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Quasiclassical approach to transport in the vortex state and the Hall effect

A. Houghton and I. Vekhter*
Department of Physics, Brown University, Providence, Rhode Island 02912-1843

~Received 21 August 1997!

We derive generalized quasiclassical transport equations that include the terms responsible for the Hall
effect in the vortex state of a clean type-II superconductor, and calculate the conductivity tensor for ans-wave
superconductor in the high-field regime. We find that below the superconducting transition the contribution to
the transverse conductivity due to dynamical fluctuations of the order parameter is compensated by the modi-
fication of the quasiparticle contribution. In this regime the nonlinear behavior of the Hall angle is governed by
the change in the effective quasiparticle scattering rate due to the reduction in the density of states at the Fermi
level. The connection with experimental results is discussed.@S0163-1829~98!06117-7#
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I. INTRODUCTION

In recent years a significant body of work has been
voted to the better understanding of the Hall effect in
mixed state of type-II superconductors, which has remai
a theoretical puzzle for almost thirty years.1,2 The
phenomenological3,4 theories predict that the Hall angle i
the flux-flow regime is either identical to that in the norm
state3 or constant,4 and the underlying microscopic basis f
recent generalizations2 is not well understood. Theories tha
make use of the time-dependent Ginzburg-Landau equat
~TDGL! find that the Hall conductivity is not modified in th
superconducting state.1 These predictions are at varianc
with the strongly nonlinear behavior~as a function of mag-
netic field! found in experiments performed on both low-Tc
materials5,6 and the high-Tc cuprates.5,7 For dirty supercon-
ductors (l !j0, wherel is the mean-free path andj0 is the
superconducting coherence length!, transport coefficients can
be determined from microscopic theory by a straightforw
expansion in powers of the order parameter,D. The results
of such a calculation for the transverse resistivity8,9 explain
qualitatively the sharp increase in the Hall angle below
transition observed in experiment~although, to our knowl-
edge, no systematic comparison has been made!, and provide
the physical basis for a generalized TDGL approach,
which the relaxation rate is assumed to be complex, ra
than purely real, to allow for a modification of the transver
transport coefficients.1,10,11 The small parameter in the ex
pansion of the microscopic equations is proportional to b
the order parameter and the mean-free path, therefore,
not small in the clean (l @j0) limit. In this regime a straight-
forward expansion is not possible; the TDGL equations
not applicable,12,13 and so an alternative approach is need
to determine the transverse transport coefficients.

In this work we develop an approach to calculate
transport coefficients, including the Hall effect, of cle
type-II superconductors in the vortex state and present
results of a calculation of the Hall conductivity of a clea
s-wave superconductor in the mixed state near the up
critical field, Hc2. The method is based on the quasiclassi
approximation to the microscopic theory, due originally,
the context of superconductivity, to Eilenberger14 and Larkin
and Ovchinnikov,15 which we generalize to include the term
570163-1829/98/57~17!/10831~23!/$15.00
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responsible for the Hall effect in a charged superfluid. W
solve the equations of this quasiclassical theory to obtain
longitudinal and transverse resistivities in the mixed sta
We choose to consider ans-wave superconductor, as bot
the normal state and superconducting properties of the l
Tc compounds are well known, and comparison betwe
theory and experiment is fraught with less ambiguity; ho
ever the approach developed here can easily be genera
to consider superconductors with other thans-wave symme-
try.

The microscopic Green’s function contains all the info
mation about the single-particle properties of the system
particular, it oscillates on length scales of order of the
verse Fermi wave vectorkf

21 . However, when calculating
transport coefficients, we are for the most part only interes
in the long-wavelength response. It is then sufficient to
termine the envelope of the Green’s function rather than
detailed form. In the quasiclassical approach the rapid os
lations associated with the presence of the Fermi surface
integrated out of the basic equations and slower vary
quantities such as external fields or the self-energy are
panded around their values at the Fermi surface. The re
ing transportlike equations contain the microscopic phys
relevant to the problem and are easier to solve. The b
premise of quasiclassical transport theory is that all mac
scopic physical quantities vary slowly on a microscop
length scale, and that all the relevant momenta are sm
compared to the Fermi momentumpf . This approximation
has been applied successfully to study transport phenom
in superfluids16 and superconductors17 and to investigate the
behavior of the unconventional superconductors.18 Recently
it has been used to analyze the most relevant contribution
the Hall effect in a dirty superconductor in the limit of iso
lated vortices19 as well as to investigate the forces acting
a single vortex in the clean regime.20

In the next two sections we present a derivation of
generalized quasiclassical equations, which include all
terms contributing to the Hall effect in the mixed state of
clean type-II superconductor in the high-field regime. S
tion II introduces a general quasiclassical formalism and
basic ideas involved in the analysis of transverse transpo
the quasiclassical approximation, illustrated by application
the simple case of a normal metal. We show how the st
10 831 © 1998 The American Physical Society
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10 832 57A. HOUGHTON AND I. VEKHTER
dard Drude results for longitudinal and transverse conduc
ity are obtained within this quasiclassical approximation.
Sec. III we use the same approach to derive a generaliza
of the standard quasiclassical approximation for superc
ductors to include the terms responsible for the transve
conductivity and obtain linearized transportlike equations
a clean superconductor. To solve this system of equat
near the upper critical field we employ the approximation
Brandt, Pesch, and Tewordt21 ~BPT!, in which the normal
part of the matrix propagator is replaced by its spatial av
age over a unit cell of the vortex lattice, while the exa
spatial dependence of the order parameter is retained. U
an operator formalism, we are able to solve the leading-o
equations for the distribution function in Sec. IV, and obta
the longitudinal and transverse conductivities within line
response theory in Secs. V and VI, respectively. In the
section we summarize the results and compare them with
existing experimental data.

II. QUASICLASSICAL APPROACH TO TRANSPORT
IN A NORMAL METAL

A. Mixed representation and the standard quasiclassical
equations

Our starting point is the microscopic Dyson’s equation

F2
]

]t
2z~2 i¹x!2E d4yS~x,y!GG~y,x8!5d~x2x8!

~1!

for the Green’s function

G~x,x8!52^Ttc~x!c†~x8!&. ~2!

Herec(x) andc†(x) are field creation and annihilation op
erators, which depend on the four-vectorx5(x,t), angular
brackets denote the statistical average, and the operatoTt
arranges the field operators in ascending order of imagin
time t. In Eq.~1! z is the single-particle energy operator, a
S is the self-energy that may be due to interactions or im
rity scattering, its exact form has to be determined from m
croscopic considerations. Dyson’s equation can also be w
ten in the form

G~x,x8!F ]

]t8
2z~1 i¹x8!G2E d4yĜ~x,y!Ŝ~y,x8!

5d~x2x8!. ~3!

The operators in this equation are understood to act on
Green’s function on their left. It should be emphasized t
Eqs. ~1! and ~3! contain the same physical information an
only differ in the form of writing, i.e., the same functionG
satisfies both. We will use the terms right-hand and left-ha
Dyson’s equation for Eqs.~1! and ~3!, respectively.

The derivation of the quasiclassical equations given h
follows the general approach of Rainer and Serene16,22 and
Eckern and Schmid.23 First we consider the linear respon
of a metal to a constant uniform electric field described b
vector potentialA(t)5Aexp(iv0t). To incorporate the vec
tor potential into the microscopic equations we replace
momentum operator by its gauge-invariant counterp
z(2 i¹x)→z@2 i¹x2eA(t)#, and expand this expression
-
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obtain terms linear in the external field. To integrate out
rapid oscillations associated with the presence of the Fe
surface we first change variables fromx andx8 to center of
mass and relative coordinatesR5(x1x8)/2 and r5x2x8,
and carry out a Fourier transformation in the latter accord
to

G~p,R!5E d3rGS R1
r

2
,R2

r

2Dexp~2 ipr !. ~4!

In a translationally invariant system the Green’s functi
only depends on the relative coordinate. Therefore, dep
dence on the position of the center of massR appears only in
the presence of external fields. To treat the effect of slow
varying fields quasiclassically we expand in quantities va
ing on the length scale of the wavelength of these fiel
which is equivalent to expanding in powers of¹R . If A(x,
2 i¹x) is a local operator that depends only on position a
momentum and acts on the Green’s functionG(x,x8), then

E d3rexp~2 ipr !A~x,2 i¹x!G~x,x8!

5E d3rexp~2 ipr !AS R1
r

2
,2 i¹ r2

i

2
¹RD

3GS R1
r

2
,R2

r

2D
5E d3rAS R1

i

2
¹p ,p2

i

2
¹RDGS R1

r

2
,R2

r

2D
3exp~2 ipr !AS R1

i

2
¹p ,p2

i

2
¹RDG~p,R!. ~5!

The final expression can be written asA+G, where the
‘‘circle-product’’ is defined as22,23

A~p,R!+B~p,R!5expF i

2
~¹p2

¹R1
2¹p1

¹R2
!G

3A~p1 ,R1!B~p2 ,R2!uR15R25R . ~6!

Using this definition, the right- and left-hand Dyson’s equ
tions can be written in terms of the mixed set of variablesp
andR as

S 2
]

]t
2z@p2eA~t!# D +G~p,R;t,t8!

2E dt1S~p,R;t,t1!+G~p,R;t1 ,t8!5d~t2t8!, ~7!

G~p,R;t,t8!+S ]

]t8
2z@p2eA~t8!# D

2E dt1G~p,R;t,t1!+S~p,R;t1 ,t8!5d~t2t8!. ~8!

Direct expansion of Eqs.~7! and~8! in powers of the spatia
gradient is not possible since in the definition Eq.~6! of the
circle-product this gradient is coupled to derivatives w
respect to momentum, and the Green’s function varies r
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57 10 833QUASICLASSICAL APPROACH TO TRANSPORT IN THE . . .
idly with momentum nearpf . To avoid this problem we
make a transformation from the set of variables (p,R) to the
set (s,z,R), wheres is a parametrization of the Fermi su
face, and integrate the quantum-mechanical equations
the quasiparticle energyz before expanding. The integrate
Green’s function

g~s,R;t,t8!5
1

pE dzG~p,R;t,t8! ~9!

only depends on the components of momentum paralle
the Fermi surface and the remaining dependence onp andR
is slow. We now transform Eqs.~7! and ~8! for the full mi-
croscopic Green’s functionG into equations for the quasi
classical propagatorg. This quasiclassical propagator wi
play the role of a distribution function in the resulting tran
portlike equation.

Let us first compare terms of zeroth order in the gradi
expansion of Eqs.~7!and ~8!. Since the imaginary timet
varies between 0 and 1/T, whereT is temperature, the firs
term in the equation gives, after integration, a contribution
orderTg. If we assume that the self-energy varies slowly
momenta close to the Fermi momentumupu'pf , we can
approximate

E dzS~p, . . . !G~p, . . . !'S~pf , . . . !E dzG~p, . . . !

[s~s, . . . !g~s, . . . !. ~10!

On the other hand, the term involvingz gives a much larger
contribution since the integration region includesz;e f . Be-
cause of this term and thed function on the right-hand side
the equations cannot be integrated directly. Instead, we
tract Eq. ~8! from Eq. ~7! to obtain a homogeneous form
before integrating term by term and expanding in the gra
ents. The zeroth order term involvingzG then cancels. Ex-
panding to first order we obtain

E dz$G+z@p2eA~t8!#2z@p2eA~t!#+G%

'2ev@A~t8!2A~t!#g1 iv¹Rg, ~11!

where the Fermi velocity is defined as

v5
]z

]p
~pf !. ~12!

If the spatial dependence of the distribution function is d
termined by the wave vectorq of an external field, the prod
uct vq is not necessarily small compared to the tempera
and the self-energy, so that this term has to be retained in
leading-order equation. Since the small parameters in the
pansion are of order 1/(kfl), where l is a typical wave-
length of the electric field, for the terms involving the exte
nal vector potential, or, if the self-energy is due to impur
scattering, 1/(kf l ), z must always be expanded to one ord
higher in small quantities than other terms in order to obt
a contribution of similar order. It should also be emphasiz
that, since there are several small parameters in the prob
er
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it may be necessary to expand terms to different orde
gradients to account for all the contributions to a particu
physical quantity.

It is convenient to Fourier decompose the integra
Green’s function into Matsubara frequencies

g~s,R;t,t8!5T(
n,n8

g~s,R;vn ,vn8!exp~2 ivnt1 ivn8t8!,

~13!

where vn are the fermionic frequenciesvn5(2n11)pT.
Then the basic transport equation of the quasiclassical
malism becomes

@ ivn2 ivn81 iv~s!¹R#g~s,R;vn ,vn8!

2T(
vk

@s~s,R;vn ,vk!g~s,R;vk ,vn8!

2g~s,R;vn ,vk!s~s,R;vk ,vn8!#1evA@g~s,R;vn

2v0 ,vn8!2g~s,R;vn ,vn81v0!#50. ~14!

The exact form of the self-energy,s, is determined from
microscopic theory. In principle, all higher-order terms in t
spatial gradient can be included in this equation consiste
using the definition of the circle product.

It should be noted that, in the absence of a perturb
potential, or impurity scattering leading to the appearance
the self-energy, the Green’s function is independent of
coordinateR and is diagonal in frequency space, and the
fore Eq.~14! is trivially satisfied by any functiong. This is
not surprising since in subtracting the right-hand Dyso
equation from the left-hand equation the information abou
particular solution of the inhomogeneous equation has b
lost. The particular solution describes the unperturbed n
interacting electron gas, and is obtained by integrating
function G05@ ivn2z(p)#21 over the quasiparticle energ
to find the quasiclassical distribution function of a norm
metal,g052 isgn(vn). This function serves as input for an
perturbative approach to transport in a metal.

B. Semiclassical treatment of the magnetic field
and the Lorentz force

Equation~14! is sufficient to analyze longitudinal trans
port in a normal metal but it has to be generalized to de
mine the Hall conductivity. If the vector potentialA(R) de-
scribing the magnetic field is taken to be of order ‘‘small,’’
the field itself,H5¹3A, becomes of order ‘‘~small!’’ 2 and
the Lorentz force, which is proportional to both electric a
magnetic fields, disappears from the perturbative expan
of the quasiclassical equations. This observation led Rain22

to point out that in order to analyze the Hall effect in
normal metal, the vector potentialA(R) must be considered
as a leading-order quantity and should be included in
equations semiclassically rather than being treated pertu
tively. Now the quasiparticle energyz depends on the gen
eralized momentump2eA2eA(R). This replacement is ex
act. The semiclassical approximation, which is applicable
the long-wavelength limit where the quasiclassical appro
is appropriate, treats the momentum operator as ac number.
Therefore in the transformations described in Eq.~5! the mo-
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10 834 57A. HOUGHTON AND I. VEKHTER
mentump and the coordinateR are no longer independen
variables, rather, they are coupled by the presence of
vector potential, which depends upon the coordinates. A
result, the gradient expansion of the integrated Green’s fu
tion cannot be carried out independently in the Fermi-surf
parametrizations and the spatial variableR. For a general
transformation of variables from the set (p,R) to the set
(z,si ,R)

]

]Ra
5

]

]Ra
1

]z

]Ra

]

]z
1

]si

]Ra

]

]si
, ~15!

]

]pa
5

]z

]pa

]

]z
1

]si

]pa

]

]si
, ~16!

where the derivatives on the right-hand side are compute
constantz,s,R rather thanp,R. Using the explicit semiclas
sical R dependence ofz ands,

]z

]Ra
52e

]z

]pb

]Ab

]Ra
52evb

]Ab

]Ra
, ~17!

]si

]Ra
52e

]si

]pb

]Ab

]Ra
, ~18!

we obtain from the expansion of the terms involvingz,

E dz~2z@p2eA~t!2eA~R!#+G

1G+z@p2eA~t8!2eA~R!# !

'E dzS 2z@p2eA~t!2eA~R!#G

1z@p2eA~t8!2eA~R!#G1 i F ]z

]p

]G

]R
2

]z

]R

]G

]p G D
→2ev@A~t8!2A~t!#g1 iv¹Rg1 ie~v3H!

]g

]pi
,

~19!

wherepi denotes the component of the momentump parallel
to the Fermi surface. In the last line of Eq.~19! we have used
the result

F ]z

]p

]G

]R
2

]z

]R

]G

]p G5
]z

]pa

]G

]Ra
1F ]z

]pa

]si

]Ra
2

]z

]Ra

]si

]pa
G]G

]si

5va

]G

]Ra
1evaF]Aa

]Rb
2

]Ab

]Ra
G ]si

]pb

]G

]si

5v¹RG1e~v3H!
]G

]pi
. ~20!

The new term is the familiar Lorentz force driving term
the classical Boltzmann transport equation. Here it appe
on taking into account correctly the semiclassical dep
dence of the momentum on the external field. The basic q
siclassical equation~14! now takes the form
he
a

c-
e

at

rs
-

a-

F iv~s!¹R1 ie~v3H!
]

]pi
Gg~s,R;vn ,vn8!

1@ ivn2 ivn8#g~s,R;vn ,vn8!

2T(
vk

@s~s,R;vn ,vk!g~s,R;vk ,vn8!

2g~s,R;vn ,vk!s~s,R;vk ,vn8!] 1evA@g~s,R;vn

2v0 ,vn8)2g~s,R;vn ,vn81v0!] 50. ~21!

C. Linear response

In general, Eq.~21! is a nonlinear equation. To calculat
transport coefficients it is sufficient to keep only the term
linear in the external perturbation—in this case in the elec
field—and determine the Green’s functiong within linear
response. We separate the propagator into a leading term
a part linear in the perturbing potential

g5g0~vn!
1

T
dvn ,vn8

1g~1!~s,R;vn ,v0!
1

T
dvn ,vn81v0

.

~22!

If the self-energy is due to elastic impurity scattering, it c
be separated in a similar way intos0 ands (1). As noted the
equation for the leading-order termsg0 and s0 is satisfied
trivially; the terms of linear order are given by

@ iv01s0~2 !2s01 iv~s!¹R#g~1!1 ie~v3H!
]g~1!

]pi

5~evA1s~1!!@g0~2 !2g0#. ~23!

Here we have used a short-hand notationg05g0(vn) and
g0(2)5g0(vn2v0). This equation is the basis for th
analysis of transport in a normal metal. It has to be solv
together with the self-consistency condition relating t
change in the self-energy to the modification of the Gree
function g(1).

Since, throughout this work, we will be concerned wi
the electrical conductivity, we have to define the current
terms of the distribution function. It is well known24 that, if
in the microscopic equation for the current density

j ~x!5
e

m
T(

vn

E d3ppG~1!~p,R→x;vn!2
Ne2

m
A,

~24!

the integration over energy is carried out before summ
over frequencies, the contribution from the high-energy
gions ~far above and below the Fermi surface! exactly can-
cels the diamagnetic term in Eq.~24!. Then the quasiclassica
expression for the current becomes24,25

j ~R!5pN~0!eT(
v

E d2sv~s!g~1!~s,R;v!, ~25!

whereN(0) is the density of states at the Fermi surface. T
problem of calculating the transport coefficients of a norm
metal is now fully defined.
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D. Conductivity of a normal metal

As an example of the usefulness of the quasiclass
method we will use it to determine the conductivity tensor
a normal metal in a magnetic field. We consider an exp
mental arrangement with constant electric and magn
fieldsE5Ex̂ andH5H ẑ. We also assume a spherical Fer
surface

v5v~sinucosf,sinusinf,cosu! ~26!

and include the effect of isotropic impurity scattering in t
Born approximation, so that the self energy is given by

s5
1

2tE d2sg, ~27!

where t is the quasiparticle lifetime. The unperturbe
Green’s function is given byg052 isgn(vn), and therefore
s052 isgn(vn)/2t.

First consider the longitudinal dc conductivity. In the a
sence of a magnetic field Eq.~23!, becomes

H iv01
i

2t
@sgn~vn!2sgn~vn2v0!#J g~1!

52 i ~evA1s~1!!@sgn~vn!2sgn~vn2v0!#. ~28!

Since the driving term in Eq.~28! is proportional tovA, it is
evident that the angular dependence ofg(1) is given by that
dot product, and there is no correction to the self ene
since the angular average ofg(1) vanishes. Then it is obviou
from Eq. ~28! that g(1)50 whenvn and vn2v0 have the
same sign. Otherwise, in the intermediate frequency reg
wherev0.vn.0,

g~1!52
2ev~s!A

v011/t
. ~29!

Integrating over the Fermi surface, carrying out the summ
tion in the definition of current density, and analytically co
tinuing to the real external frequency according toiv0→v̄
1 id, in the dc-limit (v̄→0) we recover from this solution
the standard Drude theory result for the current

j5
1

3
N~0!e2v2tE5snE. ~30!

We now turn on the magnetic field. Writing the expre
sion for the Lorentz force in spherical coordinates it is ea
to check that

e~v3H!
]

]pi
52vc

]

]f
, ~31!

and the linearized transport equation becomes

S iv01
i

2t
@sgn~vn!2sgn~vn2v0!#2 ivc

]

]f Dg~1!

52 iev~s!A@sgn~vn!2sgn~vn2v0!#. ~32!
al
f
i-
ic
i

y

n

-

-
y

Again, the response function is nonzero in the intermed
region only. In the regimevct!1 it is sufficient to solve the
equation perturbatively, namely,

gH
~1!52

2ev~s!A

v011/t
1dg, ~33!

dg5
2e2

~v011/t!2
vcvAsinusinf. ~34!

The transverse current obtained from the correctiondg is, as
expected,

j y52snvctE. ~35!

We have therefore reproduced the results of the Drude the
using the quasiclassical formalism.

III. QUASICLASSICAL EQUATIONS
FOR A SUPERCONDUCTOR

In this section we generalize the approach developed
Sec. II to derive a set of quasiclassical equations that ca
used to analyze both longitudinal and transverse transpo
superconductors.

A. Gorkov equations

Gorkov’s equations27 for a matrix Green’s functionĜ re-
place Dyson’s equations in a fully microscopic approach t
superconductor. The diagonal elements of the matrix Gree
function

Ĝ5S G 2F

F† Ḡ
D ~36!

are the particle and hole propagators,

Ḡ~x,x8!5G~x8,x!; ~37!

for singlet pairing, the off-diagonal elements are related
the probability amplitudes for the destruction or creation o
Cooper pair by

~ i ŝy!abF~x,x8!52^Ttca~x!cb~x8!&, ~38!

~ i ŝy!abF†~x,x8!5^Ttca
†~x!cb

†~x8!&, ~39!

where ŝy is the Pauli matrix. Then the right- and left-han
Gorkov equations are

F2
]

]t
ŝz2z~2 i¹xŝz!1D̂~x!GĜ~x,x8!

2E d4yŜ~x,y!Ĝ~y,x8!5d~x2x8! 1 ~40!

Ĝ~x,x8!F ]

]t8
ŝz2z~1 i¹x8ŝz!1D̂~x8!G

2E d4yĜ~x,y!Ŝ~y,x8!5d~x2x8! 1. ~41!

The matrix order parameter



nc

ss
th

to

i-
r-o
e

-
-

s
si

-

pec-
if-
ivity

-II
h
am-

-
t,
rder
,

e of
ef-

to

be
tric
the

the
h
la-
ag-

ion
di-
d in

10 836 57A. HOUGHTON AND I. VEKHTER
D̂5S 0 D

2D! 0 D ~42!

is related to the off-diagonal elements of the Green’s fu
tion by

D~x!5gF~x10,x!, ~43!

D!~x!5gF†~x10,x!, ~44!

whereg is the coupling constant.

B. Quasiclassical approximation

The general approach to the derivation of the quasicla
cal equations for superconductors is exactly the same as
of Sec. II. We introduce the vector potentialsA(t) andA(x)
of an electric and magnetic field into the energy opera
transform the equations to a set of ‘‘mixed’’ variablesp and
R by performing a Fourier transform in the relative coord
nate, and expand in gradients with respect to the cente
mass coordinate, after integration over the quasiparticle
ergy.

Expanding the circle productz(2 i¹x)+G to first order in
gradients, we obtain

E d3rexp~2 ipr !z~2 i¹x2A~x!2A!G

→S z~p!2
i

2
v@¹R22ieA~R!#

2vA2
ie

2
~v3H!

]

]pDG~p,R!. ~45!

On the other hand on expanding the operatorz(1 i¹x8) the
combinationp1 i¹R rather thanp2 i¹R appears after Fou
rier transform in r . Consequently, the magnetic-field
dependent terms arising from the expansion of¹R in Eq.
~15! have the opposite sign, and

E d3rexp~2 ipr !z~1 i¹x82A~x8!2A!G

→S z~p!1
i

2
v@¹R12ieA~R!#2vA~t8!

1
ie

2
~v3H!

]

]pDG~p,R!. ~46!

Subtracting Eq.~46! from Eq.~45! we regain the result of the
Sec. II B. The vector potentialA appears in the expansion
in different gauge-invariant combinations. This can be ea
understood if we remember that operatorz(2 i¹x) acts on
the annihilation operatorc while operatorz(1 i¹x8) acts on
the creation operatorc†. Then the time evolution of the op
-

i-
at

r,

f-
n-

ly

erators describes the motion of particles and holes, res
tively, and the appropriate gauge-invariant derivative is d
ferent in each case. To determine the transverse conduct
all contributions of the order of the cyclotron frequencyvc
5eH/mc have to be included in the equations. In a type
superconductor in the vortex state, the coherence lengtj0
sets the length scale for spatial change of the order par
eter. Near the upper critical fieldHc2, the magnetic length
L5(2eH)21/2.j0. This immediately implies that the ex
pansion of the operatorz(p) has to be carried out not to firs
but to second order in spatial derivatives. The second-o
derivative ofz with respect to momentum is, by definition
the inverse effective mass tensor, which in the simple cas
a spherical Fermi surface becomes equal to the inverse
fective massm. In the expansion this term is coupled
square of the spatial gradient, so that its contribution

]2z

]pa]pb
¹a¹bG;

1

mL2 G}vcG ~47!

is comparable to that of the Lorentz force term and has to
taken into account. Neglecting terms quadratic in the elec
and magnetic fields and assuming a Fermi surface with
reflection symmetryz(p)5z(2p), we obtain the expansion
of the quasiparticle energy operator

z~2 i¹x!→z~p!2
i

2
v@¹22ieA~R!#2vA~t!

2
ie

2
@v3H#

]

]p
2

1

8m
@¹22ieA~R!#2

1
ie

2m
A@¹22ieA~R!#, ~48!

z~1 i¹x!→z~p!2
i

2
v@¹12ieA~R!#1vA~t!

1
ie

2
@v3H#

]

]p
2

1

8m
@¹12ieA~R!#2

2
ie

2m
A@¹12ieA~R!#, ~49!

and similar expressions for the operatorsz(1 i¹x8) and
z(2 i¹x8).

Now consider the remaining terms in the expansion of
microscopic Eqs.~40! and~41!. Here we are concerned wit
the change in the Hall conductivity of a superconductor re
tive to the normal-state value. This change involves the m
nitude of the superconducting order parameterD, which ap-
pears in our analysis in the dimensionless combinat
(LD/v). It is then easily seen that linear terms in the gra
ent expansion of the order parameter have to be retaine
the equation since a typical term in the expansion

]D̂

]R

]Ĝ

]p
}

D

L

1

mv
Ĝ'vcS LD

v D Ĝ, ~50!
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will contribute significantly to the change of transverse co
ductivity upon entering the superconducting state. Expand
to first order in the gradients we obtain from Eq.~6!

D̂~x!Ĝ~x,x8!2Ĝ~x,x8!D̂~x8!

→D̂~R,t!Ĝ~p,R!2Ĝ~p,R!D̂~R,t8!

1
i

2
F ]D̂

]R

]Ĝ

]p
1

]Ĝ

]p

]D̂

]RG2
i

2
F ]D̂

]p

]Ĝ

]R
1

]Ĝ

]R

]D̂

]p G ,

~51!

and, similarly,

E d4y@2Ŝ~x,y!Ĝ~y,x8!1Ĝ~x,y!Ŝ~y,x8!#

→E dt1S Ŝ~p,R;t,t1!Ĝ~p,R;t1 ,t8!

2Ĝ~p,R;t,t1!Ŝ~p,R,t1 ,t8!1
i

2
F ]Ŝ

]R

]Ĝ

]p
1

]Ĝ

]p

]Ŝ

]R
G

2
i

2
F ]Ŝ

]p

]Ĝ

]R
1

]Ĝ

]R

]Ŝ

]p
G D . ~52!

Using the results of Eqs.~48!, ~49!, ~51!, and~52!, subtract-
ing the left-hand Gorkov-Dyson equation from the righ
hand equation, and integrating over the quasiparticle ene
we obtain the quasiclassical transport equation for a su
conductor, which can be written using the matrix notation
follows:

ivnŝzĝ2 ivn8ĝŝz1D̂ĝ2ĝD̂1 iv¹ĝ1evA~ ŝzĝ2ĝŝz!

2
ie

2m
A~ ŝz¹ĝ1¹ĝŝz!1

ie

2
~v3H!

]

]pi
~ ŝzĝ1ĝŝz!

1evA@ŝzĝ~vn2v0 ,vn8!2ĝ~vn ,vn82v0!ŝz#

2
ie

2m
A@ŝz¹ĝ~vn2v0 ,vn8!2¹ĝ~vn ,vn82v0!ŝz#

2T(
vk

@ŝ~s,R;vn ,vk!ĝ~s,R;vk ,vn8!

2ĝ~s,R;vn ,vk!ŝ~s,R;vk ,vn8!#1
i

2
F ]D̂

]R

]ĝ

]pi

1
]ĝ

]pi

]D̂

]RG2
i

2
F ]D̂

]pi

]ĝ

]R
1

]ĝ

]R

]D̂

]pi
G2

i

2
T(

vk

F ]ŝ

]R

]ĝ

]pi

1
]ĝ

]pi

]ŝ

]RG2
i

2
F ]ŝ

]pi

]ĝ

]R
1

]ĝ

]R

]ŝ

]pi
G50, ~53!
-
g

y,
r-
s

where the quasiclassical matrix propagator is, as usual,14,15

ĝ~s,R;vn ,vn8!5E dzp

p
Ĝ~p,R;vn ,vn8!5S g 2 f

f † ḡ D
~54!

and the order parameter is given by the self-consistency c
dition

D~R!5gN~0!p(
n
E d2s f~s,R;vn ,vn!. ~55!

Equations~53! and~55! are the generalization of the standa
quasiclassical theory14,15 to include terms giving rise to non
zero Hall conductivity.

Before we linearize Eq.~53! and solve it to find the lon-
gitudinal and Hall conductivities, several comments sho
be made. First, the vector potential of the magnetic fi
enters the quasiclassical equation explicitly in contrast to
case of a normal metal@cf. Eq. ~21!#. This is readily under-
stood if we notice that in the last term on the first line of E
~53! the matrixŝzĝ2ĝŝz has only off-diagonal elements, s
that the term involvingvA only appears in equations for th
anomalous propagator. It would seem that the second t
involving the vector potentialA @the last term in the secon
line of Eq. ~53!# is present even in a normal metal since t
matrix ŝzĝ1ĝŝz has only diagonal elements, and, cons
quently, this term contributes only to the equations for t
quasiparticle part of the matrix Green’s function. Howev
in a normal metal in the presence of uniform electric a
magnetic fields the response function is spatially unifor
and this term is irrelevant. In the superconducting state
spatial variation of the quasiparticle Green’s function is d
to the spatial dependence of the order parameterD in the
vortex state, and this term describes the coupling of the c
rent, induced by the spatial dependence ofD(R), to the ex-
ternal field. Finally, the Lorentz force is accompanied by t
matrix propagator in a combinationŝzĝ1ĝŝz , and therefore
the Lorentz force does not act directly on the Cooper pa
This result is perhaps not too surprising as in a refere
frame associated with the center of mass the electrons h
opposite momenta, and hence there is no net force actin
a pair.

C. Linear response

We now use the approach given in Sec. II C to linear
the basic equation in the external field. If we decompose
propagatorĝ, self-energyŝ, and order parameterD into a
leading-order termĝ0, ŝ0, and D0, and a part~denoted by
index 1! linear in the applied electric field, the equation f
the Green’s function of a superconductor in a magnetic fi
reads
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ivn~ ŝzĝ02ĝ0ŝz!1evA~ ŝzĝ02ĝ0ŝz!2~ ŝ0ĝ02ĝ0ŝ0!1D̂0ĝ02ĝ0D̂01 iv¹ĝ01
ie

2
~v3H!

]

]pi
~ ŝzĝ01ĝ0ŝz!

2
ie

2m
A~ ŝz¹ĝ01¹ĝ0ŝz!1

i

2
F ]D̂0

]R

]ĝ0

]pi
1

]ĝ0

]pi

]D̂0

]R G2
i

2
F ]D̂0

]pi

]ĝ0

]R
1

]ĝ0

]R

]D̂0

]pi
G

2
i

2
F ]ŝ0

]R

]ĝ0

]pi
1

]ĝ0

]pi

]ŝ0

]R G1
i

2
F ]ŝ0

]pi

]ĝ0

]R
1

]ĝ0

]R

]ŝ0

]pi
G50, ~56!

while the equation for the response functiong(1) is given by

iv¹ĝ~1!1 ivnŝzĝ
~1!2 i ~vn2v0!ĝ~1!ŝz1D̂~1!ĝ0~2 !2ĝ0D̂~1!1D̂ĝ~1!2ĝ~1!D̂2@ŝ0ĝ~1!2ĝ~1!ŝ0~2 !#

2@ŝ~1!ĝ0~2 !2ĝ0ŝ~1!#1evA~ ŝzĝ
~1!2ĝ~1!ŝz!1evA~ ŝzĝ0~2 !2ĝ0ŝz!1

ie

2
~v3H!

]

]pi
~ ŝzĝ

~1!1ĝ~1!ŝz!

2
ie

2m
A~ ŝz¹ĝ~1!1¹ĝ~1!ŝz!2

ie

2m
A@ŝz¹ĝ0~2 !2¹ĝ0ŝz#1

i

2
F ]D̂0

]R

]ĝ~1!

]pi
1

]ĝ~1!

]pi

]D̂0

]R G
1

i

2
F ]D̂~1!

]R

]ĝ0~2 !

]pi
1

]ĝ0

]pi

]D̂~1!

]R G2
i

2
F ]D̂0

]pi

]ĝ~1!

]R
1

]ĝ~1!

]R

]D̂0

]pi
G

2
i

2
F ]D̂~1!

]pi

]ĝ0~2 !

]R
1

]ĝ

]R

]D̂~1!

]pi
G2

i

2
F ]ŝ0

]R

]ĝ~1!

]pi
1

]ĝ~1!

]pi

]ŝ0~2 !

]R G2
i

2
F ]ŝ~1!

]R

]ĝ0~2 !

]pi
1

]ĝ0

]pi

]ŝ~1!

]R G
1

i

2
F ]ŝ0

]pi

]ĝ~1!

]R
1

]ĝ~1!

]R

]ŝ0~2 !

]pi
G1

i

2
F ]ŝ~1!

]pi

]ĝ0~2 !

]R
1

]ĝ0

]R

]ŝ~1!

]pi
G50. ~57!
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The rest of this work will be devoted to solving these tw
equations to determine the transverse electrical conduct
of a type-II superconductor in the vortex state.

To calculate the response of a superconductor it will
convenient to modify the definition of current given in E
~25!. Since the diagonal elements of the matrix propaga
are related by Eq.~37!, it is easy to check that the current ca
be written as

j ~R!5
1

2
peN~0!(

v
E d2sv~s!~g12ḡ1!, ~58!

whereg1 and ḡ1 are the diagonal elements of the respon
function ĝ(1). In the standard quasiclassical approach the
tribution function g also satisfies a ‘‘normalization
condition’’14,15

(
vk

ĝ~vn ,vk!ĝ~vk ,vn8!52dvn ,vn8
. ~59!

In particular, using this condition for the leading-order d
tribution function, which is diagonal in frequency@see Eq.
~57!#, we find

ĝ0
2~vn!521. ~60!

However, it has to be emphasized that this normalizat
condition holds if and only if the gradient of the functiong
can be written as a commutator of an operator with the
ty

e

r

e
s-

-

n

-

tribution function, as is evident from the origina
derivation.14,15 It does not apply when terms responsible f
the Hall effect are taken into account, since they have
form of an anticommutator of a matrix operator with th
Green’s function. Nevertheless, this normalization condit
will prove useful in determining the quasiclassical Gree
function of a superconductor in a high magnetic field at
roth order.

IV. TYPE-II SUPERCONDUCTOR
IN A HIGH MAGNETIC FIELD

A. Model

We consider a clean type-II superconductor in a magn
field H close to the upper critical fieldHc2. Again we con-
sider a spherical Fermi surface, and impurity scattering
treated in the Born approximation. The condition for a s
perconductor to be in the clean regime isl @j0. In fields not
too far below the upper critical field the magnetic lengthL
.j0, so that in the clean regimel @L. In type-II supercon-
ductors the spatial variations of the internal field become l
pronounced as the superfluid density decreases with
creased applied uniform magnetic field. As a result, nearHc2
internal fields can be assumed spatially uniform and equa
the applied field and the vortex lattice can be modeled by
order parameter of the same form as the periodic Abriko
solution26
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D~R!5(
ky

Cky
eikyyexp@2~x2L2ky!2/2L2#

5(
ky

Cky
eikyyF0~x2L2ky!, ~61!

whereF0(x) is the lowest energy eigenfunction of the lin
earized Ginzburg-Landau equation~i.e., the eigenfunction of
a harmonic oscillator with the Cooper pair massM52m and
frequencyvc). The vector potential of the magnetic field h
been chosen in an asymmetric gaugeA(R)5(0,Hx,0). The
periodicity of the coefficientsCky

determines the type of vor
tex lattice. Here, we do not consider a specific periodic
the only assumption made is that there are flux lines in
system; this solution, therefore, can serve as a model f
rigid line liquid as well.

B. Quasiclassical equations in the absence of an electric field
and the BPT approximation

First we consider the leading-order Eqs.~56! and neglect
terms of ordervc . Then the elements are

iv¹g1D f †2D! f 5
1

2t
D^ f †&2

1

2t
D!^ f &, ~62!

@2vn1v~¹22ieA!# f 52iDg1
i

t
^ f &g2

i

t
^g& f , ~63!

@2vn2v~¹12ieA!# f †52iD!g1
i

t
^ f †&g2

i

t
^g& f †.

~64!

Here angular brackets denote an average over the Ferm
face. The normalization condition, Eq.~59!, can be used in
this case so that

g22 f f †521, ~65!

g1ḡ50. ~66!

To solve these equations we employ the approach du
Brandt, Pesch, and Tewordt,21 which was first used in the
framework of the quasiclassical approximation by Pesch.28,29

In this method the diagonal elementsg and ḡ of the matrix
propagator are approximated by their spatial averages, w
the exact spatial form ofD(R) is retained in determining the
off-diagonal functionsf and f †. The crucial observation is
that the diagonal part of the Green’s function is periodic
the center-of-mass coordinateR with the same periodicity as
the order parameter. Performing a Fourier decomposition
the full Green’s function in the vectorsK of the reciprocal
flux-line lattice, these authors21 showed that the Fourier com
ponents of the Green’s function withKÞ0 are exponentially
small @by a factor exp(2L2K2)] compared to the componen
with K50. This component is, of course, the spatial avera
of the Green’s function over a unit cell of the vortex lattic
which suggests the above approximation.

The diagonal part of the distribution function depends
the amplitude of the order parameter, but not on its pha
The length scale for the suppression of the mean-field or
parameter amplitude by a single vortex is the cohere
,
e
a

ur-

to

ile

of

e
,

n
e.
r-
e

length j0, therefore near the upper critical field the ord
parameter is globally suppressed in the bulk of the superc
ductor. Consequently, spatial variations of the amplitu
uDu2 can be ignored for fields close toHc2. On the other
hand, as the phase of the order parameter changes byp
around a single vortex, the rapid spatial variation of phase
the vortex state must be taken into account to determine
off-diagonal elements of the quasiclassical propagator. A
averaging over a single unit cell, the remaining spatial
pendence of the amplitudeuDu2 is determined by the nonuni
formity of the electromagnetic fields; the relevant leng
scale is the London penetration depthlL . Therefore, the
BPT approximation works very well for superconductors
the London limit k5lL /j0@1; even for materials with
moderate values ofk it remains valid over a wide field rang
below Hc2. Numerical results obtained by Brandt30 indicate
that the BPT approximation works extremely well as long
the parameter (LD/v)<0.3. Since the field dependence
the magnetic length is slow,L'j0(Hc2 /H)1/2, this means
that the approximation can be used over almost the en
region of linear magnetization, where the order paramete
suppressed.

In all of the following g stands for the spatially average
distribution function. To determine the functionsg, f , and
f †, we solve Eqs.~63! and~64! for the off-diagonal elements
of the matrix distribution function in terms ofg, and apply
the spatially averaged normalization condition of Eq.~65! to
determine the diagonal part self-consistently. We introdu
the impurity renormalized frequency

ṽn5vn1
i

2t
^g~ṽn!& ~67!

and rewrite the equations for the off-diagonal part of t
distribution function as

f 5@2ṽn1v~¹22ieA!#21S 2igD1
i

t
^ f &gD , ~68!

f †5@2ṽn2v~¹12ieA!#21S 2igD!1
i

t
^ f †&gD . ~69!

To proceed with this program we need to know the result
acting with the operator@2ṽn6v(¹72ieA)#21 on the or-
der parameter.

C. Operator formalism

Since the order parameter given in Eq.~61! is a superpo-
sition of the lowest-energy eigenfuctions of a harmonic
cillator centered at different vortex cores, we introduce
raising and lowering operators

a5
L

A2
@¹x1 i ~¹y22ieHx!#, ~70!

a†52
L

A2
@¹x2 i ~¹y22ieHx!#. ~71!

These operators obey the usual bosonic commutation r
tions @a,a†#51. We now interpret the Abrikosov solution a
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10 840 57A. HOUGHTON AND I. VEKHTER
the ground state of this ensemble of oscillatorsD5u0&. The
higher eigenstates of the system are generated by the
dard formula

a†un&5An11un11&. ~72!

This operation excites oscillator states centered on each
tex line so that

un&5(
ky

Cky
eikyyFn~x2L2ky!. ~73!

Similarly we can introduce conjugate operators correspo
ing to D!5^0u, the raising and lowering operators for the
states are now defined asb5(a)! andb†5(a†)!. Wide use
of bosonic operators for the description of the vortex latt
has been hampered by the fact that, even though the w
functions corresponding to different oscillator states cente
on the same vortex line are orthogonal, functions centere
different flux lines overlap, so that different excited states
defined above are not orthogonal and the equations are
local ~see, for example, Ref. 31!. What makes this approac
successful when combined with the BPT approximation
that this set of states is orthogonal in the sense of a sp
average

E d3R^mun&5D2dm,n , ~74!

whereD is the spatial average of the order parameter. T
condition is obeyed since the phase factor exp(ikyy) ensures
that only functions centered on the same site contribute
the integral. Therefore if we are only concerned with spa
averages of physical quantities, the excited states of the o
parameter can be treated as states of a harmonic oscilla

To evaluate the result of acting with the gradient opera
v(¹22ieA) on the order parameterD we rewrite it in terms
of the raising and lowering operatorsa anda†

v~¹22ieA!5
vsinu

A2L
@ae2 if2a†eif#. ~75!

Then the result of the action of the operator@2ṽn1v(¹
22ieA)#21 on any modeum& of the order parameter can b
evaluated exactly. The technical details are given in App
dix A. Here we give only the final result,

@2ṽn1v~¹22ieA!#21um&

5
ApL

vsinu (
m250

`

(
m150

m

Dm
m1m2ei ~m22m1!fum1m22m1&,

~76!

where

Dm
m1m25

Am!A~m2m11m2!!

~m2m1!!m1!m2!
~21!m1S 2

i

A2D m11m2

3@sgn~vn!#m11m211W~m11m2!~un!, ~77!

un5
2i ṽnLsgn~vn!

vsinu
, ~78!
an-

r-

d-

e
e-
d
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s
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ial

is

to
l
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W~u!5e2u2
erfc~2 iu !, ~79!

andW(m) is themth derivative of the functionW. Equation
~77! is the main result of the operator formalism develop
here; it allows further progress towards a solution of t
quasiclassical equations to be made.

D. Type-II superconductor in high magnetic field

Guided by the work of Eilenberger31 and Pesch,28 we
make an ansatz solving Eq.~68! for an s-wave supercon-
ductor. This ansatz makes use of the fact that the term
pendent on impurity scattering in the right-hand side of
equation renormalizes the amplitude of the order parame

f 52igD21~ṽn!@2ṽn1v~¹22ieA!#21D. ~80!

Since the order parameterD in this equation is the ‘‘ground
state’’ of the Abrikosov vortex latticeu0&, the form of the
function f can be obtained immediately from Eqs.~76! and
~A10!

f ~s!52ig~s!D21~ṽn!
ApL

vsinu (
m50

`
1

Am!
S 2

i

A2D m

3eimf@sgn~vn!#m11W~m!~un!um&. ~81!

Substituting this expression into Eq.~68!, we find for the
impurity renormalization of the order parameter

D~ṽn!512 iAp
L

2l
sgn~vn!E

0

p

dug~u;ṽn!W~un!.

~82!

Using the corresponding Eq.~69! we obtainf †(s)

f †~s!52ig~s!D21~ṽn!
ApL

vsinu (
m50

`
1

Am!
S i

A2D m

3e2 imf@sgn~vn!#m11W~m!~un!^mu. ~83!

Then we can use the normalization condition, Eq.~65!, to
determineg ~see Appendix A for details!

g52 isgn~vn!P~u,ṽn!, ~84!

where

P~u,ṽn!5F12 iApS 2LD

Dvsinu D 2

W8~un!G21/2

, ~85!

and the sign has been chosen to give the correct expres
in the normal state. Equations~67! and ~81!–~85! provide a
complete self-consistent solution of the quasiclassical eq
tions for ans-wave superconductor in a magnetic field.
Green’s function very similar to that given in Eqs.~84! and
~85! was obtained in the work of Pesch28 by a different
method. As in the microscopic theory, the order paramete
determined from the self-consistency condition given by E
~55!, which is, in this case,
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15 ipApgN~0!
L

v (
n
E

0

p

dug~ṽn!D21~ṽn!

3sgn~vn!W~un!. ~86!

For the general case of finite mean-free path and app
magnetic field, a closed form solution of the self-consist
expressions cannot be easily found. However, with mi
simplifications it is possible to obtain analytical results fro
this solution. Even though the dimensionless param
(LD/v)2 in the Green’s function given by Eq.~84! is small
in the region where the BPT approximation is valid, it a
pears with the weight (sinu)22, so that a straightforward ex
pansion is impossible. We will see, in fact, that the density
states is a nonanalytic function of this parameter. Howe
while the full functional dependence of the Green’s functi
on (LD/v)2 has to be retained, terms of higher order in th
small quantity can be neglected in this functional form, p
vided that they do not result in more singular behavior. B
the impurity renormalization of the frequencyṽn and the
renormalization of the order parameter depend on
weighted angular average of the Green’s functiong, which is
nonsingular as a function of the order parameter in the vo
state. This is related to the gapless character of the quas
ticle spectrum. Therefore, in determining the functionP to
leading order in (LD/v)2, the Green’s function in the defi
nition of impurity renormalization of the order parameterD
@Eq. ~82!# can be replaced by its normal-state value. Sim
larly, the renormalized frequency in the argument of t
functionW8 can be replaced byvn1sgn(vn)/2t. The result-
ing expression for the renormalization function is identical
that obtained by Helfand and Werthamer.32 With these ap-
proximations, Eqs.~81!–~85! describe a closed-form solu
tion. In the clean limit near the upper critical field of intere
here expressions for the quasiclassical propagator ca
simplified even further. Since in this regimel @L, and the
renormalization of the order parameter isD511O(L/ l ), to
leading orderD'1.

The anomalous Green’s functionsf and f † are given as a
Fourier series in the azimuthal anglef, with the mth com-
ponent of the series coupling to themth excited state~or
mode! of the order parameterD. Therefore in the presence o
an external perturbation the mode withm50 will couple to a
scalar potential, the mode withm51 to a transverse poten
tial, etc. The functionP given in Eq.~85! is related to the
angular-dependent density of states. If the Green’s func
is analytically continued into the upper half plane by letti
ivn→v1 id then the density of states

N~v,u!52N~0!Img~v,u!5N~0!ReP~v,u! ~87!

is strongly angular dependent. For quasiparticles trave
parallel to the magnetic field,N(v,u) is gapped and BCS
like, while in all other directions it is gapless. The total de
sity of statesNs(v), obtained by angular integration of th
imaginary part of the functiong, is gapless,21 while the re-
sidual density of states at the Fermi surfaceNs(0) is a
nonanalytic function of the order parameter21,28

Ns'N~0!F124S LD

v D 2

lnSA2v
LD D 12S LD

v D 2G . ~88!
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The Green’s function obtained here also reproduces the B
Green’s function if the limitH→0 is taken, which suggest
that it can be used to interpolate between the high-field
the low-field regimes. We now have a closed form expr
sion for the matrix propagator near the upper critical field
to the order (LD/v)4, which we will use to determine the
linear response of a superconductor to an electric field.

V. LONGITUDINAL CONDUCTIVITY

We begin by considering the longitudinal conductivity
the vortex state in the BPT approximation. We are concer
here with the transport coefficients in the clean limit, a
will neglect all contributions to conductivity of relative orde
(L/ l ) compared to the most significant modifications up
entering the superconducting state. We again omit term
order of cyclotron frequency.

A. The response function

Since the electrical current given in Eq.~58! depends on
ge5g12ḡ1, we write the linearized quasiclassical Eq.~57!
for the spatial average of this combination. Then the eq
tions for the linear, in the applied electric field, averag
diagonal elements of the distribution function, and the eq
tions for the anomalous functions are

ge5g12ḡ15
2evA@g2g~2 !#

i ṽ0

1~ i ṽ0!21@D1
! f 2D1

! f ~2 !#

1~ i ṽ0!21@D1f †2D1f †~2 !#1~2i ṽ0t!21~@^ f 1
†& f

2^ f 1
†& f ~2 !#1@^ f 1& f †2^ f 1& f †~2 !# !

2~2i ṽ0t!21~@ f 1
†^ f &2 f 1

†^ f ~2 !&#1@ f 1^ f †&

2 f 1^ f †~2 !&# !, ~89!

@2Ṽn1v~¹22ieA!# f 1

5 ievA@ f 1 f ~2 !#1 iD~g12ḡ1!1 iD1@g1g~2 !#

1 i ~2t!21$^ f 1&@g1g~2 !#2^ f &ḡ11^ f ~2 !&g1%,

~90!

@2Ṽn2v~¹12ieA!# f 1
†

5 ievA@ f †1 f †~2 !#1 iD!~g12ḡ1!1 iD1
!@g1g~2 !#

1 i ~2t!21$^ f 1
†&@g1g~2 !#2^ f †~2 !&ḡ11^ f †&g1%.

~91!

The notation used here is identical to that of the previo

section, and the frequencyṼn is defined asṼn5ṽn1ṽ2. It
is possible to identify the different contributions to the righ
hand side of Eq.~89!. The first term is the quasiparticle con
tribution to the current, this term determines the respo
function in the normal state, and, with the modified Gree
function, describes the contribution of quasiparticles to
current in superconductors. The other terms on the rig
hand side exist only in the superconducting state. The
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10 842 57A. HOUGHTON AND I. VEKHTER
two of these involve the modification of the order parame
D, and can be associated with the motion of the vortex lat
under the influence of the applied electric field. The rema
ing terms mix the contributions of the quasiparticles and
Cooper pairs. It will be shown below that the most releva
contribution from these terms is due to the additional sc
tering of the quasiparticles by dynamical fluctuations of
order parameter, similar to the processes described in
dirty limit by the Thompson diagrams.34

The quasiparticle contribution to the response funct
g12ḡ1 can be determined immediately since the unpertur
functionsg andg(2) are known from Eq.~84!. To evaluate
the other contributions to the response function, Eqs.~90!
and~91! have to be solved forD1 and^ f 1&, as well as for the
conjugate quantitiesD1

! and ^ f 1
†&. As before, here we deter

mine the complete functional dependence of the respo
function on the order parameter to orderD2, and neglect
corrections that vanish faster than this asD decreases. Sinc
both D1 and f † can be expanded in a complete set of fun
tions um& and^mu, which are normalized byD2, see Eq.~74!,
it is sufficient to determine the expansion coefficients to
roth order in D. Therefore in Eqs.~90! and ~91! we can
replace the functionsg, g1, and ḡ1 by their normal state
values. With these simplifications Eqs.~89!–~91! can be
solved explicitly forD1, f 1, and the ‘‘daggered’’ functions.

B. Quasiparticle contribution

Two different effects modify the quasiparticle contrib
tion to the current relative to the current in a normal me
First, the differenceg2g(2) is modified relative to its nor-
mal state form, and, second, as the impurity renormaliza
of the frequencyṽ0 depends on the unperturbed Green
function it is also affected by the opening of the superc
ducting gap below the upper critical field. In the norm
state, the differenceg2g(2) vanishes in the outside fre
quency region, for a type-II superconductor this difference
of orderD2. Therefore, in a calculation to lowest order inD2,
the renormalized frequency can be replaced by the bare
quency in this frequency range. On the other hand, in
intermediate frequency range, where the difference of
unperturbed Green’s functionsg2g(2) is of order 1, it is
important to keep the full dependence of the renormali
frequency on the order parameter. Further, as the contr
tion from the outside region is proportional tov̄, but nott, it
is of order (LD/v)2(L/ l ) and negligible compared to th
contribution from the intermediate frequency range. T
situation is not unusual when comparing different contrib
tions to the conductivity. Two dimensionless quantities
volving the frequency of the external electric field appear
our analysis. The first,v̄t, usually comes from renormaliza
tion of the bosonic frequencyv0 in the intermediate fre-
quency range. The second, (Lv̄/v), appears when the re
sponse functions are expanded in the external freque
since the argumentun of these functions involves the fre
quency in the combination (Lv̄/v), see Eq.~78!. In the dc
response only terms linear inv̄ contribute to the absorptive
part of the conductivity. Therefore, as the ratio of the tw
dimensionless parameters is of order (L/ l ), we keep terms
of order v̄t while neglecting those of order (Lv̄/v). In the
r
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quasiparticle contribution then the only relevant terms ar
from the intermediate frequency range.

Since the quasiparticle spectrum is gapless in the h
field regime, the response function varies slowly over
scalev;T, and the frequency sums can be evaluated ea
see Appendix B. We find the quasiparticle contribution to t
current

jqp5
1

4
N~0!e2v2AE

0

p

sin3udu

3H ~P21!1 i v̄tFP1^~12P!&

2ApW9S L

lsinu D S 2LD

vsinu D 2S L

lsinu D P3G J . ~92!

Here all the functions are evaluated atv50. For v50 the
argument of the functionW8 in Eq. ~85! is purely imaginary,
and the functionP is purely real. It follows that the first term
in Eq. ~92! contributes to the nonabsorptive part of the co
ductivity; it is the remnant of the Meissner effect in a type
superconductor in a magnetic field. The remaining ter
contribute to the absorptive part, and the transport curr
can be written as

jqp5
1

4
N~0!e2v2tEE

0

p

sin3uduF @P21#1@11^~12P!&#

2ApW9S L

lsinu D S 2LD

vsinu D 2S L

lsinu D P3G . ~93!

The first term in Eq.~93! is the direct modification of the
quasiparticle current on entering the superconducting sta

jqp15
1

4
N~0!e2v2tEE

0

p

sin3uduH F12 iApS 2LD

vsinu D 2

3W8~ iL/ lsinu!G21/2

21J
5 j 8qp2snE, ~94!

where the normal state conductivitysn was defined in Sec
II D. The contribution of small angles sinu<(L/l) to the an-
gular integrals is of higher order in (L/ l ) and can be ne-
glected. For larger angles the argument of the functionW8
can be set to zero sinceL/ l !1. Then the integration is eas
ily carried out, expanding the resulting elliptic integrals f
small values of the parameter (LD/v), we find that the cor-
rection to the conductivity from this term

Dsxx
qp1526snS LD

v D 2

~95!

is negative. In the superconducting state in addition to
scattering of quasiparticles by impurities, quasiparticles
scattered by the vortex lattice. At a vortex core a quasipa
cle can undergo Andreev scattering into a hole and a Coo
pair with no energy cost. This additional scattering proc
reduces the quasiparticle contribution to the current.
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The second term in Eq.~93! arises from renormalization
of the scattering timet in the vortex state. It can be writte
as

jqp25sn@11~12^P&!#E5 1
3 N~0!e2v2teffE, ~96!

where the scattering rate

teff5t@11~12^P&!#. ~97!

The quantityN(0)^P& evaluated atv50 is the residual den
sity of states in a superconductorNs , see Eq.~88!. Hence
this term describes the effect of the change in the densit
states on the scattering rate of the quasiparticles. Below
transition, as the superconducting gap opens, the resi
density of states at the Fermi surface is suppressed comp
to the density of states in the normal state; consequently
effective scattering rate is smaller and the effective me
free path is larger. The angular integral of the functionP can
be evaluated to leading order in (L/ l ) and expanded in
(LD/v) in similar fashion to the integral analyzed above, w
obtain, in agreement with the result of Eq.~88!, the effective
scattering time

teff5tF124S LD

v D 2

lnS LD

A2v
D 22S LD

v D 2G , ~98!

and the contribution to the longitudinal conductivity

sxx
qp25snF114S LD

v D 2

lnSA2v
LD D 22S LD

v D 2G . ~99!

Since (LD/v)!1, the logarithmic term dominates near th
transition and this contribution is enhanced relative to
normal-state value. The last term in Eq.~93! contributes at
order (LD/v)2(L/ l ).

C. Dynamical fluctuations of the order parameter

To compute the contribution of all the other terms in E
~89! to the current, we have to solve Eqs.~90! and ~91! for
the linear, in the electric field, correction to the order para
eter and determine the functionsf 1 and f 1

† . As discussed

above, the functionsg1 and ḡ1 can be replaced by thei
normal-state values to the order to which we work. To u
the operator formalism we need to evaluate the effect
acting with the differential operator, @2Ṽn1v(¹
22ieA)#21, on the unperturbed functionf . In the clean
limit

f 52ig@2ṽn1v~¹22ieA!#21D. ~100!

Then the two differential operators can be separated

@2Ṽn1v~¹22ieA!#21@2ṽn1v~¹22ieA!#21

5 1
2 ~ṽn2Ṽn!21$@2Ṽn1v~¹22ieA!#21

2@2ṽn1v~¹22ieA!#21%, ~101!

and Eq.~90! becomes
of
he
al

red
he
-

e

.

-

e
f

f 15
evA@ f 2 f ~2 !#

i ṽ0

1 i @g1g~2 !#@2Ṽn1v~¹22ieA!#21D1

1 i ~2t!21@g1g~2 !#@2Ṽn1v~¹22ieA!#21^ f 1&

1 i ~2t!21
evA@g2g~2 !#

i ṽ0

@2Ṽn1v~¹22ieA!#21

3@^ f &1^ f ~2 !&#. ~102!

Since the self-consistency condition requires that

D15pgN~0!T(
vn

^ f 1&, ~103!

and Eq.~102! is a standard Fredholm-type integral equatio
it is clear that, since the functionf given in Eq. ~81! is a
Fourier series inf, the angular average of the productf cosf
projects out only the component proportional to exp(if), the
first excited mode of the order parameterum51&. This im-
plies that the linear, in the electric field, change in the or
parameter involves only the first excited state, and has
form D15Cu1&, whereC is to be determined from Eq.~102!,
similarly, D1

!5C̄^1u. This result, which was anticipated i
Sec. IV D, is in agreement with that of Caroli and Maki.33

The contribution to the response due to the dynamical fl
tuations of the order parameter is given by the second term
Eq. ~89!. Using the functionsf and f † from Eqs.~90! and
~91! and the orthogonality condition given in Eq.~74!, we
find that

D1f †52
A2pLD2

vsinu
CgW8e2 if, ~104!

D1
! f 5

A2pLD2

vsinu
C̄gW8eif, ~105!

and the contribution to the longitudinal and transverse e
trical current is

j x
f l5

p

4
A2peN~0!~C2C!LD2E

0

p

dusinuT

3(
vn

gW82g~2 !W8~2 !

i ṽ0

, ~106!

j y
f l5 i

p

4
A2peN~0!~C̄1C!LD2E

0

p

dusinuT

3(
vn

gW82g~2 !W8~2 !

i ṽ0

. ~107!

We see that the ‘‘odd’’ part of the dynamical fluctuations
the order parameter gives rise to a contribution to the lon
tudinal resistivity, while the ‘‘even’’ part contributes to th
Hall current. Both of these contributions are proportional
the ‘‘vertex’’ function

V~v0!5T(
vn

gW82g~2 !W8~2 !

i ṽ0

, ~108!
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10 844 57A. HOUGHTON AND I. VEKHTER
describing the coupling between the electric field and
excited mode of the order parameter.

Equation~102! is solved in Appendix C, we find that th
last two terms result in small, in (L/ l ), contributions, and the
amplitude of the fluctuationsC is given by

C5
A2

4
evAS T(

n
E

0

p

sinudu
gW82g~2 !W8~2 !

i ṽ0
D

3FT(
n
E

0

p

duS igsgn~vn!W~un!2
i

2
@g1g~2 !#

3sgn~Vn!@W~Un!1 1
2 W9~Un!# D G21

. ~109!

The denominator on the right-hand side of Eq.~109! is the
propagator of the first excited mode of the order parame
In general, the zeroes of this propagator correspond to
spectrum of propagating modes of the order parameter
our case the transverse perturbation due to the vector po
tial of the electric field couples to the first excited mode
the order parameter, which is damped, i.e., there is a fin
energy gap in the spectrum of these excitations at zero
quency. The response to a scalar potential is quite differ
there is a propagating mode at zero frequency.33 Since the
dynamical fluctuations of the order parameter are driven
the electric field, the coupling to the excited mode in t
numerator of Eq.~109! is also proportional to the verte
function defined in Eq.~108!.

Evaluating the sums in Eq.~109! we find @Eq. ~C6!#

C52C̄5
ieLAA2

12 ivt̄
, ~110!

and therefore there is no contribution to the transverse
rent due to the fluctuation term, as expected. The contr
tion to the longitudinal current can be evaluated from E
~106!, it is

j f l52 iApN~0!e2v2tS LD

v D 2E
0

p

sinuW8S iL

lsinu D E,

~111!

and the contribution of the dynamical fluctuations of the
der parameter to the longitudinal conductivity is

sxx
f l 54N~0!e2v2tS LD

v D 2

512snS LD

v D 2

. ~112!

D. Thompson contribution

We now consider the remaining terms in Eq.~89!. To
evaluate their contribution to the longitudinal current w
need the explicit expressions for the angular averages o
unperturbed anomalous Green’s functionf and f †, and the
linear, in the electric field, correctionsf 1 and f 1

† to the dis-
tribution function. These are obtained from Eq.~102! and its
daggered counterpart.

Only one of these terms, the term involving the angu
average of the functionsf 1 and f 1

† , gives a contribution to
the conductivity at the order considered here. A typical te
is given by
e

r.
he
In
n-

f
e-
e-
t:

y

r-
u-
.

-

he

r

^ f 1& f †2^ f 1& f †~2 !

2i ṽ0t

5 ipevAS LD

v D 2 e2 if

sinu

gW82g~2 !W8~2 !

ṽ0t

3E
0

p du8

4 FgW82g~2 !W8~2 !

i ṽ0

sinu8

22
L

v
g1g~2 !

12 ivt̄
sgn~Vn!S W~Un!1

1

2
W9~Un! D G ,

~113!

where the functions under the integral depend on the an
u8, and

Un5
2iLṼnsgn~Vn!

vsinu
, ~114!

in analogy to Eq.~77!. As there is an additional factor of th
scattering time in the denominator, it might be expected t
this contribution is small. However, in the intermediate r
gion the renormalized frequencyṽ0;1/t and, sinceg and
g(2) have opposite signs, the contribution ofgW8
2g(2)W8(2) is of order one. Therefore the first term co
tributes to the conductivity at the same order as the cor
tions found previously. On the other hand, asg1g(2)50
in the intermediate region, the second term does not con
ute to the current. In the outside region both terms give c
tributions to order (L/ l ) that can be neglected. The contr
bution to the current from Eq.~113! and the corresponding
term involving ^ f 1

†& f @which is obtained from Eq.~113! by
replacinge2 if with eif] is

jTh15
p2

4
N~0!e2v2AS LD

v D 2 1

4i ṽ0t

1

i ṽ0

3 (
vn.0

v0 F E
0

p

sinudu@W81W8~2 !#2G . ~115!

The Thompson-like contribution to the conductivity is give
by

sxx
Th522N~0!e2v2tS LD

v D 2

526snS LD

v D 2

. ~116!

In his original work Thompson34 found that there is a
contribution to the conductivity in the dirty (l !j0) limit due
to scattering of quasiparticles by the dynamical fluctuatio
of the order parameter. The main contribution in the di
limit arose from the outside region; the contribution of t
intermediate region was smaller by a factor (l /j0). The result
obtained here for the clean limit is consistent with this p
ture. The term contributing to leading order is proportional
the angular average off 1 and exists only in the presence o
the excited mode of the order parameter as it depends on
angular average off 1. As expected when (l /j0)@1, the rel-
evant contribution comes from the intermediate region.
the presence of a transport current the vortex lattice mo
and individual vortices are deformed. As a result, additio
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scattering of quasiparticles by the vortices gives rise t
negative contribution to the conductivity given in Eq.~116!.

E. Longitudinal conductivity

The longitudinal conductivity of a clean type-II superco
ductor in the mixed state is obtained by combining the
sults for the quasiparticle current from Eqs.~95! and~99!, the
current due to the dynamical fluctuations of the order para
eter from Eq.~112! and the current due to the Thompso
terms from Eq.~116!. We notice that reduction in the quas
particle contribution to the conductivity due to addition
scattering off the ground state of the vortex lattice@Eq. ~95!#
and the excited modes of the order parameter~Thompson
terms! is compensated to order (LD/v)2 by the increase in
the current due to dynamical fluctuations of the order para
eter. The conductivity then is given by Eq.~99!,

sxx5
1
3 N~0!e2v2teff5snH 112S LD

v D 2F lnS 2v2

L2D2D21G J ,

~117!
that is the modification of the longitudinal conductivity upo
entering the superconducting state is determined solely
the increase in the effective mean-free path due to the
pression of the density of states at the Fermi level as
superconducting gap opens. The increase in the mean
path is a nonanalytic function of the order parameter.

VI. HALL EFFECT

A. Stability of the leading-order solution

In determining the density of states and the longitudi
conductivity we have neglected terms of the order of cyc
tron frequency not only in the linearized quasiclassical eq
tions, but also in the leading-order equations~62!–~64!. To
investigate the behavior of the transverse conductivity
gradient terms in Eq.~56! have to be taken into account, an
the solution for the propagatorĝ at zeroth order in the elec
tric field has to be obtained to ordervc . Instead of attempt-
ing to solve Eq.~56! in full, we will show here that the
solution obtained in Sec. IV is still valid when terms of ord
of the cyclotron frequency are included in the equations.

We saw in Sec. III that, as the matrix combinationŝzĝ

1ĝŝz has only diagonal elements, the Lorentz force a
only on the quasiparticle~diagonal! part of the propagator
The functiong given in Eq. ~84! does not depend on th
azimuthal anglef, and, therefore, there is no correction
this function from the Lorentz force term. Next we obser
that the term involving the gradient of the propagator in
third line of Eq.~56! is proportional to the same combinatio
of matrices as the Lorentz term. Since in the BPT appro
mation the functiong is replaced by its spatial average, th
term vanishes. For ans-wave superconductor the order p
rameterD is constant at any point at the Fermi surface, a
its derivative with respect to the components of moment
parallel to the Fermi surface vanishes, which means that
last term in the fourth line of Eq.~56! can be ignored. The
momentum derivative of the self-energy due to impur
scattering vanishes for the same reason.
a
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-
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ee
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We now consider the remaining terms in Eq.~56!. Omit-
ting the subscript, since in this section we only consid
functions at leading order, we write the first of these terms
the matrix form

M̂5
i

2
F ]D̂

]R

]ĝ

]pi
1

]ĝ

]pi

]D̂

]RG . ~118!

The off-diagonal elements of this matrix are proportional
the trace of the quasiclassical propagator and vanish in
cordance with the normalization condition. The contributi
from the termM̂ to the equation for the quasiparticle part
the distribution function is

M115
i

2F]D

]R

] f †

]pi
1

]D!

]R

] f

]pi
G . ~119!

To spatially average this term and determine its contribut
to the diagonal part of the propagator, we need to recast
gradient operators in terms of raising and lowering opera
a and a† and the azimuthal and polar anglesf and u. We
find

]̂

]R

]

]pi
5

1

A2pL
S ~ae2 if2a†eif!cosu

]

]u

2
i

sinu
~ae2 if1a†eif!

]

]f D . ~120!

Here the hat denotes the gauge-invariant gradient

]̂

]R
5

]

]R
62ieA, ~121!

and the operator with the plus sign acts onD! while the
operator with the minus sign acts onD. A direct check using
the solution obtained in Sec. IV shows that the terms bre
ing gauge invariance vanish after spatial averaging. Con
quently, the gradient can be replaced by its gauge invar
counterpart, as expected for an operator acting on the o
parameter. For the ground state of the vortex lattice a di
check shows that this term does not result in any correc
to the unperturbed propagator. The contribution from
term involving the spatial derivative of the self-energy va
ishes in complete analogy to the term just discussed as
structure is identical.

Therefore the solution of the quasiclassical equations
tained in Sec. IV also satisfies the quasiclassical equat
when terms of the order of cyclotron frequency are taken i
account.

B. Linearized equations for the transverse response

We now consider the linearized Eq.~57!. In the regime
whenvct!1 terms of the order of cyclotron frequency ca
be included in the calculation of the response function p
turbatively. We therefore solve for the linear, in the cycl
tron frequency, corrections to the averaged response func
ge5g12ḡ1 obtained in the calculation of the longitudina
conductivity in the preceding section.

Since the Hall conductivity in the normal state is propo
tional to the square of the scattering timet, we can expect
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10 846 57A. HOUGHTON AND I. VEKHTER
that the most relevant contributions to the transverse con
tivity in the vortex state are also proportional tot2, other
contributions to the Hall effect are smaller by a factor (L/ l ).
Therefore we keep in the equations only terms that cont
ute to this order. If nowdĝ is the part of the propagato
linear in the cyclotron frequency, we arrive at the followin
equation for the functiondge5dg12dḡ1:

dge5
ivc

i ṽ0

]

]f
~g12ḡ1!1

1

i ṽ0

$dD1
!@ f 2 f ~2 !#

1dD1@ f †2 f †~2 !#%1
1

2i ṽ0t
$@^d f 1

†& f 2^d f 1
†& f ~2 !#

1@^d f 1& f †2^d f 1& f †~2 !#%2
i

2i ṽ0
S ]D1

!

]R

]

]puu

3@ f 1 f ~2 !#1
]D1

]R

]

]puu
@ f †1 f †~2 !#

12
]D!

]R

] f 1
†

]puu
12

]D

]R

] f 1

]puu
D . ~122!

Hereg12ḡ1 is given by Eq.~89!. There are now two distinc
contributions both to the term involving the fluctuation of t
order parameter and to the Thompson term. One reason t
terms contribute to the transverse response is that they
rise to additional scattering due to dynamical fluctuations
the order parameter induced by the electric field, as we
in the previous section. When the quasiparticle trajecto
are bent by the magnetic field, this additional scatter
renormalizes the Hall conductivity. This effect is contain
in the first term in Eq.~122!, since the functiong12ḡ1 con-
tains the contributions of the Thompson terms and the fl
tuations of the order parameter induced by the electric fi
The other contribution to these terms is due to fluctuation
the order parameter induced by the Lorentz force, these fl
tuations result in corrections to the transverse conducti
and are contained in the terms involvingdD1 andd f 1 in Eq.
~122!. Finally, the terms involving the gradient of the ord
parameter contribute to ordert2 for the same reason that th
Thompson term contributes to the longitudinal conductivi
namely, that there is an additional factor of the scatter
time t in the amplitude of the order parameter fluctuationsC
and in the functionsf 1 and f 1

† , so that the overall contribu
tion is of ordert2. This anomalous contribution to the tran
verse conductivity arises because the gradients of the o
parameter created by the moving and deformed vortex la
act as driving forces~analogous to the Magnus force! in the
transportlike equations. The remaining terms in Eq.~57! con-
tribute at higher order in (L/ l ).

The equations for the corrections to the off-diagonal e
ments of the matrix distribution function are

@2Ṽn1vf~¹22ieA!#d f

52
e

2m
A~¹22ieA!@ f 2 f ~2 !#1 iDdge

1 idD1@g1g~2 !#1
i

2

]D

]R

]

]puu
~g11ḡ1!

1
i

2

]D1

]R

]

]puu
@g1g~2 !# ~123!
c-

-

ese
ve
f
w
s

g

-
d.
f

c-
y

,
g

er
e

-

and

@2Ṽn2vf~¹12ieA!#d f †

52
e

2m
A~¹12ieA!@ f †2 f †~2 !#1 iD!dge

1 idD1
!@g1g~2 !#1

i

2

]D!

]R

]

]puu
~g11ḡ1!

1
i

2

]D1
!

]R

]

]puu
@g1g~2 !#. ~124!

In the normal state there is no angular dependence to
unperturbed functiong, and alsog11ḡ150, so that the
terms in the last line of each equation vanish. We can n
solve Eqs.~123! and~124! to determine the contributions t
the dynamical fluctuations of the order parameter induced
the Lorentz force. We can then evaluate the contribution
the transverse conductivity term by term.

C. Hall conductivity

The quasiparticle part of the response function is

dge
qp522evAsinusinf

ivc

i ṽ0

@g2g~2 !#

i ṽ0

. ~125!

The contribution to the conductivity from the intermedia
frequency range is readily evaluated; the correction to
transverse conductivity due to additional scattering off
vortex lattice

Dsxy
qp1526snvct~LD/v !2 ~126!

and the contribution to the Hall conductivity due to th
modification of the scattering time

sxy
qp25 1

3 N~0!e2v2teff~vcteff!

5snvctH 114S LD

v D 2F lnS 2v2

L2D2D21G J . ~127!

In addition, there is a quasiparticle contribution to the H
conductivity from the outer frequency range that is forma
divergent,

j y
an152 1

4 N~0!e2v2A
ivc

v̄
E

0

p

sin3uduF ~P21!

1S Lv̄

vsinu
D ]P

]v
G . ~128!

Since P8 evaluated at zero frequency is purely imagina
the second term describes a small correction to the Meiss
like term. The first term in this equation, on the other han
has no physical meaning and must disappear from the fi
expression for the current.

It is in fact canceled by the contribution of the fluctuatio
of the order parameter
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j y
f l52ipevcCN~0!

A2pLD2

v E d2sv
sinf

sinu
T

3(
vn

gW82g~2 !W8~2 !

~ i ṽ0!2
~129!

from the outer range, where the first term in the expansio
the vertex function

T(
out

gW82g~2 !W8~2 !

~ i ṽ0!2
52

2i

v̄
T (

vn.0

]W8

]v
1 . . .

~130!

is formally divergent. The remaining contribution from th
outer range is obtained by expanding the coefficientsC and
C̄ in the small quantityvt̄, it is

j y
f l256sn~vct!S LD

v D 2

E. ~131!

This contribution is canceled by that of the intermediate f
quency range in Eq.~129!, so that there is no net contributio
to the transverse conductivity due to the dynamical fluct
tions of the order parameter driven by the electric field. T
result is consistent with the predictions of time-depend
Ginzburg-Landau theory.1 The terms considered so far in th
section correspond directly to those contained in TDG
which is an effective theory treating only the fluctuations
the order parameter, while the quasiparticle contribution
taken to be at the normal-state value. In the TDGL appro
the Lorentz force has no effect on the dynamics of the or
parameter, and there is no correctiondD1 due to this force.

In the present analysis, however, the equations for
quasiparticle propagators and the amplitude of the order
rameter fluctuations are coupled, so that even though
Lorentz force does not appear explicitly in the equation
d f , it introduces changes in the diagonal part of the distri
tion function g12ḡ1 and therefore brings about furthe
modificationdD1 of the order parameter. To find this contr
bution we have to solve Eqs.~123! and~124! for the changes
in the order parameterdD15dCu1& and dD1

!5dC̄^1u. The
solution, given in Appendix C, follows the same steps as
the calculation of the longitudinal conductivity. We find th
only the term involvingdge contributes at the order to whic
we work, and

dC5dC̄5 ieLAA2~v̄t!~vct!, ~132!

and, since we saw in Eq.~107! that the ‘‘even’’ part of the
dynamical fluctuations of the order parameter contribute
the transverse part of the conductivity

sxy
f l 56sn~vct!S LD

v D 2

, ~133!

the dynamical fluctuations of the order parameter driven
the Lorentz force tend to increase the transverse condu
ity.

Similarly, there are two parts to the Thompson terms: o
is due to the longitudinal response, while the other is due
the linear in the Lorentz force corrections to the off-diago
distribution functions. The contribution to the transver
of

-

-
s
t

,
f
is
h

er

e
a-
he
r
-

n

to

y
iv-

e
to
l

conductivity due to the first of the Thompson terms is t
longitudinal contribution multiplied byvct,

sxy
Th1526sn~vct!S LD

v D 2

. ~134!

To determine the contribution to the current from the seco
Thompson term, we use the angular averages^d f & and^d f †&
given in Appendix C, to find that its contribution double
that given in Eq.~134!, so that the total contribution of the
Thompson terms to the transverse conductivity is

sxy
Th5212sn~vct!S LD

v D 2

. ~135!

In addition to the scattering of quasiparticles by the fluctu
tions of the order parameter induced by the applied elec
field, which tends to reduce the current, quasiparticles a
undergo additional scattering off the dynamical fluctuatio
driven by the Lorentz force, which again tends to reduce
transverse response. In this sense, the Lorentz force resu
anisotropic scattering of the quasiparticles by the fluctuati
of the order parameter.

The last two terms, the gradient terms in Eq.~122! have a
structure identical to that of the terms considered in S
VI A. Their contribution to the current can be evaluated u
ing the operator approach as shown in Appendix A. Fi
consider the term involving the gradient of the dynamic
fluctuations of the order parameterD1 and D1

!. These fluc-
tuations involve the first excited mode of the order para
eter, which, when they are acted upon by the annihilat
and creation operators in Eq.~A17!, gives terms proportiona
to the ground state and the second excited state of the o
parameter, respectively. Then spatial averaging projects
the same modes from the functionsf and f † given in Eqs.
~81! and ~83!. In the second of these terms the gradient o
erator acts on the ground state of the vortex lattice,D, which
the creation operator promotes to the first excited state. S
tial averaging now projects out the first excited compon
from the functionsf 1 and f 1

† . The contribution to the trans
verse current due to these terms, is found to be

j y
gr523sn

D2t

e f
E. ~136!

Since

D2t

e f
5

2D2t

mv2 52S LD

v D 2 t

mL2 54vctS LD

v D 2

, ~137!

the contribution to the transverse conductivity due to th
terms is given by

sxy
gr512snvctS LD

v D 2

. ~138!

The induced gradients of the order parameter enhance
transverse conductivity.

The total transverse conductivity is the sum of all t
contributions considered here. We find that the modificat
of the quasiparticle Hall current due to additional scatter
off the vortex lattice given in Eq.~126! is exactly compen-
sated by the enhancement of the transverse current du
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the Lorentz force driven fluctuations of the order parame
obtained in Eq.~133!. The Thompson contribution due t
additional scattering by the deformed and moving vortex
tice is given in Eq.~135! and is canceled by the enhanceme
of the transverse conductivity due to the forces generated
the gradient of the excited mode of the order parame
found in Eq.~138!. As a result, the behavior of the transver
conductivitysxy is determined solely by the modification o
the effective elastic scattering timeteff and is given by Eq.
~127!,

sxy
qp25 1

3 N~0!e2v2teff~vcteff!

5snvctH 114S LD

v D 2F lnS 2v2

L2D2D21G J . ~139!

For the dc conductivity this change is due to the decreas
the number of states at the Fermi surface available for s
tering as the superconducting gap opens.

VII. CONCLUSIONS AND DISCUSSION

We now plot qualitatively the longitudinal resistivity~Fig.
1!, the transverse conductivity~Fig. 2!, and the Hall angle
~Fig. 3! as functions of the applied magnetic field for Ni
bium. The order parameter, which is linear in the appl
magnetic field in the high-field regime, is given by the e
pression due to Maki and Tsuzuki,35

D25
1

pN~0!

Hc22H

bA~2k2
221!

S Hc22
T

2

dHc2

dT D , ~140!

and the values of the superconducting material parame
were taken from Refs. 36–38. The longitudinal resistivity
Fig. 1 has a pronounced increase in slope as a function o
magnetic field below the superconducting transition due
the logarithmic dependence in Eq.~117!. The transverse con
ductivity shown in Fig. 2 is enhanced below the upper cr
cal field and has negative curvature in the high-field regi
The negative curvature arises from the competition betw
the enhancement due to the increase in the effective m
free path and the linear decrease of the cyclotron freque

FIG. 1. Longitudinal resistivity as a function of the reduc
magnetic field.
r

t-
t
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in
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he
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.
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with the field; the Hall conductivity is substantially enhanc
when compared to the linear decrease expected from
normal-state behavior. While the transverse conductivity
proportional to the square of the scattering time, the H
angle

tanuH5sxy /sxx5vcteff ~141!

is only linearly dependent on the scattering time and
corresponding nonlinear dependence on magnetic field
weaker, as can be seen in Fig. 3. Finally, as the transv
resistivity

rxy5
sxy

sxx
2 1sxy

2
'sxy /sxx

2 ~142!

is independent of the effective scattering time, it rema
linear in magnetic field upon entering the superconduct
state with the same slope as in the normal metal. This beh
ior is to be contrasted with that of Bardeen-Stephen mod3

where the resistivity is modified and is linear in the magne
field, but the Hall angle obeys the same linear law as in

FIG. 2. Transverse conductivity as a function of the reduc
magnetic field.

FIG. 3. Hall angle as a function of the reduced magnetic fie
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normal state. The Nozieres-Vinen theory,4 on the other hand
which predicts that the Hall angle should be constant in
flux-flow regime belowHc2 at variance with the result of thi
work, also finds that the transverse resistivity is identica
that of the normal state, although the individual compone
of the conductivity tensor are quite different from tho
found here.

A comparison can be made with the experimental data
Fiory and Serin6 on high purity Nb. These experiments find
transverse resistivity in the flux-flow regime that is linear
the applied magnetic field over a wide range of fields bel
Hc2. The Hall angle, however, flattens or even increa
above its value atHc2 before decreasing at lower field
These results are more suggestive of the behavior given
than the original interpretation given in terms of th
Nozieres-Vinen theory. Also, the longitudinal resistivi
found in Ref. 6 has a distinct increase in slope just below
upper critical field, which is consistent with the behavi
discussed above. Detailed comparisons with the result
this work are difficult to make, since the authors of Ref
used a high current density to reduce the pinning effects
achieve the flux-flow regime; as a result, the magnetore
tance is significant and the longitudinal resistivity in the n
mal state varies with magnetic field. We find the qualitat
agreement with the experiment encouraging and suggest
more experimental work is needed to make a more deta
comparison with the theory. To conclude, we have presen
here an approach to the calculation of the transport co
cients of a clean type-II superconductor in the vortex stat
the high-field regime and used it to determine the Hall c
ductivity and the Hall angle of ans-wave superconductor in
this regime. We find that the field dependence of the H
conductivity in the high-field regime, which is nonanalyti
is entirely due to the change in the density of quasipart
states at the Fermi level in the superconducting state. At
same time we find that the field dependence of the transv
resistivity below the upper critical field remains unchange
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APPENDIX A: THE OPERATOR FORMALISM

If um& is themth excited mode of the order parameter w
have

@2ṽn1vF~¹22ieA!#21um&

5sgn~vn!E
0

`

exp$2@2ṽn1vF~¹22ieA!#

3sgn~vn!t%dtum&

5sgn~vn!E
0

`

exp@22ṽnsgn~vn!t#

3expS 2
vsinu

A2L
@ae2 if2a†eif#sgn~vn!t D dtum&.

~A1!
e

o
ts

of

s

re

e

of

d
s-
-

at
d
d

fi-
in
-

ll

e
e
se
.

is
n-

We use the operator identity

eA1B5eAeBe21/2 @A,B] , ~A2!

where @A,B#5AB2BA denotes a commutator, to separa
the creation and annihilation operators and rewrite Eq.~A1!
as

@2ṽn1vF~¹22ieA!#21um&

5sgn~vn!E
0

`

dtexpS 22ṽnsgn~vn!t2
v2sin2u

4L2 t2D
3expS vtsinu

A2L
sgn~vn!eifa†D

3expS 2
vtsinu

A2L
sgn~vn!e2 ifaD um&. ~A3!

We now write the exponentials as infinite series in powers
the arguments to find

@2ṽn1vF~¹22ieA!#21um&

5 (
m250

`

(
m150

m E
0

`

dtexpS 22ṽnsgn~vn!t2
v2sin2u

4L2 t2D
3

~21!m1

m1!m2!
ei ~m22m1!f@sgn~vn!#m11m211

3Fvtsinu

A2L
Gm11m2

~a†!m2~a!m1um&. ~A4!

In the integral, the parametert can be replaced with a differ
ential operator

t5S 2
1

2
sgn~vn!

]

]ṽn
D ~A5!

and the integral can be evaluated

E
0

`

dtexpS 22ṽnsgn~vn!t2
v2sin2u

4L2 t2D Fvtsinu

A2L
Gm11m2

5Fvsinu

A2L
Gm11m2S 2

1

2
sgn~vn!

]

]ṽn
D m11m2

3E
0

`

dtexpS 22ṽnsgn~vn!t2
v2sin2u

4L2 t2D
5

ApL

vsinu S 2
i

A2D
m11m2

W~m11m2!~un!, ~A6!

whereW(u)5e2u2
erfc(2 iu), W(m) denotes themth deriva-

tive and

un5
2i ṽnLsgn~vn!

vsinu
. ~A7!

The main result is
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@2ṽn1vf~¹22ieA!#21um&

5
ApL

vsinu (
m250

`

(
m150

m

Dm
m1m2ei ~m22m1!fum1m22m1&,

~A8!

where

Dm
m1m25

Am!A~m2m11m2!!

~m2m1!!m1!m2!
~21!m1

3S 2
i

A2D m11m2

@sgn~vn!#m11m211W~m11m2!~un!.

~A9!

We make extensive use of two special cases of Eq.~A8!:

~2ṽn1v@¹22ieA!#21u0&

5
ApL

vsinu (
m50

`
1

Am!

3S 2
i

A2D m

eimf@sgn~vn!#m11W~m!~un!um& ~A10!

and

~2ṽn1v@¹22ieA!#21u1&

5
ApL

vsinu (
m50

`
1

Am!
S 2

i

A2D m

@sgn~vn!#m11

3@Am11eimfW~m!~un!um11&

1S i

A2D @sgn~vn!#ei ~m21!fW~m11!~un!um&]. ~A11!

Equations for the daggered quantities are obtained by rep
ing the phaseimf by its conjugate2 imf, changing the
sign of (i /A2), and using a bra vector instead of the k
vector.

To determine the quasiclassical Green’s functiong we
need the spatial averagef f †. Using Eq.~A4! we have

f f †5E d3Rf f † ~A12!

524g2D2E
0

`

dt1dt2expS 22ṽnsgn~vn!~ t11t2!

2
v2sin2u

4L2 ~ t11t2!2D
5 iApg2S 2LD

vsinu
D 2

W8S 2i ṽnLsgn~vn!

vsinu
D . ~A13!

Equation~84! obviously follows from the last line.
In the calculation of the transverse conductivity we w

need to rewrite the gradient operators in terms of crea
and annihilation operators. Since a gauge-invariant grad
can be written as
c-

t

n
nt

]̂

]x
5

1

A2L
@a2a†#5

1

A2L
@b2b†#, ~A14!

]̂

]y
52

i

A2L
@a1a†#5

i

A2L
@b1b†#, ~A15!

and the momentum gradient in the direction parallel to
Fermi surface is

]

]pi
5

1

p
êu

]

]u
1

1

psinu
êf

]

]f
, ~A16!

whereêu and êf are the unit vectors inu andf direction in
the spherical coordinates, we obtain

]̂

]R

]

]pi
5

1

A2pL
S ~ae2 if2a†eif!cosu

]

]u

2
i

sinu
~ae2 if1a†eif!

]

]f D
5

1

A2pL
S ~beif2b†e2 if!cosu

]

]u

1
i

sinu
~beif1b†e2 if!

]

]f D . ~A17!

APPENDIX B: FREQUENCY SUMS

The sum of the values of a response function at Matsub
frequenciesivn5(2n11)p iT in the upper half plane can b
written as an integral,

T(
n50

`

K~ ivn!5
1

4p i E2`

1`

tanhS v

2TDK~v!. ~B1!

If the response function varies slowly over the scalev;T,
the tangent can be replaced with a step function so that

T(
n50

`

K~ ivn!'
1

4p i
@ lim

v→`

F~v!1 lim
v→2`

F~v!22F~0!#,

~B2!

whereK(v)5@dF(v)/dv#.
First consider the sum that appears in the quasiclass

contribution to the longitudinal current

S5(
vn

@g2g~2 !#

i ṽ0

. ~B3!

Since the frequencyṽ0 can be replaced by the bare fre
quency in the outer frequency range, but is renormalized
the intermediate range, we consider the sum separately in
two regions. In the outside region, transforming the sum
the lower half plane into a sum over the frequencies in
upper half plane,

Sout52
2

v0
(

vn.0
@P~1 !2P#522i (

vn.0
S ]P

]v̄
1

v̄

2

]2P

]v2D ,

~B4!
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after analytic continuation and expansion inv̄. Using Eq.
~B2! we obtain

Sout5
1

p
F ~P21!1S Lv̄

vsinu
D ]P

]v
G , ~B5!

where the values of the functions are computed atv50. To
evaluate the sum in the intermediate frequency range to l
ing functional order inD2, we write

Sint52 i (
vn.0

v0 P1P~2 !

iv01~ i /2t!@^P&1^P~2 !&#

522i (
vn.0

v0

P
1

iv01~ i /2t!@^P&1^P~2 !&#
. ~B6!

Adding and subtracting the contribution of a normal met
so that the remaining sums are convergent at high freque
we obtain after analytic continuation

Sint5
i v̄t

p
$~P21!1@11^~12P!&#%, ~B7!

and

S5
1

pH ~P21!1 i v̄tFP1^~12P!&2ApW9S iL

lsinu D
3S 2LD

vsinu D 2S L

lsinu D P3G J . ~B8!

The vertex appearing in the calculation of the dynami
fluctuations of the order parameter is proportional to

(
vn

gW82g~2 !W8~2 !

i ṽ0

. ~B9!

Since the amplitude of the dynamical fluctuations only has
be evaluated to zeroth order in the superconducting o
parameter, it is sufficient here to replace the Green’s func
in the renormalized frequency by its normal-state val
Since this sum is well behaved at high frequency, we ea
obtain

V5(
vn

gW82g~2 !W8~2 !

i ṽ0

522i S 1

i ṽ01 i /t
2

1

i ṽ0
D (

vn.0
@PW82P~1 !W8~1 !#.

~B10!

After analytic continuation we find

V5
22i

12 i v̄t

2L

vsinu (
vn.0

FW9~un!1S Lv̄

vsinu
DW~3!~un!G

5
1

p

1

12 i v̄t
FW8S iL

lsinu
D 1

Lv̄

vsinu
W9S iL

lsinu
D G . ~B11!

The sum in the fluctuation propagator in Eq.~109! is easily
evaluated in a similar fashion
d-

l,
y,

l

o
er
n
.

ly

(
vn

S igsgn~vn!W~un!2
i

2
@g1g~2 !#sgn~vn!@W~Un!

1 1
2 W9~Un!])

5 (
vn.0

$2PW2@P1P~1 !#

3@W~Un
1!1 1

2 W9~Un
1!#%1

1

2 (
vn.0

v0

@P2P~2 !#@W~Un!

1 1
2 W9~Un!#sgn~Vn!, ~B12!

where 2Un
15un1un

1 . Since39

W~Un!1 1
2 W9~Un!52UnW8~Un!, ~B13!

the contribution of the last term to the final results is at le
of orderv̄3. The remaining terms give, after expansion in t
external frequency,

T(
vn

S igsgn~vn!W~un!2
i

2
@g1g~2 !#

3sgn~Vn@W~Un!1 1
2 W9~Un!# !

52T (
vn.0

FW9~un!1S 2Lv̄

vsinu D @W8~un!1 1
2 W~3!~un!#G

5
1

2p i

vsinu

2L H W8S iL

lsinu D 1S 2Lv̄

vsinu D
3FWS iL

lsinu D 1
1

2
W9S iL

lsinu D G J . ~B14!

APPENDIX C:
FLUCTUATIONS OF THE ORDER PARAMETER

Our starting point here is Eq.~102! for the linear correc-
tion to the anomalous propagator

f 15
evA@ f 2 f ~2 !#

i ṽ0

1 i @g1g~2 !#

3@2Ṽn1v~¹22ieA!#21D11 i ~2t!21@g1g~2 !#

3@2Ṽn1v~¹22ieA!#21^ f 1&1 i ~2t!21

3
evA@g2g~2 !#

i ṽ0

@2Ṽn1v~¹22ieA!#21

3@^ f &1^ f ~2 !&#. ~C1!

If we define the angular average off 1 by

^ f &5S~vn!u1&, ~C2!

we find, after carrying out the angular integration and ign
ing terms of orderL/ l
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S5Ap
L

v E0

pdu

4 F2ievAsinuS 2
i

A2
D gW82g~2 !W8~2 !

i ṽ0

1 i @g1g~2 !#2Csgn~Vn!@W~Un!1 1
2 W9~Un!#G .

~C3!

We now use Eq.~103! to determine the amplitude of th
excited mode of the order parameterC5pgN(0)(nS

CS 12pgN~0!Ap
L

v (
n
E

0

p

du
i

2
@g1g~2 !#sgn~Vn!

3@W~Un!1 1
2 W9~Un!# D

5pgN~0!Ap
L

v (
n
E

0

pA2

4
evAsinudu

3
gW82g~2 !W8~2 !

i ṽ0

. ~C4!

We can now use the gap equation to eliminate the need f
frequency cutoff and obtain

C(
n
E

0

p

duS igsgn~vn!W~un!2
i

2
@g1g~2 !#sgn~Vn!

3@W~Un!1 1
2 W9~Un!# D

5(
n
E

0

pA2

4
evAsinudu

gW82g~2 !W8~2 !

i ṽ0

. ~C5!

It follows that to leading order

C5
ieLAA2

12 ivt̄
. ~C6!

We also give the expression for the distribution functionf 1.
Neglecting the contributions of order (L/ l ), we use Eq.
~A11! to compute

f 15evA
f 2 f ~2 !

i ṽ0

1 i @g1g~2 !#@2Ṽn1v~¹22ieA!#21D1

5
2i

i ṽ0

ApeLAcosf (
m50

`
1

Am!
eimfS 2

i

A2D m

3@gW~m!sgnm11~vn!2g~2 !W~m!~2 !

3sgnm11~vn2 !#um&1 i @g1g~2 !#C
ApL

vsinu (
m50

`
1

Am!

3S 2
i

A2D m

sgnm11~Vn!~Am11eimfW~m!~Un!um11&

1
i

A2
sgn~Vn!ei ~m21!fW~m11!~Un!um&). ~C7!
a

The evaluation ofC̄ is analogous to the calculation give
above.

In the transverse response calculation our starting p
here is Eq.~123! for the linear, in cyclotron frequency, cor
rection to the anomalous propagator

d f 5@2Ṽn1vf~¹22ieA!#21S 2
e

2m
A~¹22ieA!

3@ f 2 f ~2 !#1 iDdge1 idD1@g1g~2 !# D . ~C8!

The solution of this equation follows exactly the steps d
scribed in the previous section. First we solve for the co
ficient dC in dD15dCu1&. As dC5(n*d2sd f , the denomi-
nator of the expression fordC is the propagator for the firs
excited mode of the order parameter, as it was forC. To
evaluate the contribution of each of the driving terms
notice that for our choice ofA,

A~¹22ieA!5A¹x5A
1

A2L
@a2a†#. ~C9!

Explicit evaluation of this term using the expression for t
function f from Eq. ~81! shows that it contributes at orde
L/ l compared to leading-order terms. The driving te
iDdge only contributes in the intermediate frequency ran
since

dge522ivcevAsinusinf
g2g~2 !

~ i ṽ0!2
, ~C10!

and, to the order in which we work,g2g(2) vanishes in the
outer range. Then, in analogy to the solution outlined abo
we obtain

dC15dC̄15 ieLAA2~vt̄ !~vct!, ~C11!

and, for the angular average of the functiond f needed to
calculate the Thompson contribution to the conductivity

^d f 1&5A2peLA
vc

~ i ṽ0!2E0

p du

4
~sinu@g2g~2 !#W8~Un!

12idC@g1g~2 !#sgn~Vn!@W~Un!

1 1
2 W9~Un!# !u1& ~C12!

^d f 1
†&5A2peLA

vc

~ i ṽ0!2E0

p du

4
~sinu@g2g~2 !#W8~Un!

12idC̄@g1g~2 !#sgn~Vn!@W~Un!

1 1
2 W9~Un!# !^1u. ~C13!

In the intermediate regiong1g(2)50, and only the first
term in each function contributes to the conductivity to lea
ing order in (L/ l ).
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