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Polaritons in anisotropic materials with cylindrical geometry
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The properties of polaritons propagating in an anisotropic material with a cylindrical geometry are studied.
Solving Maxwell’'s equations for nonradiative modes, the dispersion relation, power flows, energy densities,
and the group velocity of the polaritons are obtained. It is shown that the nonradiative modes can propagate in
two different modes namely confined or localized modes. The significative differences between these modes
are presented. The uniaxial Heisenberg antiferromagnet,idnised in order to obtain numerical results.
[S0163-182698)05517-9

[. INTRODUCTION found solutions similar to those obtained for isotropic
cylinders™ i.e., in these anisotropic materials the solutions
Surface polaritons are a sensitive probe in surface analysaso have TE and TM modes coupled together, unless they
since they can provide valuable information about the paare modes with no angular dependence. Shortly after,
rameters associated with the surface. This is a subject th&imeida et al'* showed that the presence of an external
has been studied for many years but the propagation of thestatic magnetic field applied parallel to the axis of the
coupled modes in different materials and geometries are stiliniaxial anisotropy and parallel to the cylinder axis can de-
the subject of much researttf Particularly, in magnetic couple these modes. They found an implicit dispersion rela-
materials, polaritons propagating in antiferromagnetic matetion and, from that, they obtained theoretical dispersion
rials in_a planar geometry have been theoretically wellcurves for surface and bulk modes confined into an uniaxial
studied®® Recently Jenseet al.’ reported the direct experi- Heisenberg antiferromagnetic specimen. The main motiva-
mental observation of magnetic surface polaritons in anion for the study of mixed modes in cylindrical geometry is
uniaxial antiferromagnet material by using the attenuated tothe possibility of using it for practical purposésptical fi-
tal reflection technique. bers, for example Therefore, besides dispersion relation
Most of the studies of these collective modes are recurves, it is necessary to know the electromagnetic field dis-
stricted to geometry where the surfaces are flat planes Qfibution as well as how the energy is transported in the
spheres. It is well known that the planar, as well as thgnaterial.
spherical geometry, always allow pure magnetic wa\iéd In the present paper, we generalize the work of Vascon-
modeg and pure electric wave§ E modes as the two inde-  celoset al® by studying the electromagnetic field distribu-
pendent solutions of the Maxwell's equations. This is not thejon and energy transport of the nonradiative confined and
case when the surfaces are cylindrical. In this later geometrycalized polaritons propagating in an uniaxial anisotropic
the separation of TE and TM modes is allowed only in par-material with a cylindrical geometry. To do this, we solve
ticular cases. This fact makes the problem a rather complithe Maxwell’s equations in order to calculate the electric and
cated one. However, the cylindrical geometry is quite attracmagnetic fields inside and outside the cylinder. Using the
tive since it is an intermediate geometry and then it shoulthoundary conditions at the cylinder interface we obtain an
exhibit characteristics of the two others. Moreover, this geimplicit dispersion relation of volume and surface modes,
ometry is a good candidate to be used in experiments angower flows, energy densities of electromagnetic field, and
could better reveal properties of surfaces as well as of matehe group velocity of the polaritons. In the last section we
rials. It should be mentioned that objects with cylindrical present the numerical results obtained considering the

geometry have been proposed as an important tool to studyhiaxial Heisenberg antiferromagnet MnF
the scattering of electromagnetic waves by surf&ces.

The physical behavior of electromagnetic waves propa-
gating in cylinders of isotropic nonmagnetic material has
been well known for many yeat8-'? However, similar
study for anisotropic materials has received little attention. The system under consideration is a long cylinder of ra-
Recently, Vasconcelaet al*® studied polaritons propagating dius r=a with its axis parallel to the anisotropy direction
in a cylinder with uniaxial anisotropy and obtained the dis-and immersed in an isotropic medium which, without loss of
persion relation of nonradiative polaritons confined in angenerality, we will consider to be the vacuum. The cylinder
uniaxial anisotropic antiferromagnetic material. They alsois characterized by the dielectri€)(and permeability tensor
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(x) which can be written in Cartesian coordinates in the d
form: ela(rEr)+inelE9+ikreHEz=0. (4h)
e 00 In general, Eqs(4a)—(4g) present two independent solu-
= 0 € O (19 tions: namely, the pure electric wave€BE mode$ and pure
0 0 ¢ magnetic mode$TM modes, where in the TETM) mode

the componenE,(H,) is equal to zero and cannot be sepa-
rated if the wave has some angular dependemce().1°

and Thus, it is easy to show that tkecomponent,=E, (or H,)
w 0 0 satisfies the equation:
o= 0 MmO 1b
““lo o W) (o e I (VS G Le )
where the nonzero elements of the tensor are, in genera"i‘{ith
frequency dependent. The subscijptL) means the corre-
spondent function paralléperpendicularto the axis of the aizn:ﬂkﬁw TE modes
uniaxial anisotropy. 2 ML ©6)
We consider a polariton propagating parallel to the axis of Y= s €.,
the cylinder, with wave vectok and frequencyw, to write Binze_kinv TM modes
the components of the electromagnetic fielf’as *
and
E=[E(r),E(r),ELr)]S,, (2a)
2
w
and k;:gq w, —K?, @
H=[H:(r),Hy(r),H,(r)]S,, (2b)
with whose solutions are the Bessel functions

S,=exfi(kz+no—wt)], 3) Fo=Zn(yr) (8)
aal N . of the first type, which will be rewritten as Bessel functions
wherer (2) 'S_ the Adllrecuon- perpendlc.ula(parAallgp to the of the second type when its argument is imagiriary.
axis of the cylinderg is the direction defined byx z, and in We use Eq.(8) in Egs. (4a—(4g) to obtain the general
Eq. (3) n is an integer since the solutions must be singleso|ytion for the components of the electric and magnetic

value functions. Hence, from Maxwell's equations in cylin- fie|ds, inside the cylindem(<a) for the moden, in the form:
drical coordinates we find the components of the electric and

magnetic field obeying the equations: cn_ K\/Ez’(lg. A N, 2 (e s,
1 ® r ki, Vel ™" in n o n{ &in n )
n
~(NE,~krEy)=p, Hy, (43 93
dE w . nk i ,
_Z_ikErZ_iMl_Hea (4b) EI(?: __zzn(lginr)An__k\/ﬂHﬂLZn(ainr)Bn Sh,
dr c rk2, Ckin
(9b)
d E NV —inE. —iwrH 4 _
ar"EATINE Sl g Tz, o EP=[Zo( Bl AdISh, (99
w and
ELErEr=er,,—nHZ, (4d) ) )
Hn=| 2 ¢ 7 At P2 B
° dH r CI’?Q_ n(Binl) n+k_in Z n(@inl)Bn|Sh,
. . L n J
|qEE9=d—f—|kH,, (4¢) (103
o ) d e , nk
i€ TE;=inH;— -(TH), (4f) Hy = C—kin\/fuqzn(ﬁinr)An— ?ﬁ]zn(ainr)Bn Sn,
) ~ (10b)
d _ . _
po gy (tHO) Finu HotikrgH,=0, (49 HN=[Z, (@il )By]Sh. (109

and Outside the cylinderr(>a) these components are given by
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o | K e e MR b s, Ve Zo(and) | po H;(koula)}
' Kout " o " Cl’kgut o " , kina Zn(alna) Kou@ Hn(Kou@)
(113 — ,
€| €L Zn(IBma) n €0 Hn(kouta)}
klna Zn(IBma) kOUla Hn(kouta)
lw 2
Eg'= Ko(Kouf )Gt —57— Ko (Kouf D ]sn L I S S A 13
(11b) (0/0)?] (kau)? (i)’
It should be remarked that the result presentl%d in(E8).
out_ _ coincides with the one obtained by Pfeiffet al.™ for the
Bz =IKn(Binl)CnlSh, (119 case of isotropic materials.
Since the time average of the instantaneous power-flow
and density® is given by
” ik _° *
HM=| = — - eon(Kouf ) Co— k—tKn<koutr>Bnlsq, SN =g Re(ED>H(r.L), 14
out ou
(129 where (- --) represents the time average, the power flow
with which we shall be concerned can be written as
iw nk -
Hf;“‘={— ke €oK \(Koul ) Cnt ——— 2 Knlkau D, l& P(q,0)=P"(q,0)+P°{(q,®) (15
t
" (12 with
HZ"'=[Kn(Kou )DnSh, (120

a 2

P"‘(q,w)=J rdrf Sf(r)de (16a
where Z'(x)=dZ(x)/dx, k3,=k?—w?/c?e u,>0, and 0 0

H,(x) is the Hankel function of ordem since we are con- and
sidering nonradiative modes.

The dispersion relation of polaritons propagating in the o o 2
cylinder is obtained by using the usual Maxwell's boundary P quw):J' rdrfo SM(r)de, (16b)
conditions for the fields at=a and the fact that they are 2 ,
finite atr =0 andr=oo. In doing this we obtain the implicit since the time average d&(r) is z directed, withS;(r)
dispersion relation for the confined and localized nonradia[S‘Z’“t(r)] representing the time average power-flow density
tive modes given by in the regionr<a (r=a), and given by

) , 2wk
[€[Gn(Binh) PES,+ [ Gl @int) 1% Ho |21+ ﬁ[q[en(ﬁm]%éz

2“LV€HEL+k2 V

EOZH Oz} ’ (17)

in c wk
0727 | 2

+:“J.[Gn(ainr)]2|H02| Gn(ainr)Gr;(Bin +Gn(a|nr)Gn(ﬂlnr)

2rk3,

EL\/H—-H( \f

and

2

wk , wk
S?“‘(r)=%|( LBk

out out

[Gn(Kout)] )[EOEOZ+MO|HOZ| ]

in

rk3

+

w2
J /~"060+k ( Kout' ) Gn( Outr)EOZHOZ] ) (18
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with _ w2
2 ) (EI(?)Z:TK.ZMHML[Gn(ainr)]qHOz|2
Yinl in
Gn(Yinf)= > , 19
n( Vinl) Zo(vind) (193 22 s
+ 57 [Gn(Binh) I°Eq
for fields inside the cylinder r2ki4n men ’
2|nkw
- M M G n(@inl ) Gn(Binl ) EoHoz,
Ga(kaut) = (1) (190 3 VK
n ou
' . . 24b
for fields outside the cylinder, and (24b)
and
Eo,= Kn(Kou@)An (209
; (ED)?=2Zn(Bin")’ES, (249
_4in
Ho,= %1 U, Kn(Kou) Cn (20b) for the components of the electric field, and
with 2 2
. N‘“w
(HY)? =5z € “[Gnl Bl Es
nk/[ 1 1 in
Tﬂ ( k2 k_z) ’ (213 k
out in M [G amr 2|H0 |2
in:um
N7y
l-"n_c k‘ (a'ln a)* k ( Ko@) |, (21D 2inkw M
in + orkd € ZGn(ainr)Gn(ﬁinr)EOzHOp
where the signak- (—) in Egs.(21a and (21b) is associ- "
ated with the volumésurface modes and the derivatives in (259
these equations are taken with respect to the argument.
In order to obtain the energy per unit length of the cylin- _ w2 )
der we must first calculate the energy density, which for the (HI(?)ZITE||6L[Gn(ﬂinr)]2E(2)z
dispersive medium is in genetil CKin
1]d d G Mol
- — ainl
_%d_w(waE,E*_l_d_w(wlu)H,H* , (22) rzki‘L n\ &in 0z
which in our case can be separated into two teth¥r) ka‘” /GHELGn(alnr)G (Binl )EoHos,
[U%{(r)] representing the energy “density in the region "
r<a (r=a). For the energy density"(r), we obtain
(25b)
yin inj2 in|2 du, in|2 and
UN(1) = ] e AIEPPHEDIZ+ | o+ o [{IHTY
| _ _ (HD)?=[Gn(ainr)1*Hg, (250
+|H|(;]|2}+6||Elzn|2+:u“|H|zn|2}' (23
for the components of the magnetic field. For the energy
with densityU°{r) we obtain
. 202 out_ out2 ouy2
(E:’n)2: C2r2k4 MLZ[Gn(ainr)]2|HOZ|2 U 1677[60|Ent| +M0|Hnﬂ ]1 (26)
in
5 where
€l rnr 22
+ 2 [Gn(ﬁinr)] EOz
in€L |Egut|2=(E(r)ut 2+(E(;ut 2+(E(ZJUt)2! (27@
2inkw €| , " " "
t—— orid V¢, Cnl@inr)Gn(Binf ) EozHoz, [HR"12= (HP" 2+ (H§") 2+ (HZY)? (27b
(243  with
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w2 . _ a 2T
(B 2=—5 5 10T Grlkout ) 2 Hosl? YH(ge)= fo rr JO UH(r)de (313
Cr Koyt
2 and
k , 02
+ kT[Gn(koutr)] EOZ o 20
out Y°”‘(q,w)=f rdrf uoUryde. (31b
Jikw e

+ orkd MOGn(koutr)Gr/w(koutr)EOZHoz,

out

Finally, the energy transport veloctfithat is equal to the
group velocity, is given by

(283
tot
wz , UE:Lq,w). (32)
(EZUI)ZZ 2 2 MOZ[Gn(koutr)]leOZ|2 YtOt(q’w)
c kout
k2 lll. NUMERICAL RESULTS
+ ——[Gn(kout ) °E3, _ _ _
I “Kout The analytical results displayed in Sec. Il can be used to
il obtain a complete description of polaritons propagating in
IKw , any anisotropic cylinder, provided its dielectric constant and
+ crk3 #0Grn(Kout ) Gn(Koul ) EozHoz, magnetic permeability can be written in the form given by
out Egs. (1a and (1b). In order to have numerical results, we
(28b) choose the uniaxial Heisenberg antiferromagnet pas-the
and anisotropic material. This material is a prototype of an an-
isotropic magnetic material and all parameters necessary to
(EQ”tzz[Gn(koutr)]zEéz (280 describe it are very well knowh.In the following, we
o present the numerical results for the dispersion relation of the
for the components of the electric field, and volume and surface modes, power-flow density, energy den-
5 sity, and the energy velocity considering the Mnifnmerse
(H?ut)zz nN“w €02 G (Kout ) 2Eo,2 in vacuum @02_ 1.0u0=1.0). Thls.matenal is characterized
c?r2k? . by the dielectric tensor, Edla), with ¢y=4.0, ¢, =5.5 and
the permeability tensor by Eqlb), with the nonzero com-
2 5 ) ponents of the magnetic permeability tensor given by
+k7[Gn(komr)] [Hoal p(0)=1+02%(Q5-w? and w=1.0, where Q
out = y(2HgH+H2%)*?2 is the antiferromagnetic resonance fre-
2ikw , quency, Q= y(87mH M g)¥? with y=1.8x10" rad/G de-
7 €0Gn(Kout ) Gn(Kout ) EozHoyz noting the gyromagnetic factoq ,=7.85 kG is the anisot-
MKout ropy field, Hz =550 kG the exchange field, aMis= 0.6 kG
(299 the saturation magnetization of each sublatfice.
We solve Eqg.(13) numerically to obtain the dispersion
w2 , curves of polaritons associated with confined and localized
(H")2= > €07 Gn(Kout ) 1°Eo? modes. The confined modes are characterized by the fact that
C“Kout ai, and Bi, in Eqg. (13) are both real numbers, while the
P surface modes have these parameters imaginary. We should
+2_4[Gn(kmr)]2||_|02|2 mention that modes witm=0 are not influenced by the
r “Kout curvature of the cylinder and consequently have their behav-
il ior similar to the planar geometry. In Fig. 1 we present the
IKw , dispersion relation of confined and surfdt@calized modes
crk3 €0Gn(Kout') Gn(Kout ) EozHoz as a function of the wave vector of the polariton, for a cyl-
out inder of radius(a) a=0.5 mm and(b) 2.0 mm withn=1.
(29D Although the cylinder witha=0.5 mm presents a confined
and mode in the regionw<(}, its frequency is extremely close
to the resonance linas= ). For this reason only the con-
(H2"2=[Gp(Kout ) 1?|H o4 (299 fined modes for the cylinder wita=2.0 mm which are

o propagating withw<(}, were plotted. The cylinder with ra-
for the components of.the magnetic f'eld: ot , diusa=2.0 mm presents a larger number of branches com-
The energy per unit length of the cylind¥(q,») is pared with the one witla=0.5 mm, showing that the num-
obtained by integrating the energy density, and is given by o of pranches of confined modes increases with the

tot _vin ou cylinder radius. Particularly, for an isotropic dielectric mate-
YH(G,0) = Y"(g,0) +Y*(q,0) 30 ri)zlil with a cylindrical geomyetry Pfeiffeet 25.10 observed lo-
with calized modes in the regioen< 0. However, for the uniaxial
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FIG. 2. The functionrS,(r) for polaritons on confined modes
FIG. 1. Dispersion relation of confingdolid curve and local-  with n=1 as a function of the distance from the cylinder axis, for a
ized (dashed curvemodes of the polariton as a function of the cylinder of radiusa=2.0 mm, for the eighti@ and seventhb)
wave vector, for a cylinder with radiu®@ a=0.5 mm and(b) a branches with frequencyw=2.13),, corresponding to k
=2.0 mm. =2.310,/c andk=2.75),/c, respectively.

Heisenberg antiferromagnet studied here, in the region whemescribe this mode are Bessel functions of the first type in-
u, <0 (which corresponds to the frequency reg'ﬁﬁ< »?  side and Bessel functions of the second type outside the cyl-
<Qg+ Qg) we observed modes with mixed character, i.e.,inder. The discontinuity of the power flow at the interface
the solutions present oscillating and decay character simultd-—=a for both modes is a consequence of discontinuity of the
neously. Since this frequency region is very narrow for thisfields at this interface. To analyze the power flow, we first
material, we will not discuss this case. Considenirgl, we  plotin Fig. 2 the functiorrS,(r) for polaritons, propagating
observed that for both cylinders mentioned above, there arith the same frequency but in two different branches of
localized modes in the frequency region where>0 cor-  confined modes, as a function of the distance from the cyl-
responding to frequencias®> Q3+ Q32 or w<Q,. The lo- inder axis, for a cylinder of radiua=2.0 mm, withn=1
calized mode which appears in the region whereQ, in  and in the region of frequenay?> Q3+ Q. We choose the
the cylinder of radiusa=0.5 mm has its frequency almost polaritons in the eighth and seventh branches above the reso-
constant and equal to the resonance frequegysee Fig. nance line, which have frequeney=2.13(),, correspond-
1(a). For the cylinder with radius=2.0 mm, Fig. 1b), the ing to k=2.31 Q,/c [Fig. 2a)] and k=2.75 Q,/c [Fig.
localized modes appear for smaller values of the wave vectat(b)], respectively. In Fig. @) we observed that the power
compared to the one with radius=0.5 mm. Differently  flow inside the cylinder is smaller than the power flow out-
from the confined modes, the number of localized modeside the cylinder, while in Fig.(®) the intensity of the power
does not change with the cylinder radius. flow inside the cylinder is considerable largéree orders
The knowledge of the dispersion relation does not providedf magnitude¢ compared with its intensity outside the cylin-
all the information necessary to analyze the propagation ofler. In fact we observed that, for confined modes in the re-
polaritons. For this reason we now present the results for thgion w2>Q§+QZ, where the second derivative of the dis-
time-average power flux, energy density, integrate powepersion curve is negative, such as in the eight branch, the
flow, energy per unit length, and finally energy transportpower flow inside the cylinder is smaller than outside, while
velocity. For the polariton propagating in the confined modean opposite behavior is observed in the branches on which
the power flow inside the cylinder oscillates, while outside itthe second derivative of the dispersion curve is positive. In a
decays. This behavior comes from the fact that the fields thatylinder of a=0.5 mm the confined mode with frequency
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FIG. 3. The functiorrS,(r) for a polariton on a localized mode FIG. 5. The functiomU (r) for a polariton in the localized mode
with n=1 as a function of the distance from the cylinder axis, for aWith n=1 as a function of the distance from the cylinder axis, for a
cylinder of radiusa=2.0 mm, corresponding to a frequenay  cvlinder of radiusa=2.0 mm, corresponding to a frequenay
=1.040,. =1.040,.

above \/QOZJrQSZ also presents a second derivative of thecurve negative, but the intensity of the power flow inside the
dispersion curve negative, and we observed that the powdylinder is greater than outside.
flow inside the cylinder is also smaller than outside, repre- For localized modes, in Fig. 3 we show the function
senting an analogous behavior to the one observed for tHéS,(r) as a function of the distance from the cylinder axis,
power flow of the confined mode shown in FigaR How-  for a=2.0 mm, withn=1 and in the region of frequency
ever, we observed that confined modes with frequency below?®> Q3+ Q3. As can be seen, the power flow inside is con-
the resonance, have the second derivative of the dispersigiderable larger than outside the cylinder. This fact is also
observed for the mode below the resonance frequency. Par-

6.0 : : . : ticularly, for a cylinder of radiug= 0.5 mm, the power flux
: inside it is one order of magnitude larger than the power flow
. I outside the cylinder. This behavior is different from the one
e | (@) observed by Khosrawt al! in localized modes of a cylin-
S 4.0 ! I der with isotropic dielectric material with=1, where the
@ : intensity of the power flow is of the same order of magni-
e | tude. We observed that the difference in magnitude, between
> 29 | i the power flow inside and outside the cylinder, decreases
= with the cylinder radius.
2 | To analyze the energy density of the polariton propagat-
! ing in a cylinder we show in Figs.(d) and 4b), the function
| h

0.0 b1
0.0 1.0 20 3.0 40 50

r (mm)

rU(r) as a function of the distance from the cylinder axis,
for a cylinder of radiusa=2.0 mm, corresponding to the
same modes considered in Fig$a)2and Zb), respectively.

In both cases we observe that the energy density is greater

8.0 — .
. 4.0 .
g 80T (b) -
L
3 ~ 30 B h
b 40t ; m%
ol S 20 :
= 20 1 =
240t ]
0.0 :
00 1.0 20 3.0 40 5.0
r (mm) 0.0 -
5.0 6.5 8.0
FIG. 4. The functionrU (r) for polaritons on confined modes ke/Q,

with n=1 as a function of the distance from the cylinder axis, for a
cylinder of radiusa=2.0 mm, for the eightha@) and seventhb)

branches with frequencyw=2.13),

=2.310,/c andk=2.75),/c, respectively.

corresponding

FIG. 6. The integrated power flow of the localized mode in the
regionw>/Q2+ Q2 as a function of the wave vector, for a cylin-

der of radiusa=0.5 mm and withh=1.
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FIG. 7. The energy per unit length of the localized mode inthe F|Gg. 8. The energy velocity of the localized mode in the region

regionw> Q5+ (s as a function of the wave vector, for a cylin- > /0Z+ 02 as a function of the wave vector, for a cylinder of
der of radiusa=0.5 mm and witmn=1. radiusa=0.5 mm and witn=1.

inside the cylinder than it is outside the cylinder, indepen- ) _ )
dent of the signal of the second derivative of the dispersioﬁrhe analytical equations obtained are general and the results

curve. As can be seen in Fig. 5, the energy density has &N be used to have a complete description of polaritons in
similar behavior for the localized mode presented in Fig. 3¢ylindrical geometry. It should be remarked that the result
but the difference between the values inside and outside {#r an isotropic cylinder can be obtained as a particular case.
only one order of magnitude. We choose the uniaxial Heisenberg antiferromagnet MoF
For the results of the integrated power flow Efj5) and  display numerical results of the dispersion curves of confined
the energy per unit length E¢B0) we will restrict our atten- and localized modes, power-flow density, energy density,
tion to localized modes, since they can be compared wittand the energy transport velocity. As discussed in Sec. I,
those obtained by Khosraet al'* in a cylinder with isotro-  the many branches of confined and localized modes present
pic dielectric. In Figs. 6 and 7 we present the integratedjifferent behaviors of propagation and remarkable variations
power flow and energy per unit length of the localized modeon the intensities of electromagnetic fields, inside and out-
in the regionw?> Q3+ Q3% as a function of the wave vector, side the cylinder. In isotropic dielectric materials with the
for a cylinder of radius.=0.5 mm and witm=1. As can be same geometry considered here and a fixed radius, the dif-
seen, the integrated power flow and the energy per unitierent modes are restricted to regions of negative values of
length decreases with the wave vector and are always posiielectric function. Considering a cylinder with the same ra-
tive. We should mention that this behavior is also observedlius and an anisotropic material we observed a much larger
for the confined modes studied here. This characteristic isange of frequencies on which polaritons can propagate. The
not observed in an isotropic dielectric cylindfewhere the  existence of damping was not considered but consists in an
integrated power flow is negative in the region where thamportant point to be studied in order to analyze the decay of
slope of the corresponding dispersion curve is negative. Fadifferent modes. This subject is now under consideration.
the anisotropic material considered and the modes investi- Finally, we should say that we have applied our analytical
gated, the slope of the dispersion curves did not change sigalculations to study the behavior of polaritons in a uniaxial
nal and consequently it could be expected that the integratedeisenberg antiferromagnet cylinder but we do not expect
power flow and energy per unit length had the same signaljualitative changes for propagation of these modes in a dif-
These facts show consistency in Fig. 8, where we present thferent anisotropic medium with the same geometry.
energy transport velocity of the localized modes presented in
Figs. 6 and 7, given by Eq32), which is in qualitative
agreement with the group velocity found as the slope of the ACKNOWLEDGMENTS
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