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Polaritons in anisotropic materials with cylindrical geometry
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The properties of polaritons propagating in an anisotropic material with a cylindrical geometry are studied.
Solving Maxwell’s equations for nonradiative modes, the dispersion relation, power flows, energy densities,
and the group velocity of the polaritons are obtained. It is shown that the nonradiative modes can propagate in
two different modes namely confined or localized modes. The significative differences between these modes
are presented. The uniaxial Heisenberg antiferromagnet MnF2 is used in order to obtain numerical results.
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I. INTRODUCTION

Surface polaritons are a sensitive probe in surface ana
since they can provide valuable information about the
rameters associated with the surface. This is a subject
has been studied for many years but the propagation of t
coupled modes in different materials and geometries are
the subject of much research.1–6 Particularly, in magnetic
materials, polaritons propagating in antiferromagnetic ma
rials in a planar geometry have been theoretically w
studied.3–6 Recently Jensenet al.7 reported the direct experi
mental observation of magnetic surface polaritons in
uniaxial antiferromagnet material by using the attenuated
tal reflection technique.

Most of the studies of these collective modes are
stricted to geometry where the surfaces are flat plane
spheres. It is well known that the planar, as well as
spherical geometry, always allow pure magnetic waves~TM
modes! and pure electric waves~TE modes! as the two inde-
pendent solutions of the Maxwell’s equations. This is not
case when the surfaces are cylindrical. In this later geom
the separation of TE and TM modes is allowed only in p
ticular cases. This fact makes the problem a rather com
cated one. However, the cylindrical geometry is quite attr
tive since it is an intermediate geometry and then it sho
exhibit characteristics of the two others. Moreover, this
ometry is a good candidate to be used in experiments
could better reveal properties of surfaces as well as of m
rials. It should be mentioned that objects with cylindric
geometry have been proposed as an important tool to s
the scattering of electromagnetic waves by surfaces.8,9

The physical behavior of electromagnetic waves pro
gating in cylinders of isotropic nonmagnetic material h
been well known for many years.10–12 However, similar
study for anisotropic materials has received little attenti
Recently, Vasconceloset al.13 studied polaritons propagatin
in a cylinder with uniaxial anisotropy and obtained the d
persion relation of nonradiative polaritons confined in
uniaxial anisotropic antiferromagnetic material. They a
570163-1829/98/57~17!/10583~9!/$15.00
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found solutions similar to those obtained for isotrop
cylinders,10 i.e., in these anisotropic materials the solutio
also have TE and TM modes coupled together, unless t
are modes with no angular dependence. Shortly af
Almeida et al.14 showed that the presence of an extern
static magnetic field applied parallel to the axis of t
uniaxial anisotropy and parallel to the cylinder axis can d
couple these modes. They found an implicit dispersion re
tion and, from that, they obtained theoretical dispers
curves for surface and bulk modes confined into an unia
Heisenberg antiferromagnetic specimen. The main mot
tion for the study of mixed modes in cylindrical geometry
the possibility of using it for practical purposes~optical fi-
bers, for example!. Therefore, besides dispersion relatio
curves, it is necessary to know the electromagnetic field
tribution as well as how the energy is transported in
material.

In the present paper, we generalize the work of Vasc
celoset al.13 by studying the electromagnetic field distribu
tion and energy transport of the nonradiative confined a
localized polaritons propagating in an uniaxial anisotro
material with a cylindrical geometry. To do this, we solv
the Maxwell’s equations in order to calculate the electric a
magnetic fields inside and outside the cylinder. Using
boundary conditions at the cylinder interface we obtain
implicit dispersion relation of volume and surface mode
power flows, energy densities of electromagnetic field, a
the group velocity of the polaritons. In the last section w
present the numerical results obtained considering
uniaxial Heisenberg antiferromagnet MnF2.

II. MODEL

The system under consideration is a long cylinder of
dius r 5a with its axis parallel to the anisotropy directio
and immersed in an isotropic medium which, without loss
generality, we will consider to be the vacuum. The cylind
is characterized by the dielectric (eJ) and permeability tenso
10 583 © 1998 The American Physical Society
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10 584 57NOBRE, COSTA FILHO, FARIAS, AND ALMEIDA
(mJ ) which can be written in Cartesian coordinates in t
form:

eJ5S e' 0 0

0 e' 0

0 0 e i
D ~1a!

and

mJ5S m' 0 0

0 m' 0

0 0 m i
D , ~1b!

where the nonzero elements of the tensor are, in gen
frequency dependent. The subscripti (') means the corre
spondent function parallel~perpendicular! to the axis of the
uniaxial anisotropy.

We consider a polariton propagating parallel to the axis
the cylinder, with wave vectork and frequencyv, to write
the components of the electromagnetic field as13

E5@Er~r !,Eu~r !,Ez~r !#Sn, ~2a!

and

H5@Hr~r !,Hu~r !,Hz~r !#Sn, ~2b!

with

Sn5exp@ i ~kz1nu2vt !#, ~3!

where r̂ ( ẑ) is the direction perpendicular~parallel! to the
axis of the cylinder,û is the direction defined byr̂3 ẑ , and in
Eq. ~3! n is an integer since the solutions must be sin
value functions. Hence, from Maxwell’s equations in cyli
drical coordinates we find the components of the electric
magnetic field obeying the equations:

1

r
~nEz2krEu!5m'

v

c
Hr , ~4a!

dEz

dr
2 ikEr52 im'

v

c
Hu , ~4b!

d

dr
~rEu!2 inEr5 im i

v

c
rH z , ~4c!

e'

v

c
rEr5krHu2nHz , ~4d!

i e'

v

c
Eu5

dHz

dr
2 ikHr , ~4e!

i e i
v

c
rEz5 inHr2

d

dr
~rH u!, ~4f!

m'

d

dr
~rH r !1 inm'Hu1 ikrm iHz50, ~4g!

and
al,

f

e

d

e'

d

dr
~rEr !1 ine'Eu1 ikr e iEz50. ~4h!

In general, Eqs.~4a!–~4g! present two independent solu
tions: namely, the pure electric waves~TE modes! and pure
magnetic modes~TM modes!, where in the TE~TM! mode
the componentEz(Hz) is equal to zero and cannot be sep
rated if the wave has some angular dependence (nÞ0).10

Thus, it is easy to show that thez componentFz5Ez(or Hz)
satisfies the equation:

r
d

drF r
dFz

dr G1@~gr !22n2#Fz50 ~5!

with

g25H a in
2 5

m i

m'

kin
2 , TE modes

b in
2 5

e i

e'

kin
2 , TM modes

~6!

and

kin
2 5

v2

c2
e'm'2k2, ~7!

whose solutions are the Bessel functions

Fz5Zn~gr ! ~8!

of the first type, which will be rewritten as Bessel functio
of the second type when its argument is imaginary.15

We use Eq.~8! in Eqs. ~4a!–~4g! to obtain the genera
solution for the components of the electric and magne
fields, inside the cylinder (r ,a) for the moden, in the form:

Er
in5F ik

kin
A e i

e'
Zn

8~b inr !An2
nvm'

crkin
2

Zn~a inr !BnGSn ,

~9a!

Eu
in5F2

nk

rk in
2

Zn~b inr !An2
iv

ckin
Am im'Zn

8~a inr !BnGSn ,

~9b!

Ez
in5@Zn~b inr !An#Sn , ~9c!

and

Hr
in5F nv

crkin
2

e'Zn~b inr !An1
ik

kin
Am i

m'

Zn
8~a inr !BnGSn ,

~10a!

Hu
in5F iv

ckin
Ae ie'Zn

8~b inr !An2
nk

rk in
2

Zn~a inr !BnGSn ,

~10b!

Hz
in5@Zn~a inr !Bn#Sn . ~10c!

Outside the cylinder (r .a) these components are given b
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Er
out5F2

ik

kout
Kn

8~koutr !Cn1
nvm0

crkout
2

Kn~koutr !DnGSn,

~11a!

Eu
out5F nk

rkout
2

Kn~koutr !Cn1
iv

ckout
Kn

8~koutr !DnGSn,

~11b!

Ez
out5@Kn~b inr !Cn#Sn , ~11c!

and

Hr
out5F2

nv

crkout
2

e0Kn~koutr !Cn2
ik

kout
Kn

8~koutr !BnGSn,

~12a!

Hu
out5F2

iv

ckout
e0Kn

8~koutr !Cn1
nk

rkout
2

Kn~koutr !DnGSn ,

~12b!

Hz
out5@Kn~koutr !Dn#Sn , ~12c!

where Z8(x)5dZ(x)/dx, kout
2 5k22v2/c2e'm'.0, and

Hn(x) is the Hankel function of ordern since we are con-
sidering nonradiative modes.

The dispersion relation of polaritons propagating in t
cylinder is obtained by using the usual Maxwell’s bounda
conditions for the fields atr 5a and the fact that they ar
finite at r 50 andr 5`. In doing this we obtain the implicit
dispersion relation for the confined and localized nonrad
tive modes given by
-

FAm im'

kina

Zn
8~a ina!

Zn~a ina!
1

m0

kouta

Hn
8~kouta!

Hn~kouta!
G

3FAe ie'

kina

Zn
8~b ina!

Zn~b ina!
1

e0

kouta

Hn
8~kouta!

Hn~kouta!
G

2
n2k2

~v/c!2F 1

~kouta!2
1

1

~kina!2G 2

50. ~13!

It should be remarked that the result presented in Eq.~13!
coincides with the one obtained by Pfeifferet al.10 for the
case of isotropic materials.

Since the time average of the instantaneous power-fl
density16 is given by

S~r !5
c

8p
Re ^E~r ,t !3H* ~r ,t !&, ~14!

where ^•••& represents the time average, the power fl
with which we shall be concerned can be written as

Ptot~q,v!5Pin~q,v!1Pout~q,v! ~15!

with

Pin~q,v!5E
0

a

rdr E
0

2p

Sz
in~r !du ~16a!

and

Pout~q,v!5E
a

`

rdr E
0

2p

Sz
out~r !du, ~16b!

since the time average ofS(r ) is z directed, withSz
in(r )

@Sz
out(r )# representing the time average power-flow dens

in the regionr<a (r>a), and given by
Sz
in~r !5

c

4pH S vk

2ckin
2 D @e i@Gn

8~b inr !#2E0z
2 1m i@Gn

8~a inr !#2uH0zu2#1
n2vk

2cr2kin
4 @e'@Gn~b inr !#2E0z

2

1m'@Gn~a inr !#2uH0zu2#1
in

2rk in
3 FGn~a inr !Gn

8~b inr !S v2

c2
m'Ae ie'1k2Ae i

e'
D 1Gn

8~a inr !Gn~b inr !

3S v2

c2
e'Am im'1k2Am u

m'
D GE0zH0zJ , ~17!

and

Sz
out~r !5

c

4pH S vk

2ckout
2 @Gn

8~koutr !#21
n2vk

2cr2kout
4 @Gn~koutr !#2D @e0E0z

2 1m0uH0zu2#

1
in

rkout
3 Fv2

c2
m0e01k2GGn

8~koutr !Gn~koutr !E0zH0zJ , ~18!
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with

Gn~g inr !5
Zn~g inr !

Zn~g ina!
, ~19a!

for fields inside the cylinder

Gn~koutr !5
Kn~koutr !

Kn~kouta!
, ~19b!

for fields outside the cylinder, and

E0z5Kn~kouta!An , ~20a!

H0z56 i
Tn

Un
Kn~kouta!Cn ~20b!

with

Tn5
nk

a S 1

kout
2

6
1

kin
2 D , ~21a!

Un5
v

c FAm um'

kin
Gn

8~a ina!6
m0

kout
Gn

8~kouta!G , ~21b!

where the signal1 (2) in Eqs. ~21a! and ~21b! is associ-
ated with the volume~surface! modes and the derivatives i
these equations are taken with respect to the argument.

In order to obtain the energy per unit length of the cyl
der we must first calculate the energy density, which for
dispersive medium is in general16

U5
1

8pF d

dv
~veJ!E•E* 1

d

dv
~vmJ !H•H* G , ~22!

which in our case can be separated into two termsU in(r )
@Uout(r )# representing the energy density in the regi
r<a (r>a). For the energy densityU in(r ), we obtain

U in~r !5
1

16pFe'$uEr
inu21uEu

inu2%1S m'1v
dm'

dv D $uHr
inu2

1uHu
inu2%1e iuEz

inu21m iuHz
inu2G , ~23!

with

~Er
in!25

n2v2

c2r 2kin
4

m'
2@Gn~a inr !#2uH0zu2

1
k2e i

kin
2 e'

@Gn
8~b inr !#2E0z

2

1
2inkv

crkin
3

m'Ae i

e'

Gn~a inr !Gn
8~b inr !E0zH0z ,

~24a!
e

~Eu
in!25

v2

c2kin
2

m im'@Gn
8~a inr !#2uH0zu2

1
n2k2

r 2kin
4 @Gn~b inr !#2E0z

2

1
2inkv

crkin
3
Am im'Gn

8~a inr !Gn~b inr !E0zH0z ,

~24b!

and

~Ez
in!25Zn~b inr !2E0z

2 ~24c!

for the components of the electric field, and

~Hr
in!25

n2v2

c2r 2kin
4

e'
2@Gn~b inr !#2E0z

2

1
k2m i

kin
2 m'

@Gn
8~a inr !#2uH0zu2

1
2inkv

crkin
3

e'Am i

m'

Gn
8~a inr !Gn~b inr !E0zH0z ,

~25a!

~Hu
in!25

v2

c2kin
2

e ie'@Gn
8~b inr !#2E0z

2

1
n2k2

r 2kin
4 @Gn~a inr !#2uH0zu2

1
2inkv

crkin
3
Ae ie'Gn~a inr !Gn

8~b inr !E0zH0z ,

~25b!

and

~Hz
in!25@Gn~a inr !#2H0z

2 ~25c!

for the components of the magnetic field. For the ene
densityUout(r ) we obtain

Uout5
1

16p
@e0uEn

outu21m0uHn
outu2#, ~26!

where

uEn
outu25~Er

out!21~Eu
out!21~Ez

out!2, ~27a!

uHn
outu25~Hr

out!21~Hu
out!21~Hz

out!2 ~27b!

with
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~Er
out!25

v2

c2r 2kout
4

m0
2@Gn~koutr !#2uH0zu2

1
k2

kout
2 @Gn

8~koutr !#2E0z
2

1
2ikv

crkout
3

m0Gn~koutr !Gn
8~koutr !E0zH0z ,

~28a!

~Eu
out!25

v2

c2kout
2

m0
2@Gn

8~koutr !#2uH0zu2

1
k2

r 2kout
4 @Gn~koutr !#2E0z

2

1
2ikv

crkout
3

m0Gn
8~koutr !Gn~koutr !E0zH0z ,

~28b!

and

~Ez
out!25@Gn~koutr !#2E0z

2 ~28c!

for the components of the electric field, and

~Hr
out!25

n2v2

c2r 2kout
4

e0
2@Gn~koutr !#2E0z

2

1
k2

kout
2 @Gn

8~koutr !#2uH0zu2

1
2ikv

crkout
3

e0Gn
8~koutr !Gn~koutr !E0zH0z ,

~29a!

~Hu
out!25

v2

c2kout
2

e0
2@Gn

8~koutr !#2E0z
2

1
k2

r 2kout
4 @Gn~kinr !#2uH0zu2

1
2ikv

crkout
3

e0Gn~koutr !Gn
8~koutr !E0zH0z ,

~29b!

and

~Hz
out!25@Gn~koutr !#2uH0zu2 ~29c!

for the components of the magnetic field.
The energy per unit length of the cylinderYtot(q,v) is

obtained by integrating the energy density, and is given

Ytot~q,v!5Yin~q,v!1Yout~q,v! ~30!

with
Yin~q,v!5E
0

a

rdr E
0

2p

U in~r !du ~31a!

and

Yout~q,v!5E
a

`

rdr E
0

2p

Uout~r !du. ~31b!

Finally, the energy transport velocity10 that is equal to the
group velocity, is given by

vE5
Ptot~q,v!

Ytot~q,v!
. ~32!

III. NUMERICAL RESULTS

The analytical results displayed in Sec. II can be used
obtain a complete description of polaritons propagating
any anisotropic cylinder, provided its dielectric constant a
magnetic permeability can be written in the form given
Eqs. ~1a! and ~1b!. In order to have numerical results, w
choose the uniaxial Heisenberg antiferromagnet MnF2 as the
anisotropic material. This material is a prototype of an a
isotropic magnetic material and all parameters necessar
describe it are very well known.3 In the following, we
present the numerical results for the dispersion relation of
volume and surface modes, power-flow density, energy d
sity, and the energy velocity considering the MnF2, immerse
in vacuum (e051.0,m051.0). This material is characterize
by the dielectric tensor, Eq.~1a!, with e i54.0, e'55.5 and
the permeability tensor by Eq.~1b!, with the nonzero com-
ponents of the magnetic permeability tensor given
m'(v)511Vs

2/(V0
22v2) and m i51.0, where V0

5g(2HEHA1HA
2)1/2 is the antiferromagnetic resonance fr

quency,VS5g(8pHAMS)1/2 with g51.83107 rad/G de-
noting the gyromagnetic factor,HA57.85 kG is the anisot-
ropy field,HE5550 kG the exchange field, andMS50.6 kG
the saturation magnetization of each sublattice.3

We solve Eq.~13! numerically to obtain the dispersio
curves of polaritons associated with confined and locali
modes. The confined modes are characterized by the fact
a in and b in in Eq. ~13! are both real numbers, while th
surface modes have these parameters imaginary. We sh
mention that modes withn50 are not influenced by the
curvature of the cylinder and consequently have their beh
ior similar to the planar geometry. In Fig. 1 we present t
dispersion relation of confined and surface~localized! modes
as a function of the wave vector of the polariton, for a c
inder of radius~a! a50.5 mm and~b! 2.0 mm with n51.
Although the cylinder witha50.5 mm presents a confine
mode in the regionv,V0, its frequency is extremely clos
to the resonance line (v5V0). For this reason only the con
fined modes for the cylinder witha52.0 mm which are
propagating withv,V0 were plotted. The cylinder with ra
dius a52.0 mm presents a larger number of branches co
pared with the one witha50.5 mm, showing that the num
ber of branches of confined modes increases with
cylinder radius. Particularly, for an isotropic dielectric mat
rial with a cylindrical geometry Pfeifferet al.10 observed lo-
calized modes in the regione,0. However, for the uniaxial
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Heisenberg antiferromagnet studied here, in the region wh
m',0 ~which corresponds to the frequency regionV0

2,v2

,V0
21VS

2), we observed modes with mixed character, i.
the solutions present oscillating and decay character sim
neously. Since this frequency region is very narrow for t
material, we will not discuss this case. Consideringn51, we
observed that for both cylinders mentioned above, there
localized modes in the frequency region wherem'.0 cor-
responding to frequenciesv2.V0

21VS
2 or v,V0. The lo-

calized mode which appears in the region wherev,V0 in
the cylinder of radius,a50.5 mm has its frequency almos
constant and equal to the resonance frequencyV0, see Fig.
1~a!. For the cylinder with radiusa52.0 mm, Fig. 1~b!, the
localized modes appear for smaller values of the wave ve
compared to the one with radiusa50.5 mm. Differently
from the confined modes, the number of localized mo
does not change with the cylinder radius.

The knowledge of the dispersion relation does not prov
all the information necessary to analyze the propagation
polaritons. For this reason we now present the results for
time-average power flux, energy density, integrate po
flow, energy per unit length, and finally energy transp
velocity. For the polariton propagating in the confined mo
the power flow inside the cylinder oscillates, while outside
decays. This behavior comes from the fact that the fields

FIG. 1. Dispersion relation of confined~solid curve! and local-
ized ~dashed curve! modes of the polariton as a function of th
wave vector, for a cylinder with radius~a! a50.5 mm and~b! a
52.0 mm.
re

.,
a-
s

re

or

s

e
of
e
r

t
,
t
at

describe this mode are Bessel functions of the first type
side and Bessel functions of the second type outside the
inder. The discontinuity of the power flow at the interfa
r 5a for both modes is a consequence of discontinuity of
fields at this interface. To analyze the power flow, we fi
plot in Fig. 2 the functionrSz(r ) for polaritons, propagating
with the same frequency but in two different branches
confined modes, as a function of the distance from the c
inder axis, for a cylinder of radiusa52.0 mm, withn51
and in the region of frequencyv2.V0

21VS
2 . We choose the

polaritons in the eighth and seventh branches above the r
nance line, which have frequencyv52.13 V0, correspond-
ing to k52.31 V0 /c @Fig. 2~a!# and k52.75 V0 /c @Fig.
2~b!#, respectively. In Fig. 2~a! we observed that the powe
flow inside the cylinder is smaller than the power flow ou
side the cylinder, while in Fig. 2~b! the intensity of the power
flow inside the cylinder is considerable larger~three orders
of magnitude! compared with its intensity outside the cylin
der. In fact we observed that, for confined modes in the
gion v2.V0

21VS
2 , where the second derivative of the di

persion curve is negative, such as in the eight branch,
power flow inside the cylinder is smaller than outside, wh
an opposite behavior is observed in the branches on w
the second derivative of the dispersion curve is positive. I
cylinder of a50.5 mm the confined mode with frequenc

FIG. 2. The functionrSz(r ) for polaritons on confined mode
with n51 as a function of the distance from the cylinder axis, fo
cylinder of radiusa52.0 mm, for the eighth~a! and seventh~b!
branches with frequencyv52.13V0, corresponding to k
52.31V0 /c andk52.75V0 /c, respectively.
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aboveAV0
21VS

2 also presents a second derivative of t
dispersion curve negative, and we observed that the po
flow inside the cylinder is also smaller than outside, rep
senting an analogous behavior to the one observed for
power flow of the confined mode shown in Fig. 2~a!. How-
ever, we observed that confined modes with frequency be
the resonance, have the second derivative of the disper

FIG. 3. The functionrSz(r ) for a polariton on a localized mod
with n51 as a function of the distance from the cylinder axis, fo
cylinder of radiusa52.0 mm, corresponding to a frequencyv
51.04V0.

FIG. 4. The functionrU (r ) for polaritons on confined mode
with n51 as a function of the distance from the cylinder axis, fo
cylinder of radiusa52.0 mm, for the eighth~a! and seventh~b!
branches with frequencyv52.13V0, corresponding to k
52.31V0 /c andk52.75V0 /c, respectively.
er
-
he

w
ion

curve negative, but the intensity of the power flow inside t
cylinder is greater than outside.

For localized modes, in Fig. 3 we show the functio
rSz(r ) as a function of the distance from the cylinder ax
for a52.0 mm, with n51 and in the region of frequenc
v2.V0

21VS
2 . As can be seen, the power flow inside is co

siderable larger than outside the cylinder. This fact is a
observed for the mode below the resonance frequency.
ticularly, for a cylinder of radiusa50.5 mm, the power flux
inside it is one order of magnitude larger than the power fl
outside the cylinder. This behavior is different from the o
observed by Khosraviet al.11 in localized modes of a cylin-
der with isotropic dielectric material withn51, where the
intensity of the power flow is of the same order of mag
tude. We observed that the difference in magnitude, betw
the power flow inside and outside the cylinder, decrea
with the cylinder radius.

To analyze the energy density of the polariton propag
ing in a cylinder we show in Figs. 4~a! and 4~b!, the function
rU (r ) as a function of the distance from the cylinder ax
for a cylinder of radiusa52.0 mm, corresponding to th
same modes considered in Figs. 2~a! and 2~b!, respectively.
In both cases we observe that the energy density is gre

FIG. 5. The functionrU (r ) for a polariton in the localized mode
with n51 as a function of the distance from the cylinder axis, fo
cylinder of radiusa52.0 mm, corresponding to a frequencyv
51.04V0.

FIG. 6. The integrated power flow of the localized mode in t
regionv.AV0

21VS
2 as a function of the wave vector, for a cylin

der of radiusa50.5 mm and withn51.
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inside the cylinder than it is outside the cylinder, indepe
dent of the signal of the second derivative of the dispers
curve. As can be seen in Fig. 5, the energy density ha
similar behavior for the localized mode presented in Fig.
but the difference between the values inside and outsid
only one order of magnitude.

For the results of the integrated power flow Eq.~15! and
the energy per unit length Eq.~30! we will restrict our atten-
tion to localized modes, since they can be compared w
those obtained by Khosraviet al.11 in a cylinder with isotro-
pic dielectric. In Figs. 6 and 7 we present the integra
power flow and energy per unit length of the localized mo
in the regionv2.V0

21VS
2 as a function of the wave vecto

for a cylinder of radiusa50.5 mm and withn51. As can be
seen, the integrated power flow and the energy per
length decreases with the wave vector and are always p
tive. We should mention that this behavior is also obser
for the confined modes studied here. This characteristi
not observed in an isotropic dielectric cylinder11 where the
integrated power flow is negative in the region where
slope of the corresponding dispersion curve is negative.
the anisotropic material considered and the modes inve
gated, the slope of the dispersion curves did not change
nal and consequently it could be expected that the integr
power flow and energy per unit length had the same sig
These facts show consistency in Fig. 8, where we presen
energy transport velocity of the localized modes presente
Figs. 6 and 7, given by Eq.~32!, which is in qualitative
agreement with the group velocity found as the slope of
corresponding dispersion curve.

IV. CONCLUSIONS

We have investigated the properties of polaritons pro
gating in an anisotropic material with a cylindrical geomet

FIG. 7. The energy per unit length of the localized mode in
regionv.AV0

21VS
2 as a function of the wave vector, for a cylin

der of radiusa50.5 mm and withn51.
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The analytical equations obtained are general and the re
can be used to have a complete description of polariton
cylindrical geometry. It should be remarked that the res
for an isotropic cylinder can be obtained as a particular ca
We choose the uniaxial Heisenberg antiferromagnet MnF2 to
display numerical results of the dispersion curves of confin
and localized modes, power-flow density, energy dens
and the energy transport velocity. As discussed in Sec.
the many branches of confined and localized modes pre
different behaviors of propagation and remarkable variati
on the intensities of electromagnetic fields, inside and o
side the cylinder. In isotropic dielectric materials with th
same geometry considered here and a fixed radius, the
ferent modes are restricted to regions of negative value
dielectric function. Considering a cylinder with the same
dius and an anisotropic material we observed a much la
range of frequencies on which polaritons can propagate.
existence of damping was not considered but consists in
important point to be studied in order to analyze the decay
different modes. This subject is now under consideration

Finally, we should say that we have applied our analyti
calculations to study the behavior of polaritons in a uniax
Heisenberg antiferromagnet cylinder but we do not exp
qualitative changes for propagation of these modes in a
ferent anisotropic medium with the same geometry.
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