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Effect of third-order dispersion on nonlinear magnetostatic spin waves in ferromagnetic films
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The effect of high-order dispersion on nonlinear magnetostatic spin waves has been investigated, theoreti-
cally, for ferromagnetic films that have metal plates near both surfaces of the film. The conditions under which
third-order dispersion has to be considered are thoroughly analyzed and some numerical calculations concern-
ing the propagation of short microwave pulses in ferromagnetic films are presgs®d63-18208)10717-9

[. INTRODUCTION tion of metal plates that can be close to the surfadesf a
ferromagnetic film, but for the sake of clarity, the input/
Recent developments in the theory and observation ofutput transducers are omitted. The linear properties of this
magnetostatic waves show that their nonlinear characteristidg¥etal-ferromagnetic-metal structure were analyzed some
are both extremely interesting and of potential practical im{ime ago}~’ with the main outcome being that the metal can
portance. The favored experimental system consists of a thigériously modify the dispersion characteristics expected of a
film of yttrium iron garnet(YIG) that is biased, in certain, fre_e-standmg ferromagnegc film. This information is still re-
well-defined, ways, by an external magnetic field. AIthougth'red here_becau_se non_lmear theory demand_s both a_knowl-
the insulator YIG is a classic example of a ferromagneticcdge of theinear dispersiorof the magnetostatic wave, i.e.,
material, it consists of 20 sublattices and the oscillations off€ variation of angular frequenay with the wave number,
these sublattices, relative to one another, are generated kt @nd @ knowledge of theonlinear power shiftof band
frequencies greater than 1GHz. At the lower(practica) ~ €dges. It is importarfttherefore, to acquire a knowledge of
frequencieg8—12 GH2, to be considered, here these sublat—”;e Ilngar dispersion derivativesiw/dk, J°w/dk®, and
tices move together so that YIG behaves, quite simply, as 4 «@/9k°, evaluated at some operating frequency wo. An
ferromagnet, with a total saturated magnetic moment. Folnitial point is that it is interesting to discover that the pres-

. .. . . . 4 2 2
this reason, this investigation considers only the ferromagence of metal plates can foree’=9°w/Jk” to be zero, at
netic state, even though data relevant to YIG are used. In 80me wave numbers. To discuss this feature, definitions used

typical experiment, a YIG film is grown onto a honmagnetic

substrate and the magnetostatic waves are waves generated Metai Plate
in its spin system through a thin metal microstrip transducer e D A A A
placed on the surface of the device perpendicular to the
propagation direction. S, Dielectric
The famous magnetostatic waves that have attracted a lot
of attention down the years are callje%jrespectively,fqr- d Ferromagnetic Film Ho
ward volume backward volumgeandsurface wavesThe in-
tense i_nvestigatipn of the many Iinear prpperties of these s, Dielectric
waves is now being matched by investigations of these non-
linear properties and they are now attracting a lot of atten- e
tion. They involve new areas that have generic properties, Metal Plate _

overlapping onto other disciplines of physics, like optics. k

Foremost among these is the evolution of solitonlike behav- g, 1. Sketch of a ferromagnetic film, of thicknesswith a

ior of temporal input pulses as they progress down a magmetal plate a distancs, away from the top surface and a metal

netic film to a second, thin metal strip, receiving transducerplate distance, away from the bottom surface. The external mag-
Many waveguide structures are possible, but the one thadetic fieldH, is perpendicular to the film so that the film is in the

is addressed here is shown in Fig. 1. It shows the introducforward volume magnetostatic wave configuration.
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in the optics literature can be usefully introduced. First note ¢ |w”| P i P

that 9k/ dw?= — (U|v4|) 9?wl 9k?, wherev 4= dw/ JK is the | = T8gnw") = —op— & sge”)|0”| =3
group velocity, and then cadl’k/ dw? the group-velocity dis-

persion (GVD).2 In this language, it can be said that the —sgn(y)|v||#|2¢=0, (5

metal plates can cause GVD to vanish at a certain wave Yy ) w3 3 )
number’ Indeed, the main feature appearing in the disperWhere "= (d"w/dk%), and o™= (3 w/ k%) . This equa-
sion curve(i.e., the spectrum ap vsKk) is an inflection point, tion also shows that the characteristic tifhs® t&2)
where the second-order dispersiofw/Jk? goes to zero, so  =D2/|w”|, t§=D3/|w”| can be, profitably, introduced,
that the propagation of nonlinear magnetostatic pulses, cefwvhere D, is the spatial pulse length along theaxis of
tered upon such a point, will be controlled by third-order propagation. In addition, if it is desirable, the relationships
dispersions®w/dk>, as will be demonstrated below. "= 92k] Jw?= — 1/vgw", K" = _1/vgw"', Do=v4To can be
used, wherd g is the temporal length of the pulse. When this
Il. BASIC CONCEPTS is the case, the dispersion of a pulse operates over the length

. . . . scale8
Suppose that the nonlinear dispersion equation for mag-

netostatic waves, propagating in a ferromagnetic film, is TS TS
written formally a8 LEZ):W, L(Ds):|k7’|' (6)
_ 2 =
[o—w(k|4)]¢=0, (1) Choosing to measurE in units oft?), andX in units of D,

where ¢ is the amplitude of the wave. This relationship con-leads to
tains the dependence of the angular frequeacypon the

external magnetic field, and information about the geometri- e 1 P W tg) ¢

cal configuration of the waveguide. A magnetostatic enve- : E’L 2 sgrie”) 96 sgne™) t|(3_3> 9E8

lope pulse is really dast carrier wave, such as eXggx

—wot), modulated by aslowly varying pulse amplitude —t? sgr(y)|y||#|?¢=0. )

d(x,t), wheret is time andx is selected as the propagation @3) " , " ,
direction. A Taylor expansion of Ed1), around an operat- TNe_ratio t5”/t5’=[w"|/[|0"|vgTo]=|K"|/Tolk"| can be

ing point (wo,kKe), Yields the expressidr® used to determine whether third-order dispersion is impor-
tant, provided thatk”| #0.
dw 1 (6w , 1 Pw 5 A comment on the use .of Taylor’s theorem, in the deri-
{w wo— (W) Kx— 73 (W) K" % (W) Ky vation of the nonlinear Schdinger equation, is appropriate
ko ko k at this point. For a dispersion equation thatpieciselya

polynomial ofnth degree, the coefficients of this polynomial
¢=0, 2) are exactly the derivatives of (with respect tk), evaluated

atkg. If the dispersion equation is actually like this, then the
] ] . ~magnitudes of the coefficients will be dictated by the prop-
where dispersion and a nonlinear frequency shift erties of the equation and they can be large, or small, or
(9wl d|¢|?)o|¢|? are incorporated. Specifically, a small de- igenticallyzero. If Taylor's theorem for an arbitrary function
viation, due to dispersion, drives the wave numbe’ (3 complicated dispersion equatjois used, then this func-

|pI?

0

_( Jw
a7

=(ko,0,0) to k=r+ko, where k=(x,0,0) andxx<ko.  tion is not necessarily a polynomial and the resulting formula
Making a transformation to the operator language—(wo)  can lead only to ampproximationto the function by a poly-
=i(dlat) and k= —i(d/9x) gives nomial. The dispersion equation must possess continuous de-
’ ) 3 3 rivatives up to 0+ 1)th order, and then there will bera-

9 9_«)) ¢ 1 ﬁ_w) P i ( a_@) ¢ mainder That this remainder must be negligible is obvious,

ot ok L. OX 2 | ok? « x> 6\ k3 K x> if a fair representation of the dispersion equation, in the

0 0 0 neighborhood of the operating point, is to be relied upon. In

—v|$|2¢=0, (3) the optics literature, Eq(3) has actually been used when

o ) »"=0, thus forcing a consideration @" #0. It has also
where y=(dw/d|$|?)o is to be called the nonlinear peen ysedwhem”+0, w0, thus forcing a comparison of
coefficient” Equation (3) can be recast, selecting a he two terms contributing the dispersibin the latter case,
frame of reference moving with a group veloCityy  the consistent approach is to demand convergence, in the
=(dwldK)x,, by the transformatiois®™® T=t, X=X  sense that the third-order dispersion termlé@ss than the

—vg4t, which imply that second-order dispersion term. If this is the consideration,
thenboth|w”|# 0 and|w”| # 0, and third-order dispersion is
g X ro 9 9. only significant when the pulse lengfh, satisfies the in-
ot X ataT  C9ax | a1 equality To<|w”|/(|w"|vg). This inequality need not be ap-
plied because it is the special cdshy”|=0, that is pre-
g X 9 IT o d sented here. The aim is to show, for the magnetic case, how
X Ix aX + X aT o 4 pulses evolve when only third-order dispersion is operative.

For a linear film with |w”|=0, a given input pulse
Hence, Eq(3) becomes evolves with oscillations that plunge to zero at their minima,
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FIG. 2. Dispersion curves for forward volume magnetostatic

waves. The ferromagnetic film thicknessdiss 3 wm and the inter-
nal magnetic field is1y—47My= 1500 Oe. The saturation magne-
tization is 4mMy=1750. The top metal plate is fixed at a distance
of s;=60 um. The bottom metal plate is positioned@t0 um, (b)

60 um, and(c) © um.
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FIG. 3. Group velocity vs wave number for the dispersion
curves displayed in Fig. 2.
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FIG. 4. Second-order dispersion vs wave number for the disper-
sion curves of Fig. 2.

near to the trailing or leading edges of the pulse. Faoe-
linear film, self-phase modulation will increase the number
of these oscillatiofsand also raise the minima from zero.
The reason for this is that the nonlinearity permits the Qulse
to develop aneffective |0"|=o"|dw|/(2mvy), wherd?
6w=T1Tyé is the maximum chirp created by self-phase
modulation, T is the pulse width]" is a dimensionless con-
stant, andj is the self-phase modulation-induced phase shift.
The constani” depends upon the shape of the input pulse.
While it is not appropriate here to ligt values for a whole
variety of input pulses, it can easily be shown, for a Gaussian
input pulse® thatT' =v2e~%%=0.86. This is simply obtained

by calculating the self-phase modulation-induced chiwp

for an input pulse of the form engZ/(ZT(Z))], whereT is the
local time measured across the pulse. The maximum self-
phase modulation phase shift occurs at the pulse Ceater;

in this formulation, is given bys= y|¢|%t, wheret is the
elapsed time since the input occurred anid the nonlinear
coefficient introduced in Eq3). For typical datd? 6| w"|
=10°-10* cn? s~ %, which shows that sufficient chirp is cre-
ated by the self-phase modulation, at this pulse length, to
influence the pulse evolution in magnetic film. Clearly, the
pulse length matters and the induced dispersion will become
dominant adl( gets smaller. Furthermore, if the pulse propa-
gates far enough, a soliton will be creatédecause, spec-
trally, the pulse energy concentrates into the anomalous, or
normal, dispersion frequency regions. In other words, the
oscillations that appear in the evolving pulse eventually dis-
perse, and a stable soliton appears. For a given system, how-
ever, the soliton period may be longer than the device, so
only the nonlinear, nonstationary state evolution will be ob-
served.
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FIG. 5. Evolution of a nonlinear forward volume magnetostatic wave rectangular input pulse. The pulse propagates at a zero GVD point,
at whichko=179 ¢!, w/2m=4.272 GHz, ¢w/k),,=1.89<10° cm s, (#°w/ k%), =29.8 cnis™* andy=3.08x 10'° rad s*. Curves
(a) and () show the development of a 40 N$=5, | | =7.48< 10 2 input pulse as it reaches=0.5 cm andx=1.0 cm, respectively.
Curves €) and d) show a 50 nsN=1, |¢¢|=1.07x10" 2 input pulse as it reaches=0.5 cm andx=1.0 cm, respectively. Curvee]
shows how a 100 nBl=2, | ¢o|=7.57x 10" * input pulse has developed @t 0.5 cm, while curve { ) shows how a 100 nbl=1, | ¢,

=3.79< 10 * input pulse has evolved at=1.0 cm.



57 EFFECT OF THIRD-ORDER DISPERSIONND. . . 10671

101 ¢!

0 L L L L L L L e L
200 220 240 260 280 300 320 340 360 380
Time (ns)

400

1041
'S

0 L L e L i
400 450 500 550 600 650
Time (ns)

FIG. 5. (Continued)

I1l. NUMERICAL ANALYSIS AND DISCUSSION

700

plane of the ferromagnetic film but perpendicular to the ap-
plied field Hy. In this problem, then, thénternal field is
Ho—47My=1500 Oe, where #M,=1750 Oe is the satu-
ration magnetization. The linear curves have been generated
afresh here, but the general topic can be checked in the lit-
erature, where it is the ferromagnetic behavior of YIG films
that is used. Figures 3 and 4 contain plots of the variation of
the group velocity dw/dk and the second derivative
?wl k%, which is simply related to the GVD. The main
point of this discussion is that the GVianishesat certain
points.

Figure 5 shows what happens as a rectangular input pulse
length is varied for the metal plate-backed waveguide of Fig.
1,5,=60um, s,= um. The input power is also varied by
choosing the value of N>=L®)/Ly, , where Ly,
=lvgll ¥l ol and || is the peak amplitude of the input
magnetostatic pulse. The operating frequency «if27
=4.262 GHz, the zero GVD point i&,=179 cm * and the
forward volume magnetostatic wave is the selected configu-
ration. The group velocity, ak=kg, is (&w/ak)koz 1.89

x10° cmst, y=3.08x10°rads* and (*w/dk’),

=29.8cnts ! and the seriesn=wo+ o’ ky+ 0"k +... is

set to converge for this data set, given that,
=2m(Tqu g)‘l, whereT is the temporal pulse length. From
the optics literatur®'’ the numericalrule of thumb is that a
sechlike pulse evolves to a first-orddundamental soliton

over a distance=10T3/(|k”|N?), which for the model be-

ing used here is=10Tgug/[|w”|N?]. It is of considerable
interest to know if this length is longer than, or less than, the
typical length between the input and receiving microstrips of
the magnetostatic waveguide being investigated here. Even if
evolution to a soliton does not occur, the nonlinear develop-
ment must be determined as a function of input pulse width.
The rule stated above is based upon a hyperbolic secant input
so it will not apply, precisely, to the rectangular input pulse.

It is, nevertheless, a reasonable guide because we do not
wish to knowpreciselythe soliton period. A good estimate
will be a sufficient driver for a device design.

There is another interesting feature of the simulations to
be discussed below and that is introduced by the boundary
conditions. In simulations based upon E8), the input pulse
must be started up on thexis or thex axis. Conventionally,
the initial condition is set upon theaxis!® Such a condition
presents problems of physical interpretationr@al units
however. In practice, a pulse is “switched on,” allowing the
pulse to be of a certain duration, so using the time axis
makes physical sense. Accordingly, all the simulations pre-
sented here have been generated from this type of initial
condition. Specifically, the nonlinear Schiinger equation
has been solved in the laboratory frame and the method of
solving it is called forcing® The work of Kaup and Hanson
is very interesting because it raises the problem of how to
countthe number of solitons expected from a given output
pulse. Inverse scattering theory will yield exact conclusions
for the conventional input on the axis but this method is

Figure 2 shows some typical curves for a ferromagnetidikely to fail'® if the time axis is used by “switching on” the

film of thicknessd=3 um, with s;,=60um ands, taking
on the values Qum (curvea), 60 um (curveb), ande um

initial pulse for a certain period of time. In fact, Kaup and
Hanson have put forward an empirical approach to soliton

(curve c). Only the forward volume magnetostatic wave is counting but this is not the main concern here. The principal

discussed here and it propagates with wave nurkbierthe

point of interest is to establish a set of results that show at
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least part of the relationships between pulse length, thirds(f), which are for pulse lengths of 100 ns and fb+=2 and
order dispersion, and induced-second-order dispersion. IN=1, respectively. For these cases, the distances at which a
this case, in which third-order dispersion is capable of profundamental soliton will form are the order of a km, so such
ducing pulse asymmetry, accompanied by quite strong oscila formation is out of the question, in practice. Oscillations
lations, it remains to be seen whether “forcing” can imposedue to|w”| appear, as expected, on the leading edge of the
its own asymmetry on the puld&:® pulse, but there is significant distortion from the boundary
Figure 5 shows a sequence of simulations|fef|=0 in  conditions. In other words, a pulse length of 100 ns is very
which the input temporal pulse length and/or the input powellong, for this system, and significant dispersion is taking

is varied. In the simulations to be reported below it isplace as the pulse is being entered into the waveguide.
acceptedf that the initial pulse will evolve into a stationary

state(a first-order solitopand dispersed energy. The simu-
lations could have been allowed to progress until this oc-
curred but the propagation distances would have exceeded
possible device lengths. For this type of magnetic system the The aim of this paper is to study the power dependence of
output is characteristic of the earlier nonstationary part of thex magnetic system, which is, at the lingw powey level,
evolution process. The main points to look for in the resultscontrolled by third-order dispersion. As is usually the case,
are(1) asT, gets larger, the forced boundary conditions will the interest centers upon the differences, or equalities, to dis-
be more apparent, an@) asN gets larger, coupled t8,  persive optical systems. For the latter there is already
getting smaller, the possibility of soliton formation, within jnformatiorf'” on the role of third-order dispersion. The dif-
the devi.ce length is significantly greater. G_iven thes_e guideferences in(by several orders of magnitudéhe group ve-
lines, Fig. 5 can be discussed in a semiquantitative wayyities associated with optical or magnetic systems, how-
Figures $a) and §b) show what happens to a 40 M=5, oo has meant that the magnetics cases are especially
rectangular input pulse by the time the prqpagatlon d'Sta”C%terestingl.Z'”'w For second-order dispersion, early asym-
has reached=0.5 cm andk=1 cm, respectively. The ques- \atic pulse shape development and usingftieed nonlin-

tion of whether “forcing” has any impact on the pulse shape g, gchiglinger equatiod? is a lively topic of debate. Here

will be addressed first. A magnetic system is highly dispery, e jnyestigate third-order dispersion coupled to nonlinearity,

sive and typical group velocities are several orders of magy,qyced by inputting rectangular pulses into a magnetic thin
nitude less than the velocity of light. This means that magsjim controlied by a metal plate. The simulations are pro-
netic systems are rather different, in their pulse responsgyceq therefore, on a scale of nanoseconds and the principal
behawor_, from optical flbers_. If a, temporally: Iong_pulse Sinterest lies in the extent to which the generically
entered into a magnetostqtlc wave system, it begins to d'séccepte?_}” properties of nonlinear-third-order coupling is

> g o h X i : 3l that can appear for this magnetic system. If not, do the
under “forced” boundary conditiongw”|#0 dispersion will o ndary conditions, i.e., using the forced nonlinear Schro
result in an early asymmetric developr_né?ﬁ. Figures $3)  ginger equatio® become dominant, thus permitting the
and §b) do show an asymmetry, but it is due, in this case, 19yagnetic character of the system to emerge? The conclusion
the |o"| dispersion, which gives rise to oscillations on the gached here is that the pulse width, in time, controls the
leading edggbecausen™>0) of the pulse. Becausd=5,  4,icome. For relatively small pulse lengtté0 ng, third-

the input power is quite high, however, so self-phase modug ey gispersion dominates in the early part=0.5 cm of
lation is also significant early on in the pulse developmentyhe pyise developmeritvith the expected set of subsidiary
The existence of self-phase modulation lifts the minima, Ofpeaké'”) but gives way to induced-second-order dispersive
Fig. 5@, above zero and the pulse seeseffiectivew” that  affects at a longer propagation distance=(.0 cm. For

will lead, ultimately, to soliton formation plus the radiation longer pulse lengthé50 ns and 100 nghe boundary condi-
of the energy associated with the “unwanted” oscillations.jons  pecome important and the now classic
For this case, a fundamental soliton will not appear until asymmetr§72'13'15in the evolution of the main peak appears
~10.87 cm. In view of the loss that there would be in a realyjite strongly. This is now very different from the optical
system, this is too great a propagation distance t0 permiase. Hence, for high input powers and small pulse widths,
experimental observation of a soliton in a magnetic film.  the magnetic case has evolution features similar to the opti-
Figures %c) and §d) show the state of a lower power 4| case; but for lower input powers and longer pulses, asym-
(N=1), broader, rectangular input pul$,=50n9 at X  metric development, directly related to the much lower mag-
=0.5 cm andk=1.0 cm, respectively. Already it can be seen petic group velocity, appears. Metal plate controlled

that there is now not enough self-phase modulation to lift themagnetic thin film designs need to take this into account.
minima from zero and that soliton formation, by the time

=1.0 cm is reached, is not even close. In fact, for this case,

IV. CONCLUSIONS
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