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Scaling and criticality of the Kondo effect in a Luttinger liquid

Reinhold Egger and Andrei Komnik
Fakultät für Physik, Albert-Ludwigs-Universita¨t, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany

~Received 2 July 1997; revised manuscript received 16 January 1998!

A quantum Monte Carlo simulation method has been developed and applied to study the critical behavior of
a single Kondo impurity in a Luttinger liquid. This numerically exact method has no finite-size limitations and
allows to simulate the whole temperature range. Focusing on the impurity magnetic susceptibility, we deter-
mine the scaling functions, in particular for temperatures well below the Kondo temperature. In the absence of
elastic potential scattering, we find Fermi-liquid behavior for strong electron-electron interactions,gc,

1
2, and

anomalous power laws for12,gc,1, wheregc is the correlation parameter of the Luttinger liquid. These
findings resolve a recent controversy. If elastic potential scattering is present, we find a logarithmically diver-
gent impurity susceptibility atgc,

1
2 that can be rationalized in terms of the two-channel Kondo model.
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I. INTRODUCTION

Since its discovery, the Kondo problem is one of the c
tral topics in condensed-matter physics.1,2 It describes a mag
netic spin-12 impurity embedded into a metal and may be t
simplest example for the growth of an effective coupling
low energies, resulting in a nonperturbative ground state.
normal metals this ground state is found to be of Fer
liquid type, where the quasiparticle wave functions simp
acquire a phase shift.3 The situation might change in one
dimensional~1D! systems that are known to exhibit no
Fermi-liquid behavior for arbitrary Coulomb interaction
The fundamental theory of interacting 1D metals in the lo
energy regime is the Luttinger liquid model.4–6 It is therefore
of interest to understand the Kondo effect in a Luttinger l
uid. An additional motivation arises from recent advances
nanofabrication that now allow for controlled experiments
1D systems.7 In the future the question of how magnet
impurities behave when coupled to 1D metals might be
crucial importance for experiments on quantum wires,7,8 car-
bon nanotubes,9 or for edge states in the fractional quantu
Hall regime.10

The Luttinger liquid model unifies the low-temperatu
physics of many microscopic lattice models for strongly c
related fermions, with only very few phenomenological p
rameters. In particular, one has the dimensionless Coul
interaction strength parametersgc andgs for charge and spin
sectors, respectively, and the charge- and spin-density
locities vc andvs . The crucial assumptions are the absen
of lattice instabilities~like umklapp scattering!, the absence
of electron-electron backscattering, and that the Coulomb
teraction potential is screened by mobile charge carr
close to the 1D metal. As a simple model for interacti
fermions, the Luttinger liquid model is widely used to stu
the influence of electronic correlations on dynamical prop
ties of 1D metals, in particular in the presence of impuriti
The case of a spinless impurity is by now well understood11

If the impurity has internal degrees of freedom, the situat
is more complicated and is the subject of this paper.

A Kondo impurity coupled to a Luttinger liquid was firs
considered by Lee und Toner.12 Employing the perturbative
570163-1829/98/57~17!/10620~10!/$15.00
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renormalization group they established how the Kondo te
peratureTK depends on the exchange coupling constanJ.
This turns out to be a power-law dependence, while for n
mal metalsTK is an exponential function of the couplin
constant.2 The same power law was found by Furusaki a
Nagaosa.13 These authors derived the correctSU(2) invari-
ant scaling equations in the weak-coupling regime and t
tatively extended them to the strong-coupling regime, wh
a stable strong-coupling fixed point was found for both an
ferromagnetic and ferromagnetic exchange couplings. T
strong-coupling fixed point describes a many-body sing
formed by the impurity spin and the conduction electro
similar to what happens in a normal metal. Moreover, Fu
saki and Nagaosa made detailed predictions concerning
low-temperature critical properties of the impurity, e.g., t
magnetic susceptibility, the heat capacity, and the cond
tance. These quantities were found to exhibit power-law
havior with interaction-dependent exponents.

However, it remained unclear whether the extrapolat
of the perturbative scaling equations into the strong-coup
regime is justified. Recent boundary conformal-field theo
~CFT! results by Fro¨jdh and Johannesson14 allow only two
possible scenarios. Either the system belongs to the Fe
liquid universality class or it indeed has the properties p
dicted by Furusaki and Nagaosa. CFT itself is however
able to unambiguously decide which universality class
ultimately realized for the Kondo problem in a Luttinge
liquid. Durganandini15 gives several arguments in favor o
the non-Fermi-liquid scenario for the low-temperature fix
point. However, some recent papers seem to favor the l
Fermi-liquid picture. Schiller and Ingersent have discusse
truncated but related model that exhibits Fermi-liqu
behavior.16 In addition, according to the numerical densit
matrix renormalization-group ~DMRG! calculation of
Wang,17 Fermi-liquid behavior holds for a spin-1

2 impurity
interacting with a 1D Hubbard chain. Recently, Chenet al.
deduced Fermi-liquid laws from the parity and spin-rotati
symmetry of a related model.18 Here we shall address an
resolve this controversial issue.

So far few studies have dealt with magnetic impuriti
exhibiting elastic potential scattering in addition to the co
10 620 © 1998 The American Physical Society
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57 10 621SCALING AND CRITICALITY OF THE KONDO EFFECT . . .
ventional~Kondo! exchange coupling.19–21Why it should be
considered at all becomes clear after the following disc
sion. If one starts out from the usual Anderson model
describe a localized orbital interacting with conduction el
trons, the natural generalization in 1D would include Co
lomb interactions among the conduction electrons.22 For un-
correlated conduction electrons, one can then derive
usual Kondo exchange coupling in the local-moment reg
~which is realized for large on-site repulsion and a sing
particle impurity level deep below the Fermi energy! by ap-
plying the Schrieffer-Wolff transformation.2 This transfor-
mation generates the exchange coupling@see Eq. ~2.6!
below# and, in addition, an elastic potential scattering ter
In the correlated case of interest here, this latter term ma
crucial since elastic potential scattering is relevant in a L
tinger liquid.11 What can happen to a magnetic impurity in
Luttinger liquid in the presence of strong potential scatter

was first studied by Fabrizio and Gogolin.23 They predict that
at the strong-coupling point for the Kondo effect discuss
above, elastic potential scattering is irrelevant for the rat
weak repulsive Coulomb interaction, namely, for1

2,gc,1.
In contrast, for a strong enough interaction,gc, 1

2, the poten-
tial scattering breaks up the system into two independ
chains. The magnetic impurity then interacts with two su
systems ~channels!, and the two-channel Kondo pictur
emerges.23

In this paper we present a path-integral quantum Mo
Carlo ~QMC! method allowing for the computation of the
modynamic properties of a Kondo impurity in a Lutting
liquid. This method is numerically exact within the statistic
error bars inherent to the MC technique. The main adv
tages of our method are the complete absence of any sys
size restriction, contrary to DMRG simulations or seve
other QMC lattice algorithms,24 and the possibility of treat-
ing arbitrarily correlated conduction electrons in a simp
manner. A more standard way of carrying out such a QM
simulation would implement a world-line or auxiliary-fiel
scheme for a specific lattice model of interacting fermio
coupled to a magnetic impurity. If the Luttinger liquid pa
rameters have been identified for such a lattice model,
route could in principle provide the same information as o
tained below. After several tests, however, we found it mu
more convenient to proceed as described in this paper.
might further ask why we chose to develop a new algorit
for studying the Kondo effect even though the exceptiona
stable and widely used QMC impurity algorithm due to H
sch and Fye25 is available. The reason is that we have
include the Coulomb interactions among the conduct
electrons that are responsible for the Luttinger liquid state
the Hirsch-Fye algorithm, one traces out the conduction e
tron degrees of freedom away from the impurity and th
updates only the arising fermion determinant. This proced
is only practical if the conduction electrons are in the Ferm
liquid state. By employing the bosonization method, as
shown below, one can in fact follow a similar route as
Ref. 25 and trace out the now correlated conduction e
trons away from the impurity. Parenthetically, we menti
that for the Kondo effect in a Luttinger liquid, the Kond
temperature is much higher than the exponentially smallTK
in a Fermi liquid.26 Therefore the asymptotic low
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temperature regime is now much easier to access by Q
simulations.

As is well known, QMC simulations of spin systems ofte
have to deal with the fundamental sign problem. This pro
lem is well-known in the context of fermion simulations.27 In
our case it is caused by sign alternations of the QMC wei
function for different impurity spin configurations. Thi
‘‘phase’’ sign problem28 leads to a small signal-to-noise rat
and hence to numerical instabilities. The approach we s
discuss here is plagued by such a sign problem. Howe
our sampling technique moderates the problem to an ex
that allows us to treat sufficiently low temperatures.29 More-
over, we have also applied filtering techniques28 that provide
a general method to ease the aforementioned difficulties.
the approach described below suffers only from a minor
trinsic sign problem, and the use of the filtering technique
not really crucial to obtain the results described below.
nally, we mention that for a calculation of the Kondo scree
ing cloud around the impurity, a simpler version of th
present simulation method has been employed by Egger
Schoeller.30

The outline of this paper is as follows. In Sec. II w
discuss the Luttinger liquid model with a Kondo impuri
and describe our Monte Carlo algorithm in some detail.
Sec. III results for a Kondo impurity in the absence of elas
potential scattering are presented, and Sec. IV gives res
in the presence of additional strong elastic potential scat
ing. Finally, some concluding remarks are offered in Sec.

II. THEORY AND QUANTUM MONTE CARLO METHOD

The low-energy properties of correlated 1D systems
most conveniently described in terms of the bosonizat
method.4–6 The spin-12 electron field operator is expressed
terms of spin and charge boson fields that obey the alge
~we put\51)

@u i~x!,w j~x8!#52
i

2
d i j sgn~x2x8!, ~2.1!

where i , j denote the charge~c! or spin ~s! degrees of free-
dom. The canonical momentum for thew i phase field is
thereforeP i(x)5]xw i(x). The two kinds of phase fields ar
not independent but basically dual fields. Written in terms
the boson phase fields, the right- or left-moving (p56)
component of the electron annihilation operator for spins
56 takes the form

cps~x!5A vc

2pvF
hpsexp$2 iAp/2@uc~x!1sus~x!#%

3exp$ ipkFx1 ipAp/2@wc~x!1sws~x!#%.
~2.2!

The bandwidth cutoff isvc , and we putvc5vFkF51 in
what follows (vF is the Fermi velocity!. A corresponding
lattice constant can then be defined asa5vF /vc . In Eq.
~2.2!, we have also included real Majorana fermionshps .
Their purpose is to ensure proper anticommutation relati
between operators for different branches labeled byps.
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10 622 57REINHOLD EGGER AND ANDREI KOMNIK
Since only productshpsh6p6s will appear in the Hamil-
tonian, a convenient choice for these products is~see also
Ref. 30!

hpsh2ps5 ipstz ,

hpshp2s5 isty , ~2.3!

hpsh2p2s5 iptx ,

wheret i are the usual Pauli matrices. There is a simple w
to understand why Eq.~2.3! holds. Keeping in mind tha
hpshps51 for all p and s, one can easily check that a
products of the operatorshpshp8s8 defined in Eq.~2.3! fulfill
the correct algebra required by anticommutation relations
the hps . Actually, Eq.~2.3! shows only one of several pos
sibilities to choose representations of Majorana ferm
products. Of course, one can verify that the subsequen
sults do not depend on which one we choose.

Under the conditions specified in the Introduction, the
fective low-energy Hamiltonian for the clean electronic sy
tem takes the simple Gaussian form of the bosonized L
tinger liquid model,4–6

H05 (
j 5c,s

vF

2 E dx@P j
21gj

22~]xw j !
2#. ~2.4!

In a system with full~Galilean! translation invariance, the
velocities vc and vs are required to fulfillv i5vF /gi . We
have assumed this relation in Eq.~2.4!, bearing in mind that
for lattice models it need not be fulfilled.6 A general rule of
thumb for the dimensionless interaction strength param
gc is

gc'@112U/pvF#21/2,

whereU is the forward-scattering amplitude of the screen
Coulomb interaction. In the important case of repulsive
teractions,gc,1. The spin parameter should be set togs
51 in order to respect the underlying spin isotropy of t
electrons.6 This value is also the fixed point value of th
renormalization group~RG! if one incorporates electron
electron backscattering. In the remainder, we shall putgs
51 and neglect backscattering. Following the usual per
bative RG analysis, this could at most lead to weak logar
mic corrections5 to the power laws found below.

Next we consider what happens once a single magn
impurity is brought into the Luttinger liquid, say, atx50.
We envision a spin-12 impurity characterized by the spin op
eratorS5 1

2 t, wheret denotes the vector of Pauli matrice
@this is not to be confused with thet i appearing in Eq.~2.3!#.
In terms of the conduction-electron spin-density operator

s~x!5
1

2 (
pp8ss8

cps
† tss8cp8s8, ~2.5!

and a pointlike exchange couplingJ, the standard contac
contribution to the Hamiltonian reads withs65sx6 isy

HI5Js~0!S5Jsz~0!Sz1
J

2
@s1~0!S21s2~0!S1#.

~2.6!
y
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We consider only antiferromagnetic valuesJ.0 in this pa-
per. Using the bosonization formula~2.2!, the spin density
~2.5! of the conduction electrons reads

sz~x!5
1

A2p
]xws~x!1

1

pa
tzsin@2kFx1A2pwc~x!#

3cos@A2pws~x!# ,

s6~x!5
1

pa
exp@6A2p ius~x!#$6 i tycos@A2pws~x!#

1txsin@2kFx1A2pwc~x!#%. ~2.7!

Here thet i matrices come from the Majorana fermion pro
ucts ~2.3!.

Now we can incorporate elastic potential scattering. F
that purpose, we need the bozonized form of the to
electron-density operator,

r~x!5A2/p]xwc~x!

1
2

pa
tzcos@2kFx1A2pwc~x!#sin@A2pws~x!#,

~2.8!

where we have omitted the background charge den
2kF /p. The 2kF component stems from terms mixing righ
and left-moving particles, while the slow component;]xwc
comes directly from the densities of right and left move
There is also a 4kF component inr(x), not specified in Eq.
~2.8!, which dominates in the regimegc, 1

3. Since in that
limit the Coulomb interactions are extremely strong, a
elastic potential scattering will be highly relevant. Includin
a pointlike scattering potential of strengthV, one obtains first
a forward-scattering contributionHFS5VA2/p]xwc(0). This
can simply be absorbed by a phase shift in the sin@2kFx# or
cos@2kFx# factors and is therefore omitted in the sequel. W
are then left with the important backscattering contributio

HV5
2V

pvF
tzcos@A2pwc~0!#sin@A2pws~0!#. ~2.9!

For numerical calculations, it is advantageous to emplo
unitarily transformed picture such that the Hamiltonian b
comes explicitly real valued. This is achieved b
choosing30,31

U5exp@A2p ius~0!Sz#, ~2.10!

such that

Us6S7U†5
1

pa
$6 i tycos@A2pws~x!#

1txsin@2kFx1A2pwc~x!#%S7 .
~2.11!

The total transformed HamiltonianH̃5UHU† then reads
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57 10 623SCALING AND CRITICALITY OF THE KONDO EFFECT . . .
H̃5H01
1

A2p
J̄Sz]xws~0!

1
J

pvF
$txSxsin@A2pwc~0!#1tySycos@A2pws~0!#

1tzSzsin@A2pwc~0!#cos@A2pws~0!#%

1
2V

pvF
tzcos@A2pwc~0!#sin@A2pws~0!#, ~2.12!

where the transformation leads to a change in the forw
scattering,

J̄5J22pvF . ~2.13!

The unitary transformation~2.10! also removes theus(0)
field from the Hamiltonian~in fact, it is just constructed to
remove this phase factor!.

From Eq.~2.12! it is obvious that the Majorana fermion
are dynamically constrained to follow the impurity spin d
namics since

@tz^ Sz ,H̃#50. ~2.14!

Therefore we must have

tz56 2Sz . ~2.15!

The only manifestation of the Majorana fermions is the ov
all sign, which we set equal to11 in the following.

One can simplify the total Hamiltonian using properties
the productstk^ Sk appearing in Eq.~2.12!. Evaluated in the
uSz ,tz& basis, we find from Eq.~2.15!,

^Sz8tz8uSx^ txuSztz&5 1
2 d~Sz ,2Sz8!5^Sz8uSxuSz&,

^Sz8tz8uSy^ tyuSztz&52 1
2 d~Sz ,2Sz8!52^Sz8uSxuSz&,

^Sz8tz8uSz^ tzuSztz&5 1
2 d~Sz ,Sz8!5 1

2 ^Sz8uSz&. ~2.16!

Therefore we can reduce the original Hamiltonian throu
the substitutions

Sx^ tx→Sx ,

Sy^ ty→2Sx , ~2.17!

Sz^ tz→1/2.

This leads from Eq.~2.12! to

H̃5H01
1

A2p
J̄Sz]xws~0!1

J

2pvF
„2Sx$cos@A2pwc~0!#

2cos@A2pws~0!#%1cos@A2pwc~0!#cos@A2pws~0!#…

2
2V

pvF
2Szsin@A2pwc~0!#sin@A2pws~0!#. ~2.18!
rd

-

f

h

For further convenience, we have shifted thewc field by
Ap/8. This changes sin@A2pwc# to cos@A2pwc# and
cos@A2pwc# to 2sin@A2pwc#.

We now proceed by integrating out all boson fieldsw j (x)
for xÞ0 for a given impurity spin path, as these repres
just Gaussian integrations. The Euclidean action can the
expressed as an average over new fields (t denotes Euclidean
time extending fromt50 to t5b51/kBT)

qj~ t !5A2pw j~x50,t !, ~2.19!

with the constraint being enforced by Lagrange multipl
fields l j (t). Since the spin and charge modes are o
coupled through the terms;J and ;V in Eq. ~2.18!, the
elimination of thew j degrees of freedoms can be carried o
independently forj 5c and j 5s. As the computation for the
charge part follows the same line of reasoning as for the s
part~it can be obtained by retaininggc factors and disregard
ing the; J̄ term!, we only discuss the elimination of thews
field in the following. Results for thec field are then recov-
ered at the end, see Eq.~2.23!.

After a partial integration, we have to integrate o
ws(x,t) from a problem characterized by the effective acti

Seff5
1

2vF
E dxdt@~] tws!

21vF
2~]xws!

2#

2
J̄

A2p
E dxdtws~x,t !Sz~ t !d8~x!

1 i E dtls~ t !@qs~ t !2A2pws~0,t !#.

This can be achieved by solving the Euler-Lagrange equa

~] t
21vF

2]x
2!ws~x,t !52A2p i Fls~ t !d~x!2 i

J̄

2p
Sz~ t !d8~x!G ,

which is easily done in Fourier space,

ws~x,t !5
1

b (
n52`

` E
2`

` dk

2p
eivnt1 ikxws~k,vn!, ~2.20!

with similar relations for other fields (vn52pn/b are the
Matsubara frequencies!. Inserting the solution of the Euler
Lagrange equation forws into Seff , one has

Seff5
i

b(
n

qs~vn!ls~2vn!

1
1

2b(
n

@ls~vn!ls~2vn!Fs~0,vn!

1~ J̄/2p!2Fs9~0,vn!Sz~vn!Sz~2vn!].

Here we have defined the boson propagators32 ( j 5c,s)
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10 624 57REINHOLD EGGER AND ANDREI KOMNIK
F j~x,v!5vFE
2`

`

dk
exp~ ikx!

v21v j
2k2

5
pgj

uvu
exp~2uvx/v j u! ,

F j9~x,v!5~]2/]x2!F j~x,v!

52
2pgj

v j
d~x!1

pgj uvu

v j
2

exp~2uvx/v j u!.

~2.21!

The d(x) contribution toF j9(x,v) is irrelevant in our case
since it causes only a constant term;*dtSz

2(t) in the effec-
tive action. We therefore disregard it in the following. F
nally, the Lagrange multiplier field can be integrated out
simple minimization,

ls~vn!52 i
qs~vn!

Fs~0,vn!
. ~2.22!

Collecting results, the effective action is found to read

Seff5 (
j 5c,s

1

2pgjb
(

n
uvnuuqj~vn!u2

1
J

2pvF
E dtcos@qc~ t !#cos@qs~ t !#

2
2V

pvF
E dt2Sz~ t !sin@qc~ t !#sin@qs~ t !#

1
J̄2

8pb(
n

uvnuuSz~vn!u21S8 , ~2.23!

with S8 formally given as*dtH8(t) with

H8~ t !5
J

2pvF
2Sx~ t !$cos@qc~ t !#2cos@qs~ t !#%.

~2.24!

After these preparations, we now proceed further and
scribe a QMC algorithm for this problem. Since the unita
transformationU given in Eq.~2.10! leads to the real-valued
Hamiltonian~2.18!, it is very convenient to employ this rep
resentation. We have focused on the impurity susceptibi

x5E
0

b

dt^Sz~ t !Sz~0!&, ~2.25!

since knowledge ofx at low temperatures is sufficient t
answer the questions raised in the Introduction. Here the
erage is taken using Eq.~2.18!. The impurity spin operatorSz
does not change under the unitary transformationU, so the
expression~2.25! holds also in the transformed picture.

The QMC simulation scheme starts out from the d
cretized imaginary-time path-integral representation for
~2.25! using the effective action~2.23! with Eq. ~2.24!. The
imaginary-time slice isdt5b/N, where the Trotter numbe
N should be large enough. In practice, one has to ch
y

e-

v-

-
.

k

empirically at the end that results converge upon increas
N. In the QMC simulations, a hard cutoff was chosen
keeping only Matsubara frequenciesuvnu,vc . The sam-
pling of the qj fields is then most conveniently carried o
directly using their Matsubara components. For the impu
spin variable, however, it is mandatory to use the time r
resentation because one has a discrete variableSj52Sz(t j )
561, wheret j5 j dt is the j th time slice. The action contri-
bution S8 is now determined as follows. From a Trotte
breakup procedure24 valid at small enoughdt, we obtain the
representation

exp~2S8!5)
j 51

N

^Sj 11uexp@2dtH8~ t j !#uSj&, ~2.26!

where the spins obey periodic boundary conditions,SN11
5S1. Using the matrix elements~2.16!, we obtain~up to an
irrelevant overall constant!

exp~2S8!5)
j 51

N

@ef ~ t j !1SjSj 11e2 f ~ t j !#, ~2.27!

where

f ~ t !5
Jdt

2pvF
$cos@qc~ t !#2cos@qs~ t !#%. ~2.28!

The QMC sampling is then drawn from the weight fun
tion

P;uexp~2Seff!u, ~2.29!

whereSeff is specified in Eq.~2.23! together with Eq.~2.27!.
Since exp(2S8) can be negative, the simulations have to fa
the sign problem.27 For not exceedingly largeJ and low
temperatures, however, the sign problem is not severe
the QMC algorithm described here can be applied to a w
region of the parameter space without instabilities. Denot
the sign of the MC weight as

jp5sgn@exp~2S8!#, ~2.30!

the MC denominator will then bêjp&. The severity of the
sign problem is usually measured in terms of^jp&.

27 One
way to weaken the sign problem is to employ the Mak
tering technique28 that can improve the stability of the algo
rithm by about 20% to 30%. For the results presented bel
this technical trick was not necessary, and good statistics
be acquired even without a filtering method.

Of particular interest is the value of the impurity susce
tibility x, which is given by the temperature-dependent e
pression

x5
dt

4

K jp(
j 51

N

SjS1L
^jp&

. ~2.31!

Here the Monte Carlo sampling over the configuration sp
spanned by the variables$qc(vn),qs(vn),Sj% is carried out
using the weight~2.29!. Another important quantity, which
can in principle be computed with our QMC method, is t
impurity specific heatCimp . From a theoretical point of
view, information aboutCimp would be quite valuable, since
conformal field theory shows that in the non-Fermi-liqu
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57 10 625SCALING AND CRITICALITY OF THE KONDO EFFECT . . .
scenario, different operators determine the leading temp
ture dependence of these two thermodynamic quantitie33

Unfortunately, the energy-energy correlation function
quired forCimp is rather difficult to sample, and the statisti
acquired by the present QMC method did not allow us
extract reliable results forCimp in the low-temperature re
gime T,TK . Therefore we focus on the impurity suscep
bility ~2.31! in this work.

For the results presented below, the average sign is^jp&
>0.1, but in practice stable simulations can be carried
even for^jp&'0.01 at the expense of long CPU times. T
Monte Carlo trajectory was drawn from the standard M
tropolis algorithm.24 We have used local updates of the pha
fields atx50, i.e., of the Matsubara componentsqc(vn) and
qs(vn) for uvnu<vc , and of the impurity spin trajectory
Sz(t j )5Sj /256 1

2. Typical discretization parameters~for
J/2pvF50.1 andV50! required to ensure convergence
the continuum limit of the discretized path integral a
vcdt.0.3. The acceptance ratios for local updates of
$Sj% variables are rather low for the parameter values c
sidered below, typically of the order of 5%. Therefore da
are accumulated only after at least 5 full MC passes to
sure statistical independence. Our code performs at an a
age speed of 1 CPU hour per 5000 samples~separated by 5
MC passes! on an IBM RISC 6000/model 590 workstation
the lowest temperatures under consideration. Results
ported here typically require several 106 samples per data
point.

III. CRITICAL IMPURITY DYNAMICS
WITHOUT POTENTIAL SCATTERING

In this section we study the case without potential scat
ing (V50), with particular emphasis on the controver
about the low-temperature scaling. From our QMC data
observe that allx(T) curves for different coupling constan
J but at a given Coulomb interaction strengthgc are consis-
tent with the existence of a single universal scaling cur
For instance, our raw data forgc5 1

4 are shown in Fig. 1, and

FIG. 1. Low-temperature behavior of the impurity magnetic s
ceptibility at gc5

1
4 and various values of the coupling constantJ.

Notice the semilogarithmic scales. Dashed curves represent gu
to the eye only. Vertical bars give standard deviation error bars
to the MC sampling.
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the scaling curve forx is depicted in Fig. 2. The universa
scaling functionf is defined by

TKx~T!5 f ~T/TK!. ~3.1!

The statistics accumulated in the QMC simulation at lo
temperatures is best ifJ/2pvF is chosen around 0.1 to 0.15
For smallerJ, the acceptance rate for spin flips becomes v
small, and one has a critical slowing down problem. F
larger J, the sign problem is quite severe and prevents
extraction of reliable results. In most of the following, w
have therefore usedJ/2pvF50.1 for large-scale simulation
and checked scaling explicitly only for not too low temper
tures (T.TK).

Using the matching procedure onto a single scaling cur
the Kondo temperature can be determined straightforwar
On the other hand, the valuex05x(T50) is finite and can
be used to define the Kondo temperature as well. Indeed
zero-temperature magnetic susceptibility is of the order
the inverse binding energy of the many-body singlet st
formed by the impurity spin and the conduction electro
Therefore we can fixTK alternatively as

x051/TK , ~3.2!

which implies f (0)51 from Eq. ~3.1!. From the zero-
temperature limit ofx(T) ~which can be obtained quite ac
curately by extrapolation of the data! we can then read off
TK . By means of either of these two prescriptions, as
shown in Fig. 3 forgc5 1

4, one can indeed verify the depen
dence of the Kondo temperature on the coupling cons
predicted in Refs. 12 and 13,

TK5DS J

2pvF
D 2/~12gc!

, ~3.3!

whereD is of the order of the bandwidth cutoffvc . Simul-
taneously, one gets the universal scaling curve for given
teraction strengthgc .

Now we wish to address the low-temperature critical b
havior. The low-temperature form (T!TK) of the impurity
susceptibility~3.1! can exhibit only two possibilities allowed
from CFT.14 Either one has~i! Fermi-liquid behavior,

-

es
e

FIG. 2. Scaling curve for Fig. 1. Notice the semilogarithm
scales. The dashed curve is a guide to the eye only. The inset s
the data with best statistics@obtained for J/2pvF50.1# as
(x02x)TK versusT/TK at low temperatures. The straight line ha
slope 2. Notice the double-logarithmic scale.
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f ~T/TK!512c1~T/TK!21•••, ~3.4!

or ~ii ! the anomalous exponents predicted by Furusaki
Nagaosa,13

f ~T/TK!512c2~T/TK!1/gc1•••, ~3.5!

wherec1 andc2 are positive constants. Obviously, atgc5 1
2

one must see theT2 behavior. This is a check for our nume
ics that is indeed passed nicely. The results@taking J/2pvF
50.1# are presented in Fig. 4. In the inset we have depic
the dependence of the deviation (x02x)TK on the thermal
scaling variableT/TK . As one can see, the correctT2 power
law emerges, provided we are below the Kondo temperat

The same critical behavior is found forgc5 1
4 as shown in

the inset of Fig. 2. At low temperatures (T,TK), the scaling
curve flattens and displays aT2 behavior. The data shown i
the inset were obtained forJ/2pvF50.1, where accurate sta
tistics can be accumulated. From these results one migh
tempted to infer Fermi-liquid behavior for all interactio
strength parametersgc . However, we find the Furusaki
NagaosaT1/gc law as soon asgc. 1

2, as shown in Fig. 5 for
gc5 3

4. The slope in the inset of Fig. 5 is43, in accordance
with the exponent found in Ref. 13.

FIG. 3. Normalized Kondo temperatureTK as a function of the
exchange couplingJ for gc5

1
4. The normalization has been chose

such thatTK51 for J/2pvF50.1. The crosses represent the eva
ation of TK from Eq. ~3.1! and the circles from Eq.~3.2!. The
straight line has slope83 and represents the prediction of Eq.~3.3!.
Notice the double-logarithmic scale. Vertical bars denote error
timates.

FIG. 4. Scaling curve for the temperature dependence of
impurity susceptibility atgc5

1
2. The straight line in the inset ha

slope 2. The dotted curve is a guide to the eye only.
d

d

e.

be

In addition, we have analyzed the case of extrem
strong interactions. This formally corresponds togc→0. As-
suming that this limit is analytical, we can find the impuri
susceptibility behavior from a study ofgc50.001, see Fig. 6.
Again, in accordance with our previous analysis, we find
T2 law for the low-temperature susceptibility.

Let us now discuss these numerical results. Our simu
tion data for the impurity susceptibility atT!TK are consis-
tent with the scaling form~3.1! with

f ~T/TK!512c1~T/TK!22c2~T/TK!1/gc1•••. ~3.6!

Hence there are two leading irrelevant scaling fields,34 one
describing Fermi liquid (l1) and one describing non-Ferm
liquid (l2) behavior, where the latter one corresponds to
Furusaki-Nagaosa prediction. Forgc, 1

2, the Fermi-liquid
term is more important and leads to the observedT2 behavior
at low temperatures. In contrast, for1

2,gc,1, the non-
Fermi-liquid behavior predicted in Ref. 13 dominates.

The scaling form~3.6! is consistent with the conformal
field theory analysis.14,35 The operatorÔ2 conjugate to the
scaling fieldl2 is produced by a composite boundary ope
tor in spin and charge sectors, while the operatorÔ1 comes
from a composite operator given by the products of ener
momenta tensors in spin and charge sectors. As these
descendants of the identity operator, their contribution to
susceptibility becomes linear inl1, i.e., c1;l1. In contrast,
the Furusaki-Nagaosa term scaling likeT1/gc is quadratic in
the corresponding scaling field,c2;l2

2. The amplitude of
this contribution vanishes;(12gc) as gc→1, thereby re-

-

s-

e

FIG. 5. Scaling curve as in Fig. 4 but forgc5
3
4. The straight line

in the inset has slope43.

FIG. 6. Scaling curve as in Fig. 4 but forgc50.001. The straight
line in the inset has slope 2.
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57 10 627SCALING AND CRITICALITY OF THE KONDO EFFECT . . .
producing the correct Fermi-liquid behavior of the conve
tional Kondo effect for uncorrelated electrons. Parenth
cally, we note that the scaling fieldl2 also produces a
subleadingT111/gc law in the impurity specific heat.

To summarize, atgc, 1
2, the Fermi-liquid behavior will

always dominate. However, at sufficiently low temperatur
the Furusaki-Nagaosa exponents can be observed at1

2,gc
,1. This finding is in conflict with the recent numeric
DMRG study by Wang,17 which reports Fermi-liquid behav
ior for a spin-12 impurity coupled to a Hubbard chain. Notic
that the interaction parametergc for the 1D Hubbard mode
away from half-filling is always within the bounds12,gc
,1.6 Most likely the discrepancy is caused by finite-si
effects due to the short chain lengths used in Ref. 17.
more complicated outcome~3.6! also shows that the simpli
fied model by Schiller and Ingersent16 does not capture al
essentials of the Kondo effect in a Luttinger liquid.

Finally, let us discuss our data for extremely strong int
actions,gc→0. For the clean case, it is well established th
the Luttinger liquid model forgc→0 is equivalent to the
low-energy sector of the 1D Heisenberg spin chain.6 Assum-
ing that this reasoning carries over if a magnetic impurity
present, theT2 scaling of the impurity susceptibility ob
served here~see Fig. 6 forgc50.001) should also describ
the susceptibility of a spin-1

2 impurity interacting with a 1D
Heisenberg chain. One has to be careful to couple the im
rity to just one site of the Heisenberg chain, otherwise
additional potential scattering contribution will be prese
~see Refs. 36–39 and Sec. IV!. A different result was re-
ported very recently by Liu,40 namely, aT5/2 scaling of the
impurity susceptibility at low temperatures. Unfortunate
the reason for this discrepancy is not clear at the mome

IV. CRITICAL IMPURITY DYNAMICS
WITH POTENTIAL SCATTERING

In this section the influence of elastic potential scatter
on the critical properties of a spin-1

2 impurity in a Luttinger
liquid will be discussed. As already mentioned in the Intr
duction, for sufficiently strong interaction strength,gc, 1

2,
and for strong enough potential scattering, the system is
pected to display physics familiar from the two-chann
Kondo model.23

In Fig. 7, data are shown forgc5 1
4. At high temperatures

with or without elastic potential scattering, the Curie susc
tibility of a free spin is always approached,

x free~T!5b/4. ~4.1!

However, while the impurity susceptibility displays a cros
over to the finite valuex051/TK at zero temperature fo
vanishing elastic potential scattering strength (V50), the be-
havior is drastically different if potential scattering is prese
~here, 2V/pvF50.2). The impurity susceptibility does no
appear to saturate but continues to increase without bo
when lowering the temperature. Since we have semiloga
mic scales in Fig. 7, our low-temperature data are accura
fitted by the susceptibility of the two-channel Kond
model,31

x~T!.
1

pG
lnS G

TD , ~4.2!
-
i-

,

e

-
t

s

u-
n
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-
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whereG5J2/2p2vF
2 . This value forG ~see Ref. 31! is in-

deed obtained from the slope of the solid line in Fig. 7.
this point it should be stressed that a finiteV can lead to a
significant reduction of the Kondo temperatureTK .21,22

Therefore we cannot exclude that the 2V/pvF50.2 data of
Fig. 7 are simply a reflection of a much lower Kondo tem
perature. However, the reduction factor has to be rather la
~approximately 5!, and it seems difficult to reconcile the ob
served logarithmic behavior over a large range inT/TK with
the V50 scaling function of Fig. 2. Furthermore, the qua
titative agreement of the data in Fig. 7 with Eq.~4.2! pro-
vides strong evidence for the two-channel Kondo picture

The corresponding results forgc53/4 are shown in Fig. 8.
The logarithmically divergent behavior in the presence
potential scattering is not found anymore, and the lo
temperature impurity susceptibility saturates at a finite va
x0

V . Sincex0
V.x0, we expect from Eq.~3.2! that all effects

of potential scattering can be incorporated by a renormal

FIG. 7. Impurity susceptibility atgc5
1
4 in the presence of elastic

potential scattering, 2V/pvF50.2, for exchange couplingJ/2pvF

50.08. The data points are given as filled diamonds. For comp
son, theV50 data from Fig. 2 are shown as open circles. The so
line has slope 1/pG ~see text!, and the dotted curve gives the su
ceptibility ~4.1! of a free spin. The dashed curve is a guide to t
eye only, andTK is computed forV50. Notice the semilogarithmic
scales.

FIG. 8. Impurity susceptibility atgc5
3
4 in the presence of elastic

potential scattering, 2V/pvF50.3, for exchange couplingJ/2pvF

50.1. Data points are given as filled diamonds. For comparison,
V50 data from Fig. 5 are shown as open circles. The dotted cu
gives the susceptibility~4.1! of a free spin. The dashed curves a
guides to the eye only, andTK is computed forV50. Notice the
semilogarithmic scales.
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10 628 57REINHOLD EGGER AND ANDREI KOMNIK
tion of the Kondo temperatureTK to smaller values. Within
statistical error bars, the data for 2V/pvF50.3 shown in Fig.
8 can indeed be scaled onto theV50 data, and the scaling
function f holds even in the presence of elastic poten
scattering. Clearly, this finding is in contrast to the case
strong interactions,gc5 1

4, where potential scattering drast
cally changes the temperature dependence of the imp
susceptibility.

From these data and the arguments of Ref. 23, we t
expect two-channel Kondo behavior and hence a logarith
cally divergent susceptibility for allgc, 1

2. An important spe-
cial case of this general result is recovered forgc→0, which
corresponds to the 1D Heisenberg chain. Using numer
methods, bosonization and CFT techniques, Eggert
Affleck36 and Clarke and co-workers37 have shown that a
spin-12 impurity in a Heisenberg chain exhibits a logarithm
cally divergent impurity susceptibility. Due to the specifi
coupling of the impurity to the 1D spin chain in these stu
ies, an additional elastic potential scattering was present
sides the usual Kondo exchange coupling term.

V. CONCLUSIONS

In this paper the critical behavior of a spin-1
2 impurity in a

correlated one-dimensional metal~Luttinger liquid! has been
investigated numerically. To circumvent finite-size restr
tions, we have developed and applied a quantum Mo
Carlo algorithm that allows us to determine any finit
temperature equilibrium quantity of interest. Here we ha
focused on the impurity susceptibilityx, with particular em-
phasis on the low-temperature behavior well below
Kondo temperature. Let us briefly summarize the main fi
ings emerging from our numerically exact analysis.

If elastic potential scattering is ignored, our data are c
sistent with the impurity susceptibility scaling asTKx(T)
5 f (T/TK), with a distinct universal scaling functionf for
each dimensionless interaction strengthgc . It may be worth
mentioning that scaling holds even outside the asympt
low-temperature regimeT!TK . Within error bars, all data
can be scaled onto universal scaling functions as long aT
!vc , wherevc is the bandwidth. Matchingx(T) curves for
differentJ ~but at a givengc) onto a scaling curve also yield
the correct power-law dependence of the Kondo temperat
-
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TK;J2/(12gc), which was first given in Ref. 12.
We have then used our algorithm to determine the criti

behavior forT!TK . Generally one finds power lawsx(T)
;(T/TK)h with some exponenth. At gc5 1

4 andgc5 1
2, we

find h52, but atgc5 3
4, a different exponenth5 4

3 is ob-
tained. Our data are consistent with the simultaneous e
tence of two leading irrelevant operators, one describ
Fermi-liquid behavior (h52), the other describing the
Furusaki-Nagaosa13 anomalous exponenth51/gc . At gc

, 1
2, the Fermi-liquid behavior is dominant, but at1

2,gc,1,
one can indeed observe thegc-dependent exponents. Thes
findings resolve the recent controversy14–19 about the low-
temperature criticality of the Kondo effect in a Luttinger liq
uid.

We have also studied the effects of elastic potential s
tering using our numerical approach. As predicted by F
rizio and Gogolin,23 for sufficiently strong Coulomb interac
tion strength,gc, 1

2, the impurity susceptibility is consisten
with a logarithmically divergent behavior. Thex; ln(1/T)
scaling is a manifestation of two-channel Kondo phys
caused by the effectively open boundary at the impurity s
In contrast, for 1

2,gc,1, the susceptibility saturates to
finite value at zero temperature and potential scattering d
not modify the critical behavior.

To conclude, we have numerically examined the critic
scaling properties of the Kondo effect in a Luttinger liqui
An interesting question that has not yet been studied in de
is related to universality in the presence of potential scat
ing, e.g., the existence of universal scaling functions for
impurity susceptibility. Future applications and extensions
our Monte Carlo algorithm might also deal with the case
more than one impurity, or with a systematic study of oth
quantities like the impurity specific heat.
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