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Quasiclassical approach to transport in the vortex state and the Hall effect
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We derive generalized quasiclassical transport equations that include the terms responsible for the Hall
effect in the vortex state of a clean type-Il superconductor, and calculate the conductivity tensos-loaea
superconductor in the high-field regime. We find that below the superconducting transition the contribution to
the transverse conductivity due to dynamical fluctuations of the order parameter is compensated by the modi-
fication of the quasiparticle contribution. In this regime the nonlinear behavior of the Hall angle is governed by
the change in the effective quasiparticle scattering rate due to the reduction in the density of states at the Fermi
level. The connection with experimental results is discuss®@163-18208)06117-1

I. INTRODUCTION responsible for the Hall effect in a charged superfluid. We
solve the equations of this quasiclassical theory to obtain the
In recent years a significant body of work has been delongitudinal and transverse resistivities in the mixed state.
voted to the better understanding of the Hall effect in theWe choose to consider astwave superconductor, as both
mixed state of type-Il superconductors, which has remainethe normal state and superconducting properties of the low-
a theoretical puzzle for almost thirty yedrs. The T, compounds are well known, and comparison between
phenomenologicaf theories predict that the Hall angle in theory and experiment is fraught with less ambiguity; how-
the flux-flow regime is either identical to that in the normal ever the approach developed here can easily be generalized
staté or constant and the underlying microscopic basis for to consider superconductors with other ttlawave symme-
recent generalizatiofss not well understood. Theories that try.
make use of the time-dependent Ginzburg-Landau equations The microscopic Green'’s function contains all the infor-
(TDGL) find that the Hall conductivity is not modified in the mation about the single-particle properties of the system. In
superconducting stateThese predictions are at variance particular, it oscillates on length scales of order of the in-
with the strongly nonlinear behavigas a function of mag- verse Fermi wave vectd{f‘l, However, when calculating
netic field found in experiments performed on both IGw-  transport coefficients, we are for the most part only interested
materials® and the highF, cuprates:’ For dirty supercon- in the long-wavelength response. It is then sufficient to de-
ductors (<&, wherel is the mean-free path arg) is the  termine the envelope of the Green’s function rather than its
superconducting coherence lengtinansport coefficients can detailed form. In the quasiclassical approach the rapid oscil-
be determined from microscopic theory by a straightforwardations associated with the presence of the Fermi surface are
expansion in powers of the order parameter,The results integrated out of the basic equations and slower varying
of such a calculation for the transverse resistRfitgxplain  quantities such as external fields or the self-energy are ex-
qualitatively the sharp increase in the Hall angle below thganded around their values at the Fermi surface. The result-
transition observed in experimefdlthough, to our knowl- ing transportlike equations contain the microscopic physics
edge, no systematic comparison has been maae provide relevant to the problem and are easier to solve. The basic
the physical basis for a generalized TDGL approach, irpremise of quasiclassical transport theory is that all macro-
which the relaxation rate is assumed to be complex, rathescopic physical quantities vary slowly on a microscopic
than purely real, to allow for a modification of the transverselength scale, and that all the relevant momenta are small
transport coefficients’®*!* The small parameter in the ex- compared to the Fermi momentups. This approximation
pansion of the microscopic equations is proportional to botthas been applied successfully to study transport phenomena
the order parameter and the mean-free path, therefore, it ia superfluid$® and superconductorsand to investigate the
not small in the cleanl& &) limit. In this regime a straight- behavior of the unconventional superconduct8rRecently
forward expansion is not possible; the TDGL equations ardt has been used to analyze the most relevant contributions to
not applicablé?**and so an alternative approach is neededhe Hall effect in a dirty superconductor in the limit of iso-
to determine the transverse transport coefficients. lated vortice$® as well as to investigate the forces acting on
In this work we develop an approach to calculate thea single vortex in the clean regin®.
transport coefficients, including the Hall effect, of clean In the next two sections we present a derivation of the
type-ll superconductors in the vortex state and present thgeneralized quasiclassical equations, which include all the
results of a calculation of the Hall conductivity of a clean terms contributing to the Hall effect in the mixed state of a
s-wave superconductor in the mixed state near the uppeslean type-ll superconductor in the high-field regime. Sec-
critical field, H.,. The method is based on the quasiclassication Il introduces a general quasiclassical formalism and the
approximation to the microscopic theory, due originally, in basic ideas involved in the analysis of transverse transport in
the context of superconductivity, to Eilenbertfeand Larkin  the quasiclassical approximation, illustrated by application to
and Ovchinniko®> which we generalize to include the terms the simple case of a normal metal. We show how the stan-
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dard Drude results for longitudinal and transverse conductivebtain terms linear in the external field. To integrate out the
ity are obtained within this quasiclassical approximation. Inrapid oscillations associated with the presence of the Fermi
Sec. lll we use the same approach to derive a generalizaticsurface we first change variables fromandx’ to center of

of the standard quasiclassical approximation for supercommass and relative coordinat&&=(x+x’)/2 andr=x—x’,
ductors to include the terms responsible for the transversand carry out a Fourier transformation in the latter according
conductivity and obtain linearized transportlike equations forto

a clean superconductor. To solve this system of equations

near the upper critical field we employ the approximation of coRr= | &
Brandt, Pesch, and Tewofdt(BPT), in which the normal (P.R)

part of the matrix propagator is replaced by its spatial aver- . . . , .
age over a unit cell of the vortex lattice, while the exactm a translationally invariant system the Green's function

spatial dependence of the order parameter is retained. Usirf} ly depends on_'ghe relative coordinate. Therefore, d_epen-
an operator formalism, we are able to solve the leading-orde nce on the position of thg center of masappears only in
equations for the distribution function in Sec. IV, and obtainN€ presence of ex_ternal_ fields. To treat the effect_ Qf slowly
the longitudinal and transverse conductivities within linear-'2Y'N9 fields quasiclassically we expand in quantities vary-
g on the length scale of the wavelength of these fields,

response theory in Secs. V and VI, respectively. In the Ias'l.nhiCh is equivalent to expanding in powers Bf. If A(x,

section we summarize the results and compare them with thel" . i
existing experimental data —iV,) is a local operator that depends only on position and

momentum and acts on the Green’s funct®(x,x’), then

r r .
R+§,R—§)exp(—|pr). 4

Il. QUASICLASSICAL APPROACH TO TRANSPORT
IN A NORMAL METAL f d3rexp(—ipr)A(x,—iV,)G(x,x")

A. Mixed representation and the standard quasiclassical )
i r i
equations R+§,—in—§VR)

zf d3rexp(—ipr)A
Our starting point is the microscopic Dyson’s equation

r r
d _R__
_a_r—z(—iVx)—fd4yE(x,y) G(y.x")=8(x=x") XG|R+ 3R 2)
(1) [ s i v [ r r
for the Green’s function _J drA| R+ 5Vp.p=5Vr|G|RT 5. R=3

G(x,x")==(T ()¢ (x")). (2)
Here ¢(x) and ¢(x) are field creation and annihilation op-
erators, which depend on the four-vector (x,7), angular  The final expression can be written #G, where the
brackets denote the statistical average, and the opefator “circle-product” is defined a&2
arranges the field operators in ascending order of imaginary
time 7. In Eq.(1) ¢ is the single-particle energy operator, and i
S is the self-energy that may be due to interactions or impu- ~ A(P.R)°B(p,R)= eXF{E(VDZVRl_vplsz)
rity scattering, its exact form has to be determined from mi-
croscopic considerations. Dyson’s equation can also be writ- XA(P1,R1)B(P2,R2)|r,=r,=r- (6)
ten in the form

><exq—ipr)A(RvL IEVp,p— IEVR)G(p,R). (5)

Using this definition, the right- and left-hand Dyson’s equa-

J _ R - tions can be written in terms of the mixed set of varialges
G(x,x") ﬁ—g(ﬂVx,)}—f d*yG(x,y)2(y,x") andR as
J
=8(x=x"). 3 (— a—T—g[p—eA(T)])oG(p,R;r,r')

The operators in this equation are understood to act on the

Green'’s function on their left. It should be emphasized that , ,

Egs. (1) and(3) contain the same physical information and _f dr % (p,Ri7,7)°G(p,R; 71,7 )= 6(7=7"), (7)
only differ in the form of writing, i.e., the same functidd

satisfies both. We will use the terms right-hand and left-hand d

Dyson’s equation for Eqg1) and(3), respectively. G(p,R;, T')"(aT, —([p—eA(r’)])

The derivation of the quasiclassical equations given here
follows the general approach of Rainer and Seteffeand
Eckern and Schmié® First we consider the linear response —J drG(p,R;7,71)°2(p,R;71,7")=8(7—17"). (8)
of a metal to a constant uniform electric field described by a
vector potentialA(7)=Aexp(wy7). To incorporate the vec- Direct expansion of Eq€7) and(8) in powers of the spatial
tor potential into the microscopic equations we replace theyradient is not possible since in the definition E8). of the
momentum operator by its gauge-invariant counterpartircle-product this gradient is coupled to derivatives with
{(—iVy)—{[—iV,—eA(7)], and expand this expression to respect to momentum, and the Green’s function varies rap-
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idly with momentum neamp;. To avoid this problem we it may be necessary to expand terms to different order in
make a transformation from the set of variablpsR) to the  gradients to account for all the contributions to a particular
set (5,£,R), wheres is a parametrization of the Fermi sur- physical quantity.

face, and integrate the quantum-mechanical equations over It is convenient to Fourier decompose the integrated
the quasiparticle energy before expanding. The integrated Green’s function into Matsubara frequencies

Green'’s function

1 g(S,R;T,T’)ZTZ 0(s,R;w,, 0 )exXp —iw,7+iwy "),

. "N . ’ n,n’
g(s,R;7,7")= ﬂ_f d{G(p,R;7,7") 9 (13)
here w,, are the fermionic frequencies,=(2n+1)=nT.

hen the basic transport equation of the quasiclassical for-
malism becomes

only depends on the components of momentum parallel t
the Fermi surface and the remaining dependence andR

is slow. We now transform Eq$7) and (8) for the full mi-
croscopic Green’s functio® into equations for the quasi-
classical propagatog. This quasiclassical propagator will
play the role of a distribution function in the resulting trans-

[iwp—iw, +iv(s)VRII(S,R; 0y, @wn)

portlike equation. —T2 [0(s,R;wn,0)9(S,R; 0, 1)
Let us first compare terms of zeroth order in the gradient ok
expansion of Eqgs(7)and (8). Since the imaginary time —g(s,R; 0w, w) 0(S,R; 0y, ) ]+ eVA[O(S,R; w,,
varies between 0 and T/ whereT is temperature, the first
term in the equation gives, after integration, a contribution of — @0, @n) ~9(S,R;0n, 0+ wo) ] =0. (14)

orderTg. If we assume that th_e self-energy varies slowly forrna exact form of the self-energy;, is determined from
momenta close to the Fermi momentyp}~p, we can  microscopic theory. In principle, all higher-order terms in the

approximate spatial gradient can be included in this equation consistently
using the definition of the circle product.
- It should be noted that, in the absence of a perturbing
d , .. )G(p, ...~ - | dEG(p, ... ; . . . .
f £2(p JG(p )=2(pr )f ¢G(p ) potential, or impurity scattering leading to the appearance of

the self-energy, the Green’s function is independent of the
coordinateR and is diagonal in frequency space, and there-
fore Eq.(14) is trivially satisfied by any functiomy. This is

EO'(S’ .. .)g(S, .. ) (10)

On the other hand, the term involviriggives a much larger = i 4 - ; ,
contribution since the integration region includese;. Be- ~ NOt surprising since in subtracting the right-hand Dyson's

cause of this term and th&function on the right-hand side equation from the left-hand equation the information about a
the equations cannot be integrated directly. Instead, we sutparticular solution of the inhomogeneous equation has been

tract Eq. (8) from Eq. (7) to obtain a homogeneous form lost. The particular solution describes the unperturbed non-

before integrating term by term and expanding in the gradi_interacting electron gas, and is obtained by integrating the

B _ . _l . .
ents. The zeroth order term involvings then cancels. Ex- fUnction Go=[iw,—{(p)] ~ over the quasiparticle energy
panding to first order we obtain to find the quasiclassical distribution function of a normal

metal,go= —isgn(w,). This function serves as input for any
perturbative approach to transport in a metal.

J dZ{Geo{[p—eA(7")]—{[p—eA(7)]°G}
B. Semiclassical treatment of the magnetic field

~—eV[A(F)—A(P)]g+iVVrg, (11) and the Lorentz force

Equation(14) is sufficient to analyze longitudinal trans-
where the Fermi velocity is defined as port in a normal metal but it has to be generalized to deter-
mine the Hall conductivity. If the vector potentigl(R) de-
224 scribing the magnetic field is taken to be of ordemfall”
V= [?—p(pf). (12 the field itself,H=V x 4, becomes of order (smal)” % and
the Lorentz force, which is proportional to both electric and
If the spatial dependence of the distribution function is de-magnetic fields, disappears from the perturbative expansion
termined by the wave vectar of an external field, the prod- of the quasiclassical equations. This observation led R&iner
uct vg is not necessarily small compared to the temperaturéo point out that in order to analyze the Hall effect in a
and the self-energy, so that this term has to be retained in theormal metal, the vector potentiz2l(R) must be considered
leading-order equation. Since the small parameters in the exas a leading-order quantity and should be included in the
pansion are of order I¢\), where\ is a typical wave- equations semiclassically rather than being treated perturba-
length of the electric field, for the terms involving the exter- tively. Now the quasiparticle energy depends on the gen-
nal vector potential, or, if the self-energy is due to impurity eralized momenturp—eA—eA(R). This replacement is ex-
scattering, 1K;l), { must always be expanded to one orderact. The semiclassical approximation, which is applicable in
higher in small quantities than other terms in order to obtairthe long-wavelength limit where the quasiclassical approach
a contribution of similar order. It should also be emphasizeds appropriate, treats the momentum operator asiamber.
that, since there are several small parameters in the problefherefore in the transformations described in &) the mo-
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mentump and the coordinat® are no longer independent | ]
variables, rather, they are coupled by the presence of théV(S)VR*"e(VXH)% 9(s,R;wp, 1)
. . . I
vector potential, which depends upon the coordinates. As a
result, the gradient expansion of the integrated Green's func- 4 [jp —iw, ]g(s,R;w,, )
tion cannot be carried out independently in the Fermi-surface
parametrizatiors and the spatial variabl®. For a general
transformation of variables from the sep,R) to the set ~T2 [o(s,Riwn,0)9(S,R; 0, @)
(gvsi vR) ok
5 0w o o 9 —9(s,Rjw,, @) o(s,R; wy, 0,/)] +eVA[g(S,R;

=—+ —t 15
R, R, IR, Il IR, IS (15) —wg,wy)—9(s,R; 0, , 0, + )] =0. (21

d af 9 I8 d ;
= _§ — (16) C. Linear response
9Py IPa 24 IPo IS

In general, Eq(21) is a nonlinear equation. To calculate
fansport coefficients it is sufficient to keep only the terms
Inear in the external perturbation—in this case in the electric
field—and determine the Green’s functignwithin linear
response. We separate the propagator into a leading term and
a part linear in the perturbing potential

where the derivatives on the right-hand side are computed
constant/,s,R rather tharp,R. Using the explicit semiclas-
sical R dependence of ands,

J . dA dA
‘ =—e—§ B=—evﬁ £, (17)
iR, apg IR, iR, 1 " 1
g:gO(wn)f 5‘”n"‘)n'+g (S!R;wn ,(1)0)? §wn,wnr+w0'
ds; Js; dA (22)
= —e - 2F, (18 _ o -
IR, pg IR, If the self-energy is due to elastic impurity scattering, it can

be separated in a similar way intg, ando(*). As noted the
equation for the leading-order terngg and o is satisfied
trivially; the terms of linear order are given by

we obtain from the expansion of the terms involvifig

f d{(—¢[p—eA(r)—eA(R)]°G ag»
[iwo+ og(—)—0ootiv(s)Vr]gP+ie(vX H)
+Ge{[p—eA(7') —eA(R)]) 7P|
=(evA+a™M)[go(—) ol 23
”J dg( —{[p—eA(r)-eA(R)]G Here we have used a short-hand notatip* go(w,) and
0o(—)=9o(w,— wg). This equation is the basis for the
, 989G g dG analysis of transport in a normal metal. It has to be solved
+{p—eA(r’) —eAR)]G+i %ﬁ_ﬁa_p” together with the self-consistency condition relating the
change in the self-energy to the modification of the Green’s
99 function g®).

——eV[A(7")—A(7)]g+ivVgrg+ie(vXH) ap|’ Since, throughout this work, we will be concerned with

(190 the electrical conductivity, we have to define the current in
terms of the distribution function. It is well knowhthat, if

wherep; denotes the component of the momen rallel . . . . .
By P o in the microscopic equation for the current density

to the Fermi surface. In the last line of E49) we have used

the result
i00==T> | d%pG(p,R—X )~ EA,
9 9G 9l IG| ar IG [ ¢ ds I IS |IG m o, m 24
gp IR IR dp| dp, IR, |dp, IR, IR, Ip,|ds;
the integration over energy is carried out before summing
G dA, 0Ag|ds; IG over frequencies, the contribution from the high-energy re-
“UagR, T 9R;  dR,|dps IS gions (far above and below the Fermi surfaaxactly can-

cels the diamagnetic term in E@4). Then the quasiclassical

VG +e(vX H)ﬁ (200  expression for the current becorfit®
0
The new term is the familiar Lorentz force driving term of j(R)=wN(O)eT§ f d*sv(s)g'V(s,Riw), (25

the classical Boltzmann transport equation. Here it appears

on taking into account correctly the semiclassical depenwhereN(0) is the density of states at the Fermi surface. The
dence of the momentum on the external field. The basic quaroblem of calculating the transport coefficients of a normal
siclassical equatioil4) now takes the form metal is now fully defined.
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D. Conductivity of a normal metal Again, the response function is nonzero in the intermediate

As an example of the usefulness of the quasiclassicdf9i0n only. In the regimer.7<1 it is sufficient to solve the
method we will use it to determine the conductivity tensor oféduation perturbatively, namely,

a normal metal in a magnetic field. We consider an experi- 2ev(s)A
mental arrangement with constant electric and magnetic g<H1)= - —F—F—+ 40, (33
fieldsE=Ex andH=Hz. We also assume a spherical Fermi wot 1
surface 5
69= Lw vAsingsing (34
v=u(sinfcosp, sindsing, cos) (26) g (wo+1I7)2 ¢ '

and include the effect of isotropic impurity scattering in the The transverse current obtained from the correctigris, as
Born approximation, so that the self energy is given by ~ expected,
jy=—ono.TE. (35

1
_ 2
7= 2Tf d*sg, (27) We have therefore reproduced the results of the Drude theory

_ o o using the quasiclassical formalism.
where 7 is the quasiparticle lifetime. The unperturbed

Green’; function is given bgy= —isgn(w,), and therefore IIl. QUASICLASSICAL EQUATIONS
o= —isgn(wn)/27. . N FOR A SUPERCONDUCTOR
First consider the longitudinal dc conductivity. In the ab-
sence of a magnetic field E(3), becomes In this section we generalize the approach developed in

Sec. Il to derive a set of quasiclassical equations that can be
. i @ used to analyze both longitudinal and transverse transport in
lwot+ 5-[sgnwn) —sgniwy—wo)]19 superconductors.

— —i(evA+ a(l))[sgr(wn)—sgr(wn— wo)]. (29) A. Gorkov equations

Gorkov's equatiorfs for a matrix Green’s functiofs re-
place Dyson’s equations in a fully microscopic approach to a
superconductor. The diagonal elements of the matrix Green’s
¥unction

Since the driving term in Eq28) is proportional tovA, it is
evident that the angular dependenceb? is given by that
dot product, and there is no correction to the self energ
since the angular average @) vanishes. Then it is obvious

from Eq. (28) thatg®®¥=0 whenw, and w,— w, have the (G -F
same sign. Otherwise, in the intermediate frequency region =( + _) (36
where wy> w,>0, F G
are the particle and hole propagators,
1_ 2ev(s)A 29 o
R ) 29 G(x,x')=G(x',%); (37

Integrating over the Fermi surface, carrying out the summalOr singlet pairing, the off-diagonal elements are related to

tion in the definition of current density, and analytically con- the probability amplitudes for the destruction or creation of a
tinuing to the real external frequency accordingi Mb—>a Cooper pair by
+i 8, in the dc-limit (0—0) we recover from this solution

the standard Drude theory result for the current (1) apF (X = =(Toa(X) P15(X")), (38)

(i) apF X)) =(T L) PR(X)), (39)

where&y is the Pauli matrix. Then the right- and left-hand
Gorkov equations are
We now turn on the magnetic field. Writing the expres-

1
j= §N(O)e2v27E=a'nE. (30)

sion for the Lorentz force in spherical coordinates it is eas d A Lo~ 2 - ,
o check that P d — o =iV, + A0 |BxX)
J J 4,3 - " — ’
e(VXH)—=—w.—, (31) —f dy2(x,y)G(y,x")=8(x=x") 1 (40)
Py dd
and the linearized transport equation becomes 2 N DS N
port &q BXX) | 50— L+ Vo) + A (X))

. i . (9 (l)
lwgt+ Z_[Sgr(wn)_Sgr(wn_wo)]_lwc_ g

d¢ —f dUyG(x,y)S(y,x)=8(x—x") 1. (41

=—iev(s)A[sgn w,) —sgn w,— wq)]. (32 The matrix order parameter
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0O A erators describes the motion of particles and holes, respec-
A= _ A* 0 (42) tively, _and the appropriate gau_ge—invariant derivative is d_if_—
ferent in each case. To determine the transverse conductivity

all contributions of the order of the cyclotron frequensy
, i =eH/mc have to be included in the equations. In a type-ll|
is related to the off-diagonal elements of the Green’s fU”C'superconductor in the vortex state, the coherence leggth
tion by sets the length scale for spatial change of the order param-
eter. Near the upper critical field.,, the magnetic length
A=(2eH) Y?=¢,. This immediately implies that the ex-
pansion of the operatdi(p) has to be carried out not to first,
but to second order in spatial derivatives. The second-order
A*(x)=gF H(x+0x), (44) deriyative of¢ wit.h respect to momentum is, by_ definition,
the inverse effective mass tensor, which in the simple case of
a spherical Fermi surface becomes equal to the inverse ef-
whereg is the coupling constant. fective massm. In the expansion this term is coupled to
square of the spatial gradient, so that its contribution

A(X)=gF(x+0x), (43

B. Quasiclassical approximation

The general approach to the derivation of the quasiclassi- P 1
cal equations for superconductors is exactly the same as that ——V, VG~ TGocwCG (47)
of Sec. II. We introduce the vector potentidér) and.A(x) IPadPp m

of an electric and magnetic field into the energy operator,

transform the equations to a set of “mixed” variablesnd s comparable to that of the Lorentz force term and has to be
R by performing a Fourier transform in the relative coordi- taken into account. Neglecting terms quadratic in the electric
nate, and expand in gradients with respect to the center-ogng magnetic fields and assuming a Fermi surface with the
mass coordinate, after integration over the quasiparticle eneflection symmetryt(p)=¢(—p), we obtain the expansion
ergy. _ _ ) ] ) of the quasiparticle energy operator

Expanding the circle produdi —iV,)°G to first order in
gradients, we obtain . i .
{(=iV,)—=L(p) = VIV —2ieA(R)] - VA(7)

f drexp(—ipr){(—iVy—A(X)—A)G ie g 1
— g vxHI — gV -2ieA(R)
i _ .
*(Z(P)—zv[VR—Z'eA(R)] +%A[V—2ieA(R)], (48)

ie d .
VAT Z VXI5 C(RR). 45 {(+1V,)— £(p)~ VIV +2ieAR)]+VA(7)
On the other hand on expanding the operdtotiV,:) the
combinationp+iVg rather thanp—iVg appears after Fou-
rier transform in r. Consequently, the magnetic-field-
dependent terms arising from the expansionvegf in Eq.
(15 have the opposite sign, and

le H o 1 V+2ieA(R)]?
+?[VX ]%—B—m[ +?2le ( )]

ie )
—ﬁA[V+2leA(R)], (49

J' dBrexp(—ipr)E(+iv, —A(X')—A)G a?d ;im)ilar expressions for the operatafé+iV,:) and
J(—1Vy).
Now consider the remaining terms in the expansion of the
i _ microscopic Eqs(40) and(41). Here we are concerned with

— ( {(p+5VIVet2ieAR)]-VA(T') the change in the Hall conductivity of a superconductor rela-
tive to the normal-state value. This change involves the mag-

ie nitude of the superconducting order parametemhich ap-
+5(vx H)&—p)G(FLR)- (46)  pears in our analysis in the dimensionless combination
(AA/v). Itis then easily seen that linear terms in the gradi-

Subtracting Eq(46) from Eq.(45) we regain the result of the ent expan_sion_of the order parameter have to pe retained in
Sec. I B. The vector potentiall appears in the expansions (e equation since a typical term in the expansion
in different gauge-invariant combinations. This can be easily
understood if we remember that operafgr-iV,) acts on A
the annihilation operatay while operatorf(+iV,,) acts on A G A 1 . ~w (AA> &

[of 1

. + ; . — —ax——=G — (50
the creation operatay'. Then the time evolution of the op- R Ip A mu
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will contribute significantly to the change of transverse con-where the quasiclassical matrix propagator is, as uédal,

ductivity upon entering the superconducting state. Expanding
to first order in the gradients we obtain from E§)

A)B(xx) =G x)A(X) ) d¢p - g f
g(s,R;wn,wnr)=f7G(D,R;wn:wn')= fT g

—A(R,7)G(p,R)—G(p,RA(R, ) 54

i {a& oG 96 a&} i
+3 -

oA oG oG aﬁ}

+— |-z ==+ ==
R Ip JIp dR| 2|dp IR IR dp
and the order parameter is given by the self-consistency con-
5D dition
and, similarly,
dy[ —S(xY)G(y.x)+G(x,y)Z(y.x')
f Y= 2(xy)Gly Y)2ty.x)] AR)=gN(0) 7> f d%sf(s,R;wp,wp). (55
n
—>f dT]_(i(p,R;T,Tl)é(p,R;Tl,T')
Equationg53) and(55) are the generalization of the standard
quasiclassical theot§'°to include terms giving rise to non-
. R i1as o6 o6 o3 zero Hall conductivity. . _
-G(p,R; 7, m)2(p,R, 7,7 ) + AFS $+ a_p R Before we linearize Eq(53) and solve it to find the lon-

gitudinal and Hall conductivities, several comments should
be made. First, the vector potential of the magnetic field
i {ai a6 96 ai ) enters the quasiclassical equation explicitly in contrast to the
===+ =——1]. (52  case of a normal mettf. Eq. (21)]. This is readily under-

21 dp dR ~ IR Ip stood if we notice that in the last term on the first line of Eq.

Using the results of Eqs48), (49), (51), and(52), subtract-  (53) the matrixo,g— go, has only off-diagonal elements, so
ing the left-hand Gorkov-Dyson equation from the right- that the term involving/.A only appears in equations for the
hand equation, and integrating over the quasiparticle energgnomalous propagator. It would seem that the second term
we obtain the quasiclassical transport equation for a supeinvolving the vector potentiald [the last term in the second
conductor, which can be written using the matrix notation asine of Eq. (53)] is present even in a normal metal since the

follows: matrix o,g+go, has only diagonal elements, and, conse-
quently, this term contributes only to the equations for the
quasiparticle part of the matrix Green’s function. However,
in a normal metal in the presence of uniform electric and
magnetic fields the response function is spatially uniform,
and this term is irrelevant. In the superconducting state the
spatial variation of the quasiparticle Green'’s function is due
~ - - - to the spatial dependence of the order paramaten the
+evA[0,9(wy— wo,n/) —g(@n,wn — o) 0] vortex state, and this term describes the coupling of the cur-
rent, induced by the spatial dependence\@R), to the ex-
ternal field. Finally, the Lorentz force is accompanied by the
matrix propagator in a combinatiang+go,, and therefore
the Lorentz force does not act directly on the Cooper pairs.
This result is perhaps not too surprising as in a reference

i 00,0~ iy go,+Ag—gA+ivVg+evA(a,g—go,)

ie . . “n ie 0 A~ A
—%A(UZVQHVQUZ)?L§(V><H)a—pu(0'zg+g<7z)

ie . . - -
- ﬁA[Ung(wn_wvan’)_Vg(wn , W — @) 0]

~T> [0(s,R;wp, ) 9(S,R; 0y, 0/ frame associated with the center of mass the electrons have
oy opposite momenta, and hence there is no net force acting on
a pair.
i |dA ag

—9(8,R;0p, 0 ) 0(S,R; 0, 00) ]+ 5| o5 o~
9(s,Rion, 0 o(s,Riox, 0n) ]+ 5| -5 ap) C. Linear response

o We now use the approach given in Sec. Il C to linearize
do dg the basic equation in the external field. If we decompose the
ﬁa_pu propagator{:], self—energy&, and order parametek into a

leading-order terng,, oo, andA,, and a partdenoted by
index 1) linear in the applied electric field, the equation for

o9 oA i[oA 99 o9 oA| i
(%008 i[0d g g o] 1
p| JR| 2 L IP| JR IR apy ] 2

@K

+ 99 do| 1190 99 + 99 90 =0, (53  the Green's function of a superconductor in a magnetic field
p| dR| 2 L IP| JR IR apy] reads
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) N A~ A A A~ A A A~ A N A Aa e d A A A oA
lwn(0,90—0900,) +eVA(a,90—9007) — (0090~ Fo00) T Apdo— oA +ivVge+ E(VXH)a—W(Uz%*‘QoUz)

ie . _. N [
~ 5mA02V80+ Voo + 5

dAo 990 990 dAg

JR ap - Ip| 9R

i |dA, a§10+ 990 dAg
2| gp) R 4R dp|
i
2

do9 990 99 Iy
[ —— + —_
JdR dp|  dp| IR

2

909 390 990 ITg

apy R TR apy) " (56

while the equation for the response functigt) is given by
iVVgP+iwno gV —i(wn—we)g Mo+ AMge(—) —goA™M +AgH —gWA —[00gM — g ag( )]
i

A gya A A Ay~ A A A e Jd ~ Ay~
~Lo00(—) =G00I+ evA(o9™ — g ry) + evA(0:0( —) = Gora) + 7 (VX H) G(0:0 M+ g Mo)

Ay ag™  agM A,
IR dp ap; IR

i
2

—i—eA(& vgW+vgle )—i—eA[& Vgo(—)— Vg, +
2m z z 2m z 0 0Yz

i
2

i [9AD 9go(—) 3G AW
2R “ap | ap OR

dhy agV  ag® a&o}
__+__
p| JR JR apy
i

2

i [0AWage(—) g 9AW

s o'V ago(—) @ do'V
2| ap| JR JR |

JR p| * | JR

2

JR ap| * ap| JR

0oe 99V ag® a(}o(—)}

i [90g 99 99 a&o(—)} i {a&“) 90(—) . 900 a&(“}

apy apy JR JR apy

|
2|app R R ap -0 57

N |

The rest of this work will be devoted to solving these two tribution function, as is evident from the original
equations to determine the transverse electrical conductivitderivation!**® It does not apply when terms responsible for
of a type-Il superconductor in the vortex state. the Hall effect are taken into account, since they have the
To calculate the response of a superconductor it will beform of an anticommutator of a matrix operator with the
convenient to modify the definition of current given in Eq. Green’s function. Nevertheless, this normalization condition
(25). Since the diagonal elements of the matrix propagatofill prove useful in determining the quasiclassical Green’s

are related by Eq(37), it is easy to check that the current can fynction of a superconductor in a high magnetic field at ze-
be written as roth order.

1 _
iR=-37eN0 S [ dsvisig.-0), (68
@ IV. TYPE-Il SUPERCONDUCTOR

whereg; andg_l are the diagonal elements of the response IN A HIGH MAGNETIC FIELD

functiong). In the standard quasiclassical approach the dis- A. Model
gé?:gi't(i)gn”{ﬁ”?ft'on g also safisfies a “normalization  \ye consider a clean type-Il superconductor in a magnetic

field H close to the upper critical fieltl.,. Again we con-

sider a spherical Fermi surface, and impurity scattering is
E @(wn,wk)é(wk,wn,):_aw o - (59 treated in the Born approximation. The condition for a su-
o nen perconductor to be in the clean regiméd#sé&,. In fields not

In particular, using this condition for the leading-order dis- 00 far below the upper critical field the magnetic length

tribution function, which is diagonal in frequendgee Eq. = ¢or SO thatin the clean regimie>A. In type-Il supercon-
(57)], we find ductors the spatial variations of the internal field become less
pronounced as the superfluid density decreases with in-

ég(wn): -1 (60) creased applied uniform magnetic field. As a result, h&ar

internal fields can be assumed spatially uniform and equal to
However, it has to be emphasized that this normalizatiorthe applied field and the vortex lattice can be modeled by an
condition holds if and only if the gradient of the functign  order parameter of the same form as the periodic Abrikosov
can be written as a commutator of an operator with the dissolutiorf®
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length &,, therefore near the upper critical field the order

A(R)= kE Ckye'kyyexd—(X—Azky)z/ZAZ] parameter is globally suppressed in the bulk of the supercon-
y ductor. Consequently, spatial variations of the amplitude

ey ) |A|? can be ignored for fields close td.,. On the other
= & Ckye Y®o(x—A%ky), (61) hand, as the phase of the order parameter changesmby 2

around a single vortex, the rapid spatial variation of phase in
where®(x) is the lowest energy eigenfunction of the lin- the vortex state must be taken into account to determine the
earized Ginzburg-Landau equati@re., the eigenfunction of off-diagonal elements of the quasiclassical propagator. After
a harmonic oscillator with the Cooper pair mdds-2m and  averaging over a single unit cell, the remaining spatial de-
frequencyw,). The vector potential of the magnetic field has pendence of the amplitudd |? is determined by the nonuni-
been chosen in an asymmetric gau¢eR) =(0,Hx,0). The  formity of the electromagnetic fields; the relevant length
periodicity of the coefficienté:ky determines the type of vor- scale is the London penetration depth. Therefore, the
tex lattice. Here, we do not consider a specific periodicity,BPT approximation works very well for superconductors in
the only assumption made is that there are flux lines in théhe London limit k=X /§,>1; even for materials with
system; this solution, therefore, can serve as a model for Boderate values of it remains valid over a wide field range
rigid line liquid as well. below H.,. Numerical results obtained by Brafdtndicate
that the BPT approximation works extremely well as long as
B. Quasiclassical equations in the absence of an electric field the parameter {A/v)=<0.3. Since the field dependence of
and the BPT approximation the magnetic length is slowh ~ &y(H,/H)Y?, this means
. . . that the approximation can be used over almost the entire
First we consider the leading-order E@S6) and neglect  eqion of linear magnetization, where the order parameter is
terms of orderw.. Then the elements are suppressed.
1 1 In all of the following g stands for the spatially averaged
ivWg+AfT—A* = —A(fT)— ——A*(f), (62) distribution function. To determine the functiogs f, and
27 27 T, we solve Eqs(63) and(64) for the off-diagonal elements
. . of the matrix distribution function in terms af, and apply
[20,+V(V—2ieA)]f=2iAg+ I_<f>g_ I_<g>f, (63) the spatially averaged normalization condition of Ep) to
T T determine the diagonal part self-consistently. We introduce
the impurity renormalized frequency

i [
[20,—V(V+2ieA)]fT=2iA*g+ —(fT)g— —(g)f". i
T T ~ ~
(64) wp=wpt Z<g(wn)> (67)
Here angular brackets denote an average over the Fermi s

face. The normalization condition, E¢59), can be used in
this case so that

Whd rewrite the equations for the off-diagonal part of the
distribution function as

g?—ffl=—1, (65 f=[25n+v(V—2ieA)]1<2igA+i;<f)g), (68)

g+g=0. (66)

~ . il
To solve these equations we employ the approach due to ' =[2w,—V(V+2ieA)] 1(2|9A +;<fT>g>- (69)
Brandt, Pesch, and Tewordtwhich was first used in the
framework of the quasiclassical approximation by Pé§@i.  To proceed with this program we need to know the result of

In this method the diagonal elememsandg of the matrix  acting with the operatof2w,=+Vv(V*2ie.4)]~* on the or-
propagator are approximated by their spatial averages, whilder parameter.

the exact spatial form ak (R) is retained in determining the

off-diagonal functionsf and f'. The crucial observation is C. Operator formalism

that the diagonal part of the Green'’s function is periodic in

the center-of-mass coordind®with the same periodicity as
the order parameter. Performing a Fourier decomposition
the full Green’s function in the vectols of the reciprocal
flux-line lattice, these authdrsshowed that the Fourier com-
ponents of the Green'’s function with+ 0 are exponentially A
small[by a factor expt A?K?)] compared to the component a=-—[V, +i(V,—2ieHx)], (70)
with K=0. This component is, of course, the spatial average V2t X Y

of the Green’s function over a unit cell of the vortex lattice,
which suggests the above approximation.

The diagonal part of the distribution function depends on
the amplitude of the order parameter, but not on its phase.
The length scale for the suppression of the mean-field orderFhese operators obey the usual bosonic commutation rela-
parameter amplitude by a single vortex is the coherencéons[a,a’]=1.We now interpret the Abrikosov solution as

Since the order parameter given in Ef1) is a superpo-
0sf;ition of the lowest-energy eigenfuctions of a harmonic os-
cillator centered at different vortex cores, we introduce the
raising and lowering operators

aT=—%[VX—i(Vy—2ieHx)]. (71
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the ground state of this ensemble of oscillatars |0). The W(u)=e‘“2erfc(— iu), (79
higher eigenstates of the system are generated by the stan-
dard formula and W™ is themth derivative of the functiotW. Equation
+ (77) is the main result of the operator formalism developed
a'[n)=vn+1|n+1). (72)  here: it allows further progress towards a solution of the

This operation excites oscillator states centered on each vofiuasiclassical equations to be made.
tex line so that
D. Type-Il superconductor in high magnetic field

Iny=2, C, e WD (x—AZ%k,). (73 Guided by the work of Eilenberg&rand Pesck® we
ky make an ansatz solving E¢68) for an s-wave supercon-

Similarly we can introduce conjugate operators correspondductor. This ansatz makes use of the fact that the term de-
ing to A*=(0|, the raising and lowering operators for thesePendent on impurity scattering in the right-hand side of the
states are now defined as-(a)* andb'=(a")*. Wide use €quation renormalizes the amplitude of the order parameter
of bosonic operators for the description of the vortex lattice
has been hampered by the fact that, even though the wave- f=2igD Y w,)[2w,+V(V—2ied)] 'A. (80
functions corresponding to different oscillator states centered
on the same vortex line are orthogonal, functions centered ofince the order parametdrin this equation is the “ground
different flux lines overlap, so that different excited states astate” of the Abrikosov vortex lattic0), the form of the
defined above are not orthogonal and the equations are nofunction f can be obtained immediately from Ed36) and
local (see, for example, Ref. 31What makes this approach (A10)
successful when combined with the BPT approximation is

that this set of states is orthogonal in the sense of a spatial _ L~ JrA &1 j\m
average f(s)=2ig(s)D “(wn)"=g —( - —)
m=0 \/H \/E
f ER(m|ny=A25,, ., (74 X €M sgr,) 1™ W™ (U | m). (8

SSubstituting this expression into E¢(68), we find for the

whereA is the spatial average of the order parameter. Thi X o
impurity renormalization of the order parameter

condition is obeyed since the phase factor &) ensures

that only functions centered on the same site contribute to

the integral. Thergfore if we are only cqncerned with spatial D(@,)= 1_i\/Eésgr(wn)JWdag(a;'{)n)W(un).

averages of physical quantities, the excited states of the order 2l 0

parameter can be treated as states of a harmonic oscillator. (82
To evaluate the result of acting with the gradient operator . ot

v(V — 2ie.A) on the order parametér we rewrite it in terms ~ USing the corresponding E¢69) we obtaint’(s)

of the raising and lowering operatoesanda’

' f1(s)=2ig(s)D Y wy)—— > —| —=
V(V—ZieAFUET[aei¢—aTei¢]. (75) (9)=2i(9D(on) G5 2 Jor\ V2

xe M sgrw,) I" WM™ (u)(ml. (83)

VrA & 1(i)m

Then the result of the action of the operaf@w,+v(V

—2ieA)]"* on any modgm) of the order parameter can be  Then we can use the normalization condition, &%), to
evaluated exactly. The technical details are given in Appengetermineg (see Appendix A for details

dix A. Here we give only the final result,

[20,+V(V—2ieA)] Ym) g=—isgnwn)P(6,wy), (84)
o here
A " . W
= l:/jng Dmlmzel(m27m1)¢|m+ m2_m1>, -
my=0 m;=0 _ . 2AA 2 1/2
(76) P(a"""):{l_' \/;(Dvsine) Wiuw| . (89
where and the sign has been chosen to give the correct expression
1\/_—| O\ meem in the normal state_. Equatlorq6_7) and(81)—(85) prov_lde a
DMM2_ Vm! (m m1+m2).(_l ml( - '_> s complete self-consistent solution of the gquasiclassical equa-
m (m—my)!m;Imy! V2 tions for ans-wave superconductor in a magnetic field. A

Green’s function very similar to that given in Eq84) and

(85 was obtained in the work of Peséhby a different
method. As in the microscopic theory, the order parameter is
determined from the self-consistency condition given by Eq.
(55), which is, in this case,

x[sgr(wn)]m1+m2+1W(m1+m2)(un), (77)

_ 2iwpAsgr{wy,)

vsing ’ (78)

n
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A w _ _ The Green’s function obtained here also reproduces the BCS
1=i77\/;9N(0);2 j d6g(wn)D~H(wp) Green'’s function if the limitH—0 is taken, which suggests

noJo that it can be used to interpolate between the high-field and

X sgn wn)W(Up,). (86)  the low-field regimes. We now have a closed form expres-

sion for the matrix propagator near the upper critical field up

For the general case of finite mean-free path and applietb the order A A/v)*, which we will use to determine the
magnetic field, a closed form solution of the self-consistentinear response of a superconductor to an electric field.
expressions cannot be easily found. However, with minor
simplifications it is possible to obtain analytical results from V. LONGITUDINAL CONDUCTIVITY
this solution. Even though the dimensionless parameter
(AA/v)? in the Green’s function given by E¢84) is small
in the region where the BPT approximation is valid, it ap-
pears with the weight (s#) 2, so that a straightforward ex-
pansion is impossible. We will see, in fact, that the density o
states is a nonanalytic function of this parameter. Howeve
while the full functional dependence of the Green'’s function
on (AA/v)? has to be retained, terms of higher order in this
small quantity can be neglected in this functional form, pro-
vided that they do not result in more singular behavior. Both A. The response function

the impurity renormalization of the frequenay, and the Since the electrical current given in E8) depends on

renprmalization of the order parameter dgpenql on th@e:gl_g_l, we write the linearized quasiclassical H§7)
weighted angular average of the Green’s funciomhich s for the spatial average of this combination. Then the equa-
nonsingular as a function of the order parameter in the vortejons for the linear, in the applied electric field, averaged

state. This is related to the gapless character of the quasipafiagonal elements of the distribution function, and the equa-
ticle spectrum. Therefore, in determining the functl®rto  tions for the anomalous functions are

leading order in AA/v)?, the Green’s function in the defi-

We begin by considering the longitudinal conductivity in
the vortex state in the BPT approximation. We are concerned
here with the transport coefficients in the clean limit, and
will neglect all contributions to conductivity of relative order
{A/l) compared to the most significant modifications upon
éntering the superconducting state. We again omit terms of
order of cyclotron frequency.

nition of impurity renormalization of the order paramelr — 2evAlg—g(-)] .~ R —
[Eq. (82)] can be replaced by its normal-state value. Simi- 9e=91—g1=——— =~ +(iwg) '[ATf—ATf(—)]
larly, the renormalized frequency in the argument of the '@o
functionW'’ can be replaced by, +sgn(w,)/27. The result- P N=IrA T A fTo IadURe MYrIIv
ing expression for the renormalization function is identical to i) AL = AT (=) ] (2iwon) ([{T2)F
that obtained by Helfand and Werthanféwith these ap- D+ [P P = (T (—)])
proximations, Eqs(81)—(85) describe a closed-form solu-
tion. In the clean limit near the upper critical field of interest, — (Zi?[)or)‘l([f{(ﬂ— fI(f(—)>]+ [fl<fT>
here expressions for the quasiclassical propagator can be
simplified even further. Since in this reginia A, and the — (T (=)D, (89
renormalization of the order parameteDis= 1+ O(A/l), to _
leading ordeD~1. [2Q,+Vv(V—-2ieA)]f,
The anomalous Green'’s functiohsand f are given as a
Fourier series in the azimuthal angfe with the mth com- =ievA[f+f(—)]+iA(gl—g_l)+iAl[g+g(—)]
ponent of the series coupling to thmth excited statgor .
mode of the order parametek. Therefore in the presence of +i(20) " HF g+ a(—)]1— (g, +{(f(—))a1},
an external perturbation the mode witt=0 will couple to a (90)
scalar potential, the mode with=1 to a transverse poten-
tial, etc. The functionP given in Eq.(85) is related to the ~ . +
angular-dependent density of states. If the Green’s functioBZQ”_V(VJrz'eA):Ifl
is analytically continued into the upper half plane by letting . et - —
iw,— w-+i6 then the density of states =ievA[f+f1(—)]+iA%(g1—g1) +iAi[g+9(—)]
N(w,8)=—N(0)Img(w,)=N(0)ReP(w,d) (87) +i(27) Y DLg+9(—) 1= (FT(=))ar +(f gy}
91

is strongly angular dependent. For quasiparticles traveling
parallel to the magnetic field\(w, 8) is gapped and BCS- The notation used here is identical to that of the previous
like, while in all other directions it is gapless. The total den-gection, and the frequendy, is defined af),= w,+ o —. It
sity of statesN(«w), obtained by angular integration of the s possible to identify the different contributions to the right-
imaginary part of the functio, is gapless; while the re-  hand side of Eq89). The first term is the quasiparticle con-
sidual density of states at the Fermi surfadg(0) is a  tribution to the current, this term determines the response
nonanalytic function of the order paramétet’ function in the normal state, and, with the modified Green’s
5 5 function, describes the contribution of quasiparticles to the
AA V2u AA current in superconductors. The other terms on the right-
1-4 T In E +2[—| |. (88

Ns~N(0) hand side exist only in the superconducting state. The first
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two of these involve the modification of the order parametemuasiparticle contribution then the only relevant terms arise
A, and can be associated with the motion of the vortex latticédrom the intermediate frequency range.
under the influence of the applied electric field. The remain- Since the quasiparticle spectrum is gapless in the high-
ing terms mix the contributions of the quasiparticles and thdield regime, the response function varies slowly over the
Cooper pairs. It will be shown below that the most relevantscalew~ T, and the frequency sums can be evaluated easily,
contribution from these terms is due to the additional scatsee Appendix B. We find the quasiparticle contribution to the
tering of the quasiparticles by dynamical fluctuations of thecurrent
order parameter, similar to the processes described in the
dirty limit by the Thompson diagrans. ) 1 2 an [™.

The quasiparticle contribution to the response function lop=7N(0)ev AJ sin*6d 6

g;— 9, can be determined immediately since the unperturbed °
functionsg andg(—) are known from Eq(84). To evaluate
the other contributions to the response function, E86)
and(91) have to be solved fak, and{f,), as well as for the )
conjugate quantitied} and(f}). As before, here we deter- B \/;W”( A )( 2AA> ( A )P“”} ©2)
mine the complete functional dependence of the response Ising) \vsing/ \lsing

function on the order parameter to ord&f, and neglect .

corrections that vanish faster than thistaslecreases. Since Here all the functions are evaluateda@t0. For 0=0 the
both A; andf' can be expanded in a complete set of func-argument of the functiowV" in Eq. (85) is purely imaginary,
tions|m) and(m|, which are normalized by ?, see Eq(74),  and the functiorP is purely real. It follows that the first term

it is sufficient to determine the expansion coefficients to zein Eq. (92) contributes to the nonabsorptive part of the con-
roth order inA. Therefore in Eqs(90) and (91) we can  ductivity; itis the_remnant of the Meissner effect in a type-ll
replace the functiong, g, andg_l by their normal state supe(conductor in a magnetic field. The remaining terms
values. With these simplifications Eqé89)—(91) can be contribute to the absorptive part, and the transport current

solved explicitly forA4, f;, and the “daggered” functions. can be written as

X{ (P=1)+iwr P+{(1-P))

B. Quasiparticle contribution jqp=%N(0)ezvaEJ Singeda[[P—l]+[l+((l— P))]
Two different effects modify the quasiparticle contribu- 0
tion to the current relative to the current in a normal metal. A 2AA\2/ A
First, the differenceg—g(—) is modified relative to its nor- - \/;W"( Isine) ( vsinG) (Isina) p3
mal state form, and, second, as the impurity renormalization
of the frequencyw, depends on the unperturbed Green'sThe first term in Eq.93) is the direct modification of the

function it is also affected by the opening of the supercon-quasiparticle current on entering the superconducting state
ducting gap below the upper critical field. In the normal

. (93

state, the differencg—g(—) vanishes in the outside fre- ) 1 - ™ _ 2AA\2
quency region, for a type-Il superconductor this difference is  Iqp1=7N(0)&"v TEJ sinfadey | 1—i \/;( UST@)

of orderAZ2. Therefore, in a calculation to lowest orderAs, 0

the renormalized frequency can be replaced by the bare fre- -1z

quency in this frequency range. On the other hand, in the XW' (i A/lsing) —1}

intermediate frequency range, where the difference of the

unperturbed Green’s functiorgs—g(—) is of order 1, it is =]"qp— onE, (94

important to keep the full dependence of the renormalized
frequency on the order parameter. Further, as the contribywhere the normal state conductividy, was defined in Sec.
tion from the outside region is proportionaldg but notr, it !l D- The contribution of small angles s#s=(A/l) to the an-

is of order (AA/U)Z(A“) and negllglble Compared to the gular mtegrals is of h|gher order mA(/I) and can be ne-
contribution from the intermediate frequency range. Thisglected. For larger angles the argument of the functidn
situation is not unusual when comparing different contribu-Can be set to zero sinde/l <1. Then the integration is eas-
tions to the conductivity. Two dimensionless quantities in-Ily carried out, expanding the resulting elliptic integrals for
volving the frequency of the external electric field appear insmall values of the parameteA §/v), we find that the cor-
our analysis. The firsip, usually comes from renormaliza- éction to the conductivity from this term

tion of the bosonic frequencw, in the intermediate fre- AA)Z

guency range. The secondA ¢/v), appears when the re- Agg)r(al: _6%(_
sponse functions are expanded in the external frequency v

since the argument,, of these functions involves the fre- . _ . . .

. S — is negative. In the superconducting state in addition to the
quency in the comblnatlon/\(i)/u), see Eq(78). In the dc scattering of quasiparticles by impurities, quasiparticles are
response only terms linear i contribute to the absorptive scattered by the vortex lattice. At a vortex core a quasiparti-
part of the conductivity. Therefore, as the ratio of the twocle can undergo Andreev scattering into a hole and a Cooper
dimensionless parameters is of ordey/(), we keep terms pair with no energy cost. This additional scattering process
of order w7 while neglecting those of order\(w/v). In the  reduces the quasiparticle contribution to the current.

(95
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The second term in Eq93) arises from renormalization evA[f—f(—)]
of the scattering time- in the vortex state. It can be written = f;=——————
as | (O]

japz= ol 1+ (1= (P)) [E= §N(0)€02resE,  (96) Filgr a2 vV = 2ieA)] Ay

where the scattering rate +i(27) " g+9(—)1[20,+V(V—2ied)] Xy

Ter= L1+ (1—=(P))]. 97) +i(27)—1w[2ﬁn+v(v—2ieA)]‘1
The quantityN(0){P) evaluated ato=0 is the residual den- wo

sity of states in a superconductbl;, see Eq.(88). Hence X[(F)+(f(—))]. (102

this term describes the effect of the change i_n the density 0§, e the self-

states on the scattering rate of the quasiparticles. Below the

transition, as the superconducting gap opens, the residual

density of states at the Fermi surface is suppressed compared A= WQN(O)T; (fa) (103

to the density of states in the normal state; consequently, the "

effective scattering rate is smaller and the effective meanand Eq.(102 is a standard Fredholm-type integral equation,

free path is larger. The angular integral of the functboan it is clear that, since the functiof given in Eq.(81) is a

be evaluated to leading order im\(l) and expanded in Fourier series inp, the angular average of the proddicbsp

(AA/v) in similar fashion to the integral analyzed above, weProjects out only the component proportional to éx(the

obtain, in agreement with the result of H88), the effective  first excited mode of the order parameter=1). This im-

scattering time plies that the linear, in the electric field, change in the order
parameter involves only the first excited state, and has the

AAVZ [ AA AA\2 form A;=CJ1), whereC is to be determined from E¢102),
1—4<7) In(—) —2(7) , (98 similarly, A]=C(1]|. This result, which was anticipated in
V2v Sec. IV D, is in agreement with that of Caroli and Maki.

and the contribution to the longitudinal conductivity The contribution to the response due to the dynamical fluc-
tuations of the order parameter is given by the second term in
Eq. (89). Using the functions and f™ from Egs.(90) and

consistency condition requires that

Teff= 7|

AA\? 2 AA\?
od2=g.|1+4/—] In ﬂ -2\ — (990  (92) and the orthogonality condition given in E(f4), we
xx v AA -
find that
Since (AA/v)<1, the logarithmic term dominates near the J2mAA? _
transition and this contribution is enhanced relative to the Afl=—————CgWe'?, (104
normal-state value. The last term in E§3) contributes at vsing
order (AA/v)2(A/). J2mAA2
*e O I Al P
ATf —osing CgW'e'?, (105

C. Dynamical fluctuations of the order parameter
and the contribution to the longitudinal and transverse elec-

To compute the contribution of all the other terms in Eq'trical current is

(89) to the current, we have to solve Eq90) and (91) for

the linear, in the electric field, correction to the order param- T - NEI

eter and determine the functioris and f]. As discussed ix=7V2meN(0)(C—C)AA fo désindT

above, the functiong; and g; can be replaced by their

normal-state values to the order to which we work. To use > gW' —g(—)W'(—-)

the operator formalism we need to evaluate the effect of X < i oo : (108

acting with the differential operator, [20,+V(V

—2ieA)]" %, on the unperturbed functioh. In the clean LT — T

limit jy =iz2meN(0)(C+ C)AAZL d6singT
— 9 -~ _ o -1 W,_ _ W, _
f=2ig[2w,+V(V—2ied)] *A. (100 «S g g(—)W'( )_ (107)

Then the two differential operators can be separated “n 1@o

We see that the “odd” part of the dynamical fluctuations of
[20,+V(V—2ied)] 2o, +v(V—2ied)] the order parameter gives rise to a contribution to the longi-
tudinal resistivity, while the “even” part contributes to the
Hall current. Both of these contributions are proportional to

=1 (0= ) H[20,+V(V—2ied)] the “vertex” function

—[2w,+V(V—2ied)]™ 1, (102

Viwg =TS, —g-(:)W =) (108

|w0

and Eq.(90) becomes
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describing the coupling between the electric field and thqfl>f1_<fl>f‘r(_)
excited mode of the order parameter. —
Equation(102) is solved in Appendix C, we find that the 2iwoT
last two terms result in small, in\(/1), contributions, and the AA\2e7 1% gW —a( =)W' (—
amplitude of the fluctuation€ is given by =i7-revA(—) e. g g,(. WH=)
v sing woT
2 m W —g(—)W'(—
c=£evA > f singd o> g_(~) (=) =do' [gW —g(—)W'(—-)
4 n Jo iwo X | — — sing
0 4 |(1)0
w i
X|T de| igs W(u,)— =[g+g(— A g+g(— 1
s [ (|g gl W(u,) ~ 519+ ()] Aete) o W(Un)+_w,,(un)> |
UV 1-iwT 2
-1
X sgrQp)[W(Up) + %W’(un)]” : (109 (113

The denominator on the right-hand side of Ef09) is the

where the functions under the integral depend on the angle
0', and

propagator of the first excited mode of the order parameter. _
In general, the zeroes of this propagator correspond to the 2iAQ,sgn(Qy)
spectrum of propagating modes of the order parameter. In UFW
our case the transverse perturbation due to the vector poten-
tial of the electric field couples to the first excited mode ofin analogy to Eq(77). As there is an additional factor of the
the order parameter, which is damped, i.e., there is a finitescattering time in the denominator, it might be expected that
energy gap in the spectrum of these excitations at zero frghis contribution is small. However, in the intermediate re-
quency. The response to a scalar potential is quite differentjion the renormalized frequenaey,~ 1/7 and, sinceg and
there is a propagating mode at zero frequeticgince the g(—) have opposite signs, the contribution afW’
dynamical fluctuations of the order parameter are driven by-g(—)W’(—) is of order one. Therefore the first term con-
the electric field, the coupling to the excited mode in thetributes to the conductivity at the same order as the correc-
numerator of Eq.(109 is also proportional to the vertex tions found previously. On the other hand,@sg(—)=0
function defined in Eq(108). in the intermediate region, the second term does not contrib-
Evaluating the sums in Eq109 we find[Eq. (C6)] ute to the current. In the outside region both terms give con-
. tributions to order A/l) that can be neglected. The contri-
|eAA\/§ bution to the current from Eq113 and the corresponding
l—iwr term involving (f1)f [which is obtained from Eq(113 by

. L replacinge™ ¢ with €' %] is
and therefore there is no contribution to the transverse cur- P g ]

: (114

C=-C= (110

rent due to the fluctuation term, as expected. The contribu- " AAVZ 1 1
tion to the longitudinal current can be evaluated from Eq. jTh1=ZN(O)e2v2A(—) — =
(100), it is UV ] diwgT iwg

AA\? (= iA SHEES W12
o= 22| [T 2] € % 3| [ Tsindopw w1 } 119
(119 The Thompson-like contribution to the conductivity is given
and the contribution of the dynamical fluctuations of the or-by
der parameter to the longitudinal conductivity is
Tho 5 5 (AA)Z_ (AA)2
AA\2 AA\2 oy =—2N(0)ever| —| =—60,—| . (116
a;'X=4N(0)e2v2T<T) =120n<7) . (112 v v
In his original work Thompsott found that there is a
contribution to the conductivity in the dirtyt € £,) limit due
to scattering of quasiparticles by the dynamical fluctuations
We now consider the remaining terms in E9). To  of the order parameter. The main contribution in the dirty
evaluate their contribution to the longitudinal current welimit arose from the outside region; the contribution of the
need the explicit expressions for the angular averages of th@termediate region was smaller by a factbig). The result
unperturbed anomalous Green's functibrand f*, and the  obtained here for the clean limit is consistent with this pic-
linear, in the electric field, correctiorfy and f] to the dis-  ture. The term contributing to leading order is proportional to
tribution function. These are obtained from Efj02) and its  the angular average df and exists only in the presence of
daggered counterpart. the excited mode of the order parameter as it depends on the
Only one of these terms, the term involving the angularangular average df,. As expected whenl(£,)>1, the rel-
average of the functions; andf!, gives a contribution to evant contribution comes from the intermediate region. In
the conductivity at the order considered here. A typical ternthe presence of a transport current the vortex lattice moves,
is given by and individual vortices are deformed. As a result, additional

D. Thompson contribution
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scattering of quasiparticles by the vortices gives rise to a We now consider the remaining terms in E§6). Omit-
negative contribution to the conductivity given in E4§16).  ting the subscript, since in this section we only consider

functions at leading order, we write the first of these terms in

E. Longitudinal conductivity the matrix form

The longitudinal conductivity of a clean type-Il supercon- i
ductor in the mixed state is obtained by combining the re- M= >
sults for the quasiparticle current from E¢85) and(99), the
current due to the dynamical fluctuations of the order paramThe off-diagonal elements of this matrix are proportional to
eter from Eq.(112) and the current due to the Thompson the trace of the quasiclassical propagator and vanish in ac-
terms from Eq(116). We notice that reduction in the quasi- cordance with the normalization condition. The contribution
particle contribution to the conductivity due to additional from the termM to the equation for the quasiparticle part of
scattering off the ground state of the vortex latfiE®). (95)]  the distribution function is
and the excited modes of the order paraméférompson

dA ag ag JA

ﬁﬂ_pu t?_pHﬁ (118)

terms is compensated to ordeA(\/v)? by the increase in i[oA ofT  oA* of
the current due to dynamical fluctuations of the order param- Mu=39R a_F’H TR ‘9_pH : (119
eter. The conductivity then is given by E®@9),

To spatially average this term and determine its contribution
22 to the diagonal part of the propagator, we need to recast the
0= 2 N(0)€%02%7e5= 07, In(W) - 1“ , gradient operators in terms of raising and lowering operators

a anda' and the azimuthal and polar anglesand 6. We
(117) find
that is the modification of the longitudinal conductivity upon
entering the superconducting state is determined solely by
the increase in the effective mean-free path due to the sup-
pression of the density of states at the Fermi level as the i P
superconducting gap opens. The increase in the mean-free - —(ae ?+atelt)—|. (120
path is a nonanalytic function of the order parameter. sing dp

(AA)Z
1+2| —
v

a9 1 (a6 14— ale¥)cos a
——=—7=—|(ae"'?—a'e'"?)cosh—
IR dp; \2pA a9

Here the hat denotes the gauge-invariant gradient
VI. HALL EFFECT R
J J
A. Stability of the leading-order solution —=—=2i
y g R_IR 2ie A, (121

In determining the density of states and the longitudinal

conductivity we have neglected terms of the order of cyclo-2nd the operator with the plus sign acts Af while the

tron frequency not only in the linearized quasiclassical equaoperator with the minus sign acts dn A direct check using
tions, but also in the leading-order equatid6®)—(64). To the solution obtained in Sec. IV shows that the terms break-
investigate the behavior of the transverse conductivity thdng gauge invariance vanish after spatial averaging. Conse-
gradient terms in E(56) have to be taken into account, and quently, the gradient can be replaced by its gauge invariant
the solution for the propagatar at zeroth order in the elec- counterpart, as expected for an operator acting on the Qrder
tric field has to be obtained to order.. Instead of attempt- parameter. For the ground state of the vortex lattice a d|r_ect
ing to solve Eq.(56) in full, we will show here that the check shows that this term does not result in any correction
solution obtained in Sec. IV is still valid when terms of order © thg unpgrturbed propagator. .The contribution from the
of the cyclotron frequency are included in the equations. term involving the spatial derivative of the self-energy van-

. . R ishes in complete analogy to the term just discussed as their
We saw in Sec. Ill that, as the matrix combinationy ¢ cture is identical

+go, has only diagonal elements, the Lorentz force acts Therefore the solution of the quasiclassical equations ob-
only on the quasiparticlédiagonal part of the propagator. tained in Sec. IV also satisfies the quasiclassical equations

The functiong given in Eq.(84) does not depend on the when terms of the order of cyclotron frequency are taken into
azimuthal anglep, and, therefore, there is no correction to gccount.

this function from the Lorentz force term. Next we observe
that the term involving the gradient of the propagator in the
third line of Eq.(56) is proportional to the same combination
of matrices as the Lorentz term. Since in the BPT approxi- We now consider the linearized E7). In the regime
mation the functiorg is replaced by its spatial average, this Whenw 7<1 terms of the order of cyclotron frequency can
term vanishes. For ag-wave Superconductor the order pa- be included in the calculation of the response function per-
rameterA is constant at any point at the Fermi surface, andurbatively. We therefore solve for the linear, in the cyclo-
its derivative with respect to the components of momentuniron frequency, corrections to the averaged response function
parallel to the Fermi surface vanishes, which means that the.=g,— g, obtained in the calculation of the longitudinal
last term in the fourth line of Eq56) can be ignored. The conductivity in the preceding section.

momentum derivative of the self-energy due to impurity Since the Hall conductivity in the normal state is propor-
scattering vanishes for the same reason. tional to the square of the scattering timgwe can expect

B. Linearized equations for the transverse response
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that the most relevant contributions to the transverse conduand

tivity in the vortex state are also proportional 18, other

contributions to the Hall effect are smaller by a factar/(). 20 —vi(V+2ied)1sf

Therefore we keep in the equations only terms that contrib[ n Vil led)]

ute to this order. If nowsg is the part of the propagator e

linear in the cyclotron frequency, we arrive at the following =— 2—A(V+2ie¢4)[f"—fT(—)]JriA*ﬁge
' m

equation for the functiodg.= 69, — 69;:

PO i( —_)+i{5A*[f—f(—)] +isA[g+ P A
Je 0 0% 91— 01 7 1 i6A1[g+9(—)] 2 R ﬁpH(gl 91)
1 S
+OA[FT—FT(—) 1+ —= STV — (St (— i 0A7 49
) A 2 JR (9pH
I dA] 9
+[<5f1>fT—<5f1>fT(_)]}_ 2o (ﬁa In the normal state there is no angukir dependence to the
OA. 0 unperturbed functiorg, and alsog,+g;=0, so that the
X[f+f(—)]+ _Rl —[fT+7(—-)] terms in the last line of each equation vanish. We can now
N IR Py solve Egs(123 and(124) to determine the contributions to
+2£ f7_f1+2% 3_f1 (122 the dynamical fluctuations of the order parameter induced by
dR dp IR dp ) the Lorentz force. We can then evaluate the contributions to

— . . the transverse conductivity term by term.
Hereg,—g; is given by Eq(89). There are now two distinct

contributions both to the term involving the fluctuation of the o

order parameter and to the Thompson term. One reason these C. Hall conductivity

terms contribute to the transverse response is that they give The quasiparticle part of the response function is
rise to additional scattering due to dynamical fluctuations of

the order parameter induced by the electric field, as we saw iwe [9—9(—)]
in the previous section. When the quasiparticle trajectories 593P= — 2ev Asindsing — —— (125
are bent by the magnetic field, this additional scattering lwg lwg

renormalizes the Hall conductivity. This effect is contained o o . )
— The contribution to the conductivity from the intermediate

in the first term in Eq(122), since the functiory; —g; con- X ; ) .

. oo frequency range is readily evaluated; the correction to the
tains the contributions of the Thompson terms and the fluc: - o :

) . .~ . “transverse conductivity due to additional scattering off the

tuations of the order parameter induced by the electric field. ortex lattice
The other contribution to these terms is due to fluctuations of
the order parameter induced by the Lorentz force, these fluc-
tuations result in corrections to the transverse conductivity
and are contained in the terms involviag ; and 6f, in Eq.
(122). Finally, the terms involving the gradient of the order

parameter contribute to ordef for the same reason that the

AolPt=—60,0.m(AA/v)? (126)

and the contribution to the Hall conductivity due to the
modification of the scattering time

Thompson term contributes to the longitudinal conductivity, qp2_ 1 2 2

namely, that there is an additional factor of the scattering oyy =3 N(0) e v Tes( @ Terr)

time 7 in the amplitude of the order parameter fluctuati@ns 2 202

and in the functiong, andf}, so that the overall contribu- =onwer) 1+4| — |n(w) -1 ] (127)

tion is of order72. This anomalous contribution to the trans-

verse conductivity arises because the gradients of the ordgg addition, there is a quasiparticle contribution to the Hall

parameter created by the moving and deformed vortex latticgonductivity from the outer frequency range that is formally
act as driving forceganalogous to the Magnus foicis the  givergent,

transportlike equations. The remaining terms in &) con-
tribute at higher order inA/l). o [

The equations for the corrections to the off-diagonal ele- j;\nlz - %N(O)ezuzATCJ S"ﬁgdg{(p_ 1)
ments of the matrix distribution function are w Jo

P

o

[2Q,+V{(V —2ieA)]5f . Aw
vsing

. (129

e . .
== 5o AV = 2ie A)[f—f(—)]+iAdg,

Since P’ evaluated at zero frequency is purely imaginary,
. the second term describes a small correction to the Meissner-
+ioA[g+g(—)]+ ! %i(gl_l'g_l) like term. The first term in this equation, on the other hand,
2 R dpj, has no physical meaning and must disappear from the final
WV exprgs_sion for the current. o .
59R ﬂ[w 9(—)] (123 Itis in fact canceled by the contribution of the fluctuations

of the order parameter
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27 AA2 sin¢ conductivity due to the first of the Thompson terms is the
jy =2i mew CN(0) 5 J dzsvsineT longitudinal contribution multiplied byv7,
'l — YW (— AA\?
«S gW' —g(—)W'(-) (129 o= —GUn(wCT)(T> . (134)

on (iwg)®

o determine the contribution to the current from the second
hompson term, we use the angular averg@d$ and(sf ")
given in Appendix C, to find that its contribution doubles

from the outer range, where the first term in the expansion o{
the vertex function

’ , ; ’ that given in Eq.(134), so that the total contribution of the
W —g(—)W'(— 2 IW P
TE g g& W () =— __IT 2 — ... Thompson terms to the transverse conductivity is
out (ia)o)2 ®w >0 Jw ,
130
(130 U'I;: =120 (w.T)| — (139
is formally divergent. The remaining contribution from the

outer range is obtained by expanding the coeffici€hisnd |5 addition to the scattering of quasiparticles by the fluctua-
C in the small quantityw, it is tions of the order parameter induced by the applied electric
field, which tends to reduce the current, quasiparticles also
undergo additional scattering off the dynamical fluctuations
driven by the Lorentz force, which again tends to reduce the
transverse response. In this sense, the Lorentz force results in

This contr|but|pn is canceled by that O.f the lntermeq|atg fre'anisotropic scattering of the quasiparticles by the fluctuations
qguency range in Eq129), so that there is no net contribution of the order parameter

to the transverse conductivity due to the dynamical fluctua- The last two terms, the gradient terms in EtR2) have a

tions of the order parameter driven by the electric field. Th|sStructure identical to that of the terms considered in Sec.

re_sult is consistent with the predictiong of time—depend_enm A. Their contribution to the current can be evaluated us-
Ginzburg-Landau theoryThe terms considered so far in this ing the operator approach as shown in Appendix A. First,

S‘;‘?“ﬁ’? correfsfpopd (:tlwrectlytto tt_hose Icopr;talgedt 'nt_TDGLf’consider the term involving the gradient of the dynamical
which 1S an efiective theory treating only the TUCIUalons otg, .y ations of the order parametdr, and Aj. These fluc-

the order parameter, while the quasiparticle contribution i uations involve the first excited mode of the order param-

taken to be at the normal-state value. In the TDGL approaceter’ which, when they are acted upon by the annihilation

the Lorentz force has no effect on the dynamics of the order X : . :
parameter, and there is no correctié, due to this force. and creation operators in E417), gives terms proportional

In the bresent analvsis. however. the equations for thto the ground state and the second excited state of the order
the p ysIS, T q arameter, respectively. Then spatial averaging projects out
guasiparticle propagators and the amplitude of the order p

. he same modes from the functiohsand f' given in Egs.
rameter fluctuations are coupled, so that even though th(egl) and (83). In the second of these terms the gradient op-
Lorentz force does not appear explicitly in the equation for ’

Sf, it introduces changes in the diagonal part of the distribus rator acjts on the ground state of the vprtex IqtrmeNh|ch
. ) — i the creation operator promotes to the first excited state. Spa-
tion function g;—g, and therefore brings about further tja| averaging now projects out the first excited component
moqmcatlon6A1 of the order parameter. To find this contri- {om the functionsf , andf{. The contribution to the trans-
bution we have to solve Eqel23) and(124) for the changes o156 current due to these terms, is found to be

in the order paramete$A,=5C|1) and A= 6C(1|. The
solution, given in Appendix C, follows the same steps as in
the calculation of the longitudinal conductivity. We find that
only the term involvingsg. contributes at the order to which
we work, and

2

iy E. (13D)

'“2=60n(wc7')(7

) A%r
]3r=—30'n6—E. (136)
f

Since

e~ — A%r  2A%r AA\? 7 AA\?
5C=5C=I€AA\/§((UT)((UC7'), (132 f_f: mo2 = ( ) W:4a)c’7<7) , (137
and, since we saw in Eq107) that the “even” part of the h L h . h
dynamical fluctuations of the order parameter contributes yghe contribution to the transverse conductivity due to these

the transverse part of the conductivity terms is given by

fl ? r AA ?
oyy=60n(wcT) - (133 a'gy=120'na)c7' - (138

the dynamical fluctuations of the order parameter driven byThe induced gradients of the order parameter enhance the

the Lorentz force tend to increase the transverse conductitransverse conductivity.

ity. The total transverse conductivity is the sum of all the
Similarly, there are two parts to the Thompson terms: oneontributions considered here. We find that the modification

is due to the longitudinal response, while the other is due t@f the quasiparticle Hall current due to additional scattering

the linear in the Lorentz force corrections to the off-diagonaloff the vortex lattice given in Eq(126) is exactly compen-

distribution functions. The contribution to the transversesated by the enhancement of the transverse current due to
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FIG. 2. Transverse conductivity as a function of the reduced

FIG. 1. Longitudinal resistivity as a function of the reduced I
magnetic field.

magnetic field.

: : with the field; the Hall conductivity is substantially enhanced
the Lorentz force driven fluctuations of the order paramete(Nhen compared to the linear decrease expected from the
obta_ll_ned in Eq.(1_33). The Thompson contrlbu_tlon due 1o normal-state behavior. While the transverse conductivity is
additional scattering by the deformed and moving vortex lat-

tice is given in Eq(135) and is canceled by the enhancementg:]%ﬁ)grtlonal to the square of the scattering time, the Hal
of the transverse conductivity due to the forces generated by

the gradient of the excited mode of the order parameter tandy = oyy/ oxx= ¢ Tefs (141
found in Eq.(138). As a result, the behavior of the transverse;

- . ) e is only linearly dependent on the scattering time and the
conductivity o, is determined solely by the modification of corresponding nonlinear dependence on magnetic field is

the effective elastic scattering timey and is given by Eq. weaker, as can be seen in Fig. 3. Finally, as the transverse

(129, resistivity
0252: % N(O)eZUZTeff( O Teff) o
X
AA\Y [ 202 =37 = Txyl T (142
=0T 1+4(— In W)—l ] (139 Tyuxt oy
v is independent of the effective scattering time, it remains

For the dc conductivity this change is due to the decrease ifinear in magnetic field upon entering the superconducting
the number of states at the Fermi surface available for scakiate with the same slope as in the normal metal. This behav-

tering as the superconducting gap opens. ior is to be contrasted with that of Bardeen-Stephen mbddel,
where the resistivity is modified and is linear in the magnetic
VIl. CONCLUSIONS AND DISCUSSION field, but the Hall angle obeys the same linear law as in the

We now plot qualitatively the longitudinal resistivitfig. 13

1), the transverse conductivit§Fig. 2), and the Hall angle

(Fig. 3 as functions of the applied magnetic field for Nio-
bium. The order parameter, which is linear in the applied
magnetic field in the high-field regime, is given by the ex- 1.1}
pression due to Maki and Tsuzuki,

q2o L He-H [ TdHe
7N(0) gy2x2-1)\ ¢ 2 dT )

and the values of the superconducting material parameters
were taken from Refs. 36—38. The longitudinal resistivity in
Fig. 1 has a pronounced increase in slope as a function of the & 0.7 |
magnetic field below the superconducting transition due to
the logarithmic dependence in E§17). The transverse con-
ductivity shown in Fig. 2 is enhanced below the upper criti-
cal field ar_ld has negative_curvature in the high_—f.ield region. 0% 2 o5 o8 07 08 08 10 11 12

The negative curvature arises from the competition between H/H,

the enhancement due to the increase in the effective mean- ¢

free path and the linear decrease of the cyclotron frequency FIG. 3. Hall angle as a function of the reduced magnetic field.

(140

an O(H) / tan 6(H ,)
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normal state. The Nozieres-Vinen thedryn the other hand, We use the operator identity
which predicts that the Hall angle should be constant in the
flux-flow regime belowH ., at variance with the result of this et B=gheBe 12 [AB] (A2)

work, also finds that the transverse resistivity is identical to _
that of the normal state, although the individual component%’]here[A’B]_AB BA denotes a commutator, to separate

of the conductivity tensor are quite different from those e creation and annihilation operators and rewrite (&4,
found here. as
A comparison can be made with the experimental data o

~ Y -1
Fiory and Serifion high purity Nb. These experiments find a EanJer(V 2ieA)]”"m)

transverse resistivity in the flux-flow regime that is linear in " v2sirko
the applied magnetic field over a wide range of fields below zsgr(wn)f dtexp( —2w,SgN @)t — 5 t2>
H.,. The Hall angle, however, flattens or even increases 0 4A
above its value aH., before decreasing at lower fields. i
These results are more suggestive of the behavior given here vtsing it
- . ; X . exp —=——sgn w,)e'%a
than the original interpretation given in terms of the V2A
Nozieres-Vinen theory. Also, the longitudinal resistivity
found in Ref. 6 has a distinct increase in slope just below the vtsing ig
upper critical field, which is consistent with the behavior xXexp — A sgriw,)e”'?a ||m). (A3)

discussed above. Detailed comparisons with the results of
this work are difficult to make, since the authors of Ref. 6We now write the exponentials as infinite series in powers of
used a high current density to reduce the pinning effects anthe arguments to find

achieve the flux-flow regime; as a result, the magnetoresis-

tance is significant and the longitudinal resistivity in the nor-[ 2w+ ve(V —2ie.4)]~/m)

mal state varies with magnetic field. We find the qualitative e m
agreement with the experiment encouraging and suggest that

more experimental work is needed to make a more detailed ~ 2
comparison with the theory. To conclude, we have presented
here an approach to the calculation of the transport coeffi- (—1)™

°° - v2sito
dtexp —2w,sgn w,)t— ————t2
0 4\

my,=0 m;=0

cients of a clean type-Il superconductor in the vortex state in X mymy! e~ M9 sgr w,) ™" M2

the high-field regime and used it to determine the Hall con-

ductivity and the Hall angle of ag-wave superconductor in vising] ™t M2

this regime. We find that the field dependence of the Hall X A (a")™2(a)™|m). (A4)

conductivity in the high-field regime, which is nonanalytic,
is entirely due to the change in the density of quasiparticlan the integral, the parameteican be replaced with a differ-
states at the Fermi level in the superconducting state. At thgntial operator
same time we find that the field dependence of the transverse
resistivity below the upper critical field remains unchanged. 1 d

t= ( - ESQr( wn)ﬁ) (A5)

n
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APPENDIX A: THE OPERATOR FORMALISM vsind my +my 1 J mp+my
=|— — =S —_—
If |m) is themth excited mode of the order parameter we V2A 2 gr(wn)&wn
have 22
~ : - 0 - sin‘é
[20,+VE(V—2ieA)] ! m) X fo dtexp( —2wpSgrwp)t— Uﬂrtz)
=sgnw,) fo exp{—[2wn+ Ve(V —2ieA)] JaA P\ Mt
=vsing| " V2 WM M2 (yy), (AB)
X sgn w,)t}dt|m)
» _ whereW(u) =e~Yerfc(—iu), W™ denotes thenth deriva-
=sgn wy) fO exd —2w,sgn wp)t] tive and
vsing . . 2iwaAsgnw,)
X exp — VT [ae '¢—a'e' ?]sgnw,)t|dt/m). Un=""5ing (A7)

(A1)  The main result is
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[2wn+Vve(V—2ieA)] Ym)

VA &
= — >, DMeelM-mié|m 4 m,—m,),
USIﬂ@ m2:0 my= 0

(A8)
where
Dmlm?:\/F (m— ml+m2)| —1)M
m (m—mgy)!my!Im,!
i m1+m2
X —ﬁ) [sgr{wg)] ™ M2 tWm ().

(A9)
We make extensive use of two special cases of(Bf):

(2w, +V[V—2ieA)] }0)

)eim"’[sgr(wn)]’“*lwm)(un)lm> (A10)

|
ol -

and
(2w, +V[V—2ied)] Y1)

VA & 1 i\m .-
:m%ﬁ(‘ﬁ [sgnwp)]™**

X [Ym+ 1MW (u,)|m+ 1)

[sgnw,)]e M VWM Dy )im)]. (A1)

Tz
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E
~ (A14)

RN G
X_\/EA[a a'l= \/EA[ 1,

LA a+a' _ L b+b'
ay \/EA[ 1= \/EA[ 1

and the momentum gradient in the direction parallel to the
Fermi surface is

(A15)

g 1. 4 1 . 4

(9_[3“ = Beaﬁ_a + —psinae(ﬁ%, (A16)

wheree, andé¢ are the unit vectors i® and ¢ direction in
the spherical coordinates, we obtain

(ae”'?—a'e '¢)cosﬁ—

a a9
R dp| 30

1
~\2pA
L ped wi)

(ae'?+a )¢

sing

) J
“1Hcop—

_ (bew b!
_\/ipA ( © a6

d
4 i ¢ ta—id .
n6(be +b'e )ﬁdJ (A17)
APPENDIX B: FREQUENCY SUMS

The sum of the values of a response function at Matsubara
frequenciesw,=(2n+1)wiT in the upper half plane can be
written as an integral,

o l o
TS Kliay= HLO tanl‘(%)K(w). (B1)

Equations for the daggered quantities are obtained by repladf the response function varies slowly over the scate T,

ing the phaseém¢ by its conjugate—im¢, changing the
sign of (i/\/2), and using a bra vector instead of the ket

vector.
To determine the quasiclassical Green’s functgpmwe

need the spatial averadé’. Using Eq.(A4) we have

fff= f d3RffT (A12)

= _492A2L dtldtzexp< —2wpSgn wp,) (ty+ty)

v2sirt e
TTANT (ty+15)?

2AA
vsing

(A13)

(2i$nAsgr(wn))

vsing

]

Equation(84) obviously follows from the last line.

In the calculation of the transverse conductivity we will
need to rewrite the gradient operators in terms of creatlors
and annihilation operators. Since a gauge-invariant gradlent

can be written as

the tangent can be replaced with a step function so that

TZ K(iwg)~— [I|m F(w)+ lim F(w)—2F(0)],

(B2)
whereK(w) =[dF(w)/dw].
First consider the sum that appears in the quasiclassical
contribution to the longitudinal current

. E[@J a(— )]

wn | (1)0

(B3)

Since the frequencys, can be replaced by the bare fre-
quency in the outer frequency range, but is renormalized in
the intermediate range, we consider the sum separately in the
two regions. In the outside region, transforming the sum in
the lower half plane into a sum over the frequencies in the
upper half plane,

2 P
—— > [P(+)-P]=-2i X, (—_
wn>0 Jw

o 9°P
®g 6n>0 2 0]’

(B4)
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after analytic continuation and expansion& Using Eq. . i
(B2) we obtain > | igsgn(wn)W(uy) — 5[g+9(—)Isgn ) [W(U,)

@n

, (B5) + WU

v

Aw | 9P
vsing) dw

e
Sout=—| (P—1)+

where the values of the functions are computed &t0. To _ 2
evaluate the sum in the intermediate frequency range to lead- < {2PW=[P+P(+)]
ing functional order inA?, we write "

18
e § P+P(—) X[W(UIH%W”(U:)JHE ZO[P—P(—)][W(Un)
Sl ot (2D1(P)+(P(—))] "
o0 . + 3 W'(Up)]sgnQy), (B12)
= _2|wn§;o Piwo+(i/27)[<p>+<p(_)>] . (BO)  where 1 =u,+u; . Sincé®
Adding and subtracting the contribution of a normal metal, W(U,)+ S W' (U,)=—U,W'(U,), (B13)
so that the remaining sums are convergent at high frequency,
we obtain after analytic continuation the contﬂbution of the last term to the final results is at least
o of orderw®. The remaining terms give, after expansion in the
Sw=—{(P-D+[1+((1-P))}}, ~ (B7) ©xtemalfrequency,
) i
and T | igsgri@n) W(upy) — 5[g+g(—)]

1 N "
= ;[“"1”"“ PH((1=P)=m (m) XS Q[W(U,)+ S W/(Uy)T)

2AA\?[ A Aw
| p3 - _ " ’ 1\7/(3)
X(vsinﬁ) (Isin@)P “ B9) Twn2>o WUn) + vsing [W'(un)+ 2 W(Un) ]
The vertex appearing in the calculation of the dynamical 1 vusing iA 2Aw
fluctuations of the order parameter is proportional to =54 2A w’ Tsing + osingd
W —g(—)W'(— . .

5 AW ogOW(). (89) N WIS BN B14

“n lwo Ising) 2" \lsing/ ||"
Since the amplitude of the dynamical fluctuations only has to
be evaluated to zeroth order in the superconducting order APPENDIX C:

parameter, it is sufficient here to replace the Green’s function £ ;cTUATIONS OF THE ORDER PARAMETER
in the renormalized frequency by its normal-state value.
Since this sum is well behaved at high frequency, we easily Our starting point here is Eq102) for the linear correc-

obtain tion to the anomalous propagator
gW' —g(—)W'(-) evA[f—f(—)]
V=2 T f=——=——+ilg+g(-)]
Wn (O] |(1)0
1 1 = . _ . -
=-2i| = —T) > [PW —P(+)W'(+)]. X[2Q,+V(V—2ieA)] A +i(27) " [g+9(—)]
i(l)o"‘i/T ia)o wn>0 — ] 4 ) .
(B10) X[2Qn+v(V—-2ied)] H(f)+i(27)
. . : : evA[g—g(— ~
After analytic continuation we find « [q~g( )][ZQn+V(V—2ieA)]*1
_ iw
v 22 s [ Ao | °
1-iwrusing /o (Un) + vsing (Un) X[ +F=D] (€D
— If we define the angular average bf b
101 w'< A}, Ao [ 0A a1t 9 ge b by
T T 1l-ier Ising/  vsing ~ \lIsing/ |’ (B1D (f)=S(wp)|1), (C2

The sum in the fluctuation propagator in E409 is easily = we find, after carrying out the angular integration and ignor-
evaluated in a similar fashion ing terms of orde\/I
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2ievAsing

- ﬁ above. _ . _

In the transverse response calculation our starting point
here is Eq(123 for the linear, in cyclotron frequency, cor-
rection to the anomalous propagator

i ) gW' —g(—)W'(-) The evaluation ofC is analogous to the calculation given

A (7do
=7y ),

iwo

+i[g+9(—)]2Csgn Q) [W(U )+ 5 W(U,)]

(C3

We now use Eq(103 to determine the amplitude of the
excited mode of the order parame@# wgN(0)=,S

~ e
5f=[29n+vf(V—2ieA)]_1( ~ 5o AV~ 2ied)

X[f—f(—)]+iAége+i5A1[g+g(—)]). (C8

A T
C| 1—mgN(0) V7 -2, f do5[g+9(—)]sgr )
von Jo The solution of this equation follows exactly the steps de-
scribed in the previous section. First we solve for the coef-
X[W(U,)+ %W”(Un)]) ficient 5C in §A,;=6C|1). As 5C==,[d?ssf, the denomi-
nator of the expression fa¥C is the propagator for the first
A w2 excited mode of the order parameter, as it was@orTo
=7rgN(0)\/;—E j ~— evAsingde evaluate the contribution of each of the driving terms we
v Jo 4 notice that for our choice oA,

W —g(—)W'(—
9 @J.(~ YW'(—) . ca | L
i wo A(V—2|eA)=AVX=Am[a—aT]. (C9)
We can now use the gap equation to eliminate the need for a
frequency cutoff and obtain Explicit evaluation of this term using the expression for the

. i function f from Eq. (81) shows that it contributes at order
cY f dﬁ( igsgn wn)W(u,)— =[g+g(—)]sgn,) A/l compared to leading-order terms. The driving term
n Jo 2 iAdge only contributes in the intermediate frequency range
since
X[W(Up)+ %W”(Un)]>
5= —2iw evAsinasinng_g(_) (C10
2 W —g(—)W'(~ o= 2loc NP
=> f gevAsinadb’g g'(~ WI(=) . (CH (fwo)
n 0 lw
. ° and, to the order in which we worl,—g(—) vanishes in the
It follows that to leading order outer range. Then, in analogy to the solution outlined above,
ieAAY2 we obtain
C=—"rx. (C6) _
1-loT 8C,=8C,=ieAAV2(w7)(w,7), (C11)

We also give the expression for the distribution functfgn _
Neglecting the contributions of orderA(l), we use Eq. and, for the angular average of the functiéh needed to

(A11) to compute calculate the Thompson contribution to the conductivity
- (—) . =~ . -1 _ wc g da H ’
f,=eVA——=—+i[g+g(—)][20,+V(V—2ied)] 1A, <5f1>—JﬂeAA(i~ 2l — (sinelg—g(—)IW'(Uy)
lwg wWo
N = o +2i 6C[g+9(—)1sgn Q) [W(U,)
== eAAco _eimd:( - —)
iwo\/; %2, Jm! 2 + WU D) (C12

X[gWM™sgd™ L (w,) —g(—)W™(-)

7 dé
. (ot = 2mena—25 [ " T (sinotg—g(— 1w (U
‘1 . VA 1 (iwg)?Jo 4
xsgi™}(wn—)]Im)+i[g+9(—)]C- mz()ﬁ L
- +2i6C[g+9(—)]sgn Q) [W(U,)
H m
% _%> Sgdn+l(0n)(\/meim¢w(m)(un)|m+ 1> + %W”(Un)])<1|' (Cl3)
. In the intermediate regiog+g(—)=0, and only the first
i _ - ) i L
+ i(m—1)d\pp(m+1) _ term in each function contributes to the conductivity to lead-
SO Qe MW (U m)) €D ing order in (/1.
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