(x)5dB(x)/@m0M (x)d j0 / j 0#.

Our treatment is a simple extension of an approach
ready exploited by several workers.5,17–20In this framework
the decay of the critical state configuration is determined
the decrease of the current density parametersj 0 , j S1 , and
j S2 in Eqs. ~1!, ~2!, and ~3!. As the parameterj 0 of the
background curve@Eq. ~1!# decreases by an amountD j 0 we
visualize thatj c(B) along the triangular summits decays
illustrated schematically in Fig. 4. The diminution ofj c at
the summits can be written

D j S1

j S1
5 f 1

D j 0

j 0

and

D j S2

j S2
5 f 2

D j 0

j 0
. ~5!

We obtain good agreement with the pertinent data
Nowaket al.1 by letting f 15 f 25 1

2 . We assume, for simplic
ity, that the rate of decay ofj C(B) along the slopes of the
triangular summits varies linearly versusB(x) from its value
at the junctions with the background curve~i.e., the bound-

FIG. 3. Displays the local magnetizationm0M (x)5B(x)
2m0Ha versusB(x) which is generated byj C(B) of Fig. 1 when
B(x) is descending~a! and ascending~b! in magnitude. These two
calculated curves should be compared with that presented in
right half of Fig. 1 of Nowaket al.1 The height, breadth, and pos
tion of the salient features of these curves are modified when
location x/X of the measuring probe is changed. In particular,
position of the summits of the peaksP1↓ and P1↑ approachBS1

while P2↓ andP2↑ approachBS2 as the location of the measurin
probex/X is moved closer to the surface of the specimen. Howe
this also causesuM (x)u to diminish. The reason for this emerge
from careful examination of representativeB(x) profiles shown in
Fig. 2. In these calculationsx/X52/3 since this corresponds to th
position of the field probe in the measurements reported by No
et al.1 Ideally in Fig. 1 of Nowaket al.,1 the curve in the first
~fourth! quadrant should be the exact image of that in the th
~second! quadrant.
l-

y

f

ariesBf1L , Bf1R , Bf2L , andBf2R! to a smaller value at the
summitsBS1 and BS2 . ~i! The continuity of j C(B) at the
boundaries and~ii ! the constraint that the location of thes
boundaries as well as the location of the summits along thB
axis remain fixed, asj 0 , j S1 , and j S2 diminish, dictate the
evolution of BA1 , BB1 , BA2 , and BB2 in Eqs. ~2! and ~3!,
hence determine the relaxation of the flux density profil
The results of this exercise are displayed in Figs. 5 an
where for completeness and clarity we present bothRn and
R, the normalized and unnormalized relative relaxation ra
for B(x) increasing and decreasing in magnitude. We no
however, that the normalized relaxation rate, a compo
quantity of two ingredients, has the drawback that it conta
the experimental errors or modeling approximations of
two constituents.

Figure 5~a! is seen to reproduce the major features of
pertinent observations of Nowaket al.1 ~see their Fig. 3!.
The fact thatBV1↑ andBV2↑, the location of the bottom of
the two valleys, corresponds to that encountered by Now
et al.,1 hence closely matchBf and 3Bf , ensues from our
choices for the parametersBf1L , Bf1R , j S1 , Bf2L , Bf2R ,
and j S2 , which were selected to account for the locatio
magnitude and structure of the peaks~P1↑, P2↑, P1↓, and
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e
e
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k

d

FIG. 4. Schematically illustrates the decay of the critical curr
density introduced in our model. We visualize that during the
cay, the location on theB axis of the boundaries~Bf1L , Bf1R ,
Bf2L , andBf2R! and of the summits~BS1 andBS2! of the triangu-
lar peaks~only one shown! remains fixed. The rate of decay of th
critical current densityj C(B) is assumed independent of the flu
density for the background curve@Eq. ~1!# but to vary smoothly at
the boundaries and linearly along the slopes of the triangular pe
Good agreement with the data displayed in Fig. 3 of Nowaket al.1

is obtained letting the rate of decayD j S1 / j S1 andD j S2 / j S2 , at the
summits of the triangular peaks to be' 1

2 D j 0 / j 0 , hence1
2 the decay

rate at the boundaries of the peaks, and to vary linearly along
slopes of the triangular peaks. Initially, for simplicity, we take t
triangular peaks to be centrosymmetric, hence, letBS15(BA1

1BB1)/2 andBS25(BA21BB2)/2. As j C decays with the location
of the boundaries and summit of the triangular peaks remain
fixed, the bases of the trianglesBA1 , BB1 , BA2 , andBB2 @see Eqs.
~2! and ~3!# migrate to new values, denotedBA18 , BB18 , BA28 , and
BB28 . Also, the left slope of a triangular peak becomes steeper t
that on its right, hence nowBS1Þ(BA18 1BB18 )/2 and BS2Þ(BA28
1BB28 )/2. The continuity ofj C(B) at the boundaries@Eqs.~1!–~3!#
yield 0.933, 29.54,233.188, and 113.08 kG forBA1 , BB1 , BA2 ,
andBB2 . For clarity, the amount of decay ofj C(B) is greatly ex-
aggerated in the figure.
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10 880 57M. A. R. LEBLANC AND DANIEL S. M. CAMERON
P2↓! in the local hysteresis curves. The depths of the vall
relative to their shoulders is mainly controlled by the choic
for f 1 and f 2 . Asymmetry in the structure of the valley
arises from the same feature that causes the asymmetry o
peaks in Fig. 3; namely, that (Bf1R2BS1).(BS12Bf1L)
and (Bf2R2BS2).(BS22Bf2L) for the centrosymmetric tri-
angular peaks~see Figs. 1 and 4!.

In our model, the peak straddlingB(x)50 arises from the
large j C at low fields and its strong dependence on magn
flux density.5 The latter properties are produced by the hea
ion irradiation.2,7–15 The feature that the measured peak

FIG. 5. ~a! displays the normalized initial relaxation rateRn

5uDB(x)/m0M (x)(D j 0 / j 0)u versus B(x) calculated forx/X5
2
3

using the decay ofj C(B) schematically illustrated in Fig. 4. Her
B(x) after descending in magnitude through zero is ascendin
magnitude in the opposite direction~see Fig. 1 of Nowaket al.1!.
This ‘‘theoretical’’ curve should be compared with the curve trac
by the open circle data of Fig. 3 of Nowaket al.1 The salient fea-
tures of the structure of the theoretical curve persist but abso
and relative values ofM (x) change with the location of the mea
suring probe. In particular, the position of the minimaBV1↑ and
BV2↑ approachBS1 and BS2 , hence the ratioBV2↑/BV1↑ ap-
proachesBS2 /BS1'2.5 from above as the probe is placed closer
the surface of the specimen. Careful consideration of Figs. 2 a
indicate why this occurs with our model.~b! complements~a! by
displaying the corresponding initial relaxation rateR
5uDB(x)/Bn(D j 0 / j 0)u versusB(x), hence here the separately ca
culated ~and measured! quantity M (x) is not introduced. For
convenience, however,B(x) is normalized with respect to th
parameter Bn5(3m0 j 0XBref

1/2/2)2/3. When B(x)50,
R5(2/3)(x/X)/(B0 /Bn)1/2 ~see the Appendix!, hence the feature
that hereR(0)'1.0 is coincidental and a consequence of o
choices forx/X andB0 /Bn .
s
s

the

ic
y

not centered atB(x)50 may be due to the large demagne
zation factor encountered with the platelet specimens in
experiments.

The model generates detailed predictions regarding
evolution of ~i! the position along theB(x) axis of the bot-
tom of the valleys and~ii ! the structure of these valleys as
function of the locationx/X of the measuring probes. W
note thatBV1↑ andBV2↑, the location of the bottom of the
valleys along theB(x) axis occurs at slightly lower fields
thanBS1 andBS2 , the summits of the triangular peaks inj C
versusB. In our model, the values of the former depends
the location of the measuring probe~see the Appendix!. Here
BV2↑/BV1↑'2.8 whereasBS2 /BS1'2.5 ~see Fig. 1!.

The ‘‘acid test’’ of the predictive value of the mode
however, resides mainly in the curves it generates forR and
Rn @henceS(x) andSn(x)# versusB(x) descending in mag-
nitude. These predictions are displayed in Fig. 6. The fi
low field valley appearing in the graph ofRn(x) versusB(x)
descending in magnitude is, in a sense, an artifact of

in

te

4

r

FIG. 6. Complements Fig. 5 by displaying the correspond
‘‘predicted’’ initial relaxation ratesRn and R where nowB(x) is
descending in magnitude from a large value. Nowaket al.1 do not
report on the relaxation rate under these circumstances. Comp
these curves with the corresponding curves of Fig. 5 we note
the model predicts that, for any chosen location of the measu
probe, BV1↓.BV1↑, BV2↓.BV2↑ and BV2↓/BV1↓,BV2↑/BV1↑.
Further BV1↓ and BV2↓ approachBS1 and BS2 hence the ratio
BV2↑/BV1↑ approachesBS2 /BS1'2.5 from below as the probe is
placed closer to the surface of the specimen. Again, careful con
eration of Figs. 2 and 4 indicates that these results are gen
features of our model hence do not depend on our choice o
triangular structure for the peaks inj C(B) and our simple prescrip-
tion for the ‘‘background’’ decrease ofj C versusB.
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57 10 881VORTEX LOCALIZATION IN SINGLE CRYSTALS OF . . .
normalization with respect touM (x)u since the latter traces
pronounced peak in this range ofB(x) @see the upper curve
of Fig. 3 and Fig. 6~b!#. We note thatBV1↓ and BV2↓, the
bottoms of the valleys whenB(x) is descending in magni
tude appear at significantly higher fields thanBS1 andBS2 ,
the summits of the triangular peaks inj C(B). An important
related consequence is that the ratioBV2↓/BV1↓'2 is appre-
ciably smaller than the ratioBS2 /BS1'2.5. Again, we stress
that in our modelBV1↓, BV2↓, and their ratio depend on th
location of the measuring probe.

SUMMARY AND CONCLUSION

We have developed an empirical model which semiqu
titatively accounts for the location and structure of peaks
the local magnetizationuM (x)u and a central peak and va
leys in the local relaxation rateRn(x) versusB(x) observed
by Nowaket al.1 in a single crystal of an anisotropic high-TC
superconductor containing columnar defects. In agreem
with observations, the location of the peaks and valleys
their structure depend on~i! whetherB(x) is ascending or
descending in magnitude and~ii ! the position of the measur
ing probes. As a consequence the ratios for the values
served for various salient features~namely, BP2↑/BP1↑,
BP2↓/BP1↓, BV2↑/BV1↑, andBV2↓/BV1↓! all depend on~i!
and~ii !. These are generic features of the model although
detailed variations are dependent on the prescription sele
for the background curve and the structure of the peak
j C(B).

The model visualizes that after heavy ion irradiation t
critical current densityj C(B) remains a continuous functio
of the flux density but rises steeply in the low field range a
now exhibits peaks whose summits situated atBS1 andBS2
on theB axis are linked to the matching fieldBf .1,21–25For
convenience we introduced centrosymmetric triangular pe
instead of more realistic exponential or Gaussian peaks.
sumably the width and height of these two peaks is in
enced by the random distribution of the columnar defects
an ordered lattice of defects would give rise to higher a
narrower peaks.

To reproduce the observed valleys in the relaxation r
versusB(x) we introduce a simple variation of the decay ra
along the slopes of the triangular peaks ofj C(B) where the
decay rate is smaller by a factor of' 1

2 at the summits rela-
tive to that along their bases. For convenience and in g
agreement with observations this factor is chosen the s
for both summits. We may conjecture that for a perfec
ordered lattice of columnar defects the decay rate ofj C at the
center of the peaks might approach zero.

Our approach provides a good estimate of the depend
of j C and of its decay rate on the magnetic flux density fro
the measurements ofM (x) andS(x) versusB(x) of Nowak
et al.1 and makes detailed predictions regarding the un
ported curve ofS(x) versusB(x) descending in magnitude
A good fit to the measured curves is obtained by taking
‘‘summit’’ ratio BS2 /BS1'2.45 in the curve ofj C versusB.
This is seen to generate the observed ‘‘valley’’ ra
BV2(x)↑/BV1(x)↑'3. Future applications of first principle
models26,27 will hopefully account for the appearance of th
peaks in the structure ofj C versusB, the variation of the
decay rate ofj C along these peaks and the correspondenc
-
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these features withBf and multiples ofBf . Consequently
these theoretical efforts should shed light on the phys
origin of the ratioBS2 /BS1'2.5 which emerges from ou
analysis of the observations of Nowaket al.1

APPENDIX

Calculation of B(x) profiles. In our framework, where
j C(B) exhibits a peak or peaks, four scenarios for the
quences of configurations of flux density profiles~and their
‘‘images’’! need to be envisaged as an increase~decrease! of
the magnitude of the applied fieldHa induces field shielding
~flux retaining! critical current densities in the specime
These four scenarios are displayed schematically in Fig
These sketches show the sequences ofB profiles forHa as-
cending~descending! in magnitude if we regard the surfac
and the center of a specimen of idealized planar geometr
be situated atx50 and x5X ~x5X and x50!. Note the
appearance of a profile labeled 6~7,8! and the absence of tha
labeled 2~4,3! in Fig. 7~b! @7~c!, 7~d!#.

To illustrate the calculation of these sequences ofB(x)
profiles for j C(B) displayed in Fig. 1 we focus on a repre
sentative case, namely, that labeled 7 in Fig. 7~c!. To fix
ideas we consider that this profile pertains to the first tri
gular peak inj C(B).

For idealized planar geometry, the Maxwell equation¹
3B5m0j , together with the critical state assumption thaj
5 j C(B), reads

dB

dx
56m0 j c~B!. ~A1!

First we considerB(x) ascending in magnitude. For the re
gion 0<x<x1 , where j C is given by j C5 j 0Bref

n /(B1B0)n

@Eq. ~1!#, integration of Eq.~A1! leads to

FIG. 7. Illustrates the four scenarios in the sequences ofB(x)
profiles which can be encountered asm0Ha ascending or descend
ing in magnitude generatesB(x) profiles traversing a peak in
j C(B). We note that the location of the measuring probe as wel
the ‘‘structure’’ of j C(B) ~Fig. 1! prescribing theB(x) profiles
determine which scenario is encountered.
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10 882 57M. A. R. LEBLANC AND DANIEL S. M. CAMERON
B~x!5$~Bi1B0!n112m0~n11! j 0Bref
n x%1/~n11!2B0 ,

~A2!

whereBi5m0Ha is the flux density just inside the surface
Letting B(x1)5Bf1R gives

x15
~Bi1B0!n112~Bf1R1B0!n11

m0~n11! j 0Bref
n . ~A3!

For the regionx1<x<x2 , where j C5JC1R5 j S1$BB1
2B(x)%/$BB12BS1% @Eq. 2~b!#, integration of Eq. ~A1!
leads to

B~x!5BB12~BB12Bf1R!em0 j S1~x2x1!/~BB12BS1!. ~A4!

Letting B(x2)5BS1 , gives

x25
~BB12BS1!

m0 j S1
lnH BB12BS1

BB12Bf1R
J 1x1 , ~A5!

wherex1 is given by Eq.~A3!.
For the region x2<x<X, where j C5 j C1L5 j S1$B(x)

2BA1%/$BS12BA1% @Eq. ~2a!#, integration of Eq.~A1! leads
to

B~x!5BA11~BS12BA1!e2m0 j S1~x2x2!/~BS12BA1!, ~A6!

wherex2 is given by Eq.~A5!.
For Ha descending in magnitude we focus on theB(x)

profile shown by the dashed curve, also labeled 7 in F
7~c!. The procedure already outlined leads to

B~x!5BA11~Bi2BA1!em0 j S1x/~BS12BA1! ~A7!

valid for 0<x<x1 , where

x15
~BS12BA1!

m0 j S1
lnH BS12BA1

Bi2BA1
J ~A8!

and

B~x!5BB12~BB12BS1!e2m0 j S1~x2x1!/~BB12BS1! ~A9!

valid for x1<x<x2 , where x2 is given by Eq.~A5! but
wherex1 is now given by Eq.~A8!. Also,

B~x!5$~Bf1R1B0!n111m0~n11! j 0Bref
n x2x2%

1/~n11!2B0
~A10!

valid for x2<x<X.
The parameters which determine the ‘‘backgroun

j C(B) @Eq. ~1!#, namely,j 0 , Bref , B0 , andn are selected to
provide a satisfactory description of the observed ‘‘ba
ground’’ curve for uM (x)u versusB(x) ascending or de-
scending. The parameters which determine the locat
width and height of the triangular peaks inj c(B), hence
Bf1L , Bf1R , j S1 , Bf2L , Bf2R , and j S2 are selected to give
a good description of the peaks observed foruM (x)u versus
B(x) ascending or descending in magnitude.
.

’

-

n,

The requirement thatj c(B) be continuous is met by the
conditions that

j C~Bf1L!5 j 0S Bref

Bf1L1B0
D n

5 j C1L5 j S1S Bf1L2BA1

BS12BA1
D ,

~A11!

j C~Bf1R!5 j 0S Bref

Bf1R1B0
D n

5 j C1R5 j S1S BB12Bf1R

BB12BS1
D

~A12!

which prescribe the parametersBA1 andBB1 , and the similar
conditions

j C~Bf2L!5 j 0S Bref

Bf2L1B0
D n

5 j C2L5 j S1S Bf2L2BA2

BS22BA2
D ,

~A13!

j C~Bf2R!5 j 0S Bref

Bf2R1B0
D n

5 j C2R5 j S2S BB22Bf2R

BB22BS2
D

~A14!

which dictate the parametersBA2 andBB2 . In order that the
triangular peaks be centrosymmetric we write

BS15~BA11BB1!/2

and

BS25~BA21BB!/2. ~A15!

Calculation of relaxation rate R(x). The local relative
relaxation rateR(x) is calculated by letting the critical cur
rent density parametersj 0 , j S1 , and j S2 decay to j 085 j 0

2D j 0 , j S18 5 j S12D j S1 , and j S28 5 j S22D j S2 in the expres-
sion for theB(x) profiles. To generate differences in dec
rates for j c(B) along the triangular peaks relative to th
prevailing along the background curve we write

D j S1

j S1
5 f 1

D j 0

j 0

and

D j S2

j S2
5 f 2

D j 0

j 0
. ~A16!

We also stipulate that~i! j c(B) remains continuous as i
decays, and~ii ! the boundariesBf1L , Bf1R , Bf2L , and
Bf2R as well as the position of the peak centersBS1 andBS2 ,
all remain fixed as illustrated in Fig. 4. These conditions th
dictate that the relative decay rate ofj c vary linearly versus
B along the slopes of the triangular peaks. Stipulations~i!
and~ii ! prescribe the evolution of the parametersBA1 , BB1 ,
BA2 , andBB2 to a new set denotedBA18 , BB18 , BA28 , andBB28
via Eqs.~A11!–~A16!. We note that the triangular peaks d
not remain centrosymmetric asj c(B) decays since the slop
on their left becomes steeper than that on their right~see Fig.
4!. This feature of our model will, however, play a role on
after appreciable decay has occurred. For the calculat
displayed in Figs. 4 and 5 we have focused only on the ini
decay rate.
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Introducing j 0 , j S1 , and j S2 and the corresponding set o
parametersBA18 , BB18 , BA28 , andBB28 into the expressions fo
B(x) @viz. Eqs. ~A2!–~A10!# for the profile under scrutiny
we then calculate

R~x!5UBf~x!2B~x!

Bn~D j 0 / j 0!
U

and
K

ee

um

c,

.

F

bl
.

ys

u-

.

Rn~x!5R~x!/um0M ~x!u/Bn

for various selected locations of the flux density sensor in
specimen. HereBf(x) denotes the infinitesimally relaxe
profiles. We note that our results also pertain to infinite c
inder geometry by substituting (R2r )/R for x/X in the ex-
pressions for the sequences ofB(x) profiles.
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