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Vortex pull by an external current
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In the context of a dynamical Ginzburg-Landau model it is shown numerically that under the influence of a
homogeneous external currehtthe vortex drifts against the current with veloci4= —J in agreement to
earlier analytical predictions. In the presence of dissipation the vortex undergoes skew deflection at an angle
90°< << 180° with respect to the external current. It is shown analytically and verified numerically that the
angle 6 and the speed of the vortex are linked through a simple mathematical relation.
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I. INTRODUCTION extensive numerical study are presented in Sec. IV. The vor-
tices are found to behave in accordance to our earlier theo-
In a recent publicationit was proposed to study the dy- retical predictions. As a byproduct of this study we investi-

namics of isolated Abrikosov vortices in the framework of agate the details of the internal “Cyclotron motion” of
phenomenological effective field-theoretic mo@ethich al- ~ vortices and we show that an isolated vortex is spontane-
ternatively can be viewed as a time-dependent version of th@usly pinned. In the concluding Sec. V we discuss the rel-
Ginzburg-Landau equatiofTDGL). Therein, it was possible €vance of our results to the actual superconductor and we
to derive analytically the equation of motion of the guiding Propose more realistic three-dimensional studies.
center of the vorteXHall equation, under the influence of
any kind of external forcé According to the latter, the guid- Il. THE MODEL
ing center of the vortex moves in a direction perpendicular to
the externally applied force in analogy to the planar motion

of charged patrticles in the presence of a perpendicular ma ; ;
netic field. The importance of the Hall equation stems from athematical background of the theory. The model in ques-

theoretical considerations that suggest that the guiding centdPn was ongmqlly mtroduce_d by Feynaas a ”3‘“"}" dy-
describes quite accurately the “mean” position of the Vor_namlcal extension of the Ginzburg-Landau static theory of

tex, a suggestion that was verified and quantified by a receﬁypercondqctivity. Indeed, by attriputing the correct physiqal_
numerical study. It is thus possible to obtain useful informa- content to fields and parameters, it becomes a rather realistic
tion concerning the motion of a vortex by simply invoking phenomenological model of a superconduttdie model

the Hall equation. For instance, by plain implementation o dmits infinitely long, smooth, cylindrically symmetric flux

the latter one finds that in the presence of a homogeneoyQrtex solutions, whose static properties together with the
external current the vortex drifts against the current. properties of pairs of them, have been studied in detail in

By construction, the Hall equation is limited to the de- Ref. 3. Our.opjectl_ve s to study some aspects OT vortex
scription of the gross features of the motion of the vortex. Ondyngm_ms within this m_odel. In doing S0, we will 'gnore
the other hand, an understanding of the finer details of it?xCltatlons along the axis of the vprtexhlch by c_onv_entlon
motion requires a detailed solution of the TDGL equations.'s t_aken to be pa_rallel o tha a>§|s) anq we will directly
Such an undertaking has to rely on numerical methods, du@eflne the model_ln two space d|rr_1en3|on.s. .
to the nonlinear nature of the relevant equations. The main /S usual, the important dynamical variable is a complex
purpose of this paper is to report on a numerical study of th@'der parametet’ that may be thought as an electrically
dynamics of vortices within this model. In particular, we will charged field coupled to the electromagnetic potential

study the response of a vortex to an external current with ofo-A). The fields satisfy the coupled system of TDGL

without dissipation, an issue of obvious interest in the con-duations(to simplify notation fields and coordinates are re-

text of superconductivity® scaled along the lines of Ref) 4
The paper is organized as follows. Section Il contains a

Most of our techniques and conventions are described
Isewheré;* so we briefly outline here the physical and

general introduction to the model. Its relevance to the phys- iW=—3D*P+A;¥+ (VW -1)V,

ics of the superconductor is commented upon, and the main

theoretical predictions concerning the motion of the vortex 1. s 1

are illustrated. Finally, it is shown that an alternative inter- E Ei=ejd;B—Jj, EﬁiEi:P’ @

pretation of Magnus forcearises naturally in terms of the

Hall equation. In Sec. lll we incorporate the effect of dissi-where B=¢€;;d;A;, Ej=—dA;— iAo, Di=d,—iA;, while
pation and that of an external electric current in our fieldthe spatial indices,j range from 1 to 23 and « are free
theoretical formalism and we derive the equation of motionparameters of the model. The supercurrent dedSignd the
for the vortex through explicit calculations. The results of ancharge density are given byJ’=1/2[¥*D;¥ —c.c] and
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p=W*¥—1. Note that in order to allow the possibility of & & yjth the mean velocity/, of the vortex and assuming that
condensate|{'|=1) at infinity we introduce a background 5 generic forceF;=dP;/dt acts on the system, we end up
(positive-ion charge densityy, to neutralize the system. For \yith Eq. (2).
simplicity py is taken to be constant and homogeneous contrary to intuition and Newtonian mechanics, E2).
throgghout, i.e., pp=—ps Where ps is defined asps  implies that a vortex moves at a constant calculable speed in
=V ‘1’|oo:1_- _ ) ) a direction perpendicular to the applied force. This kind of
The nonlinear system of Eq¢l) admits static, axially pehavior is analogous to the planar motion of charge par-
symmetric localized vortex _solut|ons. These are S|m_|lar iNticles under the action of a perpendicular magnetic Yialt
nature to the well-known Abrikosov vortices of the static GL th,s we call it Hall behavior and from now on we will refer
theory. Moreover, in a certain region of the parameter spacg, Eq.(2) as a Hall equation. The dynamical behavior of the
their characteristic lengthgpenetration depth, coherence yortex becomes less exotic and the Newtonian mechanics

length fall well within the scale of a typical type-Il reestablishes by adopting an alternate interpretation of the
superconductct.However, the vortices in this model differ g equation. To do so, we rewrite E¢Q) in the formV,

from the ordinary Abrikosov vortices mainly in one respect; _ —1/27NFx &, whereV, is the velocity of the vortex in

although they carry Zero .electr!c.char_ge as a whole, there 'S Be x-y plane andF is the total force acting upon it. Multi-
local charge modulation in their interior, i.e., they have non-_ ~. . - .

I . .. .plying both sides of the former equation byrR and taking
vanishing charge density and as a result an electric field i

associated with them. the cross product bg, we get
A remarkable feature of the model in hand, is the unusual .
response of the vortices to external probes. Indeed, as it was 27NV Xe,=F. )

shown in Refs. 1 and 3, the motion of the vortex is governedA di Ea(5). f h ith
by the equation ccording to Eq.(5), for a vortex that moves with constant

velocity Newton’s Law X F=0, is restored if we assume that
1 in addition to any other force acting on the vortex, another

Vii==5 N (20 “new” transverse forceFr=—27NV/ X e, also acts on it.
Bearing in mind that the total magnetic flu¥ equals 2rN
whereV, is the mean velocity of the vortex aifidis the sum ~ We see thaF; has a form similar to the familiar so-called
of the external forces acting upon N is the well-known “Magnus force thatis usually invoked to describe the mo-
integer-valued winding number or topological charge, charfion of vortices in the superconductor. The similarity be-
acterizing any finite-energy configuration, which counts thecomes more obvious in full units, where this additional force
number of times the phase &f rotates around the internal readsFr= —pgsdoV Xe,.
circle as we scan the circle at spatial infirfityj\ is a con- As we have explained in some previous worKall be-
served quantity and can be written as the integral of a prophavior (and consequently the transverse fofeg is a ge-
erly chosen “topological density’s. Among other possibili- neric characteristic of soliton dynamics in systems with non-
ties 7 may be defined as=(1/2m) B, a definition which trivial topology and spontaneously broken Galilean
entails the familiar magnetic-flux quantization and it is of invariance, due for instance to the presence of a crystal lat-
obvious physical interest while, for our purposes, the mostice, and has a clear mathematical origin. Yet one would like
useful form ofr is to have a more physical explanation for the appearanég of
in Eqg. (5). In fact, one can attain such an explanation by
) attributing the origin ofF to the interaction between the
7= 5 1ea(DP)* (DY) —iB(Y*¥—1)]. (3  magnetic flux of the vortex and the internal electric currents
that are generated by the motion of the vorte$pecifically,
The importance of the above formula stems from the factet us assume that the vortex is moving with constant
that it appears in the expressions for the momentum and theelocity, V. In our field theory prescription a moving
angular momentum of the theory. Indeed, it was pointed ouvortex with velocity V| is a field configurationW(r
in Ref. 1 that the Noether expression for the linear momen-_VLt)ei(VLf—lﬂlVL\zt), A(r—V,t) (see Ref. 11 for more de-
tum of the model is ambiguous for any configuration with tails on Galilean boosts in two-dimensional vorticdset us
nonzero topological charge. The unambiguous expressiofow switch to the reference frame where the vortex is still. In
turns out to be that frame, the background ions of the crystal lattice form a
homogeneous current of negative charge carriers with charge
density — ps and velocity—V, . This current interacts with
the magnetic field of the vortex and, as a result, feels a Lor-
entz force acting upon it. Consequently, the vortex feels a
which in turn leads to a radical revision of the physical in-backreaction force opposite to the Lorentz force that can be
terpretation of the momentum. The presence of the first moeasily computed and is found to be exactly the transverse
ment of the topological density in the expression for theforce F; mentioned above.
linear momentum directly associates the latter with the posi-
tion of the vortex. In fact, it is possible to shbwhat the
“mean position” of the vortex is described by a quantiRy
called the guiding center of the configuration and defined as To study the response of the vortex to an externally pre-
Ri=—1/2mNe;;P;. By identifying R with the position and  scribed curren§®{(x,t), we simply substitutd>— J5+J*'in

1
PkIEkif d2X 27TXiT+EEiB)! (4)

Ill. EXTERNAL CURRENT AND DISSIPATION
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Eq.(1). Because of the external current the linear momentum d ) .
(4) of the system is no longer conserved. A straightforward apﬁcdf dx{ €k €MImB(X, 1) B(X, 1)}
application of the equations of motion yields

d =cdf d?x{B(x,t) 3 B(x,1)}. (8)

aF>k=|=t°f'3mz:—f d2x e I X, 1) B(X,1). (6)
To proceed further we adopt the rather plausible assumption
ethat in the presence of a suitably chosen external current, as
well as dissipation, a steady state is eventually reached in
which the vortex moves rigidly with a constant velocity, .

We further assume that the profile of the magnetic field as-

Assuming that the external current is uniform throughout th
plane, i.e.,J®(x,t)=J,, the only space-dependent quantity
on the right-hand side of this equation is the magnetic field
and its integral, the total magnetic flux, is equal taN.

simpler form Pk= —2mNeJg . Correspondingly, the time
evolution of the guiding center or the “mean position” of
the vortex reads

(8) reduces to

%Pﬁ —SVi; with S;=Cy f d{gBaB}. (9

dRy 1 .

at meiipi: ~Jok: (7) A simpler version of this relation is obtained by invoking

some further assumptions about the steady-state profile of

which, quite surprisingly, implies that the vortex drifts the vortex, which may be viewed as reasonable approxima-

against the current with a constant calculable speed. Notéons in the limit of a weak external current. Thus, we as-

that, in a similar model, Mantdh arrives at the same result sume that the vortex retains approximately its initial shape

by considering Galilean boosts on the vortex configurationsand correspondingly its axial symmetry, i.e., in the rest frame
The pull of the vortex by the current has a simple expla-of the vortex the magnetic field is of the forB=B(p),

nation in the context of the Hall equation. The magnetic fluxwherep is the radial coordinate in the usual polar variables.

of the vortex exerts on the electric current a Lorentz force ifThen, the off diagonal terms of tH&; tensor vanish while

the —90° direction with respect to the current. Conse-S;;=S,,= Cd/zdeX(aPBZ)En and Eq.(9) reduces to

guently, the vortex feels a backreaction force in th80°

direction and one would naively expect the vortex to move in

a direction perpendicular to the current. However, as it fol- ﬁpk: ~ Vi

lows from the Hall equation, the vortex moves-+a90° with ) . N ]

respect to the applied force and, therefore, the vortex movedith » being a positive constant number. Equati@g) im-

in a direction opposite to the external current. plies that the effect of such a term on an axially symmetric
The introduction of dissipation in the system is a compli-vortex configuration moving with a velocity is a force

cated task. Formally, the effect of dissipation in the system idinear to the velocity of the vortex that opposes the motion of

studied by adding a phenomenological friction term in thethe latter. We thus believe that with the insertion of this term

TDGL equations. However, no such term has been derivee correctly incorporate the effect of friction in our model.

on the basis of solid physical reasoning. Yet, one must havEinally, the equation of motion of the guiding center of the

in mind that there are several restrictions in the form and th&ortex in the presence of both a homogeneous external cur-

properties of any such term. Any friction term inserted in Eq.rent and dissipation reads

(1) should meet the following condition&) it should vanish

for any static vortex solutior(p) it should decrease the total V, = @: — 3+ Le NV (11)

energyW of the system, i.e..-dW/dt should be positive L dt Ok 2NTkm Y TLm:

def!mte, and flnall_y,(c) It should preserve the elec_tromag— According to Eq.(11), under the influence of a uniform ex-

netic U(1) gauge invariance of the system or, equivalently, | t a vortex simply drifts against ¥,(= —Jo):

it should preserve the continuity equation. Our choice te_rn? c(ljjrren a f "mf/f b ga h Lo

though not unique, was the most natural among a small set TE'S eads to a perfect Hall effect but with opposite sign to

: ) . at of the normal stat®. In the simultaneous presence of

candidates, and this was to add a term of the fQlge;;9;B gissipation the velocity of the vortex acquires a component

—with C4 a positive constant— on the right-hand side of thejn the perpendicular to the applied current direction. How-

equation of motion for the electric field in E(l). ever, its longitudinal part still has opposite direction to the
The friction term is, by construction, gauge invariant andexternal current, which in turn results to a sign of the Hall

vanishes for any static configuration. The time derivativegffect in the vortex state opposite to that of the normal

of the energy readsdW/dt= 1/ [d*{E;(C4€;;9;B)},  staté? By plain implementation of Eq11) we find that the

which by integration by parts becomesiW/dt= deflection angleS betweerV, andJ, decreases from 180° to

_Cd//gdeX{(eij,iji)B}: —Cq4/Bfd?xB?. Thus, we con- 90° as the contribution of the drag force increases. Further-

clude that the friction term we propose meets all the restricmore, a simple relation for the deflection anglés obtained,

tions mentioned above and therefore it seems to be a reasopamely,

able candidate for a phenomenological study of the

dissipation. Vi (12)

: . : : COSO=— 7.
The time evolution of the linear momentum is |Jo]

(10
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IV. NUMERICAL RESULTS

E orentz Our next objective is the numerical investigation of the
dynamical behavior of the vortices in the presence of an
S external electric current and dissipation. Our computational
/} Jo techniques are described in detail elsewHese, here we
) present only a brief overview.
12 To simulate the motion of a vortex, we first determined

numerically the static profiles of the condensate and of the
gauge fields characterizing a vortex of winding numbiet
With these in hand, we laid down on the lattice a configura-
tion of a vortex centered atx(y)=(2,0) at timet=0. In
FIG. 1. A plot of the forces acting upon a vortex that movesorder to maintainlas much as possiblehe symmetries of
with constant velocityV, in the presence of a uniform external the continuous system in its discretized form, we have re-
currentJ, and dissipation. sorted to techniques from lattice gauge thebl§The de-
grees of freedom were discretized on a spatial lattice so as to
The former relation becomes obvious by simple inspectionmaintain exact(lattice) gauge invariance. Time evolution
of Fig. 1. There are two forces acting upon the vorféxthe  was implemented by a finite difference leapfrog method us-
Lorentz force FL2®"*=27Ne,Jo), and(ii) the dissipation ing Egs.(1) with the second one modified to
force (Fq=— #V\.). According to Eq.(2) the vector sum of

Fq andF | qeni;rotated by+90° and divided by 2N must be 1. s aext :
equal to the velocity of the vorte¥, . The latter condition B Ei=¢€jdjB—Ji—J7"+ Cyeij9;B (14)
leads to relation(12).

We should note here that E(L1) is not original at all.  in order to incorporate the effect of an external current and

The major contribution of this work is its field theoretical dissipation. The gauge freedom of the equations of motion
derivation and its interpretation. Indeed, by multiplying bothwas eliminated by imposing the temporal gaugg=0. The
sides of Eq(11) by 2N and taking the cross product with external currend®!was taken along the direction and uni-

e,, we can write the latter in the form form throughout the whole plane, i.d%=J,e,.
In any numerical calculation where partial derivatives are
27NV X &,= —27NJoX &,— 7V, . (13) involved, the imposition of the appropriate boundary condi-

tions is a very delicate task. Here, the presence of an incom-

All the terms above appear in most of the standard phenon{?d @nd an outgoing external current ai infinity, made
enological theories of vortex motidfi.The left-hand side of thiS issue even more complex and forced us to use different
Eq. (13 is the familiar, though controversial, Magnus force, Poundary conditions at the andy boundaries. At they
while the first term of the right-hand side is the so-callegPoundaries of the film we imposed free boundary conditions
Lorentz force' or according to some other authBran in- by setting _the _covarlant derivative in the normal to the
separable part of the Magnus force. Finally, the last term oPoundary direction equal to zer®(W=0). There is more
the right-hand side of Eq13) is like the viscous drag force than one way to impose such a'condmon, and our ch.0|c.e was
of the Bardeen-StepheiBS) model™® However, one should 0 Setd,¥'=0 andA,=0. Also, in order to get a vanishing
notice that the Lorentz force in EGL3) comes with a sign Magnetic field at theg boundaries we set,A,=0. At thex
opposite to what is commonly accepted in the literature, £oundaries we successfully imposed two different sets of
difference that is of critical importance for the dynamics of Poundary conditionéBC’s). There, in deriving the boundary
vortices. In fact, the sign of the longitudinal part of the vor- conditions we took special care in order to preserve the dis-
tex velocity and the consequent drift of the vortex against th&€T€t€ gauge invariance of the system or, equivalently, the
current has its origin in the sign inversion of the Lorentzdiscrete version of the continuity equation at thévound-
force. We realize that the way we incorporate the externafi€s. Specifically, in analogy to the boundaries we set
current in the model plays a crucial role to this inversion.?xAy=0, Ax=0 and then, by imposing the continuity con-
Here we treat the current as a totally substantive object thaitraint, we got 1/[¥* 3, ¥ ]= —J,. As a consequence of the
interacts with the vortex. It is like a vortex moving in a plane @bove BC the value of the component of the supercurrent
under the influence of a current that flows in a parallel planét = X infinity was fixed and equal te-J,. Even though this
just above the vortex plane, instead of a current flowing intdS What we expect to happen away from the vortex, still the
the plane of the vortex and formed by the same carriers aBC for ¥ sounds quite artificial and too constrained. Thus,
those of the vortex® The second approach looks at first sight We tried and finally adopted another more “natural” set of
more natural. However, in the real physical system, the vorBC’s. Namely we se#,A,=d,A,=0 and the constraint of
tex is a three-dimensional object, i.e., a flux tube formed in @reserving the continuity equation yielded¥ =0 as a BC
three-dimensional superconducting film. This tube interactdor W. Using both sets we got essentially identical results,
with the surfacial supercurrent that is formed only on the topand these have been exhaustively checked to be free of any
and the bottom of the film. In this context the treatment ofboundary contributions.

the current as a substantive external object that flows in a The simulations were done on a square lattice of
parallel plane just abovéunde) the vortex tube becomes 201X 201 sites with a lattice spacing=0.15. The width
more plausible and realistic. (diametey of the vortex was typically of the order of 2 in
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rescaled length units. The finite time step was chosen to be 4 T T 71—
much smaller than the lattice spacing, typically of the order I 1
103, To test our results we ran simulations in bigger lat- 3 i ]
tices, 40X 401, with the same or smaller lattice spacing, say s L |
a=0.1, and the results obtained were all perfectly consistent. ;C_ .

All our simulations were performed on various Hewlett- 1 .
Packard HP) workstations at the University of Crete. A typi- I

cal run of durationT~ 100 time units, withAt=0.002 on a ° i ]
201X 201 lattice needed about 15 h of CPU time on a HP- T P T TR R,
735 machine. -4 -2 0 2

Apart from the existence of the external current and the X(®

_neW _boundary Condltlons, the alg0|_’|thm we use_d here was FIG. 2. The trajectory of the guiding center of the vortex under
identical to the one previously used in the numerical study Ofe influence of an external electric current and dissipation. The

a vortex pair dynamic$.There it turned out that the algo- several lines correspond to different values of the friction parameter
rithm was extremely accurate. Here, as a sort of calibratiog

of the algorithm, and mainly to avoid any systematic contri-
butions from the BC, we |n|t|ally tested it in a system where We performed a series of numerical experiments for vari-
the result is known analytica”y, namely, at the ftrivial SeCtorous values of the dissipation Constah& and for a fixed
N=0. There it is easy to see that the field configurationyajye of the external curred=0.025. The total duration of
W(x,)=exgd—i/235t],  Adxt)=Jo,  Axt)=0  each simulation was 240 time units. The corresponding tra-
=Ao(x,t) is a solution of the equations of motion in the jectories of the guiding center of the vortex are displayed in
presence of the external current wiilix,t)=0=B(x,t) and  Fig. 2. As arises from the plot, in the absence of dissipation
J5(x,t) = —J*" We ran a preliminary simulation using as an (C4=0), the guiding center of the vortex performs a recti-
initial configuration the trivial vacuumP’=1, Aj=0=A, linear trajectory along the negativedirection. Moreover, it
and turning on the external currenttat0. Our naive expec- s displaced by 6 space unfise., three times its diameten
tation was to see the system relaxing to the vacuum-currer#4Q time units, which corresponds to a mean velocity
solution described above or to some gauge transform of ity — _ 3 &  This behavior verifies the theoretical prediction
Yet, after a short transient period the system dynamicall)@) qualitatively as well as quantitatively.
relaxed to a time-dependent configuration where both the 14 5rrive at Eq(7) we assumed that the external current
electric field and the supercurrent oscillated vividly aroundg homogeneous throughout the whole space. This assump-
their mean valuegE(x))=0, (J%(x)) = —J%C These oscil-  tion may take a weaker form; instead of a current occupying
lating modes could be attrlbyted to the abrL_th turning on O_fthe whole space, we may introduce one which has a strip
the_external current. To ehr_mnate them, we introduced dISSI-Shape, i.e., it takes a nonzero constant value inside a strip of
pation in the system and in a subsequent run we saw thgsrtain width, while it vanishes in the outside region. In prin-
sy§t48m relaxing to the vacuum-current solution within acjpje when the width of the strip is much larger than the size
10" accuracy.(Note that we introduced here a dissipation of the vortex, the vortex essentially realizes a homogeneous
term of the formE;= — C4E; +--- that does not meet all the current all over space and responds accordingly. This as-
criteria mentioned in the previous section and thus it is nosumption was tested and verified in our study. Specifically,
appropriate in the vortex secjofThe remarkably accurate we repeated our runs f@4=0 using an external current of
convergence of the initial configuration to the vacuum-the form
current solution provides a strong confirmation for the accu-
racy and the reliability of our algorithm. A byproduct of Ip4=0,  I=Jof(y), (15
these runs is the conclusion that the response of the grou
state to the application of an external electric current is th
formation of a supercurrent that on average is equal and o
posite to the latter. In fact, it is reasonable to assume thaf
even in theN+#0 sector, away from the vortex, the system
will respond in the same way. f(y):efqywun_ (16)

We switch now to the study of the vortex sector and we
particularly consider th&l=1 sector. To study the dynamics The numerical calculations showed that any strip current
of the vortices we carried out numerous simulations and thavith L=6 has the same effect on the motion of the vortex to
results confirmed with quite impressive accuracy the predicthat of a homogeneous current occupying the whole space.
tions of the theoretical analysis. We also experimented witiQuite surprisingly, even for narrower strigs<6, the trajec-
the values of the parameteks B and the dynamics of the tory of the vortex remains identical while its speed reduces.
vortices showed little sensitivity to those values. Indicativelylndicatively, we found the ratio-V,/J,=0.89, 0.95, and
we quote here the results of some simulations for the specifie.98 forL=3, 4, and 5, respectively.
choicex=2 andB=1, which belong to a parameter regime  For nonzero values dty, after a small transient period
that we believe to be appropriate for the description of thehe vortex relaxes to an almost rectilinear motion at an angle
physics of type-Il superconductotsSimilar results though, different from 180° to the external current. Indeed, the de-
were obtained for a large variety of the values of the paramflection angled between the trajectory of the vortex and the
eters. direction of the current takes values from 180° to 125° with

rWhere the functiorf is approximately equal to unity over a

G‘Strip of width 2. and drops to zero very quickly outside this

Strip. A function that meets the above description especially
r largen is
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] 1.0 y T r T
0.02 -
= 0.0 -
= ] >
-0.02 =2.0 J,=0.025 ]
b=1.0 C=4.0
004 b -0.5 1
0 100 200 300 -1.0 0.0 1.0 2.0
time X
FIG. 3. The drift velocityV = (V;,V,) of the guiding center of FIG. 4. The motion of the vortex as determined by its guiding
the vortex forCy=4. center(dashed lingand the location of the maximum of the energy

(solid line) for various values of the external current.

6 decreasing a€, increases. As arises from the lengths of
the trajectories in Fig. 2, the measure of the velocity of thdatter it is necessary to define the vortex location. We believe
vortex is also a decreasing function@f in accordance with that the position of the maximum of the energy density
the physical interpretation of the dissipation. (MED) is a suitable definition, and we have recorded its
An important issue to check is to which extent the motionposition in our calculations. Note that there are at least two
of the vortex meets the assumptions we adopted in Sec. IHiternative definitions of the position or the center of the
while deriving Eq.(12). To see whether a steady state isyortex, namely, the maximum of the topological density or
eventually reached, we plot in Fig. 3 the time evolution ofihe position wherel vanishes. All three of them yield simi-
thex andy components of the drift velocity of the vortex for |5r results so here we present data only for the MED. The
Cq=4. There we see that initiallyt£0), Vi=—0.025=  aiectories of the MED of the vortessolid line) and of the
—Jo andV,=0 as if there was no dissipation at all. As the 4 jqing center(dashed lingof the vortex forC4=0 and for
vortex moves on, the dissipation turns on and its effect recirl)arious values of the intensity, of the external current are
) ) . . lotted in Fig. 4. We see that while the guiding center simply
ity. After a small transient periodt €0 - 4), the velocity of n(ijrifts in the negativex direction, the motion of the MED is

the vortex sets in an oscillating mode around a consta licated. O it foll th i fh
mean value. Strictly speaking, the vortex does not seem fglore complicated. n average it follows the motion of the
fl iding center, but its trajectory is modulated by an oscilla-

develop a steady state, but it is reasonable to assume that t d

contribution of the oscillating part is autocanceled on aver{0TY pattern. This modulation is not a numerical effect but is

age, and thus in a wider sense we can assert that the vort8R inherent characteristic of the vortex dynamics. We have
finally relaxes to a steady state. A detailed examination ofllready encountered similar oscillating patterns in an earlier
successive level contours of the energy density establishé¥ork while studying the dynamical evolution of a pair of
also that the vortex moves quite coherently and retains ityortices? These patterns are reminiscent of the motion that
initial shape during the evolution of the simulations. It is thuselectrically charged particles perform in the presence of a
quite interesting to question whether the trajectories showmagnetic field, which happens to be the prototype physical
in Fig. 2 satisfy Eq.12). To calculate the deflection angle system that exhibits Hall behavior. Borrowing the terminol-
and the(mean velocity V| of the vortex, we process the ogy from the latter, we will refer to this finer motion with the
numerical data so as to linearize the slightly wavy trajecto-name “cyclotron.” As in the original case, the amplitude of
ries of Fig. 2 and we cut out the initial part of the data thatthe cyclotron motion varies with the parameters of the prob-
corresponds to the “transient period.” After the relevant cal-lem. Along with the amplitude, the importance of cyclotron
culations we tabulate the results in Table I, where it is demmotion also varies. In the extreme limit where the amplitude
onstrated that relatiofl2) is satisfied with quite impressive of the cyclotron motion is very large in comparison with the
accuracy. length scale of the problem we study, the whole picture of
It is of crucial importance for the present study to deter-the dynamical behavior of vortices, as this is determined
mine to what extent the details of the motion of the vortexfrom the equation of motion for the guiding center, alters
follow the motion of its guiding center. To investigate the dramatically. Thus, it is important to determine the way the
parameters of the model affect cyclotron motion. Our nu-

TABLE I. Numerical confirmation of Eq(12). merical investigation revealed a systematic relation between
the parameteg, the value of the external curredg, and the
Cyq —cosd A cosd amplitude of the oscillating patterns. In short, the cyclotron
A V3, motion is amplified wherg decreases_as well as whé@_
increases. The dependence hnand B is demonstrated in
0 1.000 1.000 1.000 Figs. 4 and 5, respectively. Note that in the runs presented in
1 0.984 0.981 1.003 Fig. 4, k=2 and B=1, while those in Fig. 54x=1.5 and
2 0.942 0.934 1.009 Jo=0.03. We would like to stress once more the analogy
4 0.816 0.803 1.016 between the motion of the vortex in this model and the Hall
8 0.579 0.582 0.995 motion of electrons moving in a plane under the influence of

a perpendicular magnetic field. Here, the increasdofs
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density sets in a circular motion around the location of the
guiding center with a radius equal to its distance from the
guiding center at the time the current was turned off. The
picture described here, has a striking analogy with the Hall
effect. A guiding center can be also introduced in the case of
the two-dimensional electron motion in a uniform magnetic
field B,° which again can be interpreted as the “mean posi-
tion” of the electron. When an external electric field is ap-

plied the electron sets in a cycloid motion along the Hall

direction while its guiding center follows a rectilinear orbit

along the same direction. What is more, when the electric

FIG. 5. The motion of the vortex as determined by its guiding fie|q js turned off, the electron sets in a circular motion
center(dashed lingand the location of the maximum of the energy around its guiding center which rests

(solid line) for various values of the parametgr

equivalent to the increase of the external electric field in the V. DISCUSSION
electron system and the effect on the cyclotron motion is the ) ) )
same in both cases. In this paper, a time-dependent Ginzburg-Landau model

Finally, we consider the case where an initially appliedfor @ complex scalar field coupled to electromagnetism has
external field is abruptly turned off. The response of the voreen studied mainly numerically. Dissipation was success-
tex to such a “blackout” is of obvious interest. Hall equation fully incorporated in the model and its effect on the motion
(2) implies that in the absence of external forces the guidingj)f the yortex was analytlcally determined. The results of the
center of the vortex is conserved, i.e., the vortex is pinned. Ifumerical study were in accord to the Hall analogy advo-
other words, while the vortex moves at a constant speed justed in Ref. 1 based on the derived unambiguous conserva-
before the current is turned off, it abruptly freezes at thetion laws. Furthermore, the results confirmed with impres-
position where it is found at the time we switch off the cur- sive accuracy earlier theoretical predictions concerning the
rent. Still there is one question to be answered, namely, howPeed and the direction of the velocity of the vortex. In short,
the location of the MED—which in principle does not coin- it was shown that under the influence of an external electric
cide with the guiding center—will evolve. The guiding cen- current a vortex drifts in a direction opposite to the current
ter is, after all, an abstract notion that represents the “meathile in the presence of dissipation it deflects in a direction
position” of the vortex, while its real position in space is ranging from 90° to 180° with respect to the current.
associated with the distribution of the energy density. One An important feature that is worth emphasizing is the cy-
could possibly assume that after the pause of the current tHotron motion, i.e., the oscillating patterns in the trajectory
vortex will reorganize itself and will finally relax to a con- of the vortex remarkably similar to those encountered in the
figuration where the MED coincides with the pinned guidingcycloid motion of an electron in the standard Hall effect.
center. However, the numerical results lead to a completelypuch patterns have been already observed in the motion of
different picture. vortex pair§ and in the motion of magnetic bubbles in fer-

In F|gs qa) and qb) we d|sp|ay the results of a simula- romagnetic m6d|é7 It seems, that CyCIOtron motion is a ge-
tion of a total duration of 125 time units where an externalneric feature of solitons that exhibit Hall behavior. Accord-
current is on only up to timé=t.;=40. The trajectories of ing to Ref. 3, there is a whole class of field theories whose

both the guiding centefsolid line) and the MED(dashed solitons are expected to exhipit Hall .be.havior and among
line) are plotted. Plota) shows the trajectories from=0 up ~ them there are some interesting variations of the present
to t=t., while plot (b) displays the trajectories titi=125. ~model:**In some sample runs in these models we did en-
As it is shown there, after the current is turned off, the guid-counter cyclotron motion that we consider a strong indica-

ing center indeed remains fixed at the point where it wadion that indeed these systems exhibit Hall behavior. Note
found at that moment, while the maximum of the energythat in the framework of collective coordinate schemes, like

those invoked in Refs. 11 and 19, it is not possible to detect

1-40 1= 125 cycloid patterns, because in the adiabatic limit the amplitude
05 - . - 05 - . - of cyclotron motion becomes negligible, a fact that is sup-
x=15 e G k=15 e Cupid . . .
5:36‘.)32 T g o iy Bos L g ey ported by the results displayed in Fig. 4.

At a phenomenological level, we have presented argu-
ments(mainly by reformulating previous resujtsvhich are

> o > T quite encouraging for the relevance of the model to the phys-
ics of the superconductor. In particular, we have shown that

Hall equation(2) leads naturally to the introduction of Mag-

05 = 0 05 = s nus force(5) in the equation of motion for the vortex. Fur-

X X thermore, we argued that the Magnus force has electromag-
netic origin due to the interaction of the moving magnetic
(a) (b) . Lo . ;
flux with the positive ions of the background lattice. Finally,
FIG. 6. The pinning of the vortex(@ The trajectory of the We have derived a variation of the Nozieres-Vinen equation
vortex while the current is on, antb) the subsequent evolution for the motion of a vortex13) using plain field theoretical
after the current is turned off. analysis.
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We have also exhibited analytical considerations and nuupper and the lower layers of a three-dimensional grid. At
merical results, which suggest that in the presence of an exhe experimental front, one might try to mobilize vortices not
ternal electric current the vortex drifts against the currenby applying an electric potential on the specimen, but by

implying a possible link with the opposite sign Hall efféft. introducing an electric current in a parallel plane just above
Yet, as we mentioned in Sec. IV, the way we incorporate thehe specimen.

electric current in the model plays a crucial role to the deri-
vation of that result. Clearly the next step is to test the pre-
dictions of the model at hand against more realistic experi-
mental situations. One should find a more natural way to
introduce the electric current in the specimen. Also one | would like to thank Professor T. N. Tomaras and Pro-

should abandon the two-dimensional reduction and study thkessor N. Papanicolaou for several helpful discussions. |
issues presented here in thin films with finite thickness. Inwould like to acknowledge the hospitality of the Edinburgh

such a study! preliminary results imply that Hall behavior Parallel Computing Center where part of this work was per-
is also exhibited in the motion of magnetic flux tubes whichformed. This research was supported in part by EU Grant
are probed by a surface external current in a threeNo. CHRX-CT94-0621 and by the Greek General Secretariat
dimensional film, i.e., a current that is nonzero only at theof Research and Technology Grant NoIBSNEA 1759.

ACKNOWLEDGMENTS

*Electronic address: stratos@physics.uch.gr 1IN. s. Manton, Ann. PhysLeipzig) 256, 114 (1997.
IN. Papanicolaou and T. N. Tomaras, Phys. Lett.1A9 33  !2A T. Dorsey, Phys. Rev. &6, 8376(1992.
(1993. 13p. Noziees and W. Vinen, Philos. Magl4, 667 (1966); J.
2R. P. FeynmanStatistical MechanicgBenjamin, New York, Bardeen and M. Stephen, Phys. R&40, A1197 (1965; in
1972. Superconductivityedited by R. D. Park¢Dekker, New York,
3G. N. Stratopoulos and T. N. Tomaras, Physic89)136(1995. 1969, Vol. 2.
4G(. gégtratopoulos and T. N. Tomaras, Phys. Re®4312 493 14y B Kim and M. J. Stephen, in Ref. 13.
1 .

15ping Ao and D. J. Thouless, Phys. Rev. L&, 2158(1993.
16M. Creutz, L. Jacobs, and C. Rebbi, Phys. Re%).201 (1983.
6 YN. Papanicolaou and W. J. Zakrzewski, Phys. Lett2#0, 328
G. Blatteret al, Rev. Mod. Phys66, 1125(1994).

7 . . (1995.
J. Friedel, P. G. de Gennes, and J. Matricon, Appl. Phys. Rett. g . .
119(1963: D. R. Tilley and J. Tilley,Superfluidity and Super- - D0natis and R. lengo, Nucl. Phys. 435 659 (1995; I. V.

SR. P. HuebenerMagnetic Flux Structures in Superconductors
(Springer, New York, 1970

conductivity 3rd ed.(Hilger, Bristol, 1990, p. 227. mNB"";aSher_‘kol" and Aaow"'aj””'zp:ys' RekY5§h24_71(81992'25
8R. RajaramangSolitons and Instanton@North-Holland, Amster- - Fapanicolaou an - . LAKIZEWSKI, ysicagly
dam, 1982 2o 1999
oN. Papanicoulaou and T. N. Tomaras, Nucl. Phys3@®, 425 See, for instance, S. J. Hagen, C. J. Lobb,_R. L. Gree_ne, and M.
(199)). Eddy, Phys. Rev. B3, 6246(199)); T. R. Chien, T. W. Jing, N.
9D, |. Khomskii and A. Freimuth, Phys. Rev. Letf5 1384 P.Ong, and Z. Z. Wang, Phys. Rev. L&6, 3075(199)); S. J.
(1995; M. V. Feige'manet al, Pis'ma zh. Ksp. Teor. Fiz62, Hagenet al, Phys. Rev. BA7, 1064(1993.

811 (1995 [JETP Lett.62, 834 (1995]. ?1G. N. Stratopoulogunpublishedt



