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Closing of the spin gap and ferromagnetism induced by magnetic impurities
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The Hubbard chain with attractivig and a finite concentration of magnetic impurities of sgiis studied
using the BetheAnsatztechnique. The impurities weaken the singlet bound states of the Hubbard model
reducing the spin gap. The spin gap is closed at a critical concentration which depends on the spin and the
coupling strength. A ferromagnetic phase is induced for concentrations of impurities larger than the critical
one, where a fraction of singlet pairs is broken up giving rise to a Fermi sea of spin-polarized itinerant
electrons[S0163-18208)01418-Q

I. INTRODUCTION The rest of the paper is organized as follows. The defini-
tion of the scattering matrices and technical aspects, such as
Magnetic impurities in superconductors break the timethe triangular relation and the extension of the monodromy
reversal symmetry and are unfavorable to the formation ofatrix to an arbitrary number of impurities, are presented in
Cooper pairs. Consequence of the pair breaking or weakeribe Appendix. In Sec. Il we briefly discuss the interaction
ing isa gradua] reduction of the Superconducting gap and thblamiltonian of an isolated |mpurlty with the itinerant elec-
transition temperature with the concentration of impuritiés. trons and state the discrete Bethesatzequations diagonal-
The gap closes before superconductivity is completely supizing the lattice problem with a finite concentration of impu-
pressed, a phenomenon known as gapless superconductfifies. The two-strings leading to the singlet bound states are
ity. In addition the impurity forms a bound state inside theintroduced and the contribution of the impurities on the
gap, which also contributes to the closing of the dap. dressed energy potentials is derived. The dressed energies
A possible explanation for the pseudogap or spin-gagietermine the spin-gap as a function of impurity concentra-
anomaly observed in underdoped cuprate superconductorstign. Results and conclusions follow in Sec. IIl.
that they are in an intermediate regime between a BCS su-
perconductor and a condensation of preformed bosons. The Il. GENERAL FORMULATION
purpose of this paper is to study the effect of magnetic im-
purities on the preformed bosons of the one-dimensional
(1D) Hubbard model with attractivd, in particular the clos- Consider the Hubbard model witK, itinerant electrons
ing of the spin-gap as a function of the impurity concentra-andN; impurities in a box oN, sites with periodic boundary
tion and ferromagnetic phase that arises when the gap isonditions. The system is defined via the scattering matrices,
“negative.” The magnetic impurities weaken the singlet pair Egs. (A1) and (A3), and is integrable by construction as
boundstates, reducing in this way the gap. This is in contragthown in the Appendix. The transfer matrices can be diago-
to the pair-breaking mechanism that leads to suppression @falized simultaneously in terms of two sets of rapidities,
superconductivity in a BCS superconductor by magnetiqx;}, j=1,...N,, for the charges and{A,}, «
impurities? =1,... M*, (M* is the number of down-spin electrorfer
The exact solution of the 1D Hubbard model has beenhe spins, which satisfy the following discrete Bethesatz
obtained via nested Beth&nsdze long agd and numerous equations:
properties are known for both, repulsive and attractive inter-
action U.®> An impurity embedded into the Hubbard model
usually destroys the integrability. In recent papers we suc- gikjNa
ceeded in constructing 1D integrable correlated electron lat-
tice models with a magnetic impurity via the quantum in-

A. Bethe Ansatzequations

X;—Xo+i(2S+1)U/4
X;—Xp—i(25+1)U/4

NN = AgtiU/a
_,3:1 Xj—Aﬁ—iU/4,

verse scattering methdd® Several combinations of hosts, i=1,...No,
e.g., two variants of the supersymmetrid models and the

H_ubbard modgl, anq _impurities, e.g., exchange and interme- A, —Xo+iUS/2]N Ne A\ _x +iU/a

diate valence impurities, have been considered. The scatter- [ = . @

ing matrix of electrons in the host and the scattering matrix Aa=Xo—iUS/2| j=1 Ag—x;—iU/4

of electrons with the impurity have to satisfy the triangular M* )

Yang-Baxter relation. This is the necessary and sufficient oy A AptiUR2 1 M* @
condition for the integrability, which imposes restrictions on 5 A= Ap—ilUf2’ e

the impurity. For the Hubbard model with attractive interac-

tion the mixed valent hybridization impurity with two mag- The rapidities¢; are related to the quasimomenta of the elec-
netic configurations satisfies these conditidf$is impurity  trons k; via x;=sink;. The magnetization is given b,
with undercompensated Kondo properties is considered heres sN,—M* +SN and the energy of the system is
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Ne The parametee=|x,|/v represents the energy difference be-
E= —22 cosK;j+ N;iEjmp, (3) tween the two configurations relative to the Fermi leveis
=1 the Fermi velocity, an&/?= (2S+ 1)|U|/(2v). The impurity
. . . L is capable of temporarily absorbing the spin of one conduc-
where Ein,p is the energy per impurity which is discussed (o glectron to form an effective spis,;=S+3, i.e., the
below. Each impurity acts as a charged particle of Spin  ground state wave function is a linear superposition of two
The second factor on the left-hand side of Ef). and the  gjfferent spin configuration$='° Note that for S=0 the
first factor in Eq.(2) arise from the impurities. The impurity Clebsch-Gordan coefficients are equal to 1 and the impurity
is defined as a function of two parameters, namely, the spifs the U— limit of the Anderson model, except that the
S and the rapidityk,. For N;=0 Egs.(1)—(3) reduce to Lieb  host is now a Luttinger liquid.

and Wu’s solutiofi of the Hubbard model. IN;=1 we re- While in a free electron host the Anderson impurity has
cover the single impurity embedded in the Hubbard modetwo parametersd andV), the integrability in the interacting
studied in Ref. 9. host fixesV, so that there is only one free parameter, which
in Egs.(1) and(2) is the impurity rapidityx,. This rapidity
B. Impurity Hamiltonian determines both, the valence admixture and the impurity

screening, which then in a host without spin gap occur on the
same energy scatexp(—2m|x,/U|) (Kondo temperatupe In
contrast, for an impurity in a free electron gas the charge and
- T t spin fluctuations occur on different energy scalggl. is then
Ho= % (Ciaci+1”+ci+l"ci”)+uzi Mini, (4 rglated to the Kondo exchange coupling?/ ales
For a single impurity the thermodynamic properties do
where CL creates an electron of spim at sitei andn;,  not depend on the sign af (chirality). The sign ofx, only
=ciTUciU is the corresponding number operator. The on-siteaffects the mesoscopic part of the finite size corrections to
interaction is attractive ifJ <0 and the hopping parameter the ground state energy, e.g., it changes the initial phase of
has been equated to 1. persistent currents. The interaction of the impurity with itin-
The lattice impurity Hamiltonian is complicated and its erant electrons on the two neighboring sites is different for
general form has been discussed in Refs. 9,10. It can in prirthe two sites, since the impurity couples to states with even
ciple be obtained as the derivative of the logarithm of theand odd symmetry with respect to the impurity site. For
transfer matrix(see Appendix As for the algebraic Bethe Xo#0 the impurity on thelattice then breaks the time-
Ansatzfor the Hubbard model this involves cumbersome op-reversal(T) and parity(P) symmetries separately, b is
erations with 16 16 matrices! From the definition of the conserved. On the other han@,and T are separately con-
transfer matrix it follows that the impurity is located on a served in the continuum limit.
link of the Hubbard chain and interacts with both neighbor-
ing sites. The impurity couples to states of both, even and C. Ground state equations

odd parity about the impurity site. ~ The attractive interactionl{<0) pairs the electrons into
Th? Impurity Hamﬂ}oman acquires a more appealingcooper-like singlet states without off-diagonal long-range
form in the continuum limit When the lattice constant tends order even aff=0.1617 The singlet pairs introduce a spin

to zero, we can linearize the kinetic energy in the momentunyap (binding energy in the excitation spectrum of unpaired
around the Fermi level and restrict ourselves to low-energyjectrons.

excitations(Luttinger liquid). The interaction with the impu- For the ground state the solutions of the Bethesatz
rity is then a contact potential, so that in this limit the impu- equations are organized as spin-charge paits; A +iU/4,

rity only couples to states with even paritg (vaveg with  ang unbound electrons with reai'® We introduce distribu-
respect to the impurity site. States with odd parity affect th&jon densities for the two classes of rapidities and their holes,
impurity indirectly via the Luttinger liquid. The scattering j e (k) and p,(k) for the unbound electrons, an (A)
matrix (A3) corresponds to a mixed valent impurity with tWo anq o/ (A) for the pair rapidities, which satisfy the following
magnetic configurations of spirS and S;=S+ 3, respec- integral equation&®7

tively, hybridized via a conduction electron, and the Hamil-
tonian is>~°

The lattice Hamiltonian is the 1D Hubbard model

Q
pr(K)+ p(K) + cog k) f_QdAa1<x—A>a'<A>

Himp= €2, |SIM1)}(SiM4[+V X (MUIMl)j dx8(x)
M3 oMM,

1 N;
= 2 T NCOEK Az 1(XX0), Y]
X[e(x)|SMY(S,M,|+H.c], (5)
Q
where the bra and ket denote the impurity statds=M op(A) o' (A)+ f_QdAla2(A_A')‘T,(A’)
+ 0, and Ma|M,;) is a Clebsch-Gordan coefficient defined

in the Appendix. The completeness condition for the impu- B 1 U\
rity requires =—f_Bdka1(A—X)p(k)+;R 1- A_IZ

N;
2 [SIMa)(SIMy[+ >, [SMKSM=1. (§) + - d2s+2(A=Xo), ®

a
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where a,(x)=(|U|n/47)/[x?+(Un/4)?] and Re denotes and decreases monotonically with increasjhyj. The va-
real part. The driving terms proportional i arise from the lence of the impurity decreases if its rapidity gets off reso-
impurities. The energy, the total number of electrons, and theance with the Fermi sea states.

magnetization are given by The spin fluctuations are suppressed by the spin gap of the
host. There is no response to a magnetic field smaller than
E N, B the critical fieldH (corresponding to the depairing energy of
N, N_aE‘mp_zf_Bdk cogk)p(k) Cooper singlet bound stadeand the magnetization of the

impurity equalsS. For fields slightly larger thad., the
4 ReJQ dA[1— (A—iU/4)2]Y26" (A) magnetic susceptibility of the impurity has a square-root
-Q ' divergencé, revealing the van Hove singularity of the empty
unpaired electron band of the host. This behavior differs
N B Q drastically from the ordinary Kondo effect.
N—anf dkp(k)+ZJ dAo’(A), A magnetic impurity introduces a bound state inside the
a B -Q gap of a BCS superconductor. The spin gap represents the
energy required to form Cooper bound states, although with-
S, N, 1B X . ; :
_:S_+_j dkp(K). (99  out long-range order. The impurity considered here is a
Na Na 2J-8 forward-scatterer only as required by the integrability, and
ence does not form a bound state. An impurity that includes
oth forward and backward scattering would give rise to a
bound state in the spin gap. This aspect of our impurity is
nongeneric, imposed by the condition of integrability. We
expect, however, that most of the properties of the impurity,
e.g., the lack of spin screening and the pair weakening, are
Salid generally.

For a generic impurity the situations of an even and an
odd number of electrons in the system have to be distin-
guished, e.g., if the number of electrons is odd, one electron
remains unpaired and binds with the impurity. This differ-
1 ence does, of course, not play any role for a finite concen-
E[azs+1(X—Xo)+azs+1(X+ Xo)]s (100 tration of impurities.

The number of electrons and the magnetization of the hosg
determine the integration limi® andB. Q increases mono-
tonically with the band filling from 0 for the empty band to
« for one electron per sitéhalf-filled band.

As discussed above, the signqf introduces a chirality
into the system, i.e., a forward to backward asymmetry. Th
phase shifts due this chirality are additifrmodulo 27). We
neutralize the chirality by incorporating as many impurities
with backward as with forward chirality, i.e., by replacing
the impurity driving term in Eq(7) ass. 1(X—Xp) by

and similarly for the impurity driving term in E¢8). This E. Gap equation
choice is not a unique one, but any distribution of signgpf

gives qualitatively the same answer A finite concentration of impurities modifies on the one

hand the densities of rapidities according to E$.and(8)

and on the other hand the dressed energies of the excitations.

To calculate the latter we need the expression for the total
A single impurity corresponds tdl;=1. Equations(7)  energy, which in principle can be derived from the algebraic

and (8) are linear in the densities, and the driving terms ofBetheAnsatz Since the transfer matrix habl{+ N;) factors,

host and impurity are additive. We can then separate ththe energy hasN.+N;) terms. The calculation of the re-

contributions to the densities for the host and the impuritymaining N; factors is very cumbersome due to the double

ie., p(k)=phos(k)+N;1pimp(k) and o' (A)=o{s(A) occupied sites, e.g., the hdstoperator is a 1816 matrix

+ N;lgi’mp(/\)_ The impurity ground state energy is given With complicated structur€ We have succeeded in deriving

an expression for the energy of the impurities for the super-
|2

D. Isolated impurity

symmetrict-J mode
B site (rather than four as for the Hubbard modédihe double
Eimp:_zﬁBdk oK) pimp(K) occupation of a site in Hubbard’s model is the source of
numerous complications in the algebraic Befkesatz!!
For an isolated impurity the energy is given by Etyl),
which trivially can be rewritten as

where there are only three states per

imp

—4 RefQ dA[1—(A—iU/4)2] 25! (A),
-Q

13

B Q
where the limits of integratioB andQ are governed by the Eimp= _Zf_Bdk COLK)R, phos(k) —4 Re f_QdA
host. The properties of the Hubbard model with attractive
are well knownt®”and we limit ourselves to summarize the X[1=(A=iU/A?VR, ofoe M), (12
results for the impurity.

The impurity manifests charge fluctuations characteristiovhere
of an intermediate valent reginieThis is in part a conse-
guence of the correlations in the host, which drive the va- i (K) ol (A)
lence of the impurity. The valence is maximum if the impu- = R ="
rity rapidity X, lies in the continuum of the charge rapidities, ? Phos(K) Thos{ A)

(13
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are the ratios of the densities for the isolated impurity and the 25

pure host, obtained by solving Eq8) and(8). Expressions

(12) and(13) are exact only in the limit=N;/N,—0. Un- 020 [

fortunately, we do not have an exact expression for the im- o

purity energy if the concentration is finite. Here we will use %15

an approximate expression for the energy valid for (_g 10
]

=N, /N <1,

E B Q
—=—2f dk cogk)[1+cR,]p(k)—4 Ref dA
Na -B -Q

X[1—(A—iU/4)?1¥1+cR, o’ (A), (14)

whereR, andR,,, are still given by Eq(13). Equation(14)
contains the exact first two terms of the power expansion in
c of the exact energy of the system, but the term proportional
to ¢? and higher order terms are only approximate.

The standard procedure to calculate the dressed energies
can now be followed and we obtain

g(k)=—2cogk)[1+CcR,]— u— %H

- fQ dAa;(A—sink) y(A), (15
-Q

N
Y(AN)=—4 Re{l—(A—iU/4)2]1’Z[1+ N—RU,}

Q
~2u- | Ay A= A BN

B FIG. 1. (a) Rate of decrease of the spin gap with the impurity
_ dk cogK)a-(A —sink) e(K). 16 concentration,(b) critical concentration at which the spin-gap is
J_B Hhay( ye(k) (16) closed, andc) coefficienta of the spontaneous magnetization de-

) ) o ) ) fined in Eqg.(18) as a function of the rapidity of the impurity for
The integration limitsB andQ are determined as a function s—o and S=1/2. The inset shows the change of sign of
of magnetic field and chemical potential by the Fermi sur-—qdgapc for S=0 for largex,.
face, i.e., by the zeroes of the dressed energi€s,B) =0

A ; .
clecirons and ihe magnetization. Note that the integratior2S! Of €1ECons and zero magnetc fieé+{0). This solu-
; gnet s . nteg flon has then been used to evaluate the magnitude of the spin
are over occupied states, i.e., the intervals in whicmnd ¢

: ; ; . ap as a function of impurity concentration and impurity
are negative. The spin gap is the smallest energy required W pidity x-. The spin gap decreases with the impurity con-
depair a singlet bound state and in zero magnetic field it is PIAILY Xo. Pin gap . purity

. centration as a consequence of Ryeterm in Eq.(17) which
given by . . . .
in general is larger than the change of the chemical potential
0 as a function ofc (note thatdu/dc is negative. The de-
gap= —2[1+cRp]—,u—f dAa;(A)y(A), (17 crease is linear with the concentration and deviations from
-Q linearity are less than 1% for impurity concentrations of up
where is the solution of Eq(16) for B=0. to 10%. The dependence of the spin gap on the concentration
Since impurities localize electrons and the total number ofS then completely described in terms of the gap of the pure
electrons is conserved, the integration limBsand Q are ~ System and the slopggapkic, which in turn determine the
renormalized as a function of the impurity concentration ~ Critical concentratiorc,, at which the gap closes, is in-
Hence, also the distributions of rapidities for the host and th&/€rsely proportional to the slope. _ _
impurity change as a function @ Numerically, we found The slope and the critical concentration as a function of
this effect to be small within the range of concentrationsXo are shown in Figs. (& and b) for S=0 andS=1/2 and
used here. U=—2. dgapdc decreases monotonically witky (except

for S=0 and very largesy) and correlates with the number
lll. RESULTS AND CONCLUSIONS of electrons localized at the impurity site. Foto| <Q the
impurity rapidity lies in the continuum of charge rapidities
The integral equation&), (8), and(16) have been solved and the isolated impurity is in a mixed valent regime, local-
numerically for the nonchiral situatiaialf of the impurities  izing a fraction of an electrom;,,= 2f9QdAai'mp(A). With
have rapidity+x, and the other half-x,) for a fixed num-  increasingk, the quantityn;,, gradually decreases to zero as
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the rapidity gets off-resonance with the “Cooper-pair” con- a requirement for the integrability of the model. All other
tinuum. The mechanism reducing the spin gap is then of theroperties are believed to be valid in general and nonspecific
pair-weakening type and not pair breaking as for magnetito the integrability.

impurities in a BCS superconductor. No unpaired electrons In the Hubbard chain with attractivel, the impurities

are generated as long as there is a spin gap. The pair weadffectively act similarly to a magnetic field, closing the gap
ening decreases with increasing spin for smgllwhile this  and polarizing the depaired electrons. On the other hand, a
trend is reversed for large, (off resonancke finite concentration of magnetic impurities introduced into a

The above can be understood in the light of the impuritycorrelated host without spin gap, e.g., the supersymmetric
Hamiltonian in the continuum limit. According to E(p) the  t-J model, are antiferromagnetically correlated as experi-
impurity rapidity plays the role of the energy difference be-mentally found for most heavy fermion compourtésthe
tween the two configurations relative to the Fermi level. In-ground state in this case is always a magnetic singlet.
creasingU| and the spin, increases the hybridization matrix
element and hence drives the impurity further into the
mixed-valence regime. But increasifig| also increases the
spin-gap. Due to the spin-gap the ground state impurity mag- The support of the U.S. Department of Energy under
netization is alway$;S (for H<H,). Grant No. DE-FG05-91ER45443 is acknowledged.

For S=0 and very largex, the rate of change of the
chemical potentiadu/dc is larger than R,. As a conse-
guence,dgapic is positive and the spin gap slightly in-
creases with the impurity concentration. This is seen in the For the Hubbard model the scattering matrix for two elec-
inset of Fig. 1a). But in this limit the impurity is nonmag- trons has the forfh
netic and the magnetic configuration of s~ 1/2 is only

weakly admixed. . (Xy—X)I +i(U/2)P
(Xy—%xp)+iU/2
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APPENDIX

For impurity concentrations larger tham, a fraction of X(X1—Xp)=
the itinerant electrons i&) depaired andb) spontaneously
magnetized. The former follows from the fact that the ~ ) )
dressed energy(k) is now negative in an interval around Wherel=4 30, € the identity and
k=0. HenceB+#0 andf?Bdkp(k) is nonzero. The ferro- permutation operators, respectively, where the unprimed
magnetic order of the itinerant electroft® is more subtle (primed indices refer to the incomingoutgoing states.
and requires an analysis of the string excitations of the HubHere thex; are rapidities. The two-electron scattering matrix
bard model with attractive interaction. There are two types ofX satisfies the triangular Yang-Baxter relation, which is the
string excitations:*8(i) bound states of Cooper pairs, which necessary condition for the integrability of the model. We
require large energies and are unfavorable for small concertonsider an attractive interaction, i.el<0.
trations, and(ii) spin strings, which represent spin excita-  The impurity is introduced via its scattering matrix with
tions in the system. Their dressed energies are positive fqpe jtinerant electronS. If the integrability of the model is to

the pure system, and a small concentration of impurities do A . .
not change their sign. Hence, these states are not populat g preserveds has to satisfy the triangular Yang-Baxter

in the ground state. From the zeroes of the dregspdten-  rélation withX:

tial we have that to leading ord8rx \'c—c,. The total mag- / . o
netization of the Hubbard chain with impurities is then ap- X773 (x; — X5) ST (X1 — Xo) ST 272, (Xo— Xo)
proximately given by oy, MM MM

(A1)

S, . andP=5,:,.6,
1Y2

0'10'1 0'20'2

! ’ rn
_ 0'20' 0'10' 0'10'1
S,=SN+a(c—ceyH'? —SMMf(xz—xo)SM,hj,,(xl—xo)xgégg(xl—xz),

1/2 (A2)

1 dgap
= Phos( 0) 2 dc [1+eaRo]] (18) where the sum over repeated indices is implicit. The index

refers to the spin component of the magnetic impurity. An

for ¢ slightly abovec,,. The expression for the coefficieat ~ impurity scattering matrix satisfying EgA2) is*>**
is only approximatdthe error is about 10%), since here we
neglected the feedback of the finlBeon the dressed energy g’ (X)= 8y Supar + (MM + ) (M0’ M + ")
. a as a function ok, is shown in Fig. Lc). It essentially MM o TMM
tracks the dependence of the slope and the fraction of local- iv@s+nrz
ized electrons(valence niy,,. While the slope andr are Xm MM’ (A3)
determined by the driving term Qgfiy,, Nimp follows the
dependence of the driving term of . Both driving terms
are similar Lorentzians, explaining the similar trends of thes
guantities.

As mentioned earlier, the lack of a bound state inside th
spin gap is an artifact of our impurity model and nongeneric.
It is the consequence of the suppressed backward scattering, (SM; 3 0|S3(S+ )M +0), (A4)

e\Nhere PKAOI;A’: éo’o” 5MM’+ 5—0’0”5M_’M+.20" The ClebSCh-
Gordan coefficient M a|M + o), which is a short-hand no-
éation for
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selects the way the impurity couples to the itinerant electhe indicesr and ' the monodromy matrix forms a>22

trons. Herex, is the impurity rapidity which controls the matrix, which we writeﬂj'(a) omitting the spin indices and
degree of “valence admixture.” Note that both EdAl)  ihe parameters; .

and(A3) are unitary. o From the Yang-Baxter relations it follows that the mono-
We now define the monodromy mattix® for Ne elec-  gromy matrix satisfies the identify®
trons andN; impurities,N=Ng+N;,

{O':IL .. .o’,l\‘}’r/

XY a—a" )L a" )L X(a)=L"2(a)LHa")
{o1...on}T 727 3 3 2 1

(a;aq,...,ay)

' g ) MUN-1T Ti‘fs ’
— _ _ _ XX - , (A6
Y(r,(rl( a a)Y(réUZ(az a).. 'Y",'WN (ay—a), Téfé(a a'), (AB)

(AS)  where the sum over repeated indices is implicit. The transfer
with the implicit summation over all the:; indices andY matrix is defined a§'(a)=27£:(a). Using Eq.(A6) and the
denotes a scattering matrix. Heteis the spectral parameter. ynitarity of X(«), it is straightfoward to show that transfer
Equation(AS) consists of a product df scattering matrices matrices at different values commute and can all be diago-
of the X type andN; electron-impurity scattering matrices, nalized simultaneously. The procedure to diagonalize the

which can be arranged in arbitrary order. The indiegs transfer matrices is standard and yields the discrete Bethe
generically denote electron or impurity spins. With respect tdAnsatzequations given in Sec. Il.
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