
PHYSICAL REVIEW B 1 MAY 1998-IVOLUME 57, NUMBER 17
Lower bound for the Fermi-level density of states of a disorderedd-wave superconductor
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We consider a disorderedd-wave superconductor in two dimensions. Recently, we have shown in an exact
calculation that for a lattice model with a Lorentzian distributed random chemical potential the quasiparticle
density of states at the Fermi level is nonzero. As the exact result holds only for the special choice of the
Lorentzian, we employ different methods to show that for a large class of distributions, including the Gaussian
distribution, one can establish a nonzero lower bound for the Fermi-level density of states. The fact that the
tails of the distributions are unimportant in deriving the lower bound shows that the exact result obtained
before is generic.@S0163-1829~98!01617-8#
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I. INTRODUCTION

Considerable evidence ford-wave superconductivity in
the high-temperature cuprate superconductors has led t
terest in studying the effect of disorder ond-wave paired
systems. Unlike s-wave superconductors~SC’s!, where
Anderson’s theorem1 predicts negligible effect of nonmag
netic impurities on thermodynamic properties, simple defe
are expected to be pairbreaking in superconductors with
nodes, and are in fact generally thought to induce finite d
sity of quasiparticle statesN(0) at the Fermi level. As in
disordered normal metals, one might expect properties
such systems to depend strongly on dimensionality. In f
Nersesyanet al. ~NTW! have shown2 that the usualt-matrix
approximation for impurity scattering, which is exact in th
dilute limit in three dimensions~3D!, breaks down for a
strictly 2D d-wave superconductor. By mapping the proble
onto a continuum model of Dirac fermions in a rando
gauge field, subsequently solved by bosonization meth
NTW claimed that the density of states of such systems m
go to zero at the Fermi level as a power law,N(E)}Ea.
Later it was realized that for a realisticd-wave SC with four
nodes on the Fermi surface their result might not
applicable.3 Although the real materials in question a
quasi-2D, it is of considerable importance to establish
effect of disorder in the strictly 2D case because the e
tence of a 2D-3D crossover at low energies could invalid
the standard picture of low-temperature thermodynamics
d-wave superconductor developed under the assumption
finite residual density of statesN(0).

Recently,4 we have shown that for a lattice model of
disorderedd-wave superconductor in two spatial dimension
one can obtain an exact result for the density of states~DOS!
570163-1829/98/57~17!/10825~6!/$15.00
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N(E), provided that the disorder is modeled by a Lorentz
distribution of the chemical potential. The result was a fin
DOS at the Fermi levelN(0)/N0}g ln 4D0 /g with N0 the
normal DOS at the Fermi level,D0 the maximum value of
the superconducting order parameter over a circular Fe
surface, andg the width of the Lorentzian distribution. We
also quoted rigorous lower bounds forN(0) for a large class
of disorder distributions which we obtained using metho
developed in a different context. These results and the
derlying methods were questioned in a Comment by Ne
esyan and Tsvelik.6 They claimed that our result for a
Lorentzian distribution, while simple to obtain and exact f
all energies, is nongeneric. Their claim was based on
observation that an expansion of the resulting DOS for sm
disorder strength is inconsistent with a straightforward p
turbative calculation of the DOS using standard diagr
techniques with Gaussian disorder. In a Reply7 we pointed
out that one cannot expect such a comparison to make s
since the perturbation series based on a Lorentzian distr
tion cannot be defined due to the divergence of all mome
In the light of this controversy, our proof of lower positiv
bounds for the DOS in the case of more general disor
distributions acquires a special importance.

In this paper we therefore present in some detail the d
vation of the nonzero lower bound for the DOS at the Fer
level which in a different context was first given in Ref.
We stress that since our results are lower bounds, no a
ments about the dependence of the DOS on disorder stre
can be made. It suffices for our purposes to show that a lo
bound exists, and that its existence does not depend on
specifics of the tails of the distribution, i.e., power-law d
cay, exponential decay or compact support of the distribut
will all give a nonzero lower bound for the DOS.
10 825 © 1998 The American Physical Society



th
w
e
ai
an
re
ze

s

in

w
ts
e
ti
i

en
o
th
th
ca

-

f t
ch

en

rs

s
e

te

his

he

on
er-
se
e-

m
l
s
-
ver

u-
ls

bu-

al
n
d
-
s

or
w-

e
in

ot

nd
est
t
e

10 826 57K. ZIEGLER, M. H. HETTLER, AND P. J. HIRSCHFELD
The paper is organized as follows. First, we formulate
problem and give a general outline of the proof. Second,
show preliminary calculations which will be used in th
proof. We then derive the nonzero lower bound for a cert
class of Hamiltonians. Finally, we show that the Hamiltoni
of interest belongs to this class. We conclude with final
marks about cases where the method fails to give a non
lower bound~e.g.,s-wave superconductors!.

II. FORMULATION OF THE PROBLEM AND OUTLINE
OF THE PROOF

The problem is defined4 by the Bogliubov–de Genne
Hamiltonian

H52~¹21m!s31D̂ds1 , ~1!

m being the random chemical potential, distributed accord
to a symmetric distribution functionP(m r) (s i are the Pauli
matrices,s0 is the 232 identity matrix!. The kinetic energy
operator 2¹2 is taken to act as¹2C(r )5C(r 12e1)
1C(r 22e1)1C(r 12e2)1C(r 22e2) on a function
C(r ) of the sitesr of a 2D square latticeL spanned by the
unit vectorse1 and e2. The diagonal term of2¹2 can be
absorbed in the nonrandom part of the chemical potentialm0.
For the particle-hole symmetric pure system we consider
havem050. Note that this function involves displacemen
of two lattice sites rather than one, as would be the cas
the simplest tight-binding representation of the lattice kine
energy. For a system of fermions in the thermodynam
limit, the bare kinetic energy will then have a band repres
tation quite similar to the usual tight-binding form, with n
particular distinguishing features near the Fermi level. In
above definition of the kinetic energy, we have taken
hopping matrix element as our unit of energy. The bilo
lattice operatorD̂d[D r ,r 8 is taken be D̂dC(r )5D@C(r
1e1)1C(r 2e1)6C(r 1e2)6C(r 2e2)#. The Matsubara
Green functionG( iE)5( iEs02H)21 determines the den
sity of states in the usual way, namely, by

N~E!5
21

2p
Im Tr2^Gr ,r~ iE→E1 i e!& ~2!

where the trace Tr2 refers to the 232 structure of the Hamil-
tonian, corresponding to quasiparticles and quasiholes o
superconductor.̂•••& denotes the disorder average, whi
consists of integration over the disorder variable~the chemi-
cal potential! at every site of the lattice, with a measure giv
by P(m r)dm r .

To derive a lower bound of the average DOS we fi
write the Green function as

G~ iE !5
i ~ iEs01H !

2E
@~H̃2 iEs0!212~H̃1 iEs0!21#,

~3!

where the new HamiltonianH̃5HDs352(¹21m)Ds0
2 iDDs2 has been introduced for formal reasons~cf. Ref. 4
and below!. The matrixD is diagonal with matrix element
Dr ,r 85(21)r 11r 2d r ,r 8 (r 1 ,r 2 are the two components of th
2D r vector!. Equation~3! holds for any distribution of ran-
domness in the Hamiltonian, before averaging. We are in
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ested in the DOS at the Fermi level, i.e., at zero energy. T
means that after the analytic continuationiE→E1 i e we
will set E50. Consequently,iE→ i e ~with positivee), and
the local DOS at the Fermi level at lattice siter reads

Nr~0!5
21

2p
Tr2 Im Grr ~ i e!5

2 i

4p
Tr2@~H̃2 i es0!rr

21

2~H̃1 i es0!rr
21#5

e

2p
Tr2~H̃21e2s0!rr

21 . ~4!

From the analytic properties ofG it follows that Nr is non-
negative~either positive or zero!.

The average DOS (1/uLu)^( r PLNr& can be estimated
from below using the method worked out in Ref. 5. T
central idea of the proof is to divide the latticeL into finite
lattice blocks$Sj%. We then evaluate the average DOS
these lattice blocks and also the contribution from the int
actions of the lattice blocks. On the lattice blocks a ‘‘coar
graining’’ method will be used by relating the disorder int
gration over all other sites to one at the ‘‘center’’ ofS. On
this ‘‘center’’ site the range of integration of the rando
variable zr5m rD will be restrained to a finite interva
@2a,a#. The cutoffa eliminates the contribution of the tail
of the distribution. SinceNr is nonnegative, the tail contri
bution can only add to the result obtained by integrating o
@2a,a#. Thus,if we are able to find anonzeroaverage DOS
by integrating only over the finite interval@2a,a# we have
obtained a nonzero DOS without relying on tail contrib
tions. This explains why distributions with power-law tai
~e.g., Lorentzian distribution! lead qualitatively to the same
results as, for example, the Gaussian distribution or distri
tions with exponential decay.

The proof rests on an identity@Eq. ~14! in the next sec-
tion# that is intimately connected with the fact that the loc
DOS Nr ~before averaging! is nonnegative. It also relies o
the infimum of the disorder distribution in the restricte
range@2a,a# being finite. This puts some limits on the ap
plicability of the proof to compact distributions, but it alway
holds for unbounded distributions such as the Gaussian
the Lorentzian. The result can be summarized by the follo
ing statement: For any finite subregionS of the latticeL
with boundary]S, defined by the lattice sites ofL\S which
are connected toS by the matrix elements ofH̃, there exists
a distribution dependent positive constantPS , related to a
restricted disorder distribution onS, with

1

uLu K (
r PL

Nr L >PS~12u]Su/uSu!. ~5!

Since the block sizeuSu grows faster than the size of th
boundaryu]Su the right-hand side is positive above a certa
block size.

It should be noted that the method of this paper will n
give a nonzerolower bound for the DOS foreveryHamil-
tonian. We will determine the conditions for the lower bou
to be nonzero and show that the Hamiltonian of inter
(d-wave SC! fulfills these conditions. We will also show tha
for an isotropics-wave SC with a local order parameter th
method will only yield a~trivial! vanishing bound for the
Fermi level DOS.
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III. PRELIMINARY CONSIDERATIONS

As a first step we evaluate the integral*2`
` Nrdzr . For

this purpose the identity

I S~H̃1I SAIS!21I S5@~H̃21!S
211I SAIS#S

21 ~6!

is useful.I S is the projector onto the regionS, and (•••)S
21

5I S(I S•••I S)21I S is the inverse on the regionS. The proof
of this identity is given in Appendix A. ChoosingS5$r %,
i.e., just a single lattice site, we note that the 232 matrix

@(H̃1zrs01 i es0)21#$r %
21 is diagonal. Furthermore, it is pro

portional to the unit matrixs0 as a consequence of the de
nition of H̃, which involves onlys0 ands2. ~Terms of the
inverse that are proportional tos2 are nonlocal and, conse
quently, projected out byI $r % .! Therefore, we can write

@~H̃1zrs01 i es0!21#$r %
215S Xr1 iYr 0

0 Xr1 iYr D , ~7!

whereYr}e.0. For the special choiceI $r %AI $r %52zrs0 in
Eq. ~6! we obtain

~H̃1 i es0!rr
215$@~H̃1zrs01 i es0!21#$r %

212zrs0%rr
21 .

~8!

This gives for the local DOS of Eq.~4!

1

p
Yr@~Xr2zr !

21Yr
2#21. ~9!

The integration overzr leads to

E
2`

`

Nrdzr51. ~10!

This result will be used below. It is nontrivial as, for e
ample, for ans-wave SC with alocal order parameter term
Ds1 the equivalent of Eq.~7! would have also off-diagona
entries. In fact, we have shown in Ref. 4 that the correspo
ing expression of the local DOS of thes-wave supercon-
ductor reads

Nr~0!52
1

p

i e

2AD21e2
@~2¹22m2 iAD21e2!rr

21

2~2¹22m1 iAD21e2!rr
21#, ~11!

i.e., it is proportional toe/AD21e2. This implies a vanishing
DOS in the limite→0 as long as the superconducting ord
parameter is nonzero. Of course, that is what is expected
a SC with a nonvanishing gap everywhere on the Fermi
face ~Anderson’s theorem!.1

The local DOS Eq.~4! can be written in a differentia
form as

Nr5
i

4p

]

]zr
@ ln det~H̃2 i es0!2 ln det~H̃1 i es0!#

5
i

4p

]

]zr
$ ln det@122i e~H̃1 i es0!21#%, ~12!
d-

r
or
r-

which follows from the fact that the differentiation with re
spect tozr picks ther ,r component ofH̃6 i es0. We define
a matrixA as

A:522i e~H̃1 i es0!21. ~13!

Because the DOS is non-negative the functioni ln det(1
1A) is a nondecreasing function ofzr . As a consequence o
the Eq.~10! we have the following integral:

E
2`

`

Nrdzr5
i

4p
ln det~11A!uzr52`

zr5`
51. ~14!

IV. LOWER BOUND OF THE AVERAGE DOS

A. Coarse graining and elimination of the distribution tails

Now we consider the average local DOS summed over
lattice sites on a finite lattice blockS, and restrict the range
of integration overzr to a finite region in order to eliminate
the tail contributions. If we can find a nonzero lower bou
for the DOS in this way, we have established it indepe
dently of the specific decay~e.g., power law or exponential!
at large values of the disorder variable. First we choose a
r 0PS for which we restrict thezr integration to the interval
@2a,a#. For the remaining integrations onS we define

zr5zr 0
1dzr ~15!

with dzrP@0,d#. The above choice of the range of integr
tion on S is sufficient but not necessary, i.e., differe
choices can be made as long as the range of integratio
finite and certain conditions discussed below are satisfied
the case considereda must be chosen large enough to i
clude all singularities of the Green function. This is the ca
if it satisfies the inequality

0,a2d24~11D! ~16!

as we will see below. Using the notation^•••&S8 for this
restricted averaging onS we have

^Nr&>^Nr&S8 ~17!

becauseNr is nonnegative. Then we can write with Eq.~12!

K (
r PS

Nr L
S

8
5

i

4pK (
r PS

]

]zr
lndet~11A!L

S

8

5
i

4pK E
2a

a

dzr 0
P~zr 0

!

3S )
r PS,rÞr 0

E
zr 0

zr 0
1d

dzr P~zr !D
3

]

]zr 0

ln det~11A!L
L\S

, ~18!

where ^•••&L\S refers to the ~unrestricted, i.e., zrP
@2`,`#) averaging overzr on all lattice sites onL except
the ones onS.
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We now bound the right-hand side~RHS! of Eq. ~18! from below by pulling out certain infima of the distribution. As a fir
step, we pull out the infimum of the distribution onzr 0

. This leads to

> inf
zr 0

P@2a,a#
P~zr 0

!
i

4pK E
2a

a

dzr 0S )
r PS,rÞr 0

E
zr 0

zr 0
1d

dzr P~zr !D ]

]zr 0

ln det~11A!L
L\S

. ~19!

Furthermore, by pulling out the infimum of the integrand of) r PS,rÞr 0
*

zr 0

zr 0
1d

dzr P(zr) we obtain

> inf
zr 0

P@2a,a#
P~zr 0

!
i

4pK E2a

a

dzr 0
inf

zrP@z0 ,z01d#

]

]zr 0

ln det~11A!F )
r PS,rÞr 0

E
zr 0

zr 0
1d

P~zr !dzr G L
L\S

. ~20!

Pulling out the integral overzr (r 0Þr PS) eventually yields

> inf
zr 0

P@2a,a#
P~zr 0

! inf
zr 0

P@2a,a#
S E

zr 0

zr 0
1d

P~zr !dzr D uSu21 i

4pK inf
zrP@z0 ,z01d#

E
2a

a

dzr 0

]

]zr 0

ln det~11A!L
L\S

. ~21!
er
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The disorder distribution on the blockS is now taken care of
by the coefficient

PS :5 inf
zr 0

P@2a,a#
P~zr 0

!

3 inf
zr 0

P@2a,a#
S E

zr 0

zr 0
1d

P~zr !dzr D uSu21

~22!

which multiplies the remaining disorder average overL\S.
PS is nonzero as long as the disorder distributionP(zr) is not
vanishing in the restricted range of integration. This is c
tainly true for unbounded distributions, such as a Gauss
However, compact distributions with a narrow range of d
order will fail to provide a nonzero lower bound. This will b
discussed in more detail below.

B. General lower bound for the DOS

Combining Eqs.~18!, ~21!, and~22! we obtain

K (
r PS

Nr L
S

8
>

i

4p
PS^ inf

zrP@z0 ,z01d#
@ ln det~11A!uzr 0

5a

2 ln det~11A!uzr 0
52a#&L\S . ~23!

In the next step we isolate the lattice blockS from the rest of
the latticeL by sendingzr to 6` on the boundary]S of S.
~Particles trying to occupy sites on the boundary will eith
be trapped or repelled by an infinitely strong barrier.! The
boundary]S is defined by all sites ofL which are not inS

but connected withS by the matrixH̃, i.e., all sitesr ¹S with
ur 2r 8u51,2 for anyr 8PS. ~Observe that due to the defin
tion of the Laplacian the ‘‘boundary’’ is actually two layer
around the blockS.! With the above definition of the bound
ary ]S the matrix (12I ]S)H̃(12I ]S) separates into one
block matrix onS and another one onL\Sø]S

~12I ]S!H̃~12I ]S!5I SH̃I S1I L\Sø]SH̃I L\Sø]S . ~24!

Applying the identities of Appendix A, it follows that the
inverse of (12I ]S)H̃(12I ]S) separates into two block ma
-
n.
-

r

trices. Consequently, limzr→2`(r P]S)A5AL\]S :522i e(H̃

1 i es0)L\]S
21 also separates into two block matrices

AL\]S5AS1AL\Sø]S . ~25!

Performing the limiting process for the lower bound of t
DOS we can use the fact thati ln det(11A) is a nondecreas
ing function ofzr

]

]zr

i

4p
ln det~11A!5Nr>0. ~26!

This implies a lower bound for the RHS of Eq.~23! if we
decrease the first term in Eq.~23! by taking zr→2` and
increase the second term by takingzr→` ~on the boundary
of S). The result of this procedure is the lower bound

i

4p
PS^ inf

zrP@z0 ,z01d#
@ lim

zr→2`~r P]S!

ln det~11A!uzr 0
5a

2 lim
zr→`~r P]S!

ln det~11A!uzr 0
52a] &L\~Sø]S! . ~27!

Next, we rewrite the second~negative! term by applying suc-
cessively Eq.~14! for all r P]S. This yields

lim
zr→`~r P]S!

i ln det~11A!

54pu]Su1 lim
zr→2`~r P]S!

i ln det~11A!. ~28!

We therefore have for the expression~27!
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i

4p
PS^ inf

zrP@z0 ,z01d#
@ lim

zr→2`~r P]S!

ln det~11A!uzr 0
5a

2 lim
zr→2`~r P]S!

ln det~11A!uzr 0
52a] &L\~Sø]S!2PSu]Su.

~29!

There is no contribution from the matrixA on L\Sø]S,
since this matrix part does not depend onzr 0

56a. Conse-
quently, the difference of these contributions gives zero,
we find a lower bound of the form

K (
r PS

Nr L
S

8
>

i

4p
PS inf

zrP@z0 ,z01d#
@ ln det~11AS!uzr 0

5a

2 ln det~11AS!uzr 0
52a#2PSu]Su. ~30!

The right-hand side of Eq.~30! is a difference between
contribution from the blockS ~the logarithmic terms! and a
boundary contribution~the u]Su term!. If the contribution of
the block grows with its volumeuSu we find for sufficiently
large lattice blocks a positive lower bound for the RHS
Eq. ~30!. We show below that this is indeed the case for
considered model of ad-wave SC.

C. Lower bound for a 2D d-wave superconductor

The growth of the block contribution with the volumeuSu
follows from the range of the disorder integration onS @Eqs.
~15! and ~16!#. To see this we define

H85I SH̃I S1zr 0
s0I S . ~31!

I SH̃I S and H8 can be diagonalized by unitary transform
tions. An eigenvaluel j of I SH̃I S satisfies2zr 0

1minlj8<lj

<2zr 0
1maxlj8 . This implies for the terms in Eq.~30!,

wherezr 0
56a

7a1minl j8<l j<7a1maxl j8 . ~32!

An upper bound ofl j8
2 can be derived from the eigenvalue

of I S(H1zr 0
Ds3)I S ~see Appendix B!. It yields ul j8u<4(1

1D)1d, since the deterministic part of the Hamiltonia
2¹2s31D̂ds1 has an upper bound 4(11D), and the ran-
dom part comes fromdzr (0<dzr<d). Thus we obtain

2a24~11D!<l j<2a14~11D!1d ~zr 0
5a!,

~33!

a24~11D!<l j<a14~11D!1d ~zr 0
52a!.

~34!

The condition fora in Eq. ~16! guarantees that forzr 0
5a

(zr 0
52a) all eigenvaluesl j are negative~positive!. Conse-

quently, the argument of the logarithm for any eigenva
l j , 122i e/(l j1 i e), is 11 i e (12 i e) for the first~second!
term in Eq.~30!. In order to deal with the branch cut of th
complex logarithm we let2e→2p2e for the second term
in Eq. ~30!. Now we can safely lete→0 in both terms and
obtain for
d

f
e

e

i ln det~11AS!uzr 0
5a2 i ln det~11AS!uzr 0

52a ~35!

a contribution of 2p for each of the 2uSu eigenvaluesl j ,
i.e., a total of 4puSu. From Eqs.~17! and ~30! it therefore
follows that the DOS is given by

K (
r PS

Nr L >PS~ uSu2u]Su!. ~36!

The average DOS is the sum of the local average DOS,
malized by the lattice sizeuLu. Dividing the latticeL into
identical blocksS we sum over all blocks and obtain afte
normalization

1

uLu K (
r PL

Nr L >PS~12u]Su/uSu!. ~37!

Since the lattice block sizeuSu grows faster than the size o
its boundaryu]Su, there is a finite size which gives a positiv
bound on the RHS and therefore a positive lower bound
the DOS.

Equation~37! holds for our lattice model of ad-wave SC,
given by the Hamiltonian Eq.~1! for all unbounded and sym
metric disorder distribution that vanish at large disorder
rameterszr . In particular, the lower bound holds for bot
power law~e.g., Lorentzian! and exponential~e.g., Gaussian!
distributions. It also holds for compact distributions of suf
cient width, with the width being determined by the requir
ment that the factorPS must be nonzero whena is chosen
according to the condition Eq.~16! in order to let the DOS
on S grow with uSu. This does not imply that narrow compa
distributions will have a vanishing DOS at the Fermi lev
However, to show the finiteness of the DOS for such dis
butions a more sophisticated method is required.

V. CONCLUSIONS

In conclusion, we have shown that for rather generic c
ditions a nonzero lower bound for the Fermi-level density
quasiparticle states exists. The bound does not depend o
specifics of the ‘‘tails’’ of the distribution as both Lorentzia
and Gaussian distributions yield a nonzero lower bound. T
proves that our exact result for the case of Lorentz
disorder4 is generic.

This result applies to a class of Hamiltonians describ
2D superconductors withnonlocalorder parameters, like ex
tendeds-wave,p-wave, andd-wave SC’s. In contrast, for a
local isotropics-wave SC our method will yield a vanishin
lower bound, in complete agreement with Anderson’s th
rem for nonmagnetic disorder in SC’s with a finite ord
parameter everywhere on the Fermi surface. It should
noted that our results imply that the selfconsistentt-matrix
approximation8 gives qualitatively correct physics as long
only the DOS at the Fermi level is concerned~i.e., for ther-
modynamic properties!. Whether this also holds for the dy
namic ~transport! properties is an interesting question to
resolved.
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APPENDIX A: PROJECTIONS
OF THE GREEN FUNCTION

Consider a general square matrixH defined on a latticeL.
R is a subset ofL, and I R is the projector on the regionR
which can be written as a diagonal matrix

I R,q,q85I R,qdqq8 with I R,q5H 1 if qPR,

0 otherwise.
~A1!

If the inverse ofH and H1I RCIR exist then we find the
identity

~H1I RCIR!215H212H21~11I RCIRH21!R
21I RCIRH21,

~A2!

where

~••• !R
215I R~ I R•••I R!21I R ~A3!

is the inverse with respect toR. From Eq.~A2! follows im-
mediately

~H1I RCIR!215H211H21$~H21!R
21@~H21!R

21

1I RCIR#R
21~H21!R

212~H21!R
21%H21,

~A4!

and onR follows

I R~H1I RCIR!21I R5@~H21!R
211I RCIR#R

21 ~A5!

by means of Eq.~A3!. If we chooseC5zr 0
s0 and let zr 0

→6` we obtain with Eq.~A2!

lim
zr 0
→6`

~H1I RCIR!215H212H21~H21!R
21H21.

~A6!
tt

tt.
All matrix elements onR are zero. Therefore, we can writ
this expression also as a projection ontoL\R which can
eventually be rewritten as the inverse onL\R

[~12I R!H21~12I R!2~12I R!H21I R~H21!R
21

3I RH21~12I R!5~H !L\R
21 . ~A7!

We use the above identity in the text with the choiceR
5]S, the boundary of the blockS.

APPENDIX B: ESTIMATION OF THE EIGENVALUES

H andH̃5HDs3 are Hermitian matrices. Therefore, bo
matrices can be diagonalized by unitary transformationsU

and Ũ, respectively. There are eigenvaluesl j and l̃ j with

l j5~UHU†! j j ~B1!

and

l̃ j5~ŨH̃Ũ†! j j .

Then we have

l̃ j
25@~ŨH̃Ũ†! j j #

25~ŨH̃Ũ†ŨH̃Ũ†! j j

5~ŨHDs3HDs3Ũ†! j j . ~B2!

SinceH and Ds3 commute and (Ds3)251, we obtain for
the RHS

~ŨH2Ũ†! j j <maxl j
2 . ~B3!

This estimation holds for any projection ofH and H̃ on a
regionS as long as the relationH̃5HDs3 is valid onS. We
apply the above inequality in our estimation of the eigenv
ues of the projection ofH̃ on the lattice blockS.
tt.
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