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We consider a disorderatiwave superconductor in two dimensions. Recently, we have shown in an exact
calculation that for a lattice model with a Lorentzian distributed random chemical potential the quasiparticle
density of states at the Fermi level is nonzero. As the exact result holds only for the special choice of the
Lorentzian, we employ different methods to show that for a large class of distributions, including the Gaussian
distribution, one can establish a nonzero lower bound for the Fermi-level density of states. The fact that the
tails of the distributions are unimportant in deriving the lower bound shows that the exact result obtained
before is generid.S0163-18208)01617-9

[. INTRODUCTION N(E), provided that the disorder is modeled by a Lorentzian
distribution of the chemical potential. The result was a finite
Considerable evidence fat-wave superconductivity in  DOS at the Fermi leveN(0)/Ngey In 4A,/v with Ng the
the high-temperature cuprate superconductors has led to imormal DOS at the Fermi levely; the maximum value of
terest in studying the effect of disorder @hwave paired the superconducting order parameter over a circular Fermi
systems. Unlikes-wave superconductorgSC's), where surface, andy the width of the Lorentzian distribution. We
Anderson’s theorempredicts negligible effect of nonmag- also quoted rigorous lower bounds f§(0) for a large class
netic impurities on thermodynamic properties, simple defect®f disorder distributions which we obtained using methods
are expected to be pairbreaking in superconductors with gagleveloped in a different context. These results and the un-
nodes, and are in fact generally thought to induce finite denderlying methods were questioned in a Comment by Ners-
sity of quasiparticle statesl(0) at the Fermi level. As in esyan and Tsvelik. They claimed that our result for a
disordered normal metals, one might expect properties oforentzian distribution, while simple to obtain and exact for
such systems to depend strongly on dimensionality. In factall energies, is nongeneric. Their claim was based on the
Nersesyaret al. (NTW) have showhthat the usual-matrix ~ observation that an expansion of the resulting DOS for small
approximation for impurity scattering, which is exact in the disorder strength is inconsistent with a straightforward per-
dilute limit in three dimensiong3D), breaks down for a turbative calculation of the DOS using standard diagram
strictly 2D d-wave superconductor. By mapping the problemtechniques with Gaussian disorder. In a Réplge pointed
onto a continuum model of Dirac fermions in a randomout that one cannot expect such a comparison to make sense
gauge field, subsequently solved by bosonization methodsijnce the perturbation series based on a Lorentzian distribu-
NTW claimed that the density of states of such systems mugton cannot be defined due to the divergence of all moments.
go to zero at the Fermi level as a power laM(E)x<E*“. In the light of this controversy, our proof of lower positive
Later it was realized that for a realistitwave SC with four bounds for the DOS in the case of more general disorder
nodes on the Fermi surface their result might not bedistributions acquires a special importance.
applicable® Although the real materials in question are In this paper we therefore present in some detail the deri-
quasi-2D, it is of considerable importance to establish thevation of the nonzero lower bound for the DOS at the Fermi
effect of disorder in the strictly 2D case because the exislevel which in a different context was first given in Ref. 5.
tence of a 2D-3D crossover at low energies could invalidat&Ve stress that since our results are lower bounds, no argu-
the standard picture of low-temperature thermodynamics in aents about the dependence of the DOS on disorder strength
d-wave superconductor developed under the assumption of@n be made. It suffices for our purposes to show that a lower
finite residual density of statd¥(0). bound exists, and that its existence does not depend on the
Recently? we have shown that for a lattice model of a specifics of the tails of the distribution, i.e., power-law de-
disorderedi-wave superconductor in two spatial dimensions,cay, exponential decay or compact support of the distribution
one can obtain an exact result for the density of std3S)  will all give a nonzero lower bound for the DOS.
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The paper is organized as follows. First, we formulate theested in the DOS at the Fermi level, i.e., at zero energy. This
problem and give a general outline of the proof. Second, weneans that after the analytic continuatidB—E+ie we
show preliminary calculations which will be used in the will set E=0. ConsequentlyiE —ie (with positive €), and
proof. We then derive the nonzero lower bound for a certairthe local DOS at the Fermi level at lattice siteeads
class of Hamiltonians. Finally, we show that the Hamiltonian
of interest belongs to this class. We conclude with final re- -1 . —I —~ . 1
marks about cases where the method fails to give a nonzero Nr(0)=75—Trz Im G (i€)= 72— Tro[ (H—i€0o)y,
lower bound(e.g.,s-wave superconductors

T -1, € T2, 2, -1
Il. FORMULATION OF THE PROBLEM AND OUTLINE (Htieoo), )= 5 Tra(H™+ €foo) ™ (4)

OF THE PROOF , , ,
From the analytic properties @ it follows that N, is non-

The problem is definédby the Bogliubov—de Gennes negative(either positive or zeno
Hamiltonian The average DOS (IA|){(=,.N,) can be estimated
R from below using the method worked out in Ref. 5. The

H=—(V?+u)oz+ Ay, (1) central idea of the proof is to divide the lattideinto finite
lattice blocks{S;}. We then evaluate the average DOS on
Yhese Iattice blocks and also the contribution from the inter-
actions of the lattice blocks. On the lattice blocks a “coarse
graining” method will be used by relating the disorder inte-
gration over all other sites to one at the “center” $f On
this “center” site the range of integration of the random
variable z,=u,D will be restrained to a finite interval
[—a,a]. The cutoffa eliminates the contribution of the tails
of the distribution. SinceéN, is nonnegative, the tail contri-
Bution can only add to the result obtained by integrating over

u being the random chemical potential, distributed accordin
to a symmetric distribution functioR(w,) (o; are the Pauli
matrices,o is the 2x 2 identity matriy. The kinetic energy
operator —V?2 is taken to act asVZW(r)=W(r+2e,)
+W¥(r—2e)+V¥(r+2e,)+¥(r—2e,) on a function
W(r) of the sitesr of a 2D square latticA spanned by the
unit vectorse; ande,. The diagonal term of- V2 can be
absorbed in the nonrandom part of the chemical potepgal
For the particle-hole symmetric pure system we consider wi
have uy=0. Note that this function involves displacements

of two lattice sites rather than one, as would be the case ih_ a,a]. Thus,if we are able to find aonzeroaverage DOS

. . S . ) _~ .y integrating only over the finite intervi-a,a] we have
the simplest tight-binding representation of the lattice k'net'cobtained a nonzero DOS without relying on tail contribu-

Fm.atr%' l;or ak.sy?tem of ferr.ﬂ'?ﬁs 'R the tgergodynamlc‘tionsl This explains why distributions with power-law tails
Imit, the bare Kinetic energy witl then have a ban represen(e.g” Lorentzian distributionlead qualitatively to the same

taatlr?ir;ucllgrltgi:tlirgIIzlirs:]?nth?egfaﬂstlr?ggrbtlﬂglrll%rfr%rlzvvevlm:nnt% results as, for example, the Gaussian distribution or distribu-
P 9 9 ' ions with exponential decay.

above definition of the kinetic energy, we have taken the The proof rests on an identifiEq. (14) in the next sec-

hopplng matrix ?Iement a§ our unit of Eenergy. The bIIoCaltion] that is intimately connected with the fact that the local
lattice operatorA=A, . is taken beAW(r)=A[W(r  pOSN, (before averagingis nonnegative. It also relies on

+e)+W(r—e)xW(r+e)=W(r—ey)]. The Matsubara the infimum of the disorder distribution in the restricted
Green functionG(iE)=(iEao—H) ' determines the den- range[—a,a] being finite. This puts some limits on the ap-

sity of states in the usual way, namely, by plicability of the proof to compact distributions, but it always
1 holds for unbounded distributions such as the Gaussian or
N(E)= —Im Tro(G, ,(IE-E+ie)) (2)  the Lorentzian. The result can be summarized by the follow-
2w ' ing statement: For any finite subregi@of the lattice A

where the trace Trrefers to the X 2 structure of the Hamil- with boundarysS, defined by the lattice sites @i\ S which

tonian, corresponding to quasiparticles and quasiholes of tH&® connected t8 by the matrix elements dfl, there exists
superconductor(- - - denotes the disorder average, which@ distribution dependent positive constdty, related to a
consists of integration over the disorder variafitee chemi- ~ restricted disorder distribution of, with
cal potential at every site of the lattice, with a measure given 1
by P(e)dp; . N. ) =P<(1
: i ™ = —|99//]9]). 5
To derive a lower bound of the average DOS we first |A| rgA ' s(1=osilsh ®)

write the Green function as . _ _
Since the block sizéS| grows faster than the size of the

i(iEop+H) ~ I . boundary| 7| the right-hand side is positive above a certain
——g  L(H=iEog) "~ (H+iEao) "], block size.

3 It should be noted that the method of this paper will not

_ give anonzerolower bound for the DOS foevery Hamil-

where the new HamiltoniatH=HDo3=—(V?+u)Do, tonian. We will determine the conditions for the lower bound
—iADuo, has been introduced for formal reasqos Ref. 4  to be nonzero and show that the Hamiltonian of interest
and below. The matrixD is diagonal with matrix elements (d-wave SQ fulfills these conditions. We will also show that
D, =(—1)"1""25, ., (ry,r, are the two components of the for an isotropics-wave SC with a local order parameter the
2D r vecto). Equation(3) holds for any distribution of ran- method will only yield a(trivial) vanishing bound for the
domness in the Hamiltonian, before averaging. We are interfermi level DOS.

G(iE)=



Ill. PRELIMINARY CONSIDERATIONS

As a first step we evaluate the integrdl ,N,dz . For
this purpose the identity

I(A+1Alg) Hs=[(H Hs +IAIIsT (6

is useful.l g is the projector onto the regid®, and (- - -)gl
=lg(ls - -15) g is the inverse on the regioB The proof
of this identity is given in Appendix A. Choosin§={r},
i.e., just a single lattice site, we note that th& 2 matrix
[('I:IJrzr(r(ﬁie(ro)*l]{’r}l is diagonal. Furthermore, it is pro-
portional to the unit matrixry as a consequence of the defi-
nition of H, which involves onlys, and o,. (Terms of the
inverse that are proportional i®, are nonlocal and, conse-
quently, projected out by, .) Therefore, we can write

>, @)

whereY,xe>0. For the special choick,Alj,=—2,0¢ in
Eq. (6) we obtain

X, +iY,
0

0

[(ﬁ+zr0'o+i€0'o)l]{_r}l:( X, +iY,

(Fi-i—ieao)r;l:{[(ﬁ-l-zr(ro"'i60'0)71]{;}1_Zr0'0}r7r1'

()
This gives for the local DOS of Ed4)
1 2 27-1
;Yr[(xr_zr) +Yr] . (9)
The integration oveg, leads to
f N,dz=1. (10

This result will be used below. It is nontrivial as, for ex-
ample, for ans-wave SC with docal order parameter term

Ao, the equivalent of Eq(7) would have also off-diagonal

entries. In fact, we have shown in Ref. 4 that the correspon
ing expression of the local DOS of thewave supercon-

ductor reads

1
N(0)=~—

1 de o vo i xTray-t
WZ\/W[( Ve—pu—iyA©+e),
— (= V2= p+iJA%+ ),

i.e., it is proportional tae/ /AZ+ €2. This implies a vanishing

11

DOS in the limite—0 as long as the superconducting order
parameter is nonzero. Of course, that is what is expected for
a SC with a nonvanishing gap everywhere on the Fermi sur-

face (Anderson’s theoreit
The local DOS Eq.(4) can be written in a differential
form as

J ~ . ~
; Ea_zr[ln de{H—ieog)—In deiH+ieoy)]

d

T 4 a_z,{'n def1-2ie(H+ieaq) 1]},

12
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which follows from the fact that the differentiation with re-
spect toz, picks ther,r component oi:liieao. We define

a matrixA as

A:=—2ie(H+ieoy) * (13

Because the DOS is non-negative the functiolm det(1
+A) is a nondecreasing function pf. As a consequence of
the Eqg.(10) we have the following integral:

o] i —
fﬁmNrdzrzﬂln de(1+A)|§:;7W 1. (14

IV. LOWER BOUND OF THE AVERAGE DOS

A. Coarse graining and elimination of the distribution tails

Now we consider the average local DOS summed over all
lattice sites on a finite lattice blocg, and restrict the range
of integration overz, to a finite region in order to eliminate
the tail contributions. If we can find a nonzero lower bound
for the DOS in this way, we have established it indepen-
dently of the specific decafe.g., power law or exponentjal
at large values of the disorder variable. First we choose a site
roe S for which we restrict thez, integration to the interval
[—a,a]. For the remaining integrations @we define

2, =2, + 0z, (15

with 6z, €[0,56]. The above choice of the range of integra-
tion on S is sufficient but not necessary, i.e., different
choices can be made as long as the range of integration is
finite and certain conditions discussed below are satisfied. In
the case considereal must be chosen large enough to in-
clude all singularities of the Green function. This is the case
if it satisfies the inequality

0<a—6—4(1+A) (16)

d?s we will see below. Using the notatign- - )¢ for this

estricted averaging o8 we have

(N)=(Np)s (17)

becausé\, is nonnegative. Then we can write with E32)
o
N = —
2w
i a
E f_adzrop(zro)
zr0+5
I1 f der(za)
Zro

reSr#rg
In def 1+ A)> ,
A\S

!

>

reS

1%
ﬁ—zrlnde( 1+A) > .

X

a
9z,

X

(18)

0

where (---),.g refers to the (unrestricted, i.e.,z e
[ —o0,]) averaging oveg, on all lattice sites om\ except
the ones ors.
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We now bound the right-hand sidRHS) of Eq. (18) from below by pulling out certain infima of the distribution. As a first
step, we pull out the infimum of the distribution an. This leads to

i a zr0+5 J
= inf P(z)-— f dz | |1 f dzP(z,) |——In de(1+A) (19)
7, e[-aa] O 4am\ J_a O reSizrg Jg &Zro
0 0 A\S
Furthermore, by pulling out the infimum of the integrandl'bfeSyr#rof?OMerP(zr) we obtain
o
i a 0 z +8
= inf  P(z,) 7= f dz, inf Indet(1+A)| I f P(z,)dz (20)
zroe[fa,a] 4 -a 2, e[2y,2+ 6] z?ZrO reSr#rg 7 As
Pulling out the integral ovez, (ro#r € S) eventually yields
z,+5 Isl-1 a 9
= inf P(z,o) inf f P(z)dz — inf f ero In de{(1+A) (21
zroe[—a,a] zroe[—a,a] z 4 z,€[25.25+ 8] —a azro A\S
|
The disorde_r Qistribution on the blo&kis now taken care of  icag. Consequently, i, .. c,gA=Ay. 5= —2i e(ﬁ
by the coefficient . 1 T :
+ieog) 145 alSO separates into two block matrices
Ps:= inf  P(z)
zroe[fa,a] 0
Apvas=Ast A suss- (29
) z,+ 5 Is-1
X inf f P(z)dz (22
z el-aal\ Jz Performing the limiting process for the lower bound of the

which multiplies the remaining disorder average oxerS.
Pgis nonzero as long as the disorder distributi(z,) is not

DOS we can use the fact thiatn det(1+ A) is a nondecreas-
ing function ofz,

vanishing in the restricted range of integration. This is cer-
tainly true for unbounded distributions, such as a Gaussian. 9 i

However, compact distributions with a narrow range of dis-

order will fail to provide a nonzero lower bound. This will be
discussed in more detail below.

B. General lower bound for the DOS
Combining Egs(18), (21), and(22) we obtain

=z
reS s

inf
z,e[zy,29+ 5]

i
EPS< [In de(l+A)|Zr0:a

—In de(l‘*’A”zr =7a]>A\S- (23)

In the next step we isolate the lattice blogkrom the rest of
the latticeA by sendingz, to = on the boundaryS of S.

(Particles trying to occupy sites on the boundary will either

be trapped or repelled by an infinitely strong barjidrhe
boundarydS is defined by all sites of\ which are not inS

but connected wit!$ by the matrixH, i.e., all siteg & S with

[r—r’|=1,2 for anyr’ € S. (Observe that due to the defini-
tion of the Laplacian the “boundary” is actually two layers
around the bloclg.) With the above definition of the bound-

ary dS the matrix (1-1,)H(1—1,5) separates into one
block matrix onS and another one oA\ SU S

(1=1,9H(1=159) =1 HI s+ Ta sussHTa suss. (29)
Applying the identities of Appendix A, it follows that the
inverse of (+1,5)H(1—1,5) separates into two block ma-

In def{1+A)=N,=0. (26)

9z, 4w

This implies a lower bound for the RHS of E(R3) if we
decrease the first term in ER3) by taking z,— —< and
increase the second term by taking-co (on the boundary
of S). The result of this procedure is the lower bound

i
2P

yp inf [ lim

2 e[z4,25+ ] z,— —o(redS)

In def{1+A)|, —,
o

lim
Z,—»(r € 9S)

In de(1+A)|zr0=7a]>A\(SU&S) . (27)

Next, we rewrite the secor(@iegative term by applying suc-
cessively Eq(14) for all r € §S. This yields

lim
z,—»(r € 4S)

i Indef(1+A)

lim
z,— —(redS)

= 47|99+ i Inde(1+A). (28)

We therefore have for the expressi(2v)



inf [ lim
2, €[zq,29+ 6] z,——%(redS)

i
EPS< In de‘(l+A)|Zro=a

lim
z,— —o(redS)

In de(l+A)|zr0— 7a] )A\(SU&S)_ PS|‘?S|-

(29

There is no contribution from the matri& on A\SUJS,
since this matrix part does not depend = *+a. Conse-

quently, the difference of these contributions gives zero, an

we find a lower bound of the form
()
S

reS
The right-hand side of Eq30) is a difference between a
contribution from the blockS (the logarithmic termsand a
boundary contributiorithe |9S| term). If the contribution of
the block grows with its voluméS| we find for sufficiently

= inf
7, e[zy,25+ 3]

Ps [In de(1+Ag)|, -a

4m

—In det1+Ag)l; ——a]-PgdS. (30
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i Inde{(1+Ag)|, —,—i Inde(1+Ag)|, —_, (39
o "o

a contribution of 2r for each of the £3| eigenvalues\;,
i.e., a total of 47|S|. From Egs.(17) and (30) it therefore
follows that the DOS is given by

(3| =Pulsilosh, @

(]'he average DOS is the sum of the local average DOS, nor-

malized by the lattice sizeA|. Dividing the latticeA into
identical blocksS we sum over all blocks and obtain after
normalization

1

|A]
Since the lattice block sizES| grows faster than the size of
its boundary 43|, there is a finite size which gives a positive
bound on the RHS and therefore a positive lower bound on

the DOS.
Equation(37) holds for our lattice model of d-wave SC,

(37

3 N =Pa-asiish,

large lattice blocks a positive Io_wgr .bound for the RHS Ofgiven by the Hamiltonian Eq(1) for all unbounded and sym-
Eq. (30). We show below that this is indeed the case for themetric disorder distribution that vanish at large disorder pa-

considered model of d-wave SC.

C. Lower bound for a 2D d-wave superconductor

The growth of the block contribution with the volun$|
follows from the range of the disorder integration 8iEgs.
(15) and(16)]. To see this we define

lelsﬁls+zr00'0|5.

(31

IHIs andH’ can be diagonalized by unitary transforma-
tions. An eigenvalua; of | HI g satisfies— z + min)\j’s)\j
Sz + max\; . This implies for the terms in Eq(30),
wherezr0= +a

Fa+tmink{ s\ sFat+max; . (32

An upper bound of\j’2 can be derived from the eigenvalues
of Is(H+2z, Dos)ls (see Appendix B It yields IN[=4(1
+A)+ 4, since the deterministic part of the Hamiltonian

—V203+ Adal has an upper bound 4¢1A), and the ran-
dom part comes frondz, (0< 6z, <6). Thus we obtain

—a—4(1+A)sAs—a+4(1+A)+6 a),

(33

(ZrO:

a—4(1+A)sAjsat4(1+A)+4 (zroz —a).

(34

The condition fora in Eq. (16) guarantees that foz,oza
(z,= —a) all eigenvalues\; are negativépositive. Conse-

rametersz, . In particular, the lower bound holds for both
power law(e.g., Lorentziahand exponentiale.g., Gaussian
distributions. It also holds for compact distributions of suffi-
cient width, with the width being determined by the require-
ment that the factoPg must be nonzero whea is chosen
according to the condition Eq16) in order to let the DOS
on S grow with |S|. This does not imply that narrow compact
distributions will have a vanishing DOS at the Fermi level.
However, to show the finiteness of the DOS for such distri-
butions a more sophisticated method is required.

V. CONCLUSIONS

In conclusion, we have shown that for rather generic con-
ditions a nonzero lower bound for the Fermi-level density of
quasiparticle states exists. The bound does not depend on the
specifics of the “tails” of the distribution as both Lorentzian
and Gaussian distributions yield a nonzero lower bound. This
proves that our exact result for the case of Lorentzian
disordef is generic.

This result applies to a class of Hamiltonians describing
2D superconductors withonlocalorder parameters, like ex-
tendeds-wave, p-wave, andd-wave SC’s. In contrast, for a
local isotropics-wave SC our method will yield a vanishing
lower bound, in complete agreement with Anderson’s theo-
rem for nonmagnetic disorder in SC’s with a finite order
parameter everywhere on the Fermi surface. It should be
noted that our results imply that the selfconsistentatrix
approximatiofi gives qualitatively correct physics as long as
only the DOS at the Fermi level is concernge., for ther-
modynamic propertigs Whether this also holds for the dy-
namic (transpor} properties is an interesting question to be

quently, the argument of the logarithm for any eigenvalueregglved.

Nj, 1—2ie/(\j+ie), is 1+ie (1—ie) for the first(second
term in Eqg.(30). In order to deal with the branch cut of the
complex logarithm we let- e—27— € for the second term
in Eqg. (30). Now we can safely lee—0 in both terms and
obtain for
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APPENDIX A: PROJECTIONS
OF THE GREEN FUNCTION

Consider a general square matrhdefined on a lattice .
R is a subset of\, andl is the projector on the regioR
which can be written as a diagonal matrix

1
0

If the inverse ofH and H+IrClg exist then we find the
identity

ifgeR,
otherwise.

(A1)

lrRaq' =IrRgSaq  WIth Irq=

(H+1gClg) " *=H '—H Y(1+IgCIgH Y)gIgCIgH %,
(A2)

where
(- )r'=lrUg 1R g (A3)

is the inverse with respect . From Eq.(A2) follows im-
mediately

(H+1gClR) " *=H '+ H Y H HT(H HR*
+1rClRIR (H HR = (H HRH ™,
(A4)
and onR follows
Ir(H+1rClR) " Hr=[(H H'+IrCIrIz"  (A5)
by means of Eq(A3). If we chooseC=z o, and letz,
— * oo we obtain with Eq.(A2)
lim (H+1gClg) '=H 1—H }H HH L

Zr —to
0

(AB)
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All matrix elements orR are zero. Therefore, we can write
this expression also as a projection omta R which can
eventually be rewritten as the inverse AnR
=(1-1RH Y (1-1R) —(1-IgH HgH "
X1gH Y (1—-1g)=(H) k. (A7)

We use the above identity in the text with the choRe
=4S, the boundary of the block.

APPENDIX B: ESTIMATION OF THE EIGENVALUES

H andH=HD o3 are Hermitian matrices. Therefore, both
matrices can be diagonalized by unitary transformations

andU, respectively. There are eigenvaIUerand'):j with

A= (UHUN);, (B1)
and
N =(UHUM);
Then we have
=(UHDo3HDosUY)j; . (B2)

SinceH andDo; commute and Do3)%=1, we obtain for
the RHS

(TR j<maxn?. (B3)

This estimation holds for any projection &f andH on a

regionS as long as the relatiod =HD o is valid onS. We
apply the above inequality in our estimation of the eigenval-

ues of the projection ofi on the lattice blockS.
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