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Fundamental magnetization processes in nanoscaled composite permanent magnets
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Excellent candidates for high remanent permanent magnets are nanoscaled composite materials consisting of
soft magnetica-Fe grains embedded into a hard magnetic Nd2Fe14B environment. The magnetic properties of
such permanent magnets sensitively depend on the prepared grain structure. This can be understood by com-
putational micromagnetism, which reveals the relation between details of the grain structure and intergranular
interaction mechanisms like the short-range exchange and the long-range stray field. The main problem of
composite materials is to preserve a sufficiently high coercivity. This can be only guaranteed if the soft
magnetic inclusions are smaller than twice the domain-wall widthdB

hard5pAA/K1 of the hard magnetic envi-
ronment with the exchange constantA and the first magnetocrystalline anisotropy constantK1 . Otherwise we
obtain a strong decrease of the coercivity following aDsoft

2const law, whereDsoft is the diameter of the soft
magnetic inclusion. According to analytical and numerical investigations, the const varies between22 and
20.5 depending on the dimension and the geometry of the soft magnetic inclusion.@S0163-1829~98!04517-2#
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I. INTRODUCTION

The idea behind composite permanent magnets is the
hancement of the remanence by adding a soft magnetic p
with a high spontaneous polarization to the hard magn
material. This method is only successful by using spe
preparation methods like mechanical alloying or rapid sol
fication. As reported by several authors,1–11 especially small
soft magnetica-Fe grains of about 10 nm embedded in
hard magnetic Sm2Fe17Nx or Nd2Fe14B lead to a remarkable
remanence enhancement while preserving the coercivity
order to optimize the magnetic properties, which sensitiv
depend on the grain structure, a more theoretical underst
ing of the magnetization processes may be useful. Analyt
calculations are generally restricted to simple geomet
without taking into account stray-field effects.12–15 Lee and
Chang16 took stray fields into account, they, however, app
other restrictions which need to be reconsidered. They c
sider a periodic arrangement of tablet like soft magnetic
clusions within a hard magnetic matrix. The investigation
these authors corresponds to a calculation of the global
local demagnetizing field. The nucleation field is then
sumed to be the ideal nucleation field of the curling mo
under the action of the calculated demagnetizing field. T
is equivalent to a nucleation from the homogeneous st
which is, as the work presented here shows, generally no
case. In many cases not even the remanent state is hom
neous. Furthermore, squareness of the hysteresis loop i
sumed and as a consequence nucleation field and coe
field are identical. The work presented here will show th
the actual demagnetization process is more complex and
assumption of squareness of the hysteresis loop is not j
fied. Computational micromagnetism based on the finite
ment method, allows the rigorous treatment of two- a
three-dimensional composite magnets.17–22 No assumptions
on the specific type of magnetization reversal or on the sh
of the hysteresis loop are necessary because the magn
tion distribution at all fields can be rigorously calculat
without any assumptions.

To investigate fundamental magnetization processes
570163-1829/98/57~17!/10723~10!/$15.00
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composite materials, we restricted ourselves to a single
magnetica-Fe inclusion within a hard magnetic Nd2Fe14B
environment. This paper reveals the conditions on the g
structure, which guarantee an optimal exchange hardenin
thea-Fe by taking into account long-range stray-field effe
and short-range exchange interactions. Further subjects
the role of the anisotropy, the misorientation, and the sh
of the included soft magnetica-Fe grain for the magnetiza
tion reversal process.

II. MICROMAGNETICS

A. General theory

The continuum theory of micromagnetics23–25 allows the
investigation of magnetization processes on length sc
greater than atomistic distances and smaller than the ma
scopic extension of the magnetic samples. The only pre
uisites are information about the magnitude of the meas
able material parameters~spontaneous polarizationJs,
anisotropy constantsK i , exchange constantA) and details
about the microstructure~diameter and geometry of the so
magnetic inclusion!. That is sufficient to obtain a stable mag
netization distribution by minimizing the total Gibbs fre
energy

F t@Js~g i!#5E
V
$A@~¹g1!21~¹g2!21~¹g3!2# ~1!

1K1@g1
2g2

21g2
2g3

21g1
2g3

2#

1K2g1
2g2

2g3
21••• ~2!

2Js~g i !•Hext ~3!

2
1

2
Js~g i !•Hs~g i !%dV ~4!

with respect to the direction cosinesg i ( i 51,2,3) of the
spontaneous polarizationJs under the restrictionuJsu5 const.
This constraint is automatically fulfilled by using the pol
10 723 © 1998 The American Physical Society
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10 724 57R. FISCHER, T. LEINEWEBER, AND H. KRONMU¨ LLER
coordinatesq andw defined by Fig. 1. The total energyF t

takes into account the short-range exchange interactio
Eq. ~1!, the anisotropy energy of Eq.~2!, the Zeeman contri-
bution of Eq.~3!, and the stray-field energy of Eq.~4!. The

FIG. 1. Definition of the direction cosinesg1 ,g2 ,g3 and spheri-
cal coordinatesq, w of the spontaneous polarizationJs.
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stray field Hs(r) can be obtained from Poisson’s equati
depending on magnetic volume and surface charges.

B. Computational realisation

Since the analytical investigation of different geometr
of the soft magnetic inclusion in the presence of all inter
tion mechanisms is impossible, we developed a numer
algorithm for modeling of composite materials. The discre
zation of the governing equation forF t is performed by the
method of finite elements.26,27 This allows the investigation
of arbritrary shaped grains and therefore the handling
more realistic grain structures. For the minimization of t
total Gibbs free energyF t , we use a well-optimized com
mercial routine based on the so-called ‘‘preconditioned, li
ited memory quasi-Newton conjugate gradient method.28

The long-range stray-field problem is solved by introduci
the vector potentialA as proposed by Brown.29 The minimi-
zation of the functional
W@Js~g i !,Ax ,Ay ,Az#5E
V
H A@~¹g1!21~¹g2!21~¹g3!2#1K1@g1

2g2
21g2

2g3
21g1

2g3
2#1K2g1

2g2
2g3

2

1•••2Js~g i !•Hext2
1

2m0
@¹3A2Js~g i !#

2J dV ~5!
ich
c

t
ent
with respect to the direction cosineg i ( i 51,2,3) of the spon-
taneous polarization and simultaneously to the three com
nents Ax ,Ay ,Az of the vector potentialA leads to local
minima, which are in one-to-one correspondence with th
of the total Gibbs free energyF t .

30–32 The Euler-Lagrange
equation of Eq.~5! is nothing else than Maxwells equation

¹3B~r!5m0Js~r!, ~6!

which connects the stray fieldBs(r)5¹3A(r) with the mag-
netization distributionJ(r) and vice versa. For a more de
tailed description of the simulation model see previo
papers.33,21

III. EXCHANGE HARDENED AND DECOUPLED SOFT
MAGNETIC INCLUSIONS

This section exclusively deals with spherical soft ma
netic inclusions embedded into a hard magnetic cube a
lustrated by Fig. 2. The edge length of the cube is 150
and constant for all following investigations. This guarante
the same reduction of the coercivity due to stray fields of
hard magnetic cube, independently of the diameter and
geometry of the soft magnetic inclusion. The material para
eters of Nd2Fe14B and a-Fe are summarized by Table I a
room temperature.

A. Demagnetization curves for different diameters
of the soft magnetic sphere

To prepare composite magnets with a sufficiently h
coercivity, the soft magnetic grains must be exchange h
o-

e

s

-
il-

s
e
he
-

d-

FIG. 2. Simple model of composite permanent magnet, wh
consists of a quasisphericala-Fe inclusion within a hard magneti
Nd2Fe14B cube. The angleC0 between the easy axes of thea-Fe
~cubic anisotropy! and thez axis is the misorientation of the sof
magnetic sphere. The easy axis of the hard magnetic environm
~uniaxial anisotropy! is parallel to thez axis, which is identical with
the direction of the applied field.
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TABLE I. Spontaneous polarizationJs, anisotropy constantsK i , exchange constantA, and width of the
Bloch wall dB5pAA/K1 at T5300 K for hard magnetic Nd2Fe14B and soft magnetica-Fe.

Material Js ~T! K1 (106 J/m3) K2 (106 J/m3) A(10212 J/m) dB ~nm! Ref.

Nd2Fe14B 1.61 4.331 0.6491 7.7 4.2 37
a-Fe 2.15 0.046 0.015 25.0 73.2 38
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ened by their hard magnetic environment. Because of
limited range of the exchange interaction of aboutdB'5 nm,
the spatial extension of the soft magnetic inclusion play
decisive role. So we calculated the demagnetization cu
of the magnetic structure of Fig. 2 for different diameters
the soft magnetic sphere. Figure 3 shows the results
Dspherebetween 10 and 120 nm. Characteristic is the loss
the rectangularity of the demagnetization curves with
creasing diameter of the sphere, which can be attribute
the failure of the exchange hardening of the soft magn
region.

B. Remanence as a function of the diameter
of the soft magnetic sphere

Figure 4 shows the computed remanenceJr as a function
of the diameter of the sphereDsphere, which is approximately
given by

Jr5Jsat5vsoftJs
soft1vhardJs

hard

5vsoft 2.15 T1~12vsoft! 1.16 T

for Dsphere<90 nm, ~7!

where vsoft5Vsoft/Vtotal denotes the fraction ofa-Fe (Vsoft

5pDsphere
3 /6) relative to the total magnet (Vtotal51503 nm3).

For diameters of the sphere smaller than 90 nm, the sh
range exchange interaction dominates and preserves the
form magnetization distribution. But for spheres greater th
90 nm, the long-range stray field destroys the parallel ali
ment of the soft magnetic moments and creates magn
vortices. This is demonstrated in Fig. 5 forDsphere5100 and

FIG. 3. Computed demagnetization curves for the magn
structure of Fig. 2 with increasing diameterDsphere~nm! of the soft
magnetic sphere.
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120 nm for the remanent states. If the numerical algorit
does not take into account long-range stray fields, the vo
states vanish.

C. Coercivity as a function of the diameter
of the soft magnetic sphere

Figure 6 shows the computed coercivityHc as a function
of the diameter of the soft magnetic sphereDsphere. In pres-
ence of an opposite field, the exchange hardening of the
magnetic inclusion can only be guaranteed for diame
smaller than 10 nm. Therefore the characteristic range of
exchange interaction is in order of 2dB

hard. For greater
spheres, the coercivity decreases according to following a
lytical expression:

Hc;Dsphere
20.701 for Dsphere.10 nm. ~8!

Note the strong reduction of the coercivity forDsphere.10
nm, where the exchange hardening begins to fail.

D. Discussion of the magnetization reversal processes

The plots of the magnetization vectors of Figs. 7, 8, an
for Dsphere520,90, and 100 nm are useful to improve t
understanding of the demagnetization processes for com
ite materials. ForDsphere510 nm, the soft magnetic momen
are ideally exchange coupled by the hard magnetic envir

ic

FIG. 4. Computed remanenceJr ~and Jr /Jsat) as a function of
the diameterDsphere~andDsphere/dB

soft) of the soft magnetic sphere
Jsatdenotes the saturation polarization defined by Eq.~7!. dB

soft is the
width of the Bloch wall given by Table I for the soft magnet
phase. The opaque circles belong to an ideal oriented sphere
C050° and the filled squares to a misorientation ofC0545°.
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10 726 57R. FISCHER, T. LEINEWEBER, AND H. KRONMU¨ LLER
ment. All magnetic moments reverse their directions spon
neously and uniformly at 0.77HN

(0) . The reduction with re-
spect to the ideal nucleation fieldHN

(0)52K1 /Js for an ideal
Stoner-Wohlfahrt particle can be entirely attributed to no
uniform stray fields of the hard magnetic cube.34 For
Dsphere520 nm ~see Fig. 7!, the magnetization reversal i
nucleated by the soft magnetic inclusion. At the overcriti
state, just before magnetization reversal, the soft magn
moments turn out of their easy axis more in opposite fi
direction. The hard magnetic moments deviate from th
easy axis, as well, withindB

hard'5 nm around the soft mag
netic sphere. ForDsphere590 nm ~see Fig. 8!, the exchange
hardening of the soft magnetic region is still guaranteed
the remanent state. But even a small opposite field of o
about 0.014HN

(0) leads to two magnetic vortices, which ca
be considered a stray field effect. With increasing oppo
field the region with reversed soft magnetic moments gro
and the two vortices shift near the surface of the sphere.
Dsphere5120 nm~see Fig. 9!, there already exist vortex struc
tures for positive applied fields of about 0.002HN

(0) . Contrary
to the previous case ofDsphere590 nm, we obtain only one
vortex at the remanent state. At the overcritical state, mos
the soft magnetic moments are reversed. Only within a sm
region of aboutdB

hard'5 nm, is the magnetization distribu
tion still influenced by the exchange interaction. The tran
tions between the soft and hard magnetic region are a c
plex composition of different wall types.35

FIG. 5. Vector plots of the magnetization at the remanent st
with increasing diameter of the soft magnetic sphere~thin arrows!:
Dsphere590, 100, and 120 nm. ForDsphere.90 nm the magnetization
distribution is no longer determined by the short-range excha
interaction. The magnetic vortex structures result from long-ra
strayfields.
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E. The role of cubic anisotropy ofa-Fe in composite magnets

Figures 4 and 6 show the computed remanence and c
civity by using the exact cubic anisotropy ofa-Fe by opaque
circles. But approximately the same results are obtained
assuming an uniaxial anisotropy~see filled squares!. So we
can conclude that the type of the anisotropy ofa-Fe plays
only a minor role during the magnetization reversal proc
for composite materials. More important is the relati
strength between the short-range exchange and the l
range dipole-dipole interaction within the soft magnetic
gion.

F. The role of the misorientation of a-Fe
in composite magnets

Because of the small anisotropy ofa-Fe, the misorienta-
tion C, defined in Fig. 2 as the angle between the easy a
and thez axis, does not effect the magnetization rever
process. According to Fig. 10, the remanence and also
coercivity are independent of the misorientationC. For
Dsphere510 nm, the exchange hardening of the soft magne
moments by the hard magnetic environment dominates. A
for Dsphere5120 nm, the stray field mainly determines th
directions of the soft magnetic moments. Therefore the
isotropy of soft magnetic grains in composite magnets can
neglected in all cases.

IV. EFFECT OF THE GEOMETRY
OF THE SOFT MAGNETIC INCLUSION

A. Soft magnetic cube

For the optimization of high-remanent composite ma
nets, the volume fraction of the exchange hardened soft m
netic phase should be maximized. This maximum soft m

s

e
e

FIG. 6. Computed coercivitym0Hc ~andHc /HN
(0)) as a function

of the diameterDsphere ~and Dsphere/dB
hard) of the soft magnetic

sphere illustrated by Fig. 2.HN
(0) is the ideal nucleation field

2K1 /Js for an ideal Stoner-Wohlfarth particle. AnddB
hard denotes

the width of the Bloch wall given by Table I for the hard magne
phase. The opaque circles belong to an ideal oriented sphere
C050° and the filled squares to a misorientation ofC0545°.
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netic volume depends on the shape of the soft magn
grains embedded into the hard magnetic environment.

According to Figs. 11 and 12, we obtain the followin
relations for the remanenceJr and the coercivityHc of the
soft magnetic cube embedded into the hard magnetic e
ronment:

FIG. 7. Computed magnetization reversal process for the m
netic structure of Fig. 2 forDsphere520 nm. The numbers are th
external fields in units of the ideal nucleation fieldHN

(0) of the hard
magnetic phase. The thin~thick! arrows belong to the hard mag
netic ~soft magnetic! regions.

FIG. 8. See caption of Fig. 7, but now forDsphere590 nm.
tic

i-

Jr5vsoftJs
soft1vhardJs

hardvsoft2.15T1~12vsoft!1.61T

for ^D&<110 nm, ~9!

Hc;^D&20.762 for ^D&>15 nm. ~10!

The quantity^D&5(6Vsoft/p)1/3 denotes the diameter of
fictitious sphere with the volumeVsoft5Lsoft

3 of the soft mag-
netic cube. Analogous to Eq.~7! vsoft5Vsoft/Vtotal defines the
volume fraction of thea-Fe cube relative to the total magne

By comparing Eqs.~7! and ~9! or the circles and square
of Fig. 11, the exchange hardening of the soft magnetic
clusion at the remanent state is guaranteed withinDsphere

<90 nm'1.2dB
soft for the sphere and^D&<110 nm

g-

FIG. 9. See caption of Fig. 7, but now forDsphere5120 nm.
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'1.5dB
soft for the cube. Obviously larger soft magnetic vo

umes can be exchange coupled by cubic than by sphe
inclusions. Also in the presence of opposite applied fie
the exchange hardening seems to be more effective for
cubic inclusion. By comparing Eqs.~8! and ~10! or the
circles and squares of Fig. 12, the coercivity approximat
keeps constant withinDsphere<10 nm'2dB

hard for the sphere
and ^D&<15 nm'3dB

hard for the cube. The origin of this
behavior is illustrated in Fig. 13. Important for the exchan
hardening is only the range of the exchange interact
which is approximately determined by the widthdB of the

FIG. 10. RemanenceJr and coercivitym0Hc as a function of the
misorientationC of the soft magnetic sphere. Independent of
diameter of the soft magnetic sphere, the remanence and coer
do not change significantly with varying misorientation.

FIG. 11. Computed remanenceJr ~andJr /Jsat) as a function of
the diameterDsphereor ^D& ~and Dsphere/dB

soft or ^D&/dB
hard) of the

soft magnetic sphere or cube.Jsatdenotes the saturation polarizatio
defined by Eq.~7!. dB

soft is the width of the Bloch wall tabled in
Table I for the soft magnetic phase. Finally^D& is calculated by
(6V soft /p)1/6, whereVsoft5Lcube

3 .
al
,

he

y

e
n,

Bloch wall. In addition to the sphere, the shaded regions
the cube are also well exchange coupled. So a larger
magnetic volume can be exchange coupled by cubic than
spherical inclusions.

If the exchange hardening begins to fail with increasi
extension of the soft magnetic inclusions, Figs. 11 and
show a stronger reduction of the remanence and coerc
for the cube than for the sphere. This effect may be attribu
to large local stray fields near the sharp edges and corne
the cube. Local stray fields lead to strongly nonuniform ma
netization distributions and therefore assist the magnetiza
reversal.

ity

FIG. 12. Computed coercivitym0Hc ~and Hc /HN
(0)) as a func-

tion of the diameterDsphereor ^D& ~andDsphere/dB
hard or ^D&/dB

hard)
of the soft magnetic sphere or cube.HN

(0) is the ideal nucleation
field 2K1 /Js for an ideal Stoner-Wohlfarth particle. AnddB

hard de-
notes the width of the Bloch wall shown in Table I for the ha
magnetic phase. FinallŷD& is calculated by (6Vsoft /p)1/6, where
Vsoft5Lcube

3 results from the edge lengthLcube of the cube.

FIG. 13. The complete exchange hardened region is greate
the soft magnetic cube than for the sphere. The difference is i
cated by the shaded regions.
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57 10 729FUNDAMENTAL MAGNETIZATION PROCESSES IN . . .
B. Soft magnetic plates and rectangular prisms

Figure 14 shows the investigated soft magnetic inclusi
and the corresponding demagnetization curves. If one e
length is of aboutdB

hard'5 nm, the soft magnetic region i
ideally exchange coupled by the hard magnetic environm
Therefore the demagnetization process does not significa
depend on the shape of the included soft magnetic gr
According to Fig. 14, the demagnetization curves of the
clusions A (10 nm310 nm35 nm) and B (5 nm
35 nm310 nm) are identical. But if the smallest edg
length of the embedded grain is greater thandB

hard'5 nm, the
complete exchange hardening of all soft magnetic mome
begins to fail. In this case, the magnetization reversal proc
depends on local stray fields and therefore on the conc
shape of the soft magnetic grain as shown by the dema
tization curves C (120 nm3120 nm360 nm) and D
(60 nm360 nm3120 nm) of Fig. 14. According to Fig
15, the energetically lowest state is obtained by creating
vortices. This magnetization distribution minimizes the str
field energy and keeps the exchange energy sufficiently l
Only within small regions does there exist 180° doma
walls between the hard and soft magnetic phase. The crea
of vortices within the soft magnetic rectangular prism
more difficult, as illustrated by Fig. 16. Furthermore, the
exist large regions between the soft and hard magnetic g
boundary with 180° domain walls~see especially Fig. 16 fo
0.052HN

(0)). So we can conclude that soft magnetic pris
lead to greater stray-field and exchange energies than
magnetic plates. This explains the smaller coercivity of

FIG. 14. Top: soft magnetic plate~left! and prism~right! placed
in the center of the hard magnetic cube with an edge length of
nm. Bottom: corresponding demagnetization curves.
s
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prism compared to the plate, as presented by the demag
zation curves C and D of Fig. 14.

V. COMPARISION WITH ANALYTICAL CALCULATIONS

A simple model of a soft magnetic inclusion in a ha
magnetic surrounding is a thina-Fe layer which is enclosed
by two Nd2Fe14B bulks spreading to infinity as shown b
Fig. 17. Applying a few justifiable approximations, the ma
roscopic magnetic properties of this model magnet can
calculated analytically within the theory o
micromagnetics.14 The energy contributions to the Gibbs fre
energy taken into account are the magnetocrystalline, the
change, and the Zeeman energy for the hard magnetic b
in the soft layer the magnetocrystalline energy is negligi
since it is two orders of magnitude smaller than in the h
magnetic regions. We only consider in-plane distributions
the magnetic moments corresponding to Bloch-wall-ty
configurations. This guarantees a vanishing stray field.
variation of the Gibbs energy now leads to the well-know
Euler-Lagrange differential equation for the polar angleq
[q(x) of the orientation of magnetic moments througho
the magnetic material. The polar angle as used here is
fined by Figs. 1 and 17 and as the angle enclosed betw
the magnetization and thez axis. According to Leinewebe
and Kronmu¨ller,14 the explicit solution for the orientation o
polarization reads

0

FIG. 15. Computed magnetization reversal process for the p
C presented by Fig. 14. The strong~thin! arrows belong to the hard
~soft-! magnetic phase. The numbers are the values of the app
fields in units of the ideal nucleation fieldHN

(0) of the hard magnetic
phase. The vortex states can be attributed to local stray fields.
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5 2•arccotSA 2hext

11hext
cosh@X# D for x.

Dsoft

2
,

X5
x2Dsoft/2
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A11hext1arcoshS cot ~qd/2!
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The center of the soft layer is located atx50, the boundary
between the regions atx56Dsoft/2. The anglesq0[q(x
50) andqd[q(x56Dsoft/2! denote the orientation of th
polarization in the layer center and in the boundary betw
regions, respectively. The superscripts soft and hard refe
the softa-Fe and the hard Nd2Fe14B, Js is the spontaneou
polarization of the respective material,K1 is the first anisot-
ropy constant, anddB the Bloch wall width defined as
pAA/K1 with the exchange constantA. The applied field is
denoted byhext, which is defined as the applied field in uni
of the ideal nucleation fieldHN

(0) of the hard magnetic com
ponent (hext[Hext/HN

(0) and HN
(0)52K1 /Js). The function

cn@k;w# denotes the cosine amplitude of the elliptic integ
of the first kind,36 its modulusk in the given case reads:k
5sin (q0/2).

FIG. 16. See caption of Fig. 15. But now for the prism D pr
sented by Fig. 14. The importance of stray fields in soft magn
regions shows the vector plot forHext50. The soft magnetic mo-
ments near the corners of the prism deviates stronger from the1z
direction than the hard magnetic ones.
n
to

l

Unfortunately it is not possible to deduce an explicit e
pression for the coercivity. Investigation of the stability
the solution of Eq.~11!, however, yields the coercivity fo
each given thickness of the soft layerDsoft. Figure 18 shows
the results of this investigation by opaque squares. For
magnetic layers thinner than approximately the hard m
netic Bloch wall thickness, the coercivity proves to be ide
tical with the ideal hard magnetic nucleation fieldHN

(0)

52K1 /Js56.71 T. The magnetization reversal mode is r
tation in unison just as in an ideal homogeneous hard m
netic material. For intermediate layer thicknessesdB

hard

,Dsoft,8dB
hard, the coercivity rapidly decreases with th

soft layer thickness. Magnetization reversal is nucleated
uniform rotation of the soft magnetic moments according
Stoner and Wohlfahrt and then spreads throughout the w
magnet. For even thicker soft layers, the coercivity decrea
with an inverse power of the thickness of the soft laye
Here magnetization reversal in the soft layer is complete
fore, at higher fields, magnetization reversal in the hard m
netic regions sets in. Thus we can summarize:

Hc~Dsoft!

5H HN
~0!~hard magnetic! for Dsoft<dB

hard

rapid decrease for dB
hard,Dsoft,8dB

hard

;Dsoft
21.75 for Dsoft.8dB

hard.

~12!

Figure 18 additionally compares the analytical results
multilayers with numerical dates for a spherical inclusio
The differences may be attributed to the different dimensi
of the respective soft magnetic inclusions. But forDsoft

.8dB
hardboth calculations lead to a decrease of the coerciv

following an inverse power law. Further investigation yiel
that these results remain qualitatively the same under va
tion of the material parameters. Especially the value of
exponent in the observed decrease of the coercivity with
layer thickness proves to be almost independent of the
cific material parameters. This result implies that the d
crease of the coercivity in an inverse power law is a con
quence of the failure of the exchange interaction to har
the soft magnetic layer. If we take the hard magnetic Blo
wall thicknessdB

hard as a measure of how deep the exchan
interaction can propagate from the hard regions into the
region, then the coercivity will only depend on the ratio

ic
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layer thickness to hard magnetic exchange length, not
their absolute values. If this interpretation is correct, the
ponent of the inverse power-law decrease will strongly
pend on the geometry of the soft inclusion. Depending on
ratio of surface to volume of the soft inclusion, the exchan
interaction propagating from the hard magnetic surround
can reach a different volume fraction of the soft inclusio
thus the exchange hardening will be more or less effecti

VI. CONCLUSION

The magnetization reversal of nanoscaled composite m
nets is mainly determined by short-range exchange and lo
range dipole-dipole interactions. Details about the magn
crystalline anisotropy of the soft magnetic phase have
effect. The exchange interaction induces magnetic hard
into the soft magnetic phase and the dipole-dipole interac
creates magnetic vortex structures within the soft magn
region. Depending on the extension of the soft magnetic
clusion, the exchange or dipole-dipole interaction fina
dominates and determines the magnetization reversal
cess. The characteristic range of the exchange interactio
given by the width of the Bloch wall

dB5pA A

K1
. ~13!

Therefore the largest extension of the soft magnetic inc
sions should be smaller than twice the domain-wall width
Eq. ~13! to guarantee an optimal exchange hardening an
suppress vortex states by local stray fields.

The maximum remanence of composite magnets can
obtained, if the nucleation of the soft magnetic moments
avoided for positive applied external fieldsHext>0 . So the
largest extensionDsoft of the soft magnetic inclusion shoul
be smaller than twice the domain-wall width 2dB

soft and there-

FIG. 17. Model for a composite magnet; a magnetically s
layer enclosed by a hard magnetic material. Both the layer and
bulk are assumed to spread to infinity in thez andy directions, the
layer is limited to2Dsoft/2,x,Dsoft/2.
n
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-
e
e
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.
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is

fore smaller than 140 nm for Nd2Fe14B at T5300 K. In fact
local stray fields reduce this maximum extension to appro
mately one Bloch wall width

Dsoft<dB
soft'70 nm ~Hext>0! ~14!

for Nd2Fe14B atT5300 K. The maximum coercivity of com
posite magnets can be only guaranteed by suppressing
magnetization reversal of the hard magnetic environment
duced by the reversed soft magnetic moments. So the lar
extensionDsoft of the soft magnetic inclusion should b
smaller than twice the domain-wall width

Dsoft<2dB
hard'10 nm ~Hext'Hc! ~15!

for Nd2Fe14B at T5300 K. Therefore the optimized grai
structure of composite magnets consists of soft magn
grains smaller than 2dB

hard embedded into the hard magnet
environment.

Both analytical and numerical calculations reveal that
larger soft magnetic inclusions, a decrease of the coerci
with an inverse power of the diameter of the inclusion
observed:

Hc;Dsoft
2const for D.2dB

hard. ~16!

The exponent of the power-law decrease is found to dep
on the geometry of the soft magnetic inclusion:

t
he FIG. 18. Coercivity of multilayers and spheres in comparisio
For thea-Fe/Nd2Fe14B multilayer^D& equals the thicknessDsoft of
the a-Fe layers. For the sphericala-Fe inclusion embedded within
an Nd2Fe14B cube ^D& equals the diameterDsphere of the a-Fe
sphere. ForDsoft>8dB

hard the analytical result for multilayers is
qualitatively similar to the numerical result of the soft magne
sphere. The differences forDsoft,8dB

hard may be attributed to the
dimension of the problems~one-dimensional for soft magnetic mu
tilayers and three-dimensional for the soft magnetic sphere!.



1.750 for multilayers~one-dimensional!,
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const5H 0.762 for cubic inclusions~ three-dimensional!,

0.701 for spherical inclusions~ three-dimensional!.

~17!
u
in
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u
-
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her

a
the
As a reason for this behavior, we suggest the different s
face to volume ratios for each specific geometry of the
clusion. Depending on this ratio, a different volume fracti
of the soft magnetic inclusion can be exchange hardene
the exchange interaction which is propagating from the s
face of the inclusion into its volume. Apart from the influ
ter

th
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.
py
-

.
py
-

n
n

.

n

r-
-
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ence on the exchange hardening, the geometry of the
magnetic inclusion determines the local demagnetiza
field. Inclusions with edges and corners have a much hig
and more inhomogeneous demagnetization field than
spheric inclusion. This demagnetization field decreases
coercivity even further.
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