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Law of approach to saturation for polycrystalline ferromagnets: Remanent initial state
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We consider the approach to saturation for cubic and uniaxial polycrystalline, single-domain ferromagnets
from the remanent state. For both cufld I}- and{100}-easy systems we find that the coefficigin the law
M(H) =~ M(1-BK?%M?H?), whereM is the saturation magnetization akdis the principal anisotropy

H—o
constant, departs from the well-known resBl 8/105 obtained for an initially isotropic moment distribution.

The coefficients for the two easy-axis systems become distinct, and we calculate the depengoneted

angle between the primary magnetic field which established the remanent state and the second saturating field
H. For uniaxial systems we show that=4/15 for the remanent state, identical to its standard value for the
isotropic initial state[S0163-182¢08)08217-4

. INTRODUCTION H=H(sinp cosox+ sinp sinay+ cospz). 4

The coefficientd is obtained by minimizingwith respect to

For an initially isotropic distribution of magnetic mo- ;
¢ and ¢) the total energy of each crystallite

ments which can change direction only by rotating agains
the magnetic anisotropy, it is well knowsee, for example,
Refs. 1 and Rthat the magnetizatioM (H) approaches its
saturation valud/ in large magnetic fieléH according to the whereE, .= En{ 6, ¢) is the magnetocrystalline anisotropy

E=Emc—M-H=Eme— MH cosA, (5)

law energy of a single crystallite antl is the angle betweel

and H, for small A (i.e., large H). This yields M(H)

M(H) ~ M(1-BK?*M?H?), (1) =McosA in the form of Eq.(1) with
H-—oo
2

whereK is the principal anisotropy constant. If such a poly- B= i2|VEmca(p,o')|2=i2( [M
crystalline ferromagnet consists of randomly oriented, 2K 2K J0
single-domain crystallites having cubic anisotros Biso 1 [0E ed pro)]?
=8/105, while for uniaxial systemg;s,=4/15, the subscript + sinzp[ ) ] , (6)

denoting the isotropic initial statécharacteristic, for ex-
ample, of a thermally demagnetized specimeere we in which the gradient o, is evaluated along the field
point out thats departs fromg;s, for a cubic system if the direction(6=p, ¢= o). For an assembly of momengsmust
initial moment configuration is the remanent state, that is, ifoe obtained from an appropriate average over the moment
the magnet has already been saturated and then allowed @tribution, a procedure we develop on a case-by-case basis
relax to the remanent state in which the moment of eaclyelow. Sections Il and Il describe the calculationf(p)
crystallite resides along the easy axis closest to the primaror cubic{111- and{100-easy systems, respectively, and in
saturating field direction with a positive component in thatSec. |V we demonstrate th#,= B, for uniaxial anisot-

direction. We find that the coefficieit., appearing in EQ.  ropy. Concluding remarks are made in Sec. V.
(1) for the remanent initial state depends not only on the

easy-axis preferendgl111} or {100} for cubic systems, but Il. CUBIC ANISOTROPY: {111} EASY

also on the angle between the directions of the first satu-

rating field (used to prepare the remanent stated the sec- We identify the locus of moment§.e., occupied{111}
ond saturating field. directiong for a random polycrystal in the remanent state by

In the following we assume that the primary saturatingmeans of the following considerations. For a given crystallite
field has been applied along tlzedirection of a standard with a set of Cartesian axes fixed in it, the locus of directions
Cartesian coordinate system and then removed, forming theearest a particuldd 11} directionP is the octant of the unit
remanent state. We specify the magnetizafibnand easy sphere containing in the crystallite coordinate frame; an
directionn of each crystallite as well as ti{second applied  octant is the appropriate region since there are eight sym-
field H in terms of polar and azimuthal angle sets referred tanetrically positioned{111} directions. Conversely, having

the same global coordinate system: choserz in our global Cartesian system as the primary satu-
rating field direction, a possible locus for the populated easy
M = M(sin§ cos¢X + sin @ singy + cos6z), (2) {111 directions of the entire assembly of crystallites in the
remanent state is an octant centered aofigure 1 shows
n=sin® cosd® X+ sin® sin®y+ cosOz, (3)  the projection of one such octant in the,y) plane; it is-
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y ~ 1
T do=—=(X+V3y+v22), 7b
and
d 1( VIX+2) (79
=—(— XT+2Z). C
v

The average of a functioh(®,®) over this octant can be
written as

/3 cot™ 1(\/i cos®) .
do® sin®

2
<n®@»=;j/g@

— T

f(O,0)

47
0,0+ —

N
’ 3

+f 3

+f

} . (8

FIG. 1. Projection into thex,y) plane of an octant of the unit A hat is. i | lized h fi
sphere relevant to thfl11}-easy remanent state.(out of the pa- (Averages, that is, integrals normalized to the area of inte-

pen is the direction of the primary saturating field which generatesdration over the unit sphere, are appropriate since our interest
the remanent state. Dots represent the tips ofjthectors specified in this paper is th_e behavior of the r_nagnet'zat'on rather than
by Egs.(7). The dotted lines are the circles inscribing and circum-th€ total magnetic momentThe orientation of the X,y)
scribing the octant. In the remanent state the distribution of easplane about is arbitrary, however; rotation of the octant in
directions[g,,,(®) of Eq. (109] is constant within the inscribed Fig. 1 by an arbitrary anglg aboutz generates an equivalent
circle and decreases to zero in the shaded regmrept out by  octant, so that an average ovemust be performed in gen-
rotation of the octantbetween the inscribed and circumscribed eral to calculate properties of the remanent state. Manipulat-

circles. ing the order of integration and using the fact that
defined by great circle segments passing through the verti- 27 b+¢ 27
ces df| d@f(0,®)=| dd(b—a)f(0,®) (9)
0 at{ 0
al=i(§<—f3§/+\/§2) (78 [for O<b—a=<2#w andf(®,®) periodic in®], we average
J6 ' (f(©,®);¢) for a given{ over 0<(¢<2m:*

1 2w
<f(®,q))>1115§f0 d(f(0,®);7)

1 2 (2w O min w3+ ¢ O max w3+ ¢
=-—— d¢ J d® sin® dd)+f do® sin® do
2mm Jo 0 — w3+ O min cos™ {[(1V2)cot®]+ ¢
O max . —cos Y (1V2)cot®]+¢ 2 4
+ do® sin® f(O,D)+f| 0,0+ —|+f| 0,0+ —
O min — w3+ 3 3
EJ dQg1;(0)f(0,D), (103
|
where 9111(©)
17 Og®$®min
T 2
- i 2 3
J dQ —fo de SIn@fo dod (10b) — ;X 1— ;COSﬁl[(l/\/?)COt("D], ®min$®$®max
0, Ona=0=<.
indicates integration over the unit sphe@,,,=sin 1143 (109

and® ,,=sin 1 /2/3 are the polar angles, respectively, cor-
responding to the circles inscribing and circumscribing the
octant(dotted lines in Fig. I, andg,14(®) is defined by With f(O®,®)=1 itis clear that
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with K< 0 for {111} easy; we determine the direction cosines

I ' ' a; of eachM with respect to a set of orthogonal axes corre-
06k i sponding ton for that crystallite in the following way. Intro-
' ducing the rotation matrix
0.5 7 cosfcos¢ —sing sinfcosg
R(6,¢)=| cosfising cosp singsing |, (14
04T T —sing 0 cosf
g o3l y we observe thal =R(0, $)z andi=R(®,®)z. Now thec:ii
vectors of Egqs(7) form an orthonormal set centered abapt
0.2 | - but so do the vectorB(¢)d;, where
ol cosé¢ —siné O
' R(§)=R(6=0,p=¢)=| sinf cos¢ 0| (15
0.0 k ] 0 ) 0 1
rotates a vector by an angkeaboutz. For a givené the

vectorsR(0O,P)R(&)d; constitute an orthonormal set cen-
e tered abouR(®,P)z=n; orthonormality is preserved since
R(®,®) andR(&) are proper rotation matrices. Hence, we
FIG. 2. Distributionsg;15(®) [Eq. (100], 910(®) [Eq. (27D)],  can write
and g;;,= 1/47r of occupied easy directions in the remanght1}, “ ~ . ~
remanent{100},, and isotropic states, respectively, as functions of ~ @=M-R(0,®)R(£)di=R(6,¢)z-R(0O,P)R(£)d;
the polar angle® about the primary saturating field directian A o1 ~
=2-R77(6,4)R(0,P)R(£)d;, (16)

with the understanding that an average over the arbitrary
1= J dQg;11(0), (1) angle¢ must also be performed to provide a full polycrystal-
line average in determining. Equation(16) considerably
so thatg,;,(®) can be identified as the normalized angularsimplifies determination of the; ; it leads to
distribution of {111} moments about the primary saturating 1
field directionz. We see, therefore, that the locus of mo- Emea= — ==K[(a—v3b+v2c)*
ments in the remanent state is not a single octant but a 2
spherical cap centered aroundAs Eq. (100 specifies, the +(a+V3b+v2c)4+4(v2a—c)4]
distributiong414(®) is azimuthally symmetrigi.e., ® inde-
pendenk, constant fol® <0 .,;,, and decreases to zero in the
shaded region between the inscribed and circumscribed
circles of Fig. 1; it is plotted in Fig. 2. In contrast, the dis-
tribution in the isotropic state is a constagt,,= 1/4, over (173
the entire unit sphere. with
From either Eq.(8) or Egs.(10) the component of the _ .
total magnetization along in the remanent stat@=0, ¢ a=a(0,¢)=sinf[cos® cod ¢~ )coss
=® for eachM) is +sin(¢p—®)siné]—cosHsin® cosé, (17

1
= - K[+ 6c?—7c*+4v2ac(3—3c?>—4a?)]

tzot V3 b=b(0,d)=sinf] —cosO cog ¢p— P)siné
™~ (c080)111=(c0sO) = 5-=0.8660, (123 +sin(¢—d)cosé]+cossin® sing, (170

as is to be expectetialso, and
c=c(0,¢)=sinfsin® cog ¢— D)+ coshcosO,
(179
a’+b?+c?=1. Using Eqs(17) in Eq. (6), followed by av-
eraging over & ¢<27,* we find (after lengthy but straight-

tot

VX =(sin® cosd),1,=(sin® cosd)=0 (12b

and forward calculation
tot 1
= (Sin@ sin®);,=(sin® sin®)=0. (129 Brem=1g( 33+ 60c°~36c+8c7+ 1)111,  (18)
) ) with
The magnetocrystalline anisotropy energy of each crystal- _ _
lite can be express@as c=c(p,o)=sinpsin® cogo—P)+cospcosO. (19)

Performing thed integration of Eq(10) removes all depen-
dence ono, the azimuthal angle afl [cf. Eq. (4)], and we

E ——EK(a"'—i- S ad (13
mea— o 1T T ag obtain
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11, 1 8 212355 $0)+ 99099 S0 114345 40\t 10395 26 1155
ﬁrem(p)_l_8 SIn™p _TS<CO > 32 <CO >_ 64 <CO > 32 <CO > 128
14157 13167 1365 75 9801
+sirp 7 (cod0)— > (cof®)+378Qcos O)— T(coé O)+ +sintp| — T(co§ 0)

+4536coL 0)— %395@0.4‘ 0)+ ?(cos’- 0)— 2?7 +sir? p[594 co$ © ) — 1092 coL O ) + 630 cos ©)

—120(cog ®)+4]—33(cof 0)+60(cod ®)—36(cos O)+8(cog @)+ 1}, (20)

where we have omitted the 111 subscripts since the remairsubstitution of these into Eq20) yields 8/105= B, inde-
ing averages over cb® are independent of octant orienta- pendent of the direction dfi. We thus properly recover the

tion. From either Eq(8) or Eq.(10) we have known result for an initially isotropic distribution of mo-
ments.
(cos'®),1,=(cos' ®)
4 3 (i Vicosd |\ Ill. CUBIC ANISOTROPY: {10G EASY
) 1- ;J; do 1+200§<1>) 1 Our analysis of this case proceeds in a way similar to that

for the {113-easy system in Sec. Il. A specific locus for the
(21)  easy directions occupied in the remanent state is a sextant of
0tpe unit sphere since there are §00 directions. TheX,y)

and the required integrals can be evaluated with the help projection of the sextant defined by great circle segments

Ref. 7. intersecting the vertices
(cog 0) L + 4 (229 1
co 1M=3 T3 s ~ T
3 3w di=—(X—-y+2), (253
1 ‘/3( y+2)
$0)1= 1,0 22h
<Co >111_§+E1 ( ) a 1 (,\+,\+,\) (25b)
=—(X z),
2 V3 y
SO 1 1012 -
(co8'O)11=5+ g, (220 o
dy=—(—X+y+2), (250
sey. L, 7792 " v3
<CO >lll_§ 85057 ( d) and
Hence, we find that the coefficiegtin the law of approach L
L(? saturatlon from the remanent state ofld 1}-easy poly- 84:_(_%_%%) (250)
ystal is V3
8 1/ 32 64 92 is shown in Fig. 3, and
1y 2~ G e —— i '
Pren(P)= 105 77(5103+ 5455 P~ 7ggSiM P
3 wl4 cot” L(cosd) .
6484 979 8 o3 (f(,(b)>=ﬂ dd do sin®| f(O,P)
+§055In p—ﬁSI pl, (23 —ml4 0
o
wherep is the angle between the field which established the +H 0,0+ 5 +1(0,0+m)
remanent state and the second saturating field.
A consistency check on our work can be made in the 37
following way. Averaging the right side of E418) over the +1 0,04+ —- (26)
entire unit sphere instead of the indicated average leads to
Eq. (20) but with the(cos'®);;; terms replaced by defines the average df{®,®) over it. In analogy to our

work in Sec. Il, an average over the arbitrary orientation
angle{ of the sextant about must also be performetThis

1 1
(COS'O) unit spheré=7 f dQ cos'®= @Y eads to

n+1’
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Y cumscribing the sextant indicated by the dotted lines in Fig.
3. The moments in the remanent state reside once more in a
spherical cap centered aroundThe azimuthally symmetric
distributiongo(®) decreases from a constant to zero in the
shaded region of Fig. 3; it is shown in Fig. 2. Using either
Eq. (26) or Eq.(27) we find that the only nonzero component

of the total magnetization in the remanent state is

tot

3
z
— ={(cos® ={(cos® )= —
v~ = (0050)105=(c0s0) = —

2
1- —tanl(x/i)}
ar

=0.8312, (28)

the standard resutf.

With appropriate direction cosineg andK>0 Eq. (13
definesk, ., for each crystallite. We obtain the; by using
4 R(O,D)R(¢) [cf. Egs.(14) and (15)] to rotateX, y, andz

FIG. 3. Projection into thex,y) plane of a sextant of the unit into a(;l_ orthorlormaél Sethf vhect%rs qorresp()lndlndg _to each
sphere relevant to thf100-easy remanent state.(out of the pa- easy irectionn and exploit the identity employed in Eq.
pen is the direction of the primary saturating field. Dots represent(16)'
the tips of thed; vectors specified by Eq&25). The dotted lines are - o ~ ~
the circles inscribing and circumscribing the sextant. In the rema- @1 =M-R(0,P)R(E)x=R(6,$)z-R(O,P)R(£)X
_nent state the_ d?stribut_ion qf easy'directic{gsmo(@) of Eq. (27b)]_ —2.R1(0,4)R(O,®)R(£)X (299
is constant within the inscribed circle and decreases to zero in the
shaded regior{swept out by rotation of the sextarthetween the and, similarly,
inscribed and circumscribed circles.

@, =M-R(0,0)R(£)§=2-R7*(6,4)R(0,®)R(£)Y,
1 (2= (29b
(0.9 ))o= o | ae(1(0,0):0 A
a;=M-R(0,P)R(£)2=2-R™1(6,$)R(0,P)R(£)Z.
(299
= [a0ggoro0), @ |
With these expressions we have
where g10o(®) is the normalized angular distribution of 1 1
{100- moments about the primary saturating field direcfton E = — “K(ad*+a?+a®=— —K(a*+b*+c?
in the remanent state: mea 2 (a1t aztay) 2 (@*+b"+c,
(30)

wherea, b, andc remain defined by Eq$17b—(17d. Sub-

3 4 -~ ; :
= — —cos! 0. . <0<6 stituting in Eq. (6) and then averaging over<Q¢<2m

1, 0<0<0,,,

O, @ max$ @ =7. 1
(27b) BL0= — (—99c8+ 18406 — 104+ 16c2+ 1) 100 (31)

rem 16
0in="4 and O, =sin"12/3 are the polar angles, re-
spectively, corresponding to the circles inscribing and cir-with c=c(p,o) specified by Eq(19). This in turn leads to

100, . 1 8| 637065 6+ 297297 $O)— 343035 4oyt 31185 26— 3465
IBrem(p) - 16 Si p 128 <CO > 32 <C0 > 64 <CO > 32 <CO > 128
) 42471 79233 45675 8295 115
+sirfp (cod @) - (co$ @)+ (cod®@)— ——(cogO)+ —
4 4 4 4 2
) 29403 27405 2835 153
+sinftp| — y (cod @)+ 5 (co®®)—7875cod @) + T(co§®)—T}

+sir p[1782cof ) — 3318 cof O) + 1890 cos O ) —330(cos @) +8]— 9% cod O®) + 184 coL ©)

—102cog ©)+16(cos 0)+1, (32)
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in which the averages over ¢@8 are independent of sextant The magnetocrystalline anisotropy energy of a crystallite is
orientation and the 100 subscripts have been omitted. Either

Eq. (26) or Egs.(27) give Emca= — K(N- |\7|)2: — K[ cosf cosO
(co' ©)100=(COL' O) +singsin® cog ¢p—P)]? (39
3 4 (i cosd n+1 with K>0. Use of this in Eq(6) yields
=——1- —f do| ———= ]
n+1 N 2 ' 35
o l+cosd Brom=2 —1+5$i|"?p—§sin4p (co¢ 0),
(33
from which we obtain, again with the assistance of Ref. 7, 1 gsinszr lzssin"'p (co20),
g0 L2 34 1 3
coS O)1g=5 + ——, . .
( )100 3" A (343 - Zsi?p— Ssirf p
2 8
day. L, 26 b _4 39
(co >1oo—§+ 573" (34b =15 (39
since
(co ®) ! + 148 (340
co 100~ 7 , C
7 10573 -
(cos' @), ] (40)
1 656 from Eq. (36). Therefore, By, for the remanent uniaxial
<C058®>1°°_§+ 5677V3 (349 state is independent of field direction and is equal to the

well-known' result 4/15 for the isotropic state since

Insel’ting these into EC(SZ), we thus find that the coefficient <CO§ >u:<co§ ®>unit sphere as a Comparison of Eq40) and
B in the law of approach to saturation from the remanentgq. (24) shows.

state of a{100-easy polycrystal is
V. REMARKS
1 2 39
(TGO+ i__)smzp— 1_125'”4P To our knowledge, the distributiorg,;,(®) [Eq. (100]
and g,0¢(®) [Eqg. (27b)] of the moments in the remanent
241 5093 cubic states have not been derived previously by other au-
+ 4—205”16/0— ngosmgp). (35  thors. These distributions are significant milestones on the
way to obtaining our principal results, the coefficients
Similar to the{111 case, averaging the right side of Eq. Bras(p) and Brax(p)-
(31) over the unit sphere generates E8) with (cos' @), For the cubic systems our principal findindsg. (23) for
replaced by(cog ®), sprerdfom Eq.(24). This again yields  Bren(p) and Eq.(35) for B;gi(p)] show that the law of ap-
8/105= B;s,, SO that we consistently recover the isotropic proach to saturation depends on the inittedmentdistribu-
result. tion even if the underlyingrystallite distribution is isotro-
pic. If the initial momentdistribution is isotropic, therg
IV. UNIAXIAL ANISOTROPY = Bisc="8/105, as is well known and as we have demon-
) ) ] . strated in checks of the results in this paper. If the initial
For this comparatively simple case the moments in th@noment distribution is that of the remanent state, however,
remanent state are distributed uniformly over a hemispherghenlg depends on the easy-axis ty@&11} or {100} easy as
centered around, and the average of(®,®) over that \ell as on the angle of the second saturating field with

8 1
100,
Brem(P) 105+ 3

region is respect to the primary saturating field which created the rem-
1 (a2 o anent state. Put another wggdepends on magnetic history.
(f(0,d)),=— f dOsin® | dof(e,d), (36) The fact thaiBre, and Brey are functions op may appear
2w Jo 0 surprising, but the following observation may serve to moti-

the subscripti denoting uniaxial anisotropy; averaging over vate it. For a single moment in a cubic syst@is given by

{ is irrelevant since the hemisphere is invariant under rota- single _ 6, 6, 6_ 8, 8, 8 _ 4 4
a A . TN Ap,0)=2[a;+ar+az—(a;+ar,+a3)—2(a;«a
tion aboutz. The normalized distribution of moments around Beubicl P Lai+aztas=(artaztas 172

Z is clearly + aza3+ agad)], (42)
1 T where a;=sinpcosa, a,=Ssinpsino, az=cosp. Equation
on 0<0O= 2 (41) follows directly from Egs.(6) and(13), and it can also
gu(®)= (37)  befoundin Ref. 11; it shows thgtfor a single moment does
00 o= depend on the field directiotand, therefore, on magnetic

history). Hence, if we consider either of the remanent cubic
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states as a nonuniform collection of single moments, each ' ' ' ' T

having a field-dependemt and whose spatial distribution is 0079 [ BLl(p) .

highly directional, it is more comprehensible thatfor the \

collection[Eq. (23) or Eq. (35)] also depends on the field 0078 - 00, «

direction. Brem®
We note thaB for a single uniaxial moment also depends

on the field direction; evaluation of E¢6) yields"? 3 0.077 1 }

B9 )= S sir? 2p. (42 i

[On the basis of Eq41) and Eq.(42) we infer thatgB will 0.075 - T

depend on the field direction for a single moment of any

anisotropy typd. The higher symmetry of the uniaxial case, 0.074 -

however, produces a less directional distribution of moments

whoseg reproduce®;,. Indeed, of the three cases we have 0073 F | . . . o

considered ;.= Biso ONly for the uniaxial system, which is
characterized by the lowest numhkiéwo) of equivalent easy
directions. Our results suggest the general observation that P

.., for any other system since the number of equiva-
Brem™ Piso y Y q FIG. 4. B%(p) (solid line and B1%p) (dashed ling vs the

lent easy directions will be greater than 2. A corollary of this ) S
observation is that, starting from the isotropic state, only th%nglep _between the prm_]ary and Secon,dary saturating flequ. .The
o YT otted line representg;;,=8/105 for the isotropic moment distri-
uniaxial system generates the moment distribution of th ution
remanent state as it passes to saturation. In the uniaxial case
each moment initially in the lower half-sphere of the isotro-
pic state can simply flip, at no energy expense, to the equivasontain a I term arising from dislocation stresses, non-
lent easy direction in the upper half-sphere, thus forming theénagnetic impurities, and voidsvhich will make determina-
remanent distribution and implyingi.,=B.em the inference tion of g8 more difficult. If these mechanisms are isotropic,
is that the remanent state cannot be formed by such flips in bowever, as seems likely, then the effects we have described
system having more than two equivalent easy directions. might be more readily discernible by the second approach,
Experimental verification of Eq23) and Eq.(35) for the = measurement of the angular dependence. Figure 4 displays
cubic anisotropy cases may well be possible; we suggest tw(p) and B p) as functions of the angle between the
approaches. First, if the second saturating field is applied ifirst and second saturating fields. In each case the variation
the same direction as the primary field which established thevith p is quite apparent; the maximum peak-to-peak excur-
remanent state p=0), Eq. (23 predicts thatBLH0)  sion is 7.3% of Bis, for Biip) and 1.8% of Big, for
=0.074 19, 2.6% smaller thaBis,=8/105=0.076 19. Equa- BX2%p), both much larger than the corresponding differ-
tion (35) yields 3}§£{0)=o.076 34, 0.19% larger thafi,- ences forp=0. Candidate systems for such investigation are
These differences are small but may be detectable, especialigelt-spun materials which can feature isotropically distrib-
for a {111}-easy material. In real systemM(H—) can uted single-domain crystallites.

0 /4 /2 3n/4 T

1s. Chikazumi,Physics of MagnetisriWiley, New York, 1964, 8We note that Eq(23) can also be derived by using E@®) for a

pp. 277, 280, 520. single octant but averaging the integrand owverrotating the
2R. Becker and W. Dung, FerromagnetismugSpringer, Berlin, field aboutz is clearly equivalent to counterrotating the octant

1939, p. 171. aboutz. This alternate approach, however, does not yield the
3The relation betwee® and ® on each great circle segment in distributiong,,,(®) explicitly.

Fig. 1 can be obtained from the conditiﬁndixdj:O, wheren 9Again, we use th¢0,27] interval for mathematical convenience.

is specified by Eq(3) andd; , d; are its endpoints. Since the sextant is fourfold symmetric abautaveraging over
“We use thd0,27] interval for convenience. Since the octant is  0<{,£<2 is equivalent to averaging ovej<{,&< -+ /2

threefold symmetric abouk, averaging over &/(<2 is with 7 an arbitrary fixed angle.
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