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Effect of third-order dispersion on nonlinear magnetostatic spin waves in ferromagnetic films

A. D. Boardman
Photonics and Nonlinear Science Group, Joule Laboratory, Department of Physics, University of Salford,

Salford M5 4WT, United Kingdom

S. A. Nikitov
Institute of Radioengineering and Electronics, Russian Academy of Sciences, Mokhovaya Street, 11, 103907, Moscow, Ru

N. A. Waby, R. Putman, and H. M. Mehta
Photonics and Nonlinear Science Group, Joule Laboratory, Department of Physics, University of Salford,

Salford M5 4WT, United Kingdom

R. F. Wallis
Department of Physics and Institute for Surface and Interface Science, University of California, Irvine, California 92717

~Received 17 May 1996; revised manuscript received 11 July 1996!

The effect of high-order dispersion on nonlinear magnetostatic spin waves has been investigated, theoreti-
cally, for ferromagnetic films that have metal plates near both surfaces of the film. The conditions under which
third-order dispersion has to be considered are thoroughly analyzed and some numerical calculations concern-
ing the propagation of short microwave pulses in ferromagnetic films are presented.@S0163-1829~98!10717-8#
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I. INTRODUCTION

Recent developments in the theory and observation
magnetostatic waves show that their nonlinear characteri
are both extremely interesting and of potential practical
portance. The favored experimental system consists of a
film of yttrium iron garnet~YIG! that is biased, in certain
well-defined, ways, by an external magnetic field. Althou
the insulator YIG is a classic example of a ferromagne
material, it consists of 20 sublattices and the oscillations
these sublattices, relative to one another, are generate
frequencies greater than 103 GHz. At the lower~practical!
frequencies~8–12 GHz!, to be considered, here these subl
tices move together so that YIG behaves, quite simply, a
ferromagnet, with a total saturated magnetic moment.
this reason, this investigation considers only the ferrom
netic state, even though data relevant to YIG are used.
typical experiment, a YIG film is grown onto a nonmagne
substrate and the magnetostatic waves are waves gene
in its spin system through a thin metal microstrip transdu
placed on the surface of the device perpendicular to
propagation direction.

The famous magnetostatic waves that have attracted
of attention down the years are called,1,2 respectively,for-
ward volume, backward volume, andsurface waves. The in-
tense investigation of the many linear properties of th
waves is now being matched by investigations of these n
linear properties and they are now attracting a lot of att
tion. They involve new areas that have generic propert
overlapping onto other disciplines of physics, like optic
Foremost among these is the evolution of solitonlike beh
ior of temporal input pulses as they progress down a m
netic film to a second, thin metal strip, receiving transduc

Many waveguide structures are possible, but the one
is addressed here is shown in Fig. 1. It shows the introd
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tion of metal plates that can be close to the surfaces3–7 of a
ferromagnetic film, but for the sake of clarity, the inpu
output transducers are omitted. The linear properties of
metal-ferromagnetic-metal structure were analyzed so
time ago,3–7 with the main outcome being that the metal c
seriously modify the dispersion characteristics expected
free-standing ferromagnetic film. This information is still r
quired here because nonlinear theory demands both a kn
edge of thelinear dispersionof the magnetostatic wave, i.e
the variation of angular frequencyv with the wave number,
k, and a knowledge of thenonlinear power shiftof band
edges. It is important,8 therefore, to acquire a knowledge o
the linear dispersion derivatives]v/]k, ]2v/]k2, and
]3v/]k3, evaluated at some operating frequencyv5v0 . An
initial point is that it is interesting to discover that the pre
ence of metal plates can forcev95]2v/]k2 to be zero, at
some wave numbers. To discuss this feature, definitions u

FIG. 1. Sketch of a ferromagnetic film, of thicknessd, with a
metal plate a distances1 away from the top surface and a met
plate distances2 away from the bottom surface. The external ma
netic fieldH0 is perpendicular to the film so that the film is in th
forward volume magnetostatic wave configuration.
10 667 © 1998 The American Physical Society
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in the optics literature can be usefully introduced. First n
that ]2k/]v252(1/uvgu3)]2v/]k2, wherevg5]v/]k is the
group velocity, and then call]2k/]v2 thegroup-velocity dis-
persion ~GVD!.8 In this language, it can be said that th
metal plates can cause GVD to vanish at a certain w
number.7 Indeed, the main feature appearing in the disp
sion curve~i.e., the spectrum orv vs k! is an inflection point,
where the second-order dispersion]2v/]k2 goes to zero, so
that the propagation of nonlinear magnetostatic pulses,
tered upon such a point, will be controlled by third-ord
dispersion]3v/]k3, as will be demonstrated below.

II. BASIC CONCEPTS

Suppose that the nonlinear dispersion equation for m
netostatic waves, propagating in a ferromagnetic film,
written formally as9

@v2v~k,ufu2!#f50, ~1!

wheref is the amplitude of the wave. This relationship co
tains the dependence of the angular frequencyv upon the
external magnetic field, and information about the geome
cal configuration of the waveguide. A magnetostatic en
lope pulse is really afast carrier wave, such as expi(k0x
2v0t), modulated by aslowly varying pulse amplitude
f(x,t), wheret is time andx is selected as the propagatio
direction. A Taylor expansion of Eq.~1!, around an operat
ing point (v0 ,k0), yields the expression9,10

Fv2v02S ]v

]k D
k0

kx2
1

2 S ]2v

]k2 D
k0

kx
22

1

6 S ]3v

]k3 D
k0

kx
3

2S ]v

]ufu2D
0

ufu2Gf50, ~2!

where dispersion and a nonlinear frequency shif
(]v/]ufu2)0ufu2 are incorporated. Specifically, a small d
viation, due to dispersion, drives the wave numberk0
5(k0,0,0) to k5k1k0 , where k5(kx,0,0) andkx!k0 .
Making a transformation to the operator language (v2v0)
5 i (]/]t) andkx52 i (]/]x) gives

i
]f

]t
1 i S ]v

]k D
k0

]f

]x
1

1

2 S ]2v

]k2 D
k0

]2f

]x2 2
i

6 S ]3v

]k3 D
k0

]3f

]x3

2gufu2f50, ~3!

where g5(]v/]ufu2)0 is to be called the nonlinea
coefficient.9,11–13 Equation ~3! can be recast, selecting
frame of reference moving with a group velocityvg
5(]v/]k)k0

, by the transformations8,12,13 T5t, X5x

2vgt, which imply that

]

]t
5

]X

]t

]

X
1

]T

]t

]

]T
52vg

]

]X
1

]

]T
;

]

]x
5

]X

]x

]

]X
1

]T

]X

]

]T
5

]

]T
. ~4!

Hence, Eq.~3! becomes
e

e
r-

n-
r

g-
s

-
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-

i
]f

]T
1sgn~v9!

uv9u
2

]2f

]X22
i

6
sgn~v-!uv-u

]3f

]X3

2sgn~g!uguufu2f50, ~5!

wherev95(]2v/]k2)k0
and v-5(]3v/]k3)k0

. This equa-

tion also shows that the characteristic times8,12–16 tD
(2)

5D0
2/uv9u, tD

(3)5D0
3/uv-u can be, profitably, introduced

where D0 is the spatial pulse length along thex axis of
propagation. In addition, if it is desirable, the relationshi
k95]2k/]v2521/vg

3v9, k-521/vg
4v-, D05vgT0 can be

used, whereT0 is the temporal length of the pulse. When th
is the case, the dispersion of a pulse operates over the le
scales8

LD
~2!5

T0
2

uk9u
, LD

~3!5
T0

3

uk-u
. ~6!

Choosing to measureT in units of tD
(2) , andX in units ofD0 ,

leads to

i
]f

]t
1

1

2
sgn~v9!

]2f

]j2 2
i

6
sgn~v-!

tD
~2!

tD
~3!

]3f

]j3

2tD
~2! sgn~g!uguufu2f50. ~7!

The ratio tD
(2)/tD

(3)5uv-u/@ uv9uvgT0#5uk-u/T0uk9u can be
used8 to determine whether third-order dispersion is impo
tant, provided thatuk9uÞ0.

A comment on the use of Taylor’s theorem, in the de
vation of the nonlinear Schro¨dinger equation, is appropriat
at this point. For a dispersion equation that ispreciselya
polynomial ofnth degree, the coefficients of this polynomi
are exactly the derivatives ofv ~with respect tok!, evaluated
at k0 . If the dispersion equation is actually like this, then t
magnitudes of the coefficients will be dictated by the pro
erties of the equation and they can be large, or small,
identicallyzero. If Taylor’s theorem for an arbitrary functio
~a complicated dispersion equation! is used, then this func-
tion is not necessarily a polynomial and the resulting form
can lead only to anapproximationto the function by a poly-
nomial. The dispersion equation must possess continuous
rivatives up to (n11)th order, and then there will be are-
mainder. That this remainder must be negligible is obviou
if a fair representation of the dispersion equation, in t
neighborhood of the operating point, is to be relied upon.
the optics literature, Eq.~3! has actually been used whe
v950, thus forcing a consideration ofv-Þ0. It has also
been used whenv9Þ0, v-Þ0, thus forcing a comparison o
the two terms contributing the dispersion.8 In the latter case,
the consistent approach is to demand convergence, in
sense that the third-order dispersion term isless than the
second-order dispersion term. If this is the considerati
thenboth uv-uÞ0 and uv9uÞ0, and third-order dispersion i
only significant when the pulse lengthT0 satisfies the in-
equalityT0,uv-u/(uv9uvg). This inequality need not be ap
plied because it is the special case,8 uv9u50, that is pre-
sented here. The aim is to show, for the magnetic case,
pulses evolve when only third-order dispersion is operati

For a linear film with uv9u50, a given input pulse
evolves with oscillations that plunge to zero at their minim
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FIG. 2. Dispersion curves for forward volume magnetosta
waves. The ferromagnetic film thickness isd53 mm and the inter-
nal magnetic field isH024pM051500 Oe. The saturation magne
tization is 4pM051750. The top metal plate is fixed at a distan
of s1560mm. The bottom metal plate is positioned at~a! 0 mm, ~b!
60 mm, and~c! ` mm.

FIG. 3. Group velocity vs wave number for the dispersi
curves displayed in Fig. 2.
near to the trailing or leading edges of the pulse. For anon-
linear film, self-phase modulation will increase the numb
of these oscillations8 and also raise the minima from zero
The reason for this is that the nonlinearity permits the pu
to develop aneffective uv9u5v-udvu/(2pvg), where8,17

dv5G/T0d is the maximum chirp, created by self-phase
modulation,T0 is the pulse width,G is a dimensionless con
stant, andd is the self-phase modulation-induced phase sh
The constantG depends upon the shape of the input pul
While it is not appropriate here to listG values for a whole
variety of input pulses, it can easily be shown, for a Gauss
input pulse,8 thatG5&e20.550.86. This is simply obtained
by calculating the self-phase modulation-induced chirpdv
for an input pulse of the form exp@2T2/(2T0

2)#, whereT is the
local time measured across the pulse. The maximum s
phase modulation phase shift occurs at the pulse center8 and,
in this formulation, is given byd5gufu2t, where t is the
elapsed time since the input occurred andg is the nonlinear
coefficient introduced in Eq.~3!. For typical data,12–16 uv9u
.103– 104 cm2 s21, which shows that sufficient chirp is cre
ated by the self-phase modulation, at this pulse length
influence the pulse evolution in magnetic film. Clearly, t
pulse length matters and the induced dispersion will beco
dominant asT0 gets smaller. Furthermore, if the pulse prop
gates far enough, a soliton will be created,17 because, spec
trally, the pulse energy concentrates into the anomalous
normal, dispersion frequency regions. In other words,
oscillations that appear in the evolving pulse eventually d
perse, and a stable soliton appears. For a given system,
ever, the soliton period may be longer than the device,
only the nonlinear, nonstationary state evolution will be o
served.

c
FIG. 4. Second-order dispersion vs wave number for the dis

sion curves of Fig. 2.



D point,

10 670 57A. D. BOARDMAN et al.
FIG. 5. Evolution of a nonlinear forward volume magnetostatic wave rectangular input pulse. The pulse propagates at a zero GV
at whichk05179 cm21, v/2p54.272 GHz, (]v/]k)k0

51.893106 cm s21, (]3v/]k3)k0
529.8 cm3 s21 andg53.0831010 rad s21. Curves

(a) and (b) show the development of a 40 ns,N55, uf0u57.4831023 input pulse as it reachesx50.5 cm andx51.0 cm, respectively.
Curves (c) and (d) show a 50 ns,N51, uf0u51.0731023 input pulse as it reachesx50.5 cm andx51.0 cm, respectively. Curve (e)
shows how a 100 nsN52, uf0u57.5731024 input pulse has developed atx50.5 cm, while curve (f ) shows how a 100 nsN51, uf0u
53.7931024 input pulse has evolved atx51.0 cm.
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III. NUMERICAL ANALYSIS AND DISCUSSION

Figure 2 shows some typical curves for a ferromagne
film of thicknessd53 mm, with s1560mm ands2 taking
on the values 0mm ~curvea!, 60 mm ~curveb!, and` mm
~curve c!. Only the forward volume magnetostatic wave
discussed here and it propagates with wave numberk in the

FIG. 5. ~Continued.!
c

plane of the ferromagnetic film but perpendicular to the a
plied field H0 . In this problem, then, theinternal field is
H024pM051500 Oe, where 4pM051750 Oe is the satu
ration magnetization. The linear curves have been gener
afresh here, but the general topic can be checked in the
erature, where it is the ferromagnetic behavior of YIG film
that is used. Figures 3 and 4 contain plots of the variation
the group velocity ]v/]k and the second derivativ
]2v/]k2, which is simply related to the GVD. The mai
point of this discussion is that the GVDvanishesat certain
points.

Figure 5 shows what happens as a rectangular input p
length is varied for the metal plate-backed waveguide of F
1, s1560mm, s25` mm. The input power is also varied b
choosing the value of N25LD

(3)/LNL , where LNL

5uvgu/guf0u2 and uf0u is the peak amplitude of the inpu
magnetostatic pulse. The operating frequency isv/2p
54.262 GHz, the zero GVD point isk05179 cm21 and the
forward volume magnetostatic wave is the selected confi
ration. The group velocity, atk5k0 , is (]v/]k)k0

51.89

3106 cm s21, g53.0831010 rad s21 and (]3v/]k3)k0

529.8 cm3 s21 and the seriesv5v01v8kx1v-kx
31... is

set to converge for this data set, given thatkx
52p(T0vg)21, whereT0 is the temporal pulse length. From
the optics literature8,17 the numericalrule of thumb is that a
sechlike pulse evolves to a first-order~fundamental! soliton
over a distancex510T0

3/(uk-uN2), which for the model be-
ing used here isx510T0

3vg
4/@ uv-uN2#. It is of considerable

interest to know if this length is longer than, or less than,
typical length between the input and receiving microstrips
the magnetostatic waveguide being investigated here. Ev
evolution to a soliton does not occur, the nonlinear devel
ment must be determined as a function of input pulse wid
The rule stated above is based upon a hyperbolic secant i
so it will not apply, precisely, to the rectangular input puls
It is, nevertheless, a reasonable guide because we do
wish to knowpreciselythe soliton period. A good estimat
will be a sufficient driver for a device design.

There is another interesting feature of the simulations
be discussed below and that is introduced by the bound
conditions. In simulations based upon Eq.~3!, the input pulse
must be started up on thet axis or thex axis. Conventionally,
the initial condition is set upon thex axis.18 Such a condition
presents problems of physical interpretation inreal units,
however. In practice, a pulse is ‘‘switched on,’’ allowing th
pulse to be of a certain duration, so using the time a
makes physical sense. Accordingly, all the simulations p
sented here have been generated from this type of in
condition. Specifically, the nonlinear Schro¨dinger equation
has been solved in the laboratory frame and the metho
solving it is called forcing.19 The work of Kaup and Hanson
is very interesting because it raises the problem of how
count the number of solitons expected from a given outp
pulse. Inverse scattering theory will yield exact conclusio
for the conventional input on thex axis but this method is
likely to fail19 if the time axis is used by ‘‘switching on’’ the
initial pulse for a certain period of time. In fact, Kaup an
Hanson have put forward an empirical approach to soli
counting but this is not the main concern here. The princi
point of interest is to establish a set of results that show
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least part of the relationships between pulse length, th
order dispersion, and induced-second-order dispersion
this case, in which third-order dispersion is capable of p
ducing pulse asymmetry, accompanied by quite strong os
lations, it remains to be seen whether ‘‘forcing’’ can impo
its own asymmetry on the pulse.12–15

Figure 5 shows a sequence of simulations foruv9u50 in
which the input temporal pulse length and/or the input pow
is varied. In the simulations to be reported below it
accepted17 that the initial pulse will evolve into a stationar
state~a first-order soliton! and dispersed energy. The sim
lations could have been allowed to progress until this
curred but the propagation distances would have excee
possible device lengths. For this type of magnetic system
output is characteristic of the earlier nonstationary part of
evolution process. The main points to look for in the resu
are~1! asT0 gets larger, the forced boundary conditions w
be more apparent, and~2! as N gets larger, coupled toT0
getting smaller, the possibility of soliton formation, with
the device length is significantly greater. Given these gui
lines, Fig. 5 can be discussed in a semiquantitative w
Figures 5~a! and 5~b! show what happens to a 40 ns,N55,
rectangular input pulse by the time the propagation dista
has reachedx50.5 cm andx51 cm, respectively. The ques
tion of whether ‘‘forcing’’ has any impact on the pulse sha
will be addressed first. A magnetic system is highly disp
sive and typical group velocities are several orders of m
nitude less than the velocity of light. This means that m
netic systems are rather different, in their pulse respo
behavior, from optical fibers. If a, temporally, long pulse
entered into a magnetostatic wave system, it begins to
perse strongly as soon as it is being entered. This means
under ‘‘forced’’ boundary conditionsuv9uÞ0 dispersion will
result in an early asymmetric development.12–16Figures 5~a!
and 5~b! do show an asymmetry, but it is due, in this case
the uv-u dispersion, which gives rise to oscillations on t
leading edge~becausev-.0! of the pulse. BecauseN55,
the input power is quite high, however, so self-phase mo
lation is also significant early on in the pulse developme
The existence of self-phase modulation lifts the minima,
Fig. 5~a!, above zero and the pulse sees aneffectivev9 that
will lead, ultimately, to soliton formation plus the radiatio
of the energy associated with the ‘‘unwanted’’ oscillation
For this case, a fundamental soliton will not appear untix
;10.87 cm. In view of the loss that there would be in a r
system, this is too great a propagation distance to pe
experimental observation of a soliton in a magnetic film.

Figures 5~c! and 5~d! show the state of a lower powe
(N51), broader, rectangular input pulse~T0550 ns! at x
50.5 cm andx51.0 cm, respectively. Already it can be se
that there is now not enough self-phase modulation to lift
minima from zero and that soliton formation, by the timex
51.0 cm is reached, is not even close. In fact, for this ca
a soliton will not appear untilx5106 cm, which demon-
strates how criticalT0 and N are to the chances of solito
formation. In the results shown in Figs. 5~c! and 5~d!, apart
from the oscillations expected from the role ofuv-u, asym-
metry is beginning to appear in the main part of the pul
because of the ‘‘forced’’ way in which the pulse is enter
into the system.19

The final pair of simulations are shown in Figs. 5~e! and
-
In
-
il-

r

-
ed
e
e
s

-
y.

e

-
-
-

se

is-
hat

o

-
t.
f

.

l
it

e

e,

,

5~f!, which are for pulse lengths of 100 ns and forN52 and
N51, respectively. For these cases, the distances at whi
fundamental soliton will form are the order of a km, so su
a formation is out of the question, in practice. Oscillatio
due to uv-u appear, as expected, on the leading edge of
pulse, but there is significant distortion from the bounda
conditions. In other words, a pulse length of 100 ns is v
long, for this system, and significant dispersion is taki
place as the pulse is being entered into the waveguide.

IV. CONCLUSIONS

The aim of this paper is to study the power dependenc
a magnetic system, which is, at the linear~low power! level,
controlled by third-order dispersion. As is usually the ca
the interest centers upon the differences, or equalities, to
persive optical systems. For the latter there is alrea
information8,17 on the role of third-order dispersion. The di
ferences in~by several orders of magnitude! the group ve-
locities associated with optical or magnetic systems, ho
ever, has meant that the magnetics cases are espe
interesting.12,13,15 For second-order dispersion, early asym
metric pulse shape development and using theforced nonlin-
ear Schro¨dinger equation19 is a lively topic of debate. Here
we investigate third-order dispersion coupled to nonlinear
produced by inputting rectangular pulses into a magnetic
film controlled by a metal plate. The simulations are pr
duced, therefore, on a scale of nanoseconds and the prin
interest lies in the extent to which the generica
accepted8,17 properties of nonlinear-third-order coupling
all that can appear for this magnetic system. If not, do
boundary conditions, i.e., using the forced nonlinear Sch¨-
dinger equation,19 become dominant, thus permitting th
magnetic character of the system to emerge? The conclu
reached here is that the pulse width, in time, controls
outcome. For relatively small pulse lengths~40 ns!, third-
order dispersion dominates in the early part (x50.5 cm! of
the pulse development~with the expected set of subsidiar
peaks8,17! but gives way to induced-second-order dispers
effects at a longer propagation distance (x510 cm!. For
longer pulse lengths~50 ns and 100 ns! the boundary condi-
tions become important and the now class
asymmetry12,13,15 in the evolution of the main peak appea
quite strongly. This is now very different from the optic
case. Hence, for high input powers and small pulse wid
the magnetic case has evolution features similar to the o
cal case; but for lower input powers and longer pulses, as
metric development, directly related to the much lower ma
netic group velocity, appears. Metal plate controll
magnetic thin film designs need to take this into account
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