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Magnetic impurities in Mott-Hubbard antiferromagnets
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A formalism is developed to treat magnetic impurities in a Mott-Hubbard antiferromagnetic insulator within
a representation involving multiple orbitals per site. Impurity scattering of magnons is found to be strong when
the number of orbitalsN8 on impurity sites is different from the numberN on host sites, leading to strong
magnon damping and singular correction to low-energy magnon modes in two dimensions. The impurity-
scattering-induced softening of magnon modes leads to enhancement in thermal excitation of magnons, and
hence to a lowering of the Ne´el temperature in layered or three-dimensional systems. Weak impurity scattering
of magnons is obtained in the caseN85N, where the impurity is represented in terms of modified hopping
strength, and a momentum-independent multiplicative renormalization of magnon energies is obtained, with
the relative magnon damping decreasing toq2 for long-wavelength modes. Split-off magnon modes are ob-
tained when the impurity-host coupling is stronger, and implications are discussed for two-magnon Raman
scattering. The mapping between antiferromagnets and superconductors is utilized to contrast formation of
impurity-induced states.@S0163-1829~98!01317-4#
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I. INTRODUCTION

While the problem of static impurities in antiferroma
netic insulators is more than twenty five years old,1 it has
attracted renewed attention after the discovery of highTc
cuprate superconductors,2 since their parent compounds a
antiferromagnetic insulators. From the very early days
high-Tc superconductivity a number of doping studies ha
been done with various static impurities—both magne3

and nonmagnetic4–6—replacing copper from the Cu-O
planes as in La2CuO4. Susceptibility measurements in high
Tc cuprates doped with magnetic impurities such as Fe,
Co give evidence of local-moment formation,4 which is ex-
pected to be intrinsically associated with the magnetic im
rities. This is unlike the case of nonmagnetic impurities su
as Zn, Al, Ga, etc., which, despite being intrinsically no
magnetic, give rise to local moments in the copper ox
planes when doped in cuprate antiferromagnets. This
inferred earlier from the Curie-Weiss behavior of the ma
netic susceptibility,4,7 and has been recently confirmed in t
Y-NMR studies of doped 1-2-3 systems as seen in the p
gressively increasing linewidth of the Y-NMR signal wit
decreasing temperature.6,8 Xiao et al. have also ascertaine
the spin states of different magnetic dopants from the
served local moments,3 and find, for example, that Fe is in
spin-52 state, whereas Ni is in a spin-1 state. They also fin
correlation betweenTc reduction and size of the local mo
ment, consistent with the magnetic pair breaking mechan

Although theoretically the problem of magnetic impuriti
in an antiferromagnet has been studied recently within
Heisenberg representation of localized spins,9 no such com-
prehensive study exists within the Mott-Hubbard mod
which provides a good description of the three-dimensio
~3D! holes in the Cu-O planes of high-Tc superconductors
570163-1829/98/57~17!/10598~5!/$15.00
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Recently the problem of nonmagnetic impurities in the Mo
Hubbard antiferromagnet was addressed and defect st
local-moment formation, impurity-scattering of magnon
and finite-temperature magnetic dynamics in layered syst
were studied.10,11 Other recent works on static vacancies
antiferromagnets include exact diagonalization studies w
the Heisenberg model,12 linear spin wave theory,13 and exact
diagonalization of strongly correlated small clusters.14 While
nonmagnetic impurities can be simply represented by s
independent impurity potential, the situation is more co
plex for magnetic impurities. In this paper we introduce se
eral representations to treat magnetic impurities in differ
situations. A simple extension to spin-dependent impu
potential is followed by a more sophisticated approach
volving a generalizedN-orbital Hubbard model with mul-
tiple orbitals per site. Broadly there are two distinct class
depending on whether the number of orbitalsN8 at the im-
purity site is the same as or different from the number
orbitalsN at the host sites. In the caseN85N the magnetic
impurity is represented through a modified hopping stren
t8 between the impurity orbitals and the neighboring h
orbitals. In the strong-correlation limit (U@t) wherein the
Mott-Hubbard AF withN orbitals per site maps to the spi
S5N/2 quantum Heisenberg AF, the modified hoppi
strength translates into modified exchange couplingJ8
54t82/U between the impurity spin and the neighborin
host spins. This describes the situation where, in spin
guage, the impurity spinS8 is equal to the host spinS, but is
coupled to its neighbors with a different exchange interact
J8. Similarly the caseN8ÞN with no modification in hop-
ping strength or Hubbard interaction energy correspond
the situation where the impurity spin is different from th
host spins (S8ÞS).
10 598 © 1998 The American Physical Society
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II. SINGLE-ORBITAL MAGNETIC IMPURITY

In this section we consider a single-orbital magnetic i
purity embedded in an antiferromagnetic~AF! host which is
described by the Hubbard model with one orbital per s
with exactly half filling. For concreteness we consider t
square lattice, generalization to other bipartite lattices be
straightforward. The host Hamiltonian is

H052t (
^ i j &s

~ais
† aj s1aj s

† ais!1U(
i

ni↑ni↓ , ~1!

wheret is the nearest-neighbor~NN! hopping strength andU
the on-site Coulomb repulsion. The AF state and its ass
ated features such as sublattice magnetization, magnon
gies, quantum corrections, etc., have been studied earlie
detail.15 We model the single-orbital impurity in terms o
locally modified hopping termt8 between the impurity or-
bital and its NN host orbitals. The Hamiltonian with such
impurity on siteI can be written as below, where the sum
over all nearest neighborsJ of the impurity sitesI , anddt
5t82t is the hopping perturbation around the impurity s

H5H01dt (
^IJ&s

~aIs
† aJs1aJs

† aIs!. ~2!

We start with the perturbative method where the impuri
induced perturbation@dx0#[@x0#2@xhost

0 # to the zeroth-
order, antiparallel-spin, particle-hole propagator is obtain
in powers ofdt/t, and resulting corrections to its eigenvalu
then yield the renormalization in magnon energies.16 Dia-
grammatic contributions to@dx0# to first order indt, and
their evaluation in the strong-correlation limit have been d
cussed earlier in context of the hopping disorder problem16

We obtain for the diagonal, off-diagonal, and neare
neighbor diagonal terms, expressed in units of2t2/D3 for
convenience,

@dx0# II 5
z

2

dt

t
; @dx0# IJ5@dx0#JI5@dx0#JJ5

1

2

dt

t
,

~3!

wherez54 is the coordination number for the square lattic
2D'U is the Hubbard gap, and only terms up to ord
(t2/D3) have been retained, appropriate to the stro
correlation limit. We notice that the sum of all matrix el
ments diagonal in sublattice basis,@dx0# II 1@dx0#JJ is pre-
cisely equal to the sum of off-diagonal matrix elemen
@dx0# IJ1@dx0#JI . An immediate consequence of this corr
lation is that the Goldstone mode is preserved and that g
erally the effective scattering of low-energy, lon
wavelength magnon modes is weak.

If the impurity is on anA-sublattice site, then for the
first-order correction we obtain after summing over near
neighbor terms

dlq
~1![^qu@dx0#uq&5~a2@dx0# II 1abzgq@dx0# IJ

1bazgq@dx0#JI1b2z@dx0#JJ!, ~4!

where a and b are the magnon amplitudes onA and B
sublattices, respectively, andgq5(cosqx1cosqy)/2. An iden-
tical result is obtained when the impurity is on aB-sublattice
-
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site, because in this casea and b are simply exchanged in
the above equation, and since@dx0# II 5z@dx0#JJ , this ex-
pression is symmetric under exchange ofa andb. Usinga
5A(1/N)(12vq

0) and b52A(1/N)(11vq
0), where vq

0

5A12gq
2 is the host magnon energy in units of 2J for the

momentum-q mode, we obtain after summing over contrib
tions from all impurities

dlq
~1!5xz

dt

t
~12gq

2!, ~5!

wherex is the total impurity concentration, and impuritie
are assumed to be evenly distributed between the two
lattices. The renormalized magnon energy, given by the p
in the magnon propagator, is now obtained from the solut
of the equation 12Av21gq

21dlq
(1)50, and up to first order

in the effective impurity strengthxdt/t we obtain

vq5vq
0S 11xz

dt

t D . ~6!

This result agrees exactly with the calculations9 on the
Heisenberg model in that there are no singular correction
the magnon energy in the caseS85S, and the correction is
proportional toxdt/t5(1/2)xdJ/J.

Turning now to the magnon-energy renormalization of t
localized, high-energy modes with energy near 2J, which
correspond to local spin deviation, we havea50, b51, so
that dl (1)5 1

2 z(dt/t). This implies that the magnon energ
gets shifted from 2J to

v52JS 11
z

2

dt

t D . ~7!

In this case the impurity concentration does not enter
magnon-energy renormalization, rather it has a bearing
the spectral weight of these high-energy modes. Thus fodt
positive, the magnon spectrum goes up by energyzJdt/t.
This increase is expected from the simple picture of th
high-energy modes corresponding to local spin deviatio
The energy cost of making a spin deviation on the impur
site iszJ8/2, whereJ8/2 is the bond strength. Witht85t(1
1dt/t), to first order in dt/t we have De5z(J82J)/2
5zJdt/t.

The exact-eigenstates analysis also shows that prec
one magnon state at the upper end of the spectrum is spli
from the magnon energy band. These split-off modes
strongly localized around the impurity sites, and hence c
respond to local spin deviations. Furthermore, for differe
values of the impurity hoppingt8/t it is seen from the mag-
non spectrum that the energy separation of the split-off s
from the upper end of the spectrum increases roughly
proportion to dt, as obtained in the perturbative analys
This exact-eigenstates approach for obtaining magnon e
gies and wave functions from the fermionic eigensolutions
the self-consistent AF state has been described earlier.17

III. SPIN-DEPENDENT IMPURITY POTENTIAL

Nonmagnetic impurities in the Mott-Hubbard AF we
modeled earlier via a spin-independent impurity poten
term, and as a natural extension we therefore consider
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10 600 57AVINASH SINGH AND PRASENJIT SEN
following spin-dependent impurity term for magnetic imp
rities:

H imp
mag5(

I
C I

†@2s3V#C I , ~8!

whereC I5(aI↑ aI↓). A spin-independent impurity poten
tial e0 can be included for generality, however, we sh
consider the limitV@e0, so that the potential for spins
fermion is Vs'2sV. We chooseV to be positive for im-
purities on theA-sublattice sites, so thatV↑ is very low and
V↓ is very high. The sign ofV is reversed for impurities on
B-sublattice sites. This choice of potential ensures that
magnetization on the impurity sites follows the host AF o
dering. Such a spin-dependent impurity potential can a
from a coupling2sW •SW imp between the itinerant fermion spi
sW and the static magnetic impurity spinSW imp , resulting from
a strong Hubbard interaction. Since experiments on highTc
cuprates show the impurity spin to be antiferromagnetica
coupled with the host spins,3 we take the local field direction
to be along the local magnetization direction (ẑ). The low
potential~for spin-up! is justified in view of the fact that the
ionization energy for both Fe13 and Ni12, i.e., the fourth and
the third ionization energies respectively for Fe and Ni
much higher than the third ionization energy for C
Whereas the ionization energies for Fe13 and Ni12 are 54.8
and 35.17 eV respectively, the ionization energy for Cu12 is
20.2 eV.

We now examine formation of impurity-induced stat
due to this spin-dependent impurity potential. Within t
T-matrix analysis, used earlier for nonmagnetic impurities10

energies of impurity-induced states are obtained from s
tions ofgII

s (v)51/Vs . For largeuVu/U these impurity states
are formed at energies;2sV for the two spins, and are
essentially site localized and therefore decoupled from
system. Thus, for the magnetic-impurity case when the
purity spin is antiferromagnetically coupled to the neighb
ing host spins, a significant difference from the nonmagne
impurity case is that there are no defect states formed in
Hubbard gap. Rather only impurity states are formed,
removed in energy from the Hubbard bands.

Within the above representation of magnetic impurities
terms of spin-dependent impurity potential, the fermi
number is unchanged, unlike the case of nonmagnetic im
rities where one fermion is removed for every added im
rity. Hence the impurity sites do not quite act as spin vac
cies. Nonetheless, the presence of an impurity potential t
which breaks time-reversal symmetry leads to a partial
coupling of the impurity site from the host. This is mo
easily seen in the limitV→` where the local antiparallel
spin, particle-hole excitations are suppressed by the la
energy difference 2V, leading to an absence of thev term,
and therefore to strong magnon scattering. Quite gener
the particle-hole energy difference for antiparallel spins
modified by the spin-dependent impurity potential from 2D
to 2D12V, leading to a modification in thev term. For
spin-independent impurity potential the particle-hole en
gies are shifted equally, and hence it is the removal o
fermion from the impurity site that is crucial. As a result
this decoupling of magnetic impurity sites, a qualitative
l
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identical impurity-induced perturbation@dx0(v)# is ob-
tained, leading to similar results for magnon renormalizat
as for the nonmagnetic-impurity case, where singular corr
tions were obtained for low-energy magnon modes in t
dimensions.11 The strong impurity-scattering of magnon
also introduces significant damping, with the ratio of t
magnon damping term to its energy being simply prop
tional to the impurity concentrationx for long-wavelength
modes.

IV. GENERALIZED HUBBARD-MODEL
REPRESENTATION

In order to represent higher-spin magnetic impurities,
now generalize to the situation withN andN8 orbitals on
host and impurity sites respectively. An appropriate mo
for this case is the generalized Hubbard model with multi
orbitals per site. This model has been used earlier to st
quantum corrections in the antiferromagnetic state in a s
rotationally symmetric formalism, where a systematic pert
bative expansion in powers of 1/N was developed.15 We in-
troduce a slight extension here in this model which make
equivalent, in the strong correlation limit, to the spinS
QHAF, whereS5N/2. The modification is to allow the NN
hopping term to operate betweenall orbitals, whereas the
hopping term considered earlier was diagonal in the orb
index.15 We therefore consider the following Hamiltonian fo
the AF host:

H52t (
^ i j &sab

~aisa
† aj sb1H.c.!1

U

N(
iab

~ai↑a
† ai↑aai↓b

† ai↓b

1ai↑a
† ai↑bai↓b

† ai↓a!, ~9!

wherea andb are the orbital indices which run from 1 toN,
and the two Hubbard interaction terms are, respectively,
rect and exchange type interactions with respect to orb
indices. In the symmetric case when the two interact
strengths are identical, as considered here, the system
sesses spin-rotational symmetry. It has been shown ea
that in the symmetric case the two interaction terms can
gether be written asH int52(U/N)( i(SW i•SW i1ni

2), whereSW i

andni are the total spin and charge density operators, res
tively. Spin-rotational symmetry is therefore inherent in th
impurity representation as well. Furthermore, in the stro
correlation limit, a strong Hund’s coupling exists which e
ergetically favors the maximum multiplicity case (S5N/2)
for the total spin operatorSW i .

Magnetic impurities are represented by introducingN8
ÞN orbitals at the impurity sites. We first examine the tran
verse spin fluctuation propagator in the host AF sta
x21(rt ,r 8t8)[^CuS2(rt )S1(r 8t8)uC&, where SW (rt )
5(aca

†(rt )(sW /2) ca(rt ) is thetotal spin operator. Again, a
the RPA level the magnon propagator is given
x0(v)/@12(U/N)x0(v)#, where@x0(v)# now involves or-
bital summations, with matrix elements given by

@x0~v!# i j 5 i E dv8

2p (
ab

Gia, j b
↑ ~v8!Gj b,ia

↓ ~v82v!.

~10!
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Since each orbital is now connected via hopping toN
orbitals on the NN sites, the electronic spectral weights
correspondingly modified. For example, in the stron
correlation limit, the on-site majority and minority spin de
sities in each orbital are now 12Nt2/D2 andNt2/D2, re-
spectively. A straightforward extension of the earlier analy
in the strong-correlation limit15 leads to

x0~q,v!5N
1

U
12N2

D

2

t2

D3F 11
v

DJN
gq

gq 12
v

DJN
G ,

~11!

where J54t2/U as usual, andD is dimensionality of the
hypercubic lattice. Since different orbitals on the same
are not directly coupled, the intrasite propagator is diago
in orbital index, and therefore the leading order diago
terms~the 1/U and thev term! are proportional toN. How-
ever, the NN hopping operates between all orbitals,
therefore the off-diagonal term and the next-to-leading or
piece ~arising from hopping! in the diagonal term are bot
proportional toN2. The magnon energies are now given
vq5DJNA12gq

252DJSA12gq
2 in terms of the spinS

5N/2. We now introduce a magnetic impurity in the syste
with N8ÞN orbitals at the impurity siteI . The resulting
modification in the electronic spectral weights leads to
following changes in the@x0(v)# i j matrix elements fori , j in
the vicinity of the impurity siteI :

@x0# II 5N8
1

U
2NN8

D

2

t2

D3S 11
v

DJND ,

@x0# IJ52NN8
D

2

t2

D3

1

z
,

@x0#JJ5N
1

U
2N2

D

2

t2

D3S 12
v

DJND2N~N82N!
D

2

t2

D3

1

z
.

~12!

Since now the local Hubbard interaction strength itsel
not uniform but depends on the number of site orbitals,
have to multiply the@x0# matrix with the diagonal interac
tion matrix @U# containing elementsU/N for host sites and
U/N8 for the impurity site. We therefore examine the loc
matrix elements of the matrix product@Ux0# i j 5Ui i x i j

0 for i , j
in the vicinity of the impurity site. The impurity-induce
perturbation in the matrix elements of the product@Ux0# are
obtained as below:

d@Ux0~v!# II 50,

d@Ux0~v!# IJ50,
re
-

s

e
al
l

d
r

e

s
e

l

d@Ux0~v!#JI52U~N82N!
D

2

t2

D3

1

z
,

d@Ux0~v!#JJ52U~N82N!
D

2

t2

D3

1

z
. ~13!

We now obtain the magnon-energy renormalization
perturbatively obtaining the impurity-induced correction
the eigenvalues of the@Ux0(v)# matrix. As discussed
earlier,11 we treatd@Ux0(v)# as the perturbation matrix, an
determine corrections to eigenvalues of@xhost

0 (v)#. Evaluat-
ing the first-order correction̂ qud@Ux0(v)#uq& from the
magnon eigenvectoruq&, and retaining terms to first orde
only, we obtain

dlq
~1!5U~N82N!

D

2

t2

D3

v

DJ
. ~14!

As for the nonmagnetic impurity case, we obtain here a c
rection which is linear in energy, and this signifies stro
impurity scattering of magnons for long-wavelength, low
energy modes, leading to singular corrections in two dim
sions and strong magnon damping from second-order s
tering processes.11 The scattering term is explicitly
proportional to the difference (N82N) between the numbe
of orbitals on the impurity site and the host sites, whi
arises from the different dynamics of the impurity spin a
the host spins. This generally implies that impurity scatter
of magnons is strong when the impurity spinS85N8/2 is
different from the host spinS5N/2, in agreement with ear
lier studies within the Heisenberg model,9 and the one-band
model with nonmagnetic impurities whereN51 andN8
50.11

V. CONCLUSIONS

In conclusion, we have developed a formalism to tre
magnetic impurities in a Mott-Hubbard antiferromagnetic
sulator within a representation involving multiple orbitals p
site. For the caseN85N, when the impurity spin is identica
to the host spin, the magnetic impurity is represented
locally modified hopping strength, and we find that the
fective scattering of long-wavelength magnon modes
weak, leading to momentum-independent multiplicati
renormalization of magnon energies. For positive hopp
perturbationdt we find localized, split-off magnon mode
corresponding to local spin deviations at impurity site
These split-off modes will be relevant in two-magnon R
man scattering which probes high-energy magne
excitations.18 In the other caseN8ÞN, when the impurity
spin is different from the host spin, we obtain strong imp
rity scattering of magnon modes proportional to the diffe
ence (N82N), leading to singular corrections in two dimen
sions and strong magnon damping. The impurity-scatteri
induced softening of magnon modes implies enhancemen
thermal excitation of magnons, and hence to a lowering
the Néel temperature in layered or three-dimensional s
tems. We also find that the process of putting additional
purity orbitals leads to enhanced impurity magnetization a
localization of electronic states at the impurity, indicatin
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10 602 57AVINASH SINGH AND PRASENJIT SEN
partial decoupling of the impurity site from the host.
unique feature of having multiple impurity orbitals is th
presence of exactly site-localized eigenstates in the elec
spectrum which are completely antisymmetric between
purity orbitals.

When the magnetic impurity is represented in terms o
spin-dependent impurity potential, we find that the break
of time-reversal symmetry leads to a decoupling of the
purity site from the host, and strong magnon scattering si
lar to the case of spin vacancies is obtained. We also find
when the magnetic impurity spin is antiferromagnetica
coupled to the neighboring host spins, only impurity sta
are formed, and there are no defect states formed within
Hubbard gap. The local moment associated with the m
netic impurity therefore intrinsically arises from the spi
density difference at the impurity site. Using the well-know
particle-hole transformation, the problem of magnetic imp
d

v
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rities in an AF can be mapped to that of nonmagnetic im
rities in a superconductor, which is characterized by abse
of defect states within the superconducting gap and rob
ness of superconducting gap.19 Conversely, a nonmagneti
impurity in a positive-U Hubbard AF maps onto a magnet
impurity in a negative-U Hubbard superconductor, and he
defect states are formed within the gap in both cases.20,21
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