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Closing of the spin gap and ferromagnetism induced by magnetic impurities

P. Schlottmann
Department of Physics, Florida State University, Tallahassee, Florida 32306
~Received 18 August 1997; revised manuscript received 19 November 1997!

The Hubbard chain with attractiveU and a finite concentration of magnetic impurities of spinS is studied
using the BetheAnsatztechnique. The impurities weaken the singlet bound states of the Hubbard model
reducing the spin gap. The spin gap is closed at a critical concentration which depends on the spin and the
coupling strength. A ferromagnetic phase is induced for concentrations of impurities larger than the critical
one, where a fraction of singlet pairs is broken up giving rise to a Fermi sea of spin-polarized itinerant
electrons.@S0163-1829~98!01418-0#
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I. INTRODUCTION

Magnetic impurities in superconductors break the tim
reversal symmetry and are unfavorable to the formation
Cooper pairs. Consequence of the pair breaking or wea
ing is a gradual reduction of the superconducting gap and
transition temperature with the concentration of impurities1,2

The gap closes before superconductivity is completely s
pressed, a phenomenon known as gapless supercondu
ity.2 In addition the impurity forms a bound state inside t
gap, which also contributes to the closing of the gap.3

A possible explanation for the pseudogap or spin-g
anomaly observed in underdoped cuprate superconducto
that they are in an intermediate regime between a BCS
perconductor and a condensation of preformed bosons.
purpose of this paper is to study the effect of magnetic
purities on the preformed bosons of the one-dimensio
~1D! Hubbard model with attractiveU, in particular the clos-
ing of the spin-gap as a function of the impurity concent
tion and ferromagnetic phase that arises when the ga
‘‘negative.’’ The magnetic impurities weaken the singlet p
boundstates, reducing in this way the gap. This is in cont
to the pair-breaking mechanism that leads to suppressio
superconductivity in a BCS superconductor by magne
impurities.1–3

The exact solution of the 1D Hubbard model has be
obtained via nested BetheAnsätze long ago4 and numerous
properties are known for both, repulsive and attractive in
action U.5 An impurity embedded into the Hubbard mod
usually destroys the integrability. In recent papers we s
ceeded in constructing 1D integrable correlated electron
tice models with a magnetic impurity via the quantum
verse scattering method.6–9 Several combinations of hosts
e.g., two variants of the supersymmetrict-J models and the
Hubbard model, and impurities, e.g., exchange and inter
diate valence impurities, have been considered. The sca
ing matrix of electrons in the host and the scattering ma
of electrons with the impurity have to satisfy the triangu
Yang-Baxter relation. This is the necessary and suffici
condition for the integrability, which imposes restrictions
the impurity. For the Hubbard model with attractive intera
tion the mixed valent hybridization impurity with two mag
netic configurations satisfies these conditions.9 This impurity
with undercompensated Kondo properties is considered h
570163-1829/98/57~17!/10638~6!/$15.00
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The rest of the paper is organized as follows. The defi
tion of the scattering matrices and technical aspects, suc
the triangular relation and the extension of the monodro
matrix to an arbitrary number of impurities, are presented
the Appendix. In Sec. II we briefly discuss the interacti
Hamiltonian of an isolated impurity with the itinerant ele
trons and state the discrete BetheAnsatzequations diagonal-
izing the lattice problem with a finite concentration of imp
rities. The two-strings leading to the singlet bound states
introduced and the contribution of the impurities on t
dressed energy potentials is derived. The dressed ene
determine the spin-gap as a function of impurity concen
tion. Results and conclusions follow in Sec. III.

II. GENERAL FORMULATION

A. Bethe Ansatzequations

Consider the Hubbard model withNe itinerant electrons
andNi impurities in a box ofNa sites with periodic boundary
conditions. The system is defined via the scattering matri
Eqs. ~A1! and ~A3!, and is integrable by construction a
shown in the Appendix. The transfer matrices can be dia
nalized simultaneously in terms of two sets of rapiditie
$xj%, j 51, . . . ,Ne , for the charges and$La%, a
51, . . . ,M* , (M* is the number of down-spin electrons! for
the spins, which satisfy the following discrete BetheAnsatz
equations:

eik jNaFxj2x01 i ~2S11!U/4

xj2x02 i ~2S11!U/4GNi

5 )
b51

M*
xj2Lb1 iU /4

xj2Lb2 iU /4
,

j 51, . . . ,Ne , ~1!

FLa2x01 iUS/2

La2x02 iUS/2GNi

)
j 51

Ne La2xj1 iU /4

La2xj2 iU /4

52 )
b51

M*
La2Lb1 iU /2

La2Lb2 iU /2
, b51, . . . ,M* . ~2!

The rapiditiesxj are related to the quasimomenta of the ele
trons kj via xj5sinkj . The magnetization is given bySz
5 1

2 Ne2M* 1SNi and the energy of the system is
10 638 © 1998 The American Physical Society
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E522(
j 51

Ne

coskj1NiEimp , ~3!

where Eimp is the energy per impurity which is discusse
below. Each impurity acts as a charged particle of spinS.
The second factor on the left-hand side of Eq.~1! and the
first factor in Eq.~2! arise from the impurities. The impurity
is defined as a function of two parameters, namely, the s
S and the rapidityx0. For Ni50 Eqs.~1!–~3! reduce to Lieb
and Wu’s solution4 of the Hubbard model. IfNi51 we re-
cover the single impurity embedded in the Hubbard mo
studied in Ref. 9.

B. Impurity Hamiltonian

The lattice Hamiltonian is the 1D Hubbard model

H052(
is

~cis
† ci 11s1ci 11s

† cis!1U(
i

ni↑ni↓ , ~4!

where cis
† creates an electron of spins at site i and nis

5cis
† cis is the corresponding number operator. The on-s

interaction is attractive ifU,0 and the hopping paramete
has been equated to 1.

The lattice impurity Hamiltonian is complicated and it
general form has been discussed in Refs. 9,10. It can in p
ciple be obtained as the derivative of the logarithm of
transfer matrix~see Appendix!. As for the algebraic Bethe
Ansatzfor the Hubbard model this involves cumbersome o
erations with 16316 matrices.11 From the definition of the
transfer matrix it follows that the impurity is located on
link of the Hubbard chain and interacts with both neighb
ing sites. The impurity couples to states of both, even
odd parity about the impurity site.

The impurity Hamiltonian acquires a more appeali
form in thecontinuum limit. When the lattice constant tend
to zero, we can linearize the kinetic energy in the moment
around the Fermi level and restrict ourselves to low-ene
excitations~Luttinger liquid!. The interaction with the impu-
rity is then a contact potential, so that in this limit the imp
rity only couples to states with even parity (s waves! with
respect to the impurity site. States with odd parity affect
impurity indirectly via the Luttinger liquid. The scatterin
matrix ~A3! corresponds to a mixed valent impurity with tw
magnetic configurations of spinsS and S15S1 1

2, respec-
tively, hybridized via a conduction electron, and the Ham
tonian is13–15

H imp5e(
M1

uS1M1&^S1M1u1V (
sMM1

~MsuM1!E dxd~x!

3@cs
†~x!uSM&^S1M1u1H.c.#, ~5!

where the bra and ket denote the impurity states,M15M
1s, and (MsuM1) is a Clebsch-Gordan coefficient define
in the Appendix. The completeness condition for the imp
rity requires

(
M1

uS1M1&^S1M1u1(
M

uSM&^SMu51. ~6!
in
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The parametere5ux0u/v represents the energy difference b
tween the two configurations relative to the Fermi level,v is
the Fermi velocity, andV25(2S11)uUu/(2v). The impurity
is capable of temporarily absorbing the spin of one cond
tion electron to form an effective spinS15S1 1

2, i.e., the
ground state wave function is a linear superposition of t
different spin configurations.13–15 Note that for S50 the
Clebsch-Gordan coefficients are equal to 1 and the impu
is the U→` limit of the Anderson model, except that th
host is now a Luttinger liquid.

While in a free electron host the Anderson impurity h
two parameters (e andV), the integrability in the interacting
host fixesV, so that there is only one free parameter, wh
in Eqs.~1! and ~2! is the impurity rapidityx0. This rapidity
determines both, the valence admixture and the impu
screening, which then in a host without spin gap occur on
same energy scaletexp(22pux0 /Uu) ~Kondo temperature!. In
contrast, for an impurity in a free electron gas the charge
spin fluctuations occur on different energy scales.ux0u is then
related to the Kondo exchange coupling.

For a single impurity the thermodynamic properties
not depend on the sign ofx0 ~chirality!. The sign ofx0 only
affects the mesoscopic part of the finite size corrections
the ground state energy, e.g., it changes the initial phas
persistent currents. The interaction of the impurity with iti
erant electrons on the two neighboring sites is different
the two sites, since the impurity couples to states with e
and odd symmetry with respect to the impurity site. F
x0Þ0 the impurity on thelattice then breaks the time
reversal~T! and parity~P! symmetries separately, butTP is
conserved. On the other hand,P and T are separately con
served in the continuum limit.

C. Ground state equations

The attractive interaction (U,0) pairs the electrons into
Cooper-like singlet states without off-diagonal long-ran
order even atT50.16,17 The singlet pairs introduce a spi
gap ~binding energy! in the excitation spectrum of unpaire
electrons.

For the ground state the solutions of the BetheAnsatz
equations are organized as spin-charge pairs,x65L6 iU /4,
and unbound electrons with realx.18 We introduce distribu-
tion densities for the two classes of rapidities and their ho
i.e., r(k) and rh(k) for the unbound electrons, ands8(L)
andsh8(L) for the pair rapidities, which satisfy the following
integral equations:16,17

rh~k!1r~k!1cos~k!E
2Q

Q

dLa1~x2L!s8~L!

5
1

2p
1

Ni

Na
cos~k!a2S11~x2x0!, ~7!

sh8~L!1s8~L!1E
2Q

Q

dL8a2~L2L8!s8~L8!

52E
2B

B

dka1~L2x!r~k!1
1

p
ReF12S L2 i

U

4 D 2G21/2

1
Ni

Na
a2S12~L2x0!, ~8!
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10 640 57P. SCHLOTTMANN
where an(x)5(uUun/4p)/@x21(Un/4)2# and Re denotes
real part. The driving terms proportional toNi arise from the
impurities. The energy, the total number of electrons, and
magnetization are given by

E

Na
5

Ni

Na
Eimp22E

2B

B

dk cos~k!r~k!

24 ReE
2Q

Q

dL@12~L2 iU /4!2#1/2s8~L!,

Ne

Na
5n5E

2B

B

dkr~k!12E
2Q

Q

dLs8~L!,

Sz

Na
5S

Ni

Na
1

1

2E2B

B

dkr~k!. ~9!

The number of electrons and the magnetization of the h
determine the integration limitsQ andB. Q increases mono
tonically with the band filling from 0 for the empty band t
` for one electron per site~half-filled band!.

As discussed above, the sign ofx0 introduces a chirality
into the system, i.e., a forward to backward asymmetry. T
phase shifts due this chirality are additive~modulo 2p). We
neutralize the chirality by incorporating as many impuriti
with backward as with forward chirality, i.e., by replacin
the impurity driving term in Eq.~7! a2S11(x2x0) by

1

2
@a2S11~x2x0!1a2S11~x1x0!#, ~10!

and similarly for the impurity driving term in Eq.~8!. This
choice is not a unique one, but any distribution of signs ofx0
gives qualitatively the same answer.

D. Isolated impurity

A single impurity corresponds toNi51. Equations~7!
and ~8! are linear in the densities, and the driving terms
host and impurity are additive. We can then separate
contributions to the densities for the host and the impur
i.e., r(k)5rhost(k)1Na

21r imp(k) and s8(L)5shost8 (L)
1Na

21s imp8 (L). The impurity ground state energy is give
by9

Eimp522E
2B

B

dk cos~k!r imp~k!

24 ReE
2Q

Q

dL@12~L2 iU /4!2#1/2s imp8 ~L!,

~11!

where the limits of integrationB andQ are governed by the
host. The properties of the Hubbard model with attractiveU
are well known,16,17and we limit ourselves to summarize th
results for the impurity.

The impurity manifests charge fluctuations characteri
of an intermediate valent regime.9 This is in part a conse
quence of the correlations in the host, which drive the
lence of the impurity. The valence is maximum if the imp
rity rapidity x0 lies in the continuum of the charge rapiditie
e

st

e

f
e
,

c

-

and decreases monotonically with increasinguUu. The va-
lence of the impurity decreases if its rapidity gets off res
nance with the Fermi sea states.

The spin fluctuations are suppressed by the spin gap o
host. There is no response to a magnetic field smaller t
the critical fieldHc ~corresponding to the depairing energy
Cooper singlet bound states! and the magnetization of th
impurity equalsS. For fields slightly larger thanHc , the
magnetic susceptibility of the impurity has a square-ro
divergence,9 revealing the van Hove singularity of the emp
unpaired electron band of the host. This behavior diff
drastically from the ordinary Kondo effect.

A magnetic impurity introduces a bound state inside
gap of a BCS superconductor. The spin gap represents
energy required to form Cooper bound states, although w
out long-range order. The impurity considered here is
forward-scatterer only as required by the integrability, a
hence does not form a bound state. An impurity that inclu
both forward and backward scattering would give rise to
bound state in the spin gap. This aspect of our impurity
nongeneric, imposed by the condition of integrability. W
expect, however, that most of the properties of the impur
e.g., the lack of spin screening and the pair weakening,
valid generally.

For a generic impurity the situations of an even and
odd number of electrons in the system have to be dis
guished, e.g., if the number of electrons is odd, one elec
remains unpaired and binds with the impurity. This diffe
ence does, of course, not play any role for a finite conc
tration of impurities.

E. Gap equation

A finite concentration of impurities modifies on the on
hand the densities of rapidities according to Eqs.~7! and~8!
and on the other hand the dressed energies of the excitat
To calculate the latter we need the expression for the t
energy, which in principle can be derived from the algebr
BetheAnsatz. Since the transfer matrix has (Ne1Ni) factors,
the energy has (Ne1Ni) terms. The calculation of the re
maining Ni factors is very cumbersome due to the doub
occupied sites, e.g., the hostL operator is a 16316 matrix
with complicated structure.11 We have succeeded in derivin
an expression for the energy of the impurities for the sup
symmetrict-J model,12 where there are only three states p
site ~rather than four as for the Hubbard model!. The double
occupation of a site in Hubbard’s model is the source
numerous complications in the algebraic BetheAnsatz.11

For an isolated impurity the energy is given by Eq.~11!,
which trivially can be rewritten as

Eimp522E
2B

B

dk cos~k!Rr rhost~k!24 ReE
2Q

Q

dL

3@12~L2 iU /4!2#1/2Rs8shost8 ~L!, ~12!

where

Rr5
r imp~k!

rhost~k!
, Rs85

s imp8 ~L!

shost8 ~L!
, ~13!



th

im
se

n

rg

n
ur

f
io

d
it

r o

th

n

spin
ity
n-

tial

om
up
tion
ure

of

r

s
al-

s

ity
is
e-
r
f
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are the ratios of the densities for the isolated impurity and
pure host, obtained by solving Eqs.~7! and~8!. Expressions
~12! and ~13! are exact only in the limitc5Ni /Na→0. Un-
fortunately, we do not have an exact expression for the
purity energy if the concentration is finite. Here we will u
an approximate expression for the energy valid forc
5Ni /Na!1,

E

Na
522E

2B

B

dk cos~k!@11cRr#r~k!24 ReE
2Q

Q

dL

3@12~L2 iU /4!2#1/2@11cRs8#s8~L!, ~14!

whereRr andRs8 are still given by Eq.~13!. Equation~14!
contains the exact first two terms of the power expansion
c of the exact energy of the system, but the term proportio
to c2 and higher order terms are only approximate.

The standard procedure to calculate the dressed ene
can now be followed and we obtain

«~k!522 cos~k!@11cRr#2m2
1

2
H

2E
2Q

Q

dLa1~L2sink!c~L!, ~15!

c~L!524 Re@12~L2 iU /4!2#1/2F11
Ni

Na
Rs8G

22m2E
2Q

Q

dL8a2~L2L8!c~L8!

2E
2B

B

dk cos~k!a1~L2sink!«~k!. ~16!

The integration limitsB andQ are determined as a functio
of magnetic field and chemical potential by the Fermi s
face, i.e., by the zeroes of the dressed energies,«(6B)50
and c(6Q)50. B and Q in turn determine the number o
electrons and the magnetization. Note that the integrat
are over occupied states, i.e., the intervals in which« andc
are negative. The spin gap is the smallest energy require
depair a singlet bound state and in zero magnetic field
given by

gap522@11cRr#2m2E
2Q

Q

dLa1~L!c~L!, ~17!

wherec is the solution of Eq.~16! for B50.
Since impurities localize electrons and the total numbe

electrons is conserved, the integration limitsB and Q are
renormalized as a function of the impurity concentrationc.
Hence, also the distributions of rapidities for the host and
impurity change as a function ofc. Numerically, we found
this effect to be small within the range of concentratio
used here.

III. RESULTS AND CONCLUSIONS

The integral equations~7!, ~8!, and~16! have been solved
numerically for the nonchiral situation~half of the impurities
have rapidity1x0 and the other half2x0) for a fixed num-
e
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ber of electrons and zero magnetic field (B50). This solu-
tion has then been used to evaluate the magnitude of the
gap as a function of impurity concentration and impur
rapidity x0. The spin gap decreases with the impurity co
centration as a consequence of theRr term in Eq.~17! which
in general is larger than the change of the chemical poten
as a function ofc ~note thatdm/dc is negative!. The de-
crease is linear with the concentration and deviations fr
linearity are less than 1% for impurity concentrations of
to 10%. The dependence of the spin gap on the concentra
is then completely described in terms of the gap of the p
system and the slopedgap/dc, which in turn determine the
critical concentrationccr at which the gap closes.ccr is in-
versely proportional to the slope.

The slope and the critical concentration as a function
x0 are shown in Figs. 1~a! and 1~b! for S50 andS51/2 and
U522. dgap/dc decreases monotonically withx0 ~except
for S50 and very largex0) and correlates with the numbe
of electrons localized at the impurity site. Forux0u,Q the
impurity rapidity lies in the continuum of charge rapiditie
and the isolated impurity is in a mixed valent regime, loc
izing a fraction of an electron,nimp52*2Q

Q dLs imp8 (L). With
increasingx0 the quantitynimp gradually decreases to zero a

FIG. 1. ~a! Rate of decrease of the spin gap with the impur
concentration,~b! critical concentration at which the spin-gap
closed, and~c! coefficienta of the spontaneous magnetization d
fined in Eq.~18! as a function of the rapidity of the impurity fo
S50 and S51/2. The inset shows the change of sign o
2dgap/dc for S50 for largex0.
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10 642 57P. SCHLOTTMANN
the rapidity gets off-resonance with the ‘‘Cooper-pair’’ co
tinuum. The mechanism reducing the spin gap is then of
pair-weakening type and not pair breaking as for magn
impurities in a BCS superconductor. No unpaired electr
are generated as long as there is a spin gap. The pair w
ening decreases with increasing spin for smallx0, while this
trend is reversed for largex0 ~off resonance!.

The above can be understood in the light of the impu
Hamiltonian in the continuum limit. According to Eq.~5! the
impurity rapidity plays the role of the energy difference b
tween the two configurations relative to the Fermi level.
creasinguUu and the spin, increases the hybridization mat
element and hence drives the impurity further into t
mixed-valence regime. But increasinguUu also increases the
spin-gap. Due to the spin-gap the ground state impurity m
netization is alwaysNiS ~for H,Hc).

For S50 and very largex0 the rate of change of the
chemical potentialdm/dc is larger than 2Rr . As a conse-
quence,dgap/dc is positive and the spin gap slightly in
creases with the impurity concentration. This is seen in
inset of Fig. 1~a!. But in this limit the impurity is nonmag-
netic and the magnetic configuration of spinS151/2 is only
weakly admixed.

For impurity concentrations larger thanccr a fraction of
the itinerant electrons is~a! depaired and~b! spontaneously
magnetized. The former follows from the fact that t
dressed energy«(k) is now negative in an interval aroun
k50. HenceBÞ0 and *2B

B dkr(k) is nonzero. The ferro-
magnetic order of the itinerant electrons~b! is more subtle
and requires an analysis of the string excitations of the H
bard model with attractive interaction. There are two types
string excitations:17,18~i! bound states of Cooper pairs, whic
require large energies and are unfavorable for small con
trations, and~ii ! spin strings, which represent spin excit
tions in the system. Their dressed energies are positive
the pure system, and a small concentration of impurities d
not change their sign. Hence, these states are not popu
in the ground state. From the zeroes of the dressed« poten-
tial we have that to leading orderB}Ac2ccr. The total mag-
netization of the Hubbard chain with impurities is then a
proximately given by

Sz5SNi1a~c2ccr!
1/2,

a5rhost~0!S 1

2

dgap

dc
@11ccrRr# D 1/2

, ~18!

for c slightly aboveccr . The expression for the coefficienta
is only approximate~the error is about 10%), since here w
neglected the feedback of the finiteB on the dressed energ
c. a as a function ofx0 is shown in Fig. 1~c!. It essentially
tracks the dependence of the slope and the fraction of lo
ized electrons~valence! nimp . While the slope anda are
determined by the driving term ofr imp , nimp follows the
dependence of the driving term ofs imp8 . Both driving terms
are similar Lorentzians, explaining the similar trends of the
quantities.

As mentioned earlier, the lack of a bound state inside
spin gap is an artifact of our impurity model and nongene
It is the consequence of the suppressed backward scatte
e
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a requirement for the integrability of the model. All othe
properties are believed to be valid in general and nonspe
to the integrability.

In the Hubbard chain with attractiveU, the impurities
effectively act similarly to a magnetic field, closing the ga
and polarizing the depaired electrons. On the other han
finite concentration of magnetic impurities introduced into
correlated host without spin gap, e.g., the supersymme
t-J model, are antiferromagnetically correlated as expe
mentally found for most heavy fermion compounds.12 The
ground state in this case is always a magnetic singlet.
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APPENDIX

For the Hubbard model the scattering matrix for two ele
trons has the form4

X̂~x12x2!5
~x12x2! Î 1 i ~U/2!P̂

~x12x2!1 iU /2
, ~A1!

whereÎ 5ds1s
18
ds2s

28
andP̂5ds

18s2
ds

28s1
are the identity and

permutation operators, respectively, where the unprim
~primed! indices refer to the incoming~outgoing! states.
Here thexi are rapidities. The two-electron scattering mat
X̂ satisfies the triangular Yang-Baxter relation, which is t
necessary condition for the integrability of the model. W
consider an attractive interaction, i.e.,U,0.

The impurity is introduced via its scattering matrix wit
the itinerant electronsŜ. If the integrability of the model is to
be preserved,Ŝ has to satisfy the triangular Yang-Baxte
relation with X̂:

X
s2s

28

s1s18~x12x2!S
MM8

s18s19~x12x0!S
M8M9

s28s29 ~x22x0!

5S
MM8

s2s28~x22x0!S
M8M9

s1s18 ~x12x0!X
s

28s
29

s18s19~x12x2!,

~A2!

where the sum over repeated indices is implicit. The indexM
refers to the spin component of the magnetic impurity.
impurity scattering matrix satisfying Eq.~A2! is13,14

ŜMM8
ss8 ~x!5dss8dMM81~MsuM1s!~M 8s8uM 81s8!

3
iU ~2S11!/2

x2 iU ~2S11!/4
PMM8

ss8 , ~A3!

where PMM8
ss8 5dss8dMM81d2ss8dM8M12s . The Clebsch-

Gordan coefficient (MsuM1s), which is a short-hand no
tation for

~SM; 1
2 suS 1

2 ~S1 1
2 !M1s!, ~A4!
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selects the way the impurity couples to the itinerant el
trons. Herex0 is the impurity rapidity which controls the
degree of ‘‘valence admixture.’’ Note that both Eqs.~A1!
and ~A3! are unitary.

We now define the monodromy matrix15,19 for Ne elec-
trons andNi impurities,N5Ne1Ni ,

L
$s1 . . . sN%t

$s18 . . . sN8 %t8
~a;a1 , . . . ,aN!

5Y
s

18s1

t8m1~a12a!Y
s

28s2

m1m2~a22a! . . . Y
s

N8 sN

mN21t
~aN2a!,

~A5!

with the implicit summation over all them j indices andY
denotes a scattering matrix. Herea is the spectral paramete
Equation~A5! consists of a product ofNe scattering matrices
of the X̂ type andNi electron-impurity scattering matrices
which can be arranged in arbitrary order. The indicess i
generically denote electron or impurity spins. With respec
ys

r

-

o

the indicest and t8 the monodromy matrix forms a 232

matrix, which we writeL̂t
t8(a) omitting the spin indices and

the parametersa j .
From the Yang-Baxter relations it follows that the mon

dromy matrix satisfies the identity15,19

X
t2t

28

t1t18~a2a8!L̂t3

t18~a8!L̂
t

38

t28~a!5L̂
t

28

t2~a!L̂
t

18

t1~a8!

3X
t

28t
38

t18t3~a2a8!, ~A6!

where the sum over repeated indices is implicit. The trans
matrix is defined asT̂(a)5(tL̂t

t(a). Using Eq.~A6! and the

unitarity of X̂(a), it is straightfoward to show that transfe
matrices at differenta values commute and can all be diag
nalized simultaneously. The procedure to diagonalize
transfer matrices is standard and yields the discrete B
Ansatzequations given in Sec. II.
.
or.
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