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Law of approach to saturation for polycrystalline ferromagnets: Remanent initial state
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We consider the approach to saturation for cubic and uniaxial polycrystalline, single-domain ferromagnets
from the remanent state. For both cubic$111%- and$100%-easy systems we find that the coefficientb in the law
M (H) '

H→`
M (12bK2/M2H2), whereM is the saturation magnetization andK is the principal anisotropy

constant, departs from the well-known resultb58/105 obtained for an initially isotropic moment distribution.
The coefficients for the two easy-axis systems become distinct, and we calculate the dependence ofb on the
angle between the primary magnetic field which established the remanent state and the second saturating field
H. For uniaxial systems we show thatb54/15 for the remanent state, identical to its standard value for the
isotropic initial state.@S0163-1829~98!08217-4#
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I. INTRODUCTION

For an initially isotropic distribution of magnetic mo
ments which can change direction only by rotating aga
the magnetic anisotropy, it is well known~see, for example
Refs. 1 and 2! that the magnetizationM (H) approaches its
saturation valueM in large magnetic fieldH according to the
law

M ~H ! '
H→`

M ~12bK2/M2H2!, ~1!

whereK is the principal anisotropy constant. If such a po
crystalline ferromagnet consists of randomly oriente
single-domain crystallites having cubic anisotropy,b[b iso
58/105, while for uniaxial systemsb iso54/15, the subscript
denoting the isotropic initial state~characteristic, for ex-
ample, of a thermally demagnetized specimen!. Here we
point out thatb departs fromb iso for a cubic system if the
initial moment configuration is the remanent state, that is
the magnet has already been saturated and then allowe
relax to the remanent state in which the moment of e
crystallite resides along the easy axis closest to the prim
saturating field direction with a positive component in th
direction. We find that the coefficientb rem appearing in Eq.
~1! for the remanent initial state depends not only on
easy-axis preference~$111% or $100%! for cubic systems, bu
also on the angler between the directions of the first sat
rating field~used to prepare the remanent state! and the sec-
ond saturating field.

In the following we assume that the primary saturati
field has been applied along thez direction of a standard
Cartesian coordinate system and then removed, forming
remanent state. We specify the magnetizationM and easy
directionn̂ of each crystallite as well as the~second! applied
field H in terms of polar and azimuthal angle sets referred
the same global coordinate system:

M5M ~sinu cosf x̂1sinu sinf ŷ1cosu ẑ!, ~2!

n̂5sinQ cosF x̂1sinQ sinF ŷ1cosQ ẑ, ~3!
570163-1829/98/57~17!/10733~7!/$15.00
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H5H~sinr coss x̂1sinr sins ŷ1cosr ẑ!. ~4!

The coefficientb is obtained by minimizing~with respect to
u andf! the total energy of each crystallite

E5Emca2M•H5Emca2MH cosD, ~5!

whereEmca5Emca(u,f) is the magnetocrystalline anisotrop
energy of a single crystallite andD is the angle betweenM
and H, for small D ~i.e., large H!. This yields M (H)
5M cosD in the form of Eq.~1! with

b5
1

2K2 u“Emca~r,s!u25
1

2K2 H F]Emca~r,s!

]u G2

1
1

sin2r F]Emca~r,s!

]f G2J , ~6!

in which the gradient ofEmca is evaluated along the field
direction~u5r, f5s!. For an assembly of momentsb must
be obtained from an appropriate average over the mom
distribution, a procedure we develop on a case-by-case b
below. Sections II and III describe the calculation ofb rem(r)
for cubic $111%- and$100%-easy systems, respectively, and
Sec. IV we demonstrate thatbrem5biso for uniaxial anisot-
ropy. Concluding remarks are made in Sec. V.

II. CUBIC ANISOTROPY: ˆ111‰ EASY

We identify the locus of moments~i.e., occupied$111%
directions! for a random polycrystal in the remanent state
means of the following considerations. For a given crystal
with a set of Cartesian axes fixed in it, the locus of directio
nearest a particular$111% directionP is the octant of the unit
sphere containingP in the crystallite coordinate frame; a
octant is the appropriate region since there are eight s
metrically positioned$111% directions. Conversely, having
chosenẑ in our global Cartesian system as the primary sa
rating field direction, a possible locus for the populated e
$111% directions of the entire assembly of crystallites in t
remanent state is an octant centered aboutẑ. Figure 1 shows
the projection of one such octant in the (x,y) plane; it is-
10 733 © 1998 The American Physical Society
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defined3 by great circle segments passing through the ve
ces

d̂15
1

A6
~ x̂2) ŷ1& ẑ!, ~7a!

FIG. 1. Projection into the (x,y) plane of an octant of the uni
sphere relevant to the$111%-easy remanent state.ẑ ~out of the pa-
per! is the direction of the primary saturating field which genera
the remanent state. Dots represent the tips of thed̂i vectors specified
by Eqs.~7!. The dotted lines are the circles inscribing and circu
scribing the octant. In the remanent state the distribution of e
directions@g111(Q) of Eq. ~10c!# is constant within the inscribed
circle and decreases to zero in the shaded region~swept out by
rotation of the octant! between the inscribed and circumscrib
circles.
r
th
i-

d̂25
1

A6
~ x̂1) ŷ1& ẑ!, ~7b!

and

d̂35
1

)
~2& x̂1 ẑ!. ~7c!

The average of a functionf (Q,F) over this octant can be
written as

^ f ~Q,F!&5
2

p E
2p/3

p/3

dFE
0

cot21~& cosF!
dQ sinQF f ~Q,F!

1 f S Q,F1
2p

3 D1 f S Q,F1
4p

3 D G . ~8!

~Averages, that is, integrals normalized to the area of in
gration over the unit sphere, are appropriate since our inte
in this paper is the behavior of the magnetization rather t
the total magnetic moment.! The orientation of the (x,y)
plane aboutẑ is arbitrary, however; rotation of the octant i
Fig. 1 by an arbitrary anglez aboutẑ generates an equivalen
octant, so that an average overz must be performed in gen
eral to calculate properties of the remanent state. Manipu
ing the order of integration and using the fact that

E
0

2p

dzE
a1z

b1z

dF f ~Q,F!5E
0

2p

dF~b2a! f ~Q,F! ~9!

@for 0<b2a<2p and f (Q,F) periodic inF#, we average
^ f (Q,F);z& for a givenz over 0<z<2p:4

s

-
y

^ f ~Q,F!&111[
1

2p E
0

2p

dz^ f ~Q,F!;z&

5
1

2p

2

p E
0

2p

dzH E
0

Qmin
dQ sinQE

2p/31z

p/31z

dF1E
Qmin

Qmax
dQ sinQE

cos21@~1/& !cotQ#1z

p/31z

dF

1E
Qmin

Qmax
dQ sinQE

2p/31z

2cos21@~1/& !cotQ#1zJ F f ~Q,F!1 f S Q,F1
2p

3 D1 f S Q,F1
4p

3 D G
[E dVg111~Q! f ~Q,F!, ~10a!
where

E dV¯[E
0

p

dQ sinQE
0

2p

dF¯ ~10b!

indicates integration over the unit sphere,Qmin5sin211/)
andQmax5sin21A2/3 are the polar angles, respectively, co
responding to the circles inscribing and circumscribing
octant~dotted lines in Fig. 1!, andg111(Q) is defined by
-
e

g111~Q!

5
2

p
3H 1, 0<Q<Qmin

12
3

p
cos21@~1/& !cotQ#, Qmin<Q<Qmax

0, Qmax<Q<p.

~10c!

With f (Q,F)51 it is clear that
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15E dVg111~Q!, ~11!

so thatg111(Q) can be identified as the normalized angu
distribution of $111% moments about the primary saturatin
field direction ẑ. We see, therefore, that the locus of m
ments in the remanent state is not a single octant bu
spherical cap centered aroundẑ. As Eq. ~10c! specifies, the
distributiong111(Q) is azimuthally symmetric~i.e., F inde-
pendent!, constant forQ<Qmin , and decreases to zero in th
shaded region between the inscribed and circumscr
circles of Fig. 1; it is plotted in Fig. 2. In contrast, the di
tribution in the isotropic state is a constant,giso51/4p, over
the entire unit sphere.

From either Eq.~8! or Eqs. ~10! the component of the
total magnetization alongẑ in the remanent state~u5Q, f
5F for eachM ! is

Mz
tot

M
5^cosQ&1115^cosQ&5

)

2
>0.8660, ~12a!

as is to be expected;5 also,

Mx
tot

M
5^sinQ cosF&1115^sinQ cosF&50 ~12b!

and

M y
tot

M
5^sinQ sinF&1115^sinQ sinF&50. ~12c!

The magnetocrystalline anisotropy energy of each crys
lite can be expressed6 as

Emca52
1

2
K~a1

41a2
41a3

4! ~13!

FIG. 2. Distributionsg111(Q) @Eq. ~10c!#, g100(Q) @Eq. ~27b!#,
andgiso51/4p of occupied easy directions in the remanent$111%,
remanent$100%, and isotropic states, respectively, as functions
the polar angleQ about the primary saturating field directionẑ.
r

a

d

l-

with K,0 for $111% easy; we determine the direction cosin
a i of eachM with respect to a set of orthogonal axes cor
sponding ton̂ for that crystallite in the following way. Intro-
ducing the rotation matrix

R~u,f![S cosu cosf
cosu sinf

2sinu

2sinf
cosf

0

sinu cosf
sinu sinf

cosu
D , ~14!

we observe thatM̂5R(u,f) ẑ andn̂5R(Q,F) ẑ. Now thed̂i
vectors of Eqs.~7! form an orthonormal set centered aboutẑ,
but so do the vectorsR(j)d̂i , where

R~j![R~u50,f5j!5S cosj
sinj

0

2sinj
cosj

0

0
0
1
D ~15!

rotates a vector by an anglej about ẑ. For a givenj the
vectorsR(Q,F)R(j)d̂i constitute an orthonormal set cen
tered aboutR(Q,F) ẑ5n̂; orthonormality is preserved sinc
R(Q,F) and R(j) are proper rotation matrices. Hence, w
can write

a i[M̂•R~Q,F!R~j!d̂i5R~u,f!ẑ•R~Q,F!R~j!d̂i

5 ẑ•R21~u,f!R~Q,F!R~j!d̂i , ~16!

with the understanding that an average over the arbitr
anglej must also be performed to provide a full polycrysta
line average in determiningb. Equation~16! considerably
simplifies determination of thea i ; it leads to

Emca52
1

72
K@~a2)b1&c!4

1~a1)b1&c!414~&a2c!4#

52
1

12
K@316c227c414&ac~323c224a2!#

~17a!

with

a[a~u,f![sinu@cosQ cos~f2F!cosj

1sin~f2F!sinj#2cosu sinQ cosj, ~17b!

b[b~u,f![sinu@2cosQ cos~f2F!sinj

1sin~f2F!cosj#1cosu sinQ sinj, ~17c!

and

c[c~u,f!5sinu sinQ cos~f2F!1cosu cosQ,
~17d!

a21b21c251. Using Eqs.~17! in Eq. ~6!, followed by av-
eraging over 0<j<2p,4 we find ~after lengthy but straight-
forward calculation!

b rem
1115

1

18
^233c8160c6236c418c211&111, ~18!

with

c[c~r,s!5sinr sinQ cos~s2F!1cosr cosQ. ~19!

Performing theF integration of Eq.~10! removes all depen-
dence ons, the azimuthal angle ofH @cf. Eq. ~4!#, and we
obtain

f
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b rem
111~r!5

1

18H sin8 rF2
212355

128
^cos8 Q&1

99099

32
^cos6 Q&2

114345

64
^cos4 Q&1

10395

32
^cos2 Q&2

1155

128 G
1sin6 rF14157

4
^cos8 Q&2

13167

2
^cos6 Q&13780̂ cos4 Q&2

1365

2
^cos2 Q&1

75

4 G1sin4 rF2
9801

4
^cos8 Q&

14536̂ cos6 Q&2
10395

4
^cos4 Q&1

945

2
^cos2 Q&2

27

2 G1sin2 r@594̂ cos8 Q&21092̂ cos6 Q&1630̂ cos4 Q&

2120̂ cos2 Q&14#233̂ cos8 Q&160̂ cos6 Q&236̂ cos4 Q&18^cos2 Q&11J , ~20!
a
a-

p

th

th

s

-

hat
e

nt of

nts

on
where we have omitted the 111 subscripts since the rem
ing averages over cosnQ are independent of octant orient
tion. From either Eq.~8! or Eq. ~10! we have

^cosn Q&1115^cosn Q&

5
4

n11 F12
3

p E
0

p/3

dFS & cosF

A112 cos2 F
D n11G ,

~21!

and the required integrals can be evaluated with the hel
Ref. 7:

^cos2 Q&1115
1

3
1

4

3p
, ~22a!

^cos4 Q&1115
1

5
1

56

45p
, ~22b!

^cos6 Q&1115
1

7
1

1012

945p
, ~22c!

^cos8 Q&1115
1

9
1

7792

8505p
. ~22d!

Hence, we find that the coefficientb in the law of approach
to saturation from the remanent state of a$111%-easy poly-
crystal is

b rem
111~r!5

8

105
2

1

p S 32

5103
1

64

945
sin2 r2

92

189
sin4 r

1
6484

8505
sin6 r2

979

2835
sin8 r D , ~23!

wherer is the angle between the field which established
remanent state and the second saturating field.8

A consistency check on our work can be made in
following way. Averaging the right side of Eq.~18! over the
entire unit sphere instead of the indicated average lead
Eq. ~20! but with the^cosnQ&111 terms replaced by

^cosn Q&unit sphere5
1

4p E dV cosn Q5
1

n11
; ~24!
in-

of

e

e

to

substitution of these into Eq.~20! yields 8/1055b iso inde-
pendent of the direction ofH. We thus properly recover the
known result for an initially isotropic distribution of mo
ments.

III. CUBIC ANISOTROPY: ˆ100‰ EASY

Our analysis of this case proceeds in a way similar to t
for the $111%-easy system in Sec. II. A specific locus for th
easy directions occupied in the remanent state is a sexta
the unit sphere since there are six$100% directions. The (x,y)
projection of the sextant defined by great circle segme
intersecting the vertices

d̂15
1

)
~ x̂2 ŷ1 ẑ!, ~25a!

d̂25
1

)
~ x̂1 ŷ1 ẑ!, ~25b!

d̂35
1

)
~2 x̂1 ŷ1 ẑ!, ~25c!

and

d̂45
1

)
~2 x̂2 ŷ1 ẑ! ~25d!

is shown in Fig. 3, and

^ f ~Q,F!&5
3

2p E
2p/4

p/4

dFE
0

cot21~cosF!
dQ sinQF f ~Q,F!

1 f S Q,F1
p

2 D1 f ~Q,F1p!

1 f S Q,F1
3p

2 D G ~26!

defines the average off (Q,F) over it. In analogy to our
work in Sec. II, an average over the arbitrary orientati
anglez of the sextant aboutẑ must also be performed.9 This
leads to
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^ f ~Q,F!&100[
1

2p E
0

2p

dz^ f ~Q,F!;z&

[E dVg100~Q! f ~Q,F!, ~27a!

where g100(Q) is the normalized angular distribution o
$100% moments about the primary saturating field directionẑ
in the remanent state:

g100~Q!5
3

2p
3H 1, 0<Q<Qmin

12
4

p
cos21~cotQ!, Qmin<Q<Qmax

0, Qmax<Q<p.
~27b!

Qmin5p/4 and Qmax5sin21A2/3 are the polar angles, re
spectively, corresponding to the circles inscribing and c

FIG. 3. Projection into the (x,y) plane of a sextant of the uni
sphere relevant to the$100%-easy remanent state.ẑ ~out of the pa-
per! is the direction of the primary saturating field. Dots repres
the tips of thed̂i vectors specified by Eqs.~25!. The dotted lines are
the circles inscribing and circumscribing the sextant. In the rem
nent state the distribution of easy directions@g100(Q) of Eq. ~27b!#
is constant within the inscribed circle and decreases to zero in
shaded region~swept out by rotation of the sextant! between the
inscribed and circumscribed circles.
-

cumscribing the sextant indicated by the dotted lines in F
3. The moments in the remanent state reside once more
spherical cap centered aroundẑ. The azimuthally symmetric
distributiong100(Q) decreases from a constant to zero in t
shaded region of Fig. 3; it is shown in Fig. 2. Using eith
Eq. ~26! or Eq.~27! we find that the only nonzero compone
of the total magnetization in the remanent state is

Mz
tot

M
5^cosQ&1005^cosQ&5

3

&
F12

2

p
tan21~& !G

>0.8312, ~28!

the standard result.10

With appropriate direction cosinesa i andK.0 Eq. ~13!
definesEmca for each crystallite. We obtain thea i by using
R(Q,F)R(j) @cf. Eqs.~14! and ~15!# to rotatex̂, ŷ, and ẑ
into an orthonormal set of vectors corresponding to e
easy directionn̂ and exploit the identity employed in Eq
~16!:

a1[M̂•R~Q,F!R~j!x̂5R~u,f!ẑ•R~Q,F!R~j!x̂

5 ẑ•R21~u,f!R~Q,F!R~j!x̂ ~29a!

and, similarly,

a2[M̂•R~Q,F!R~j!ŷ5 ẑ•R21~u,f!R~Q,F!R~j!ŷ,
~29b!

a3[M̂•R~Q,F!R~j!ẑ5 ẑ•R21~u,f!R~Q,F!R~j!ẑ.
~29c!

With these expressions we have

Emca52
1

2
K~a1

41a2
41a3

4!52
1

2
K~a41b41c4!,

~30!

wherea, b, andc remain defined by Eqs.~17b!–~17d!. Sub-
stituting in Eq. ~6! and then averaging over 0<j<2p
yields9

b rem
1005

1

16
^299c81184c62102c4116c211&100 ~31!

with c[c(r,s) specified by Eq.~19!. This in turn leads to

t

-

he
b rem
100~r!5

1

16H sin8 rF2
637065

128
^cos8 Q&1

297297

32
^cos6 Q&2

343035

64
^cos4 Q&1

31185

32
^cos2 Q&2

3465

128 G
1sin6 rF42471

4
^cos8 Q&2

79233

4
^cos6 Q&1

45675

4
^cos4 Q&2

8295

4
^cos2 Q&1

115

2 G
1sin4 rF2

29403

4
^cos8 Q&1

27405

2
^cos6 Q&27875̂ cos4 Q&1

2835

2
^cos2 Q&2

153

4 G
1sin2 r@1782̂ cos8 Q&23318̂ cos6 Q&11890̂ cos4 Q&2330̂ cos2 Q&18#299̂ cos8 Q&1184̂ cos6 Q&

2102̂ cos4 Q&116̂ cos2 Q&11J , ~32!
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in which the averages over cosnQ are independent of sextan
orientation and the 100 subscripts have been omitted. Ei
Eq. ~26! or Eqs.~27! give

^cosn Q&1005^cosn Q&

5
3

n11 F12
4

p E
0

p/4

dFS cosF

A11cos2 F
D n11G ,

~33!

from which we obtain, again with the assistance of Ref.

^cos2 Q&1005
1

3
1

2

p)
, ~34a!

^cos4 Q&1005
1

5
1

26

15p)
, ~34b!

^cos6 Q&1005
1

7
1

148

105p)
, ~34c!

^cos8 Q&1005
1

9
1

656

567p)
. ~34d!

Inserting these into Eq.~32!, we thus find that the coefficien
b in the law of approach to saturation from the reman
state of a$100%-easy polycrystal is

b rem
100~r!5

8

105
1

1

p)
S 1

1260
1

2

35
sin2 r2

39

112
sin4 r

1
241

420
sin6 r2

5093

17920
sin8 r D . ~35!

Similar to the$111% case, averaging the right side of E
~31! over the unit sphere generates Eq.~32! with ^cosnQ&100
replaced bŷ cosnQ&unit spherefrom Eq.~24!. This again yields
8/1055b iso, so that we consistently recover the isotrop
result.

IV. UNIAXIAL ANISOTROPY

For this comparatively simple case the moments in
remanent state are distributed uniformly over a hemisph
centered aroundẑ, and the average off (Q,F) over that
region is

^ f ~Q,F!&u5
1

2p E
0

p/2

dQ sinQE
0

2p

dF f ~Q,F!, ~36!

the subscriptu denoting uniaxial anisotropy; averaging ov
z is irrelevant since the hemisphere is invariant under ro
tion aboutẑ. The normalized distribution of moments aroun
ẑ is clearly

gu~Q!5H 1

2p
, 0<Q<

p

2

0,
p

2
,Q<p.

~37!
er

t

e
re

-

The magnetocrystalline anisotropy energy of a crystallite

Emca52K~ n̂•M̂ !252K@cosu cosQ

1sinu sinQ cos~f2F!#2 ~38!

with K.0. Use of this in Eq.~6! yields

b rem
u 52H F2115 sin2 r2

35

8
sin4 rG^cos4 Q&u

1F12
9

2
sin2 r1

15

4
sin4 rG^cos2 Q&u

1
1

2
sin2 r2

3

8
sin4 rJ

5
4

15
, ~39!

since

^cosn Q&u5
1

n11
~40!

from Eq. ~36!. Therefore,b rem
u for the remanent uniaxia

state is independent of field direction and is equal to
well-known1 result 4/15 for the isotropic state sinc
^cosnQ&u5^cosnQ&unit sphere, as a comparison of Eq.~40! and
Eq. ~24! shows.

V. REMARKS

To our knowledge, the distributionsg111(Q) @Eq. ~10c!#
and g100(Q) @Eq. ~27b!# of the moments in the remanen
cubic states have not been derived previously by other
thors. These distributions are significant milestones on
way to obtaining our principal results, the coefficien
b rem

111(r) andb rem
100(r).

For the cubic systems our principal findings@Eq. ~23! for
b rem

111(r) and Eq.~35! for b rem
100(r)# show that the law of ap-

proach to saturation depends on the initialmomentdistribu-
tion even if the underlyingcrystallite distribution is isotro-
pic. If the initial momentdistribution is isotropic, thenb
5b iso58/105, as is well known and as we have demo
strated in checks of the results in this paper. If the init
moment distribution is that of the remanent state, howev
thenb depends on the easy-axis type~$111% or $100% easy! as
well as on the angler of the second saturating field wit
respect to the primary saturating field which created the re
anent state. Put another way,b depends on magnetic history

The fact thatb rem
111 andb rem

100 are functions ofr may appear
surprising, but the following observation may serve to mo
vate it. For a single moment in a cubic systemb is given by

bcubic
single~r,s!52@a1

61a2
61a3

62~a1
81a2

81a3
8!22~a1

4a2
4

1a2
4a3

41a3
4a1

4!#, ~41!

where a15sinr coss, a25sinr sins, a35cosr. Equation
~41! follows directly from Eqs.~6! and ~13!, and it can also
be found in Ref. 11; it shows thatb for a single moment does
depend on the field direction~and, therefore, on magneti
history!. Hence, if we consider either of the remanent cu
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57 10 739LAW OF APPROACH TO SATURATION FOR . . .
states as a nonuniform collection of single moments, e
having a field-dependentb and whose spatial distribution i
highly directional, it is more comprehensible thatb for the
collection @Eq. ~23! or Eq. ~35!# also depends on the fiel
direction.

We note thatb for a single uniaxial moment also depen
on the field direction; evaluation of Eq.~6! yields12

bu
single~r!5

1

2
sin2 2r. ~42!

@On the basis of Eq.~41! and Eq.~42! we infer thatb will
depend on the field direction for a single moment of a
anisotropy type.# The higher symmetry of the uniaxial cas
however, produces a less directional distribution of mome
whoseb reproducesb iso. Indeed, of the three cases we ha
considered,brem5biso only for the uniaxial system, which is
characterized by the lowest number~two! of equivalent easy
directions. Our results suggest the general observation
bremÞbiso for any other system since the number of equiv
lent easy directions will be greater than 2. A corollary of th
observation is that, starting from the isotropic state, only
uniaxial system generates the moment distribution of
remanent state as it passes to saturation. In the uniaxial
each moment initially in the lower half-sphere of the isotr
pic state can simply flip, at no energy expense, to the equ
lent easy direction in the upper half-sphere, thus forming
remanent distribution and implyingbiso5brem; the inference
is that the remanent state cannot be formed by such flips
system having more than two equivalent easy directions

Experimental verification of Eq.~23! and Eq.~35! for the
cubic anisotropy cases may well be possible; we suggest
approaches. First, if the second saturating field is applie
the same direction as the primary field which established
remanent state (r50), Eq. ~23! predicts that b rem

111(0)
50.074 19, 2.6% smaller thanb iso58/10550.076 19. Equa-
tion ~35! yields b rem

100(0)50.076 34, 0.19% larger thanb iso.
These differences are small but may be detectable, espec
for a $111%-easy material. In real systemsM (H→`) can
in
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contain a 1/H term arising from dislocation stresses, no
magnetic impurities, and voids1 which will make determina-
tion of b more difficult. If these mechanisms are isotrop
however, as seems likely, then the effects we have descr
might be more readily discernible by the second approa
measurement of the angular dependence. Figure 4 disp
b rem

111(r) andb rem
100(r) as functions of the angler between the

first and second saturating fields. In each case the varia
with r is quite apparent; the maximum peak-to-peak exc
sion is 7.3% of b iso for b rem

111(r) and 1.8% of b iso for
b rem

100(r), both much larger than the corresponding diffe
ences forr50. Candidate systems for such investigation a
melt-spun materials which can feature isotropically distr
uted single-domain crystallites.

FIG. 4. b rem
111(r) ~solid line! and b rem

100(r) ~dashed line! vs the
angler between the primary and secondary saturating fields.
dotted line representsb iso58/105 for the isotropic moment distri
bution.
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