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Vortex pull by an external current

G. N. Stratopoulos*
Department of Physics and Institute of Plasma Physics, University of Crete, and Research Center of Crete, P.O. Box 220

710 03 Heraklion, Crete, Greece
~Received 9 September 1997!

In the context of a dynamical Ginzburg-Landau model it is shown numerically that under the influence of a
homogeneous external currentJ the vortex drifts against the current with velocityV52J in agreement to
earlier analytical predictions. In the presence of dissipation the vortex undergoes skew deflection at an angle
90°,d,180° with respect to the external current. It is shown analytically and verified numerically that the
angle d and the speed of the vortex are linked through a simple mathematical relation.
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I. INTRODUCTION

In a recent publication1 it was proposed to study the dy
namics of isolated Abrikosov vortices in the framework o
phenomenological effective field-theoretic model,2 which al-
ternatively can be viewed as a time-dependent version of
Ginzburg-Landau equation~TDGL!. Therein, it was possible
to derive analytically the equation of motion of the guidin
center of the vortex~Hall equation!, under the influence o
any kind of external force.3 According to the latter, the guid
ing center of the vortex moves in a direction perpendicula
the externally applied force in analogy to the planar mot
of charged particles in the presence of a perpendicular m
netic field. The importance of the Hall equation stems fro
theoretical considerations that suggest that the guiding ce
describes quite accurately the ‘‘mean’’ position of the vo
tex, a suggestion that was verified and quantified by a re
numerical study.4 It is thus possible to obtain useful informa
tion concerning the motion of a vortex by simply invokin
the Hall equation. For instance, by plain implementation
the latter one finds that in the presence of a homogene
external current the vortex drifts against the current.

By construction, the Hall equation is limited to the d
scription of the gross features of the motion of the vortex.
the other hand, an understanding of the finer details of
motion requires a detailed solution of the TDGL equatio
Such an undertaking has to rely on numerical methods,
to the nonlinear nature of the relevant equations. The m
purpose of this paper is to report on a numerical study of
dynamics of vortices within this model. In particular, we w
study the response of a vortex to an external current with
without dissipation, an issue of obvious interest in the c
text of superconductivity.5,6

The paper is organized as follows. Section II contain
general introduction to the model. Its relevance to the ph
ics of the superconductor is commented upon, and the m
theoretical predictions concerning the motion of the vor
are illustrated. Finally, it is shown that an alternative int
pretation of Magnus force7 arises naturally in terms of th
Hall equation. In Sec. III we incorporate the effect of dis
pation and that of an external electric current in our fie
theoretical formalism and we derive the equation of mot
for the vortex through explicit calculations. The results of
570163-1829/98/57~17!/10790~8!/$15.00
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extensive numerical study are presented in Sec. IV. The
tices are found to behave in accordance to our earlier th
retical predictions. As a byproduct of this study we inves
gate the details of the internal ‘‘Cyclotron motion’’ o
vortices and we show that an isolated vortex is sponta
ously pinned. In the concluding Sec. V we discuss the
evance of our results to the actual superconductor and
propose more realistic three-dimensional studies.

II. THE MODEL

Most of our techniques and conventions are descri
elsewhere,1,4 so we briefly outline here the physical an
mathematical background of the theory. The model in qu
tion was originally introduced by Feynman2 as a natural dy-
namical extension of the Ginzburg-Landau static theory
superconductivity. Indeed, by attributing the correct physi
content to fields and parameters, it becomes a rather rea
phenomenological model of a superconductor.4 The model
admits infinitely long, smooth, cylindrically symmetric flu
vortex solutions, whose static properties together with
properties of pairs of them, have been studied in detai
Ref. 3. Our objective is to study some aspects of vor
dynamics within this model. In doing so, we will ignor
excitations along the axis of the vortex~which by convention
is taken to be parallel to thez axis! and we will directly
define the model in two space dimensions.

As usual, the important dynamical variable is a comp
order parameterC that may be thought as an electrical
charged field coupled to the electromagnetic poten
(A0 ,A). The fields satisfy the coupled system of TDG
equations~to simplify notation fields and coordinates are r
scaled along the lines of Ref. 4!

i Ċ52 1
2 D2C1A0C1 1

4 k2~C* C21!C,

1

b
Ėi5e i j ] jB2Ji

s,
1

b
] iEi5r, ~1!

where B5e i j ] iAj , Ei52] tAi2] iA0, Di5] i2 iAi , while
the spatial indicesi , j range from 1 to 2.b and k are free
parameters of the model. The supercurrent densityJs and the
charge densityr are given byJi

s51/2i @C* DiC2c.c.# and
10 790 © 1998 The American Physical Society
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57 10 791VORTEX PULL BY AN EXTERNAL CURRENT
r5C* C21. Note that in order to allow the possibility of
condensate (uCu51) at infinity we introduce a backgroun
~positive-ion! charge densityrb to neutralize the system. Fo
simplicity rb is taken to be constant and homogeneo
throughout, i.e., rb52rs where rs is defined as rs
[C* Cu`51.

The nonlinear system of Eqs.~1! admits static, axially
symmetric localized vortex solutions. These are similar
nature to the well-known Abrikosov vortices of the static G
theory. Moreover, in a certain region of the parameter sp
their characteristic lengths~penetration depth, coherenc
length! fall well within the scale of a typical type-II
superconductor.4 However, the vortices in this model diffe
from the ordinary Abrikosov vortices mainly in one respe
although they carry zero electric charge as a whole, there
local charge modulation in their interior, i.e., they have no
vanishing charge density and as a result an electric fiel
associated with them.

A remarkable feature of the model in hand, is the unus
response of the vortices to external probes. Indeed, as it
shown in Refs. 1 and 3, the motion of the vortex is govern
by the equation

VLi52
1

2pN
e i j F j , ~2!

whereVL is the mean velocity of the vortex andF is the sum
of the external forces acting upon it.N is the well-known
integer-valued winding number or topological charge, ch
acterizing any finite-energy configuration, which counts
number of times the phase ofC rotates around the interna
circle as we scan the circle at spatial infinity.8 N is a con-
served quantity and can be written as the integral of a pr
erly chosen ‘‘topological density’’t. Among other possibili-
ties t may be defined ast5(1/2p) B, a definition which
entails the familiar magnetic-flux quantization and it is
obvious physical interest while, for our purposes, the m
useful form oft is

t5
1

2p i
@ekl~DkC!* ~DlC!2 iB~C* C21!#. ~3!

The importance of the above formula stems from the f
that it appears in the expressions for the momentum and
angular momentum of the theory. Indeed, it was pointed
in Ref. 1 that the Noether expression for the linear mom
tum of the model is ambiguous for any configuration w
nonzero topological charge. The unambiguous expres
turns out to be

Pk5ekiE d2xS 2pxit1
1

b
EiBD , ~4!

which in turn leads to a radical revision of the physical
terpretation of the momentum. The presence of the first m
ment of the topological density in the expression for t
linear momentum directly associates the latter with the p
tion of the vortex. In fact, it is possible to show1 that the
‘‘mean position’’ of the vortex is described by a quantityR
called the guiding center of the configuration and defined
Ri[21/2pNe i j Pj . By identifying R with the position and
s
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Ṙ with the mean velocityVL of the vortex and assuming tha
a generic forceF j5dPj /dt acts on the system, we end u
with Eq. ~2!.

Contrary to intuition and Newtonian mechanics, Eq.~2!
implies that a vortex moves at a constant calculable spee
a direction perpendicular to the applied force. This kind
behavior is analogous to the planar motion of charge p
ticles under the action of a perpendicular magnetic field9 and
thus we call it Hall behavior and from now on we will refe
to Eq. ~2! as a Hall equation. The dynamical behavior of t
vortex becomes less exotic and the Newtonian mecha
reestablishes by adopting an alternate interpretation of
Hall equation. To do so, we rewrite Eq.~2! in the formVL

521/2pNF3êz whereVL is the velocity of the vortex in
the x-y plane andF is the total force acting upon it. Multi-
plying both sides of the former equation by 2pN and taking
the cross product byêz we get

2pNVL3êz5F. ~5!

According to Eq.~5!, for a vortex that moves with constan
velocity Newton’s Law,(F50, is restored if we assume tha
in addition to any other force acting on the vortex, anoth
‘‘new’’ transverse forceFT522pNVL3êz also acts on it.
Bearing in mind that the total magnetic fluxf0 equals 2pN
we see thatFT has a form similar to the familiar so-calle
‘‘Magnus force’’7 that is usually invoked to describe the m
tion of vortices in the superconductor. The similarity b
comes more obvious in full units, where this additional for
readsFT52rsf0VL3êz .

As we have explained in some previous work,3 Hall be-
havior ~and consequently the transverse forceFT) is a ge-
neric characteristic of soliton dynamics in systems with no
trivial topology and spontaneously broken Galile
invariance, due for instance to the presence of a crystal
tice, and has a clear mathematical origin. Yet one would l
to have a more physical explanation for the appearance oFT
in Eq. ~5!. In fact, one can attain such an explanation
attributing the origin ofFT to the interaction between th
magnetic flux of the vortex and the internal electric curre
that are generated by the motion of the vortex.10 Specifically,
let us assume that the vortex is moving with const
velocity, VL . In our field theory prescription a moving
vortex with velocity VL is a field configurationC(r
2VLt)ei (VLr21/2uVLu2t), A(r2VLt) ~see Ref. 11 for more de
tails on Galilean boosts in two-dimensional vortices!. Let us
now switch to the reference frame where the vortex is still.
that frame, the background ions of the crystal lattice form
homogeneous current of negative charge carriers with ch
density2rs and velocity2VL . This current interacts with
the magnetic field of the vortex and, as a result, feels a L
entz force acting upon it. Consequently, the vortex feel
backreaction force opposite to the Lorentz force that can
easily computed and is found to be exactly the transve
force FT mentioned above.

III. EXTERNAL CURRENT AND DISSIPATION

To study the response of the vortex to an externally p
scribed currentJext(x,t), we simply substituteJs→Js1Jext in
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10 792 57G. N. STRATOPOULOS
Eq. ~1!. Because of the external current the linear moment
~4! of the system is no longer conserved. A straightforwa
application of the equations of motion yields

d

dt
Pk5Fk

Lorentz52E d2xeklJl
ext~x,t !B~x,t !. ~6!

Assuming that the external current is uniform throughout
plane, i.e.,Jext(x,t)5J0, the only space-dependent quant
on the right-hand side of this equation is the magnetic fie
and its integral, the total magnetic flux, is equal to 2pN.
Thus, the equation of motion for the momentum takes
simpler form Ṗk522pNeklJ0l . Correspondingly, the time
evolution of the guiding center or the ‘‘mean position’’ o
the vortex reads

dRk

dt
52

1

2pN
e i j Ṗ j52J0k , ~7!

which, quite surprisingly, implies that the vortex drif
against the current with a constant calculable speed. N
that, in a similar model, Manton11 arrives at the same resu
by considering Galilean boosts on the vortex configuratio

The pull of the vortex by the current has a simple exp
nation in the context of the Hall equation. The magnetic fl
of the vortex exerts on the electric current a Lorentz force
the 290° direction with respect to the current. Cons
quently, the vortex feels a backreaction force in the190°
direction and one would naively expect the vortex to move
a direction perpendicular to the current. However, as it f
lows from the Hall equation, the vortex moves at190° with
respect to the applied force and, therefore, the vortex mo
in a direction opposite to the external current.

The introduction of dissipation in the system is a comp
cated task. Formally, the effect of dissipation in the system
studied by adding a phenomenological friction term in t
TDGL equations. However, no such term has been deri
on the basis of solid physical reasoning. Yet, one must h
in mind that there are several restrictions in the form and
properties of any such term. Any friction term inserted in E
~1! should meet the following conditions:~a! it should vanish
for any static vortex solution,~b! it should decrease the tota
energyW of the system, i.e.,2dW/dt should be positive
definite, and finally,~c! it should preserve the electroma
netic U(1) gauge invariance of the system or, equivalen
it should preserve the continuity equation. Our choi
though not unique, was the most natural among a small s
candidates, and this was to add a term of the formCde i j ] j Ḃ
—with Cd a positive constant— on the right-hand side of t
equation of motion for the electric field in Eq.~1!.

The friction term is, by construction, gauge invariant a
vanishes for any static configuration. The time derivat
of the energy readsdW/dt5 1/b *d2x$Ei(Cde i j ] j Ḃ)%,
which by integration by parts becomesdW/dt5

2Cd /b*d2x$(e i j ] jEi)Ḃ%52Cd /b*d2xḂ2. Thus, we con-
clude that the friction term we propose meets all the rest
tions mentioned above and therefore it seems to be a rea
able candidate for a phenomenological study of
dissipation.

The time evolution of the linear momentum is
m
d
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dt
Pk5CdE d2x$ekle lm]mḂ~x,t !B~x,t !%

5CdE d2x$Ḃ~x,t !]kB~x,t !%. ~8!

To proceed further we adopt the rather plausible assump
that in the presence of a suitably chosen external curren
well as dissipation, a steady state is eventually reache
which the vortex moves rigidly with a constant velocity,VL .
We further assume that the profile of the magnetic field
sociated with the steady state of the vortex is of the fo
B(x,t)5B(x2VLt;VL). Then Ḃ(x,t)52VL j] jB and Eq.
~8! reduces to

d

dt
Pk52Sk jVL j with Skj5CdEd2x$]kB]jB%. ~9!

A simpler version of this relation is obtained by invokin
some further assumptions about the steady-state profil
the vortex, which may be viewed as reasonable approxi
tions in the limit of a weak external current. Thus, we a
sume that the vortex retains approximately its initial sha
and correspondingly its axial symmetry, i.e., in the rest fra
of the vortex the magnetic field is of the formB5B(r),
wherer is the radial coordinate in the usual polar variable
Then, the off diagonal terms of theSk j tensor vanish while
S115S225Cd/2*d2x(]rB2)[h and Eq.~9! reduces to

d

dt
Pk52hVLk , ~10!

with h being a positive constant number. Equation~10! im-
plies that the effect of such a term on an axially symme
vortex configuration moving with a velocityVL is a force
linear to the velocity of the vortex that opposes the motion
the latter. We thus believe that with the insertion of this te
we correctly incorporate the effect of friction in our mode
Finally, the equation of motion of the guiding center of th
vortex in the presence of both a homogeneous external
rent and dissipation reads

VLk[
dRk

dt
52J0k1

1

2pN
ekmhVLm . ~11!

According to Eq.~11!, under the influence of a uniform ex
ternal current a vortex simply drifts against it (VL52J0);
this leads to a perfect Hall effect but with opposite sign
that of the normal state.12 In the simultaneous presence
dissipation the velocity of the vortex acquires a compon
in the perpendicular to the applied current direction. Ho
ever, its longitudinal part still has opposite direction to t
external current, which in turn results to a sign of the H
effect in the vortex state opposite to that of the norm
state12. By plain implementation of Eq.~11! we find that the
deflection angled betweenVL andJ0 decreases from 180° to
90° as the contribution of the drag force increases. Furth
more, a simple relation for the deflection angled is obtained,
namely,

cosd52
uVLu
uJ0u

. ~12!
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57 10 793VORTEX PULL BY AN EXTERNAL CURRENT
The former relation becomes obvious by simple inspect
of Fig. 1. There are two forces acting upon the vortex;~i! the
Lorentz force (Fk

Lorentz52pNeklJ0l), and~ii ! the dissipation
force (Fd52hVL). According to Eq.~2! the vector sum of
Fd andFLorentzrotated by190° and divided by 2pN must be
equal to the velocity of the vortexVL . The latter condition
leads to relation~12!.

We should note here that Eq.~11! is not original at all.
The major contribution of this work is its field theoretic
derivation and its interpretation. Indeed, by multiplying bo
sides of Eq.~11! by 2pN and taking the cross product wit
êz , we can write the latter in the form

2pNVL3êz522pNJ03êz2hVL . ~13!

All the terms above appear in most of the standard phen
enological theories of vortex motion.13 The left-hand side of
Eq. ~13! is the familiar, though controversial, Magnus forc
while the first term of the right-hand side is the so-call
Lorentz force,14 or according to some other authors15 an in-
separable part of the Magnus force. Finally, the last term
the right-hand side of Eq.~13! is like the viscous drag force
of the Bardeen-Stephen~BS! model.13 However, one should
notice that the Lorentz force in Eq.~13! comes with a sign
opposite to what is commonly accepted in the literature
difference that is of critical importance for the dynamics
vortices. In fact, the sign of the longitudinal part of the vo
tex velocity and the consequent drift of the vortex against
current has its origin in the sign inversion of the Loren
force. We realize that the way we incorporate the exter
current in the model plays a crucial role to this inversio
Here we treat the current as a totally substantive object
interacts with the vortex. It is like a vortex moving in a plan
under the influence of a current that flows in a parallel pla
just above the vortex plane, instead of a current flowing i
the plane of the vortex and formed by the same carriers
those of the vortex.13 The second approach looks at first sig
more natural. However, in the real physical system, the v
tex is a three-dimensional object, i.e., a flux tube formed i
three-dimensional superconducting film. This tube intera
with the surfacial supercurrent that is formed only on the
and the bottom of the film. In this context the treatment
the current as a substantive external object that flows
parallel plane just above~under! the vortex tube become
more plausible and realistic.

FIG. 1. A plot of the forces acting upon a vortex that mov
with constant velocityVL in the presence of a uniform extern
currentJ0 and dissipation.
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IV. NUMERICAL RESULTS

Our next objective is the numerical investigation of t
dynamical behavior of the vortices in the presence of
external electric current and dissipation. Our computatio
techniques are described in detail elsewhere,4 so here we
present only a brief overview.

To simulate the motion of a vortex, we first determin
numerically the static profiles of the condensate and of
gauge fields characterizing a vortex of winding numberN.3

With these in hand, we laid down on the lattice a configu
tion of a vortex centered at (x,y)5(2,0) at timet50. In
order to maintain~as much as possible! the symmetries of
the continuous system in its discretized form, we have
sorted to techniques from lattice gauge theory.4,16 The de-
grees of freedom were discretized on a spatial lattice so a
maintain exact~lattice! gauge invariance. Time evolutio
was implemented by a finite difference leapfrog method
ing Eqs.~1! with the second one modified to

1

b
Ėi5e i j ] jB2Ji

s2Ji
ext1Cde i j ] j Ḃ ~14!

in order to incorporate the effect of an external current a
dissipation. The gauge freedom of the equations of mot
was eliminated by imposing the temporal gaugeA050. The
external currentJext was taken along thex direction and uni-
form throughout the whole plane, i.e.,Jext5J0êx .

In any numerical calculation where partial derivatives a
involved, the imposition of the appropriate boundary con
tions is a very delicate task. Here, the presence of an inc
ing and an outgoing external current at6x infinity, made
this issue even more complex and forced us to use diffe
boundary conditions at thex and y boundaries. At they
boundaries of the film we imposed free boundary conditio
by setting the covariant derivative in the normal to t
boundary direction equal to zero (DyC50). There is more
than one way to impose such a condition, and our choice
to set]yC50 andAy50. Also, in order to get a vanishing
magnetic field at they boundaries we set]yAx50. At thex
boundaries we successfully imposed two different sets
boundary conditions~BC’s!. There, in deriving the boundar
conditions we took special care in order to preserve the
crete gauge invariance of the system or, equivalently,
discrete version of the continuity equation at thex bound-
aries. Specifically, in analogy to they boundaries we se
]xAy50, Ax50 and then, by imposing the continuity con
straint, we got 1/i @C!]xC#52J0. As a consequence of th
above BC the value of thex component of the supercurren
at 6x infinity was fixed and equal to2J0. Even though this
is what we expect to happen away from the vortex, still t
BC for C sounds quite artificial and too constrained. Thu
we tried and finally adopted another more ‘‘natural’’ set
BC’s. Namely we set]xAx5]xAy50 and the constraint o
preserving the continuity equation yieldedDx

2C50 as a BC
for C. Using both sets we got essentially identical resu
and these have been exhaustively checked to be free of
boundary contributions.

The simulations were done on a square lattice
2013201 sites with a lattice spacinga50.15. The width
~diameter! of the vortex was typically of the order of 2 in



e
at
a
en
tt-
i-

P

th
a
o

-
tio
tri
re
to
io

e

n

re
f
al
th
nd

o
ss

t
a

on
e
no
e
m
cu
f
u
th
o

th
m

we
s
th

dic
it

ly
ci
e

th

m

ri-

f
tra-
in

ion
ti-

ity
n

nt
mp-
ing
trip

ip of
in-
ize
ous
as-
lly,
f

a
is
ally

ent
to

ace.

es.

gle
e-
e

ith

er
he

eter

10 794 57G. N. STRATOPOULOS
rescaled length units. The finite time step was chosen to
much smaller than the lattice spacing, typically of the ord
1023. To test our results we ran simulations in bigger l
tices, 4013401, with the same or smaller lattice spacing, s
a50.1, and the results obtained were all perfectly consist
All our simulations were performed on various Hewle
Packard~HP! workstations at the University of Crete. A typ
cal run of durationT'100 time units, withDt50.002 on a
2013201 lattice needed about 15 h of CPU time on a H
735 machine.

Apart from the existence of the external current and
new boundary conditions, the algorithm we used here w
identical to the one previously used in the numerical study
a vortex pair dynamics.4 There it turned out that the algo
rithm was extremely accurate. Here, as a sort of calibra
of the algorithm, and mainly to avoid any systematic con
butions from the BC, we initially tested it in a system whe
the result is known analytically, namely, at the trivial sec
N50. There it is easy to see that the field configurat
C(x,t)5exp@2 i /2 J0

2t#, Ax(x,t)5J0 , Ay(x,t) 5 0
5A0(x,t) is a solution of the equations of motion in th
presence of the external current withE(x,t)505B(x,t) and
Js(x,t)52Jext. We ran a preliminary simulation using as a
initial configuration the trivial vacuumC51, Ai505A0
and turning on the external current att50. Our naive expec-
tation was to see the system relaxing to the vacuum-cur
solution described above or to some gauge transform o
Yet, after a short transient period the system dynamic
relaxed to a time-dependent configuration where both
electric field and the supercurrent oscillated vividly arou
their mean valueŝE(x)&50, ^Js(x)&52Jext. These oscil-
lating modes could be attributed to the abrupt turning on
the external current. To eliminate them, we introduced di
pation in the system and in a subsequent run we saw
system relaxing to the vacuum-current solution within
1024 accuracy.~Note that we introduced here a dissipati
term of the formĖi52Cd8Ei1••• that does not meet all th
criteria mentioned in the previous section and thus it is
appropriate in the vortex sector!. The remarkably accurat
convergence of the initial configuration to the vacuu
current solution provides a strong confirmation for the ac
racy and the reliability of our algorithm. A byproduct o
these runs is the conclusion that the response of the gro
state to the application of an external electric current is
formation of a supercurrent that on average is equal and
posite to the latter. In fact, it is reasonable to assume
even in theNÞ0 sector, away from the vortex, the syste
will respond in the same way.

We switch now to the study of the vortex sector and
particularly consider theN51 sector. To study the dynamic
of the vortices we carried out numerous simulations and
results confirmed with quite impressive accuracy the pre
tions of the theoretical analysis. We also experimented w
the values of the parametersk, b and the dynamics of the
vortices showed little sensitivity to those values. Indicative
we quote here the results of some simulations for the spe
choicek52 andb51, which belong to a parameter regim
that we believe to be appropriate for the description of
physics of type-II superconductors.4 Similar results though,
were obtained for a large variety of the values of the para
eters.
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We performed a series of numerical experiments for va
ous values of the dissipation constantCd and for a fixed
value of the external currentJ050.025. The total duration o
each simulation was 240 time units. The corresponding
jectories of the guiding center of the vortex are displayed
Fig. 2. As arises from the plot, in the absence of dissipat
(Cd50), the guiding center of the vortex performs a rec
linear trajectory along the negativex direction. Moreover, it
is displaced by 6 space units~i.e., three times its diameter! in
240 time units, which corresponds to a mean veloc
VL52J0êx . This behavior verifies the theoretical predictio
~7! qualitatively as well as quantitatively.

To arrive at Eq.~7! we assumed that the external curre
is homogeneous throughout the whole space. This assu
tion may take a weaker form; instead of a current occupy
the whole space, we may introduce one which has a s
shape, i.e., it takes a nonzero constant value inside a str
certain width, while it vanishes in the outside region. In pr
ciple, when the width of the strip is much larger than the s
of the vortex, the vortex essentially realizes a homogene
current all over space and responds accordingly. This
sumption was tested and verified in our study. Specifica
we repeated our runs forCd50 using an external current o
the form

Jy
ext50, Jx

ext5J0f ~y!, ~15!

where the functionf is approximately equal to unity over
strip of width 2L and drops to zero very quickly outside th
strip. A function that meets the above description especi
for largen is

f ~y!5e2~ uyu/L !n
. ~16!

The numerical calculations showed that any strip curr
with L>6 has the same effect on the motion of the vortex
that of a homogeneous current occupying the whole sp
Quite surprisingly, even for narrower strips,L<6, the trajec-
tory of the vortex remains identical while its speed reduc
Indicatively, we found the ratio2Vx /J050.89, 0.95, and
0.98 forL53, 4, and 5, respectively.

For nonzero values ofCd , after a small transient period
the vortex relaxes to an almost rectilinear motion at an an
different from 180° to the external current. Indeed, the d
flection angled between the trajectory of the vortex and th
direction of the current takes values from 180° to 125° w

FIG. 2. The trajectory of the guiding center of the vortex und
the influence of an external electric current and dissipation. T
several lines correspond to different values of the friction param
Cd .
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57 10 795VORTEX PULL BY AN EXTERNAL CURRENT
d decreasing asCd increases. As arises from the lengths
the trajectories in Fig. 2, the measure of the velocity of
vortex is also a decreasing function ofCd in accordance with
the physical interpretation of the dissipation.

An important issue to check is to which extent the moti
of the vortex meets the assumptions we adopted in Sec
while deriving Eq. ~12!. To see whether a steady state
eventually reached, we plot in Fig. 3 the time evolution
thex andy components of the drift velocity of the vortex fo
Cd54. There we see that initially (t50), Vx520.0255
2J0 andVy50 as if there was no dissipation at all. As th
vortex moves on, the dissipation turns on and its effect
sults in a nonzero transverse component of the vortex ve
ity. After a small transient period (t5024), the velocity of
the vortex sets in an oscillating mode around a cons
mean value. Strictly speaking, the vortex does not seem
develop a steady state, but it is reasonable to assume tha
contribution of the oscillating part is autocanceled on av
age, and thus in a wider sense we can assert that the v
finally relaxes to a steady state. A detailed examination
successive level contours of the energy density establi
also that the vortex moves quite coherently and retains
initial shape during the evolution of the simulations. It is th
quite interesting to question whether the trajectories sho
in Fig. 2 satisfy Eq.~12!. To calculate the deflection angl
and the~mean! velocity VL of the vortex, we process th
numerical data so as to linearize the slightly wavy trajec
ries of Fig. 2 and we cut out the initial part of the data th
corresponds to the ‘‘transient period.’’ After the relevant c
culations we tabulate the results in Table I, where it is de
onstrated that relation~12! is satisfied with quite impressiv
accuracy.

It is of crucial importance for the present study to det
mine to what extent the details of the motion of the vort
follow the motion of its guiding center. To investigate th

FIG. 3. The drift velocityV5(V1 ,V2) of the guiding center of
the vortex forCd54.

TABLE I. Numerical confirmation of Eq.~12!.

Cd 2cosd VL

J0
2

cosd

VL /J0

0 1.000 1.000 1.000
1 0.984 0.981 1.003
2 0.942 0.934 1.009
4 0.816 0.803 1.016
8 0.579 0.582 0.995
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latter it is necessary to define the vortex location. We belie
that the position of the maximum of the energy dens
~MED! is a suitable definition, and we have recorded
position in our calculations. Note that there are at least t
alternative definitions of the position or the center of t
vortex, namely, the maximum of the topological density
the position whereC vanishes. All three of them yield simi
lar results so here we present data only for the MED. T
trajectories of the MED of the vortex~solid line! and of the
guiding center~dashed line! of the vortex forCd50 and for
various values of the intensityJ0 of the external current are
plotted in Fig. 4. We see that while the guiding center sim
drifts in the negativex direction, the motion of the MED is
more complicated. On average it follows the motion of t
guiding center, but its trajectory is modulated by an oscil
tory pattern. This modulation is not a numerical effect but
an inherent characteristic of the vortex dynamics. We h
already encountered similar oscillating patterns in an ear
work while studying the dynamical evolution of a pair o
vortices.4 These patterns are reminiscent of the motion t
electrically charged particles perform in the presence o
magnetic field, which happens to be the prototype phys
system that exhibits Hall behavior. Borrowing the termino
ogy from the latter, we will refer to this finer motion with th
name ‘‘cyclotron.’’ As in the original case, the amplitude
the cyclotron motion varies with the parameters of the pr
lem. Along with the amplitude, the importance of cyclotro
motion also varies. In the extreme limit where the amplitu
of the cyclotron motion is very large in comparison with th
length scale of the problem we study, the whole picture
the dynamical behavior of vortices, as this is determin
from the equation of motion for the guiding center, alte
dramatically. Thus, it is important to determine the way t
parameters of the model affect cyclotron motion. Our n
merical investigation revealed a systematic relation betw
the parameterb, the value of the external currentJ0, and the
amplitude of the oscillating patterns. In short, the cyclotr
motion is amplified whenb decreases as well as whenJ0
increases. The dependence onJ0 and b is demonstrated in
Figs. 4 and 5, respectively. Note that in the runs presente
Fig. 4, k52 andb51, while those in Fig. 5,k51.5 and
J050.03. We would like to stress once more the analo
between the motion of the vortex in this model and the H
motion of electrons moving in a plane under the influence
a perpendicular magnetic field. Here, the increase ofJ0 is

FIG. 4. The motion of the vortex as determined by its guidi
center~dashed line! and the location of the maximum of the energ
~solid line! for various values of the external current.
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10 796 57G. N. STRATOPOULOS
equivalent to the increase of the external electric field in
electron system and the effect on the cyclotron motion is
same in both cases.

Finally, we consider the case where an initially appli
external field is abruptly turned off. The response of the v
tex to such a ‘‘blackout’’ is of obvious interest. Hall equatio
~2! implies that in the absence of external forces the guid
center of the vortex is conserved, i.e., the vortex is pinned
other words, while the vortex moves at a constant speed
before the current is turned off, it abruptly freezes at
position where it is found at the time we switch off the cu
rent. Still there is one question to be answered, namely, h
the location of the MED—which in principle does not coi
cide with the guiding center—will evolve. The guiding ce
ter is, after all, an abstract notion that represents the ‘‘m
position’’ of the vortex, while its real position in space
associated with the distribution of the energy density. O
could possibly assume that after the pause of the curren
vortex will reorganize itself and will finally relax to a con
figuration where the MED coincides with the pinned guidi
center. However, the numerical results lead to a comple
different picture.

In Figs. 6~a! and 6~b! we display the results of a simula
tion of a total duration of 125 time units where an extern
current is on only up to timet5tcrit540. The trajectories of
both the guiding center~solid line! and the MED~dashed
line! are plotted. Plot~a! shows the trajectories fromt50 up
to t5tcrit while plot ~b! displays the trajectories tillt5125.
As it is shown there, after the current is turned off, the gu
ing center indeed remains fixed at the point where it w
found at that moment, while the maximum of the ener

FIG. 5. The motion of the vortex as determined by its guidi
center~dashed line! and the location of the maximum of the energ
~solid line! for various values of the parameterb.

FIG. 6. The pinning of the vortex.~a! The trajectory of the
vortex while the current is on, and~b! the subsequent evolutio
after the current is turned off.
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density sets in a circular motion around the location of
guiding center with a radius equal to its distance from
guiding center at the time the current was turned off. T
picture described here, has a striking analogy with the H
effect. A guiding center can be also introduced in the case
the two-dimensional electron motion in a uniform magne
field B,9 which again can be interpreted as the ‘‘mean po
tion’’ of the electron. When an external electric field is a
plied the electron sets in a cycloid motion along the H
direction while its guiding center follows a rectilinear orb
along the same direction. What is more, when the elec
field is turned off, the electron sets in a circular motio
around its guiding center which rests.

V. DISCUSSION

In this paper, a time-dependent Ginzburg-Landau mo
for a complex scalar field coupled to electromagnetism
been studied mainly numerically. Dissipation was succe
fully incorporated in the model and its effect on the moti
of the vortex was analytically determined. The results of
numerical study were in accord to the Hall analogy adv
cated in Ref. 1 based on the derived unambiguous conse
tion laws. Furthermore, the results confirmed with impre
sive accuracy earlier theoretical predictions concerning
speed and the direction of the velocity of the vortex. In sho
it was shown that under the influence of an external elec
current a vortex drifts in a direction opposite to the curre
while in the presence of dissipation it deflects in a direct
ranging from 90° to 180° with respect to the current.

An important feature that is worth emphasizing is the c
clotron motion, i.e., the oscillating patterns in the trajecto
of the vortex remarkably similar to those encountered in
cycloid motion of an electron in the standard Hall effe
Such patterns have been already observed in the motio
vortex pairs4 and in the motion of magnetic bubbles in fe
romagnetic media.17 It seems, that cyclotron motion is a ge
neric feature of solitons that exhibit Hall behavior. Accor
ing to Ref. 3, there is a whole class of field theories who
solitons are expected to exhibit Hall behavior and amo
them there are some interesting variations of the pres
model.11,18 In some sample runs in these models we did
counter cyclotron motion that we consider a strong indi
tion that indeed these systems exhibit Hall behavior. N
that in the framework of collective coordinate schemes, l
those invoked in Refs. 11 and 19, it is not possible to de
cycloid patterns, because in the adiabatic limit the amplitu
of cyclotron motion becomes negligible, a fact that is su
ported by the results displayed in Fig. 4.

At a phenomenological level, we have presented ar
ments~mainly by reformulating previous results!, which are
quite encouraging for the relevance of the model to the ph
ics of the superconductor. In particular, we have shown t
Hall equation~2! leads naturally to the introduction of Mag
nus force~5! in the equation of motion for the vortex. Fur
thermore, we argued that the Magnus force has electrom
netic origin due to the interaction of the moving magne
flux with the positive ions of the background lattice. Finall
we have derived a variation of the Nozieres-Vinen equat
for the motion of a vortex~13! using plain field theoretica
analysis.
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57 10 797VORTEX PULL BY AN EXTERNAL CURRENT
We have also exhibited analytical considerations and
merical results, which suggest that in the presence of an
ternal electric current the vortex drifts against the curr
implying a possible link with the opposite sign Hall effect.20

Yet, as we mentioned in Sec. IV, the way we incorporate
electric current in the model plays a crucial role to the de
vation of that result. Clearly the next step is to test the p
dictions of the model at hand against more realistic exp
mental situations. One should find a more natural way
introduce the electric current in the specimen. Also o
should abandon the two-dimensional reduction and study
issues presented here in thin films with finite thickness.
such a study,21 preliminary results imply that Hall behavio
is also exhibited in the motion of magnetic flux tubes whi
are probed by a surface external current in a thr
dimensional film, i.e., a current that is nonzero only at
s

-
x-
t

e
-
-
i-
o
e
e

n

-
e

upper and the lower layers of a three-dimensional grid.
the experimental front, one might try to mobilize vortices n
by applying an electric potential on the specimen, but
introducing an electric current in a parallel plane just abo
the specimen.
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