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Transition-state analysis for fracture nucleation in polymers: The Lennard-Jones chain

F. A. Oliveira
International Center of Condensed Matter Physics and Departamento de Fisica, Universidade de Brasilia CP 04667,

70919-970 Brasilia DF, Brazil
~Received 30 April 1997; revised manuscript received 17 November 1997!

We present here a microscopic theory for fracture nucleation in finite chains, which may account for results
found in simulations and in some experimental situations. We obtain the characteristic breaking time for an
ensemble of one-dimensional Lennard-Jones chains, which is mainly a large prefactor times an Arrhenius rate.
We show that the expression scales well and that the activation energy agrees with the analytical results. We
show that the delay in the fragmentation is a consequence of the long-range time correlation in the relative
motion of two adjacent particles. This correlation is responsible for the origin of a self-organized memory as
well as the large elongation necessary for irreversible break to occur. We discuss the possibility of using this
simple theory to understand the main characteristic of fragmentation in more complex and realistic systems.
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I. INTRODUCTION

The subject of fractures has been, for a very long time
field of research in engineering and material science. H
ever, it has only recently attracted the attention of theoret
physics. With the recent development on nonlinear and
sipative dynamics the subject becomes now plausible wi
more precise description, going beyond the computationa
phenomenological view. The physics and chemistry of fr
mentation is a very rich and complex subject, and only
simple systems is an analytical theory of fracture possi
There is a reasonable number of systems such as additiv
fluids, and DNA in solutions whose motion in turbulent r
gime is subject to hydrodynamics scission. In order to und
stand polymer degradation one must build a theory for
breaking of single chains. This theory of course does
exist, nevertheless, we shall list here some of the m
achievements in this direction.1–12

There are two fundamental questions that a theory of fr
ture must answer. First, what is the condition for a giv
system to be considered stable? Second, how long will it t
for an unstable system to break? The problem addresse
Refs. 10–12 is that of developing a theory that provid
some basis to answer both questions for anharmonic ch
under stress. Real polymers, or any other solids, are ind
three-dimensional objects. However, under stress the m
fragmentation occurs along the direction of the bond of t
neighbors. Consequently we suggest that the main impor
motion is in the direction of the stretched chain. This is t
most simple model, and may be a stepping stone towar
more general theory, which should include polymers n
works, gels, and systems with higher dimensions.

As early as 1920, Griffith1 discussed the time evolution o
continuous macroscopic flows that may be present on s
polymers. However, the first work on chain instability w
the famous Peierls instability for an infinity one-dimension
~1D! harmonic chain.2 The subject of stability for a finite
anharmonic chain has been discussed by many differen
thors ~see Refs. 8, 10, 12, and references therein!. A model
based on equilibrium statistical mechanics was proposed
570163-1829/98/57~17!/10576~7!/$15.00
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Blumberg-Selingeret al.6 They consider the system as a
Ising model where a bond breaks or not. Their mean fi
solution is not appropriate for a one-dimensional system,
as consequence the obtained stability condition is somew
ill defined. Bueche4 and Zhurkov5 have suggested that th
solid breaking time must be proportional to a Boltzma
factor. They omitted the dependence on the chain length,
their activation energy needs some corrections. Some
provement in this direction has been made by Cristet al.7

However, their work has no reference to the chain dynam
The main shortcoming of those models is the total a

sence of comparison with experiments and simulatio
Since experiments on single chains are quite difficult, o
must rely on good computer simulations to model the m
aspects of the dynamics of fragmentation. In this way, b
computer simulations and analytical results have been
tained for harmonic8 and anharmonic chains.9,10 Welland
et al.9 performed computer simulations on 1D systems. Th
used the Lennard-Jones potential and fixed boundary co
tions. They evaluated numerically the fracture size proba
ity with the distance to the chain’s end. In their work the
defined the breaking time as an average of 100 runs. T
was an important point, however, we showed later10 that the
distribution of breaking time follows the Poisson law.

To understand the thermodynamics of breaking, extens
simulations were performed10 to determine the conditions
under which an anharmonic stretched chain will break. T
dynamic of a rectilinear chain of 100 monomers interact
via the Lennard-Jones potential was followed by solving
set of simultaneous Langevin equations. For such nonlin
systems, the breaking time is strongly dependent on the
tial conditions and on the noise sequence. Consequentl
ensemble of such chains decays with a Poisson law and
can only obtain the characteristic breaking time. A method
obtain a reliable~characteristic! breaking time was then dis
cussed. It was found that the breaking time was orders
magnitude higher than one would expect from a Krame
type13 theory. It was noticed as well that in order for a
irreversible break to occur in a stretched chain, a bond m
be extended to a length considerably greater than the le
10 576 © 1998 The American Physical Society
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57 10 577TRANSITION-STATE ANALYSIS FOR FRACTURE . . .
at which the restoring force is maximized. This healing c
pacity was also observed experimentally in iron whisk
under stress. They contain few defects and remain und
aged in a metastable state before a fracture occurs. This
nomenon was called delayed fracture.3 Nevertheless our
model is restricted to one dimension, and as we do not w
to study the phenomena or delayed fracture here, we
claim that this may be a very common phenomenon in ph
ics.

In a previous work11 we investigated the dynamical reno
malization at the onset of a fracture. We discussed a poss
mechanism to explain the sell-similarity found in fractur
patterns. Using this renormalization it was possible to obt
correlations functions for the displacements which for sho
range time agree with the~exact! correlations functions for
the harmonic chain. Later, we studied12 the dynamical stabil-
ity of chains under fracture. We got the limiting condition
that a bond may extend before breaking. The results wer
agreement with the simulations. Consequently, for single
harmonic chains the stability conditions are well establish

Our main objective here is to answer the second quest
What is the breaking time of a chain, and how does it dep
on the temperature, stress, friction, and number of monom
in the chain?

The approach that we shall take is to follow the cha
dynamics through the breaking process. We make use
both computer simulation and the state of the art reac
rate theory to justify our model for simple chains. We co
sider an ensemble ofm identical chains, each chain of whic
hasN particles of massM , which at equilibrium are sepa
rated from each other by a distancea. We stretch every bond
of the chain by an amountS, then we connect the chains t
a thermal reservoir of temperatureT. The displacement o
the l particle from the equilibrium position isj l . The chains
interacting weakly with each other via a friction forc
2Mg0

j̇ l . Hereg0 is the friction constant andj̇ l is the ve-
locity of the particle at the chain in relation to a static m
dium. The equation of the motion for thel particle is then

M j̈ l5F~a1S1j l2j l 21!2F~a1S1j l 112j l !2Mg0j̇ l

1 f l~ t !. ~1!

HereF(x) is the force between the first neighbors, which w
take from a Lennard-Jones potential,f l(t) simulates the ther-
mal bath with intensitysh, with h as a uniform distribution
of random numbers in the interval21<h<1. The value ofs
depends on the time incrementDt that one uses to numer
cally integrate Eq.~1!. Our times are given in units oft0
52p/v0 , (v05vS50), wherevS is the maximum phonon
frequency of the stretched chain. We take the Brownian fo
as a constant in the time intervalD l 50.005t0 and by the
fluctuation dissipation theorem, we get s
5A6Mg0KBT/Dt.

II. THE ONE-PARTICLE MODEL

Extensive simulations10 on single chains have shown th
the chain will break in just one bond. This is a very plausib
argument when one considers that the possibility of dou
breaking is not an easy process, in terms of energy. For t
cal polymers at room temperature, we estimate the dou
-
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breaking probability to be exp~2150! smaller than the prob-
ability of single breaking. From this point of view, one ma
say that the average time for a chain to break will be
average time for one of its bonds to break. From that,
effective potential for the breaking of a single bond may
obtained for a chain of fixed lengthL5N(a1S). The chain
of N particles in which a bond is stretched by an ex
amountf, while the othersN21 bonds relax, has a potentia
energy of

Ueff~f!5U~a1S1f!1~N21!U@a1S2f/~N21!#.
~2!

This definition of the effective breaking potential may b
applied to any pair potentialU. However, in this work we
shall restrict our simulations to the 12:6 Lennard-Jones
tential with unity binding energy. Equation~2! shows that for
any chain of lengthN there is a finite strainS0 , such that the
elastic energy accumulated in the chainNW @W5U(a
1S0)2U(a)# should be equal to the necessary energy
break a bondNW51. For anyS.S0 , the effective potential
has the metastable minimum atf50, and the absolute mini
mum has af0 corresponding to a broken chain. This mea
that Ueff(f0),Ueff(0). In this situation the global minimum
corresponds to a break. Observe that for any realistic
potentialU must have a maximum strainSmax as well, be-
yond which there is no restoring force in the chain. T
Lennard-Jones potential hasSmax51.109. In Fig. 1 we plot
the effective potential as a function of the bond elongationf.
In Fig. 1~a! we haveS5S0 ; Fig. 1~b! S.S0 ; Fig. 1~c! S
,S0 . In Fig. 1~b! we notice that the broken chain is th
stable situation.

Now that an effective breaking potential has been clea
defined, the main simplification of this theory will be to d
scribe the chain fragmentation process as the evolution
one particle in the effective potential, Eq.~2!, from the meta-
stable to the global equilibrium position. The average tim
for the l th bond to break will be the average time for
particle to escape from this potential. The equation of mot
for a particle in this potential is then

FIG. 1. Effective potential for the break of a bond as a functi
of the bond elongation. Energies are in units of the binding ene
P, and distance in units of the lattice spacea. The chain has 100
particles and is submitted to a strainS. The interaction between the
particles is given by the Lennard-Jonnes potential.~a! S5S0 ; ~b!
S50.019; ~c! S50.014.
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10 578 57F. A. OLIVEIRA
mf̈5Feff~f!2mg0ḟ1g~ t !. ~3!

Sincef is the relative displacement between two real pa
ticles, the effective massm is thenm5M /2, Feff is the effec-
tive force derived from the potential, Eq.~2!, the second term
is the friction force, andg the correspondent noise. The av
erage time for thel th bond to break will be the average tim
for this ‘‘particle’’ to escape from the effective potential
From these conditions, it is possible to make an estimation
the escape rate for the transition from a metastable posit
at f50 to a position outside the barrier where the partic
has escaped in an irreversible way.

Now, if we consider that every bond has the same bre
ing probability, and using reaction rate theory, the avera
breaking time for the chain can be cast in the form

t5~v0 /va!~vb /n!t0 exp~bEb!/N. ~4!

Herevb/2p is the unstable frequency at the top of the barri
andva/2p is the frequency at the bottom. The factorv0 /va
takes in consideration the change of time units from the p
ticle ta52p/va to the chaint0 . The usual Boltzmann factor
exp(bEb) hasb51/KBT, and Eb as the barrier height~see
Fig. 1!. Equation~4! is the central part of this work. Now we
search for an explicit expression for the attempt frequencyn.
Crist et al.7 presented an estimate fort. However, their re-
sults were based on energy considerations, and they omi
the factor (vb /n). This problem lies at the heart of moder
dissipative dynamics, and needs careful analysis.

One systematic approach to the problem of particle ev
lution over a barrier in a dissipative environment is given b
Kramers.13 He proposed that the main characteristics of
potential with a barrier could be described by two harmon
approximations at the minimum and maximum of the barrie
From that point of view, Eq.~1! can be statistically analyzed
to give a characteristic escaping time for the well. Followin
his ideas, we write

n5nK5Avb
21~g0/2!22g0/2. ~5!

FIG. 2. Characteristic first time passaget(d) for a bond to reach
a distanced as a function ofd. The time is in units of 2p/v0 ,
wherev0 is the unstretched phonon frequency. We useT50.025
and S50.035. Here through we useg50.25v0 . ~a! A chain with
100 particles. The average is over 800 experiments;~b! a single
particle moving in an effective potential with the same conditions
in ~a!. The average is over 2000 experiments.
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Now we compare the results from Eq.~4! with those of
the full simulations for a chain. We integrate Eq.~1! and
follow the evolution of a chain until an irreversible brea
occurs. The characteristic breaking time for a set of 8
chains is shown in Fig. 2. There we plot the first time pa
sage to cross distanced as a function ofd. In Fig. 2~a!, we
have an ensemble of 800 chains and in Fig. 2~b! a set of
2000 particles moving in the corresponding effective pot
tial. Here S50.035, T50.025, and through this workg0
50.25v0 . The plateau region is where the irreversib
breaking has happened with no more recombinations.
plateau defines the breaking time. We shall notice the hig
bond elongation for the chain when compared with the p
ticle.

In Fig. 3 we plot the natural logarithm of the breakin
time as a function of the inverse of temperature. Curve~a! is
for N5100, whereas curve~b! is for N5200. For both
chains the results show an Arrhenius rate. Consequently
analogy with Eq.~4!, we suggest for our simulations th
attempt frequencyn5nS and for the barrier heightEb
5ES . In Table I we compare the results of simulations w
those obtained from our one-particle model. We notice t
while the values ofEb andES are close, the values ofnS are
surprisingly, small~large t! when compared with those o
nK . Notwithstanding the apparent agreement betweenEb
and ES , we observed that for the set of experiment do
Eb.ES . This is a puzzle because a careful analysis sho
that the effective potential, Eq.~2!, has an exact variationa
principle inside. Consequently, it is not possible by a
means for the activation energyES to be smaller thanEb .
Finally, we notice an unexpected large variation onnS and
ES with N.

s

FIG. 3. The logarithm of the breaking time as a function of t
inverse of temperature. HereS50.035. ~a! Upper curveN5100;
~b! N5300.

TABLE I. Parameters for the one-particle effective potent
(b), for the Kramers model (K), and for the simulations (s). Here
the strain isS50.035.

N 100 200 300 400

vb 3.5970 3.6778 3.7023 3.7142
nK 2.0547 2.1242 2.1455 2.1559
Eb 0.14135 0.13655 0.13504 0.13429

ns 0.00875 0.0191 0.03871 0.0359
Es 0.11 0.09 0.12 0.10
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Before we discuss those results, we note that Well
et al.9 plottedt as a function ofT. From their results we go
ln~t! as a function ofb, which suggested a straight line
However, their four points were not enough to obtain a go
activation energy.

III. THE DARK FACTOR

The above-mentioned results show clearly that someth
is missing from our one-particle model, and that improv
ment must be made. First, we observe that the main prob
comes fromnS ; its value is too small~larget!. We observe
that it does not make any reference to the chain dynam
Moreover it makes no distinction between a chain w
monoatomic basis and that with a diatomic or polyatom
one. Consequently, we may include inn a factorDF which
will include this missing physics. In this way, Eq.~5! may be
rewritten as

n5nKDF
21. ~6!

The factorDF , namely, the dark factor,15 may depend on the
temperature, strain, and friction, but does not depend onN.
We notice that bothn andnK have units of frequency, con
sequentlyDF is dimensionless.

Second, we show that Eq.~4! scales well withN. For two
different N’s, one may write Eq.~4! as

t~N!5t~N1!ebDEb~N/N1!. ~7!

HereDEb5Eb(N)2Eb(N1) is a small difference due to fi
nite size effects.

In Table I we give values for the parameters of the eff
tive potential as a function ofN. In Fig. 4 we displayt(N)
as a function ofN for different values of temperatures. W
useN15300 to scale the other values. The continuous lin
are obtained from Eq.~7!, whereas the points are obtaine
from curves similar to those in Fig. 3. As a guide to the e
we put an error bar of 1%. The four lines from up to dow
are for the temperatures 0.025, 0.028, 0.030, 0.035.
agreement between the simulations and Eq.~7! is remark-
able. As a consequence, we see that the activation ene
are really those obtained from the effective potential. F
example, for an erroruDt/tu<0.01, as observed in Fig. 4

FIG. 4. The logarithm of the breaking time as a function ofN.
We useS50.035. From top to bottom:T50.025, 0.028, 0.030
0.035. The continuous curves are from the scaling, while the
monds are from simulations.
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with b540 we need a precision ofuDEbu<3.1025. Indeed
the energies are sensitive enough to make the precise co
tion of 33% when we go fromN5100 toN5400 atb540
@exp(bDEb)51.33#.

This excellent result for the one-particle potential is d
to the fact that it has an exact variation principal inside. It
not a mean field potential, but a strongly correlated o
These experiments suggest that the geodesics for the fra
will be trajectories which will minimize the energy following
closely the potential, Eq.~2!. It is also worthwhile to notice
that theN21 dependence yields

lim
N→`

t~N!50

for any value ofS in agreement with the Peirls instability fo
infinite one-dimensional chains.2 For an infinite chain the
particles has a Gaussian distribution of velocities, some
them with enough energy for an instantaneous breaking.

In Fig. 5 we plotDF as a function ofbEb for a chain of
100 particles. In curve~a! we fix the temperatureT50.05,
while in curve~b! we fix the strainS50.035. The increase o
DF with temperature explains the reduction on the appar
barrierES as obtained from Fig. 3. The qualitative aspects
curve~b! may be understood in terms of modern reaction r
theory, where corrections on Kramers rate decrease w
bEb . However, the behavior expressed on curve~a! is op-
posite to those results presented in Refs. 14 and 17.
rather peculiar behavior shows thatDF is not a simple func-
tion of bEb . Since energy consideration is not enough
explain the breaking distribution, this suggests a no
Markovian system where the history~memory! of the pro-
cess is fundamental. That is what we expect by intuition
any process of fragmentation.

The origin of memory must be searched for in the cor
lations between neighboring particles in the chain. Using
~1! we write down an equation for the differencef l5j l
2j l 21 , and we reorganize those equations in such a w
that at the breaking pointl 5k, fk5y, and f lÞk5y/(N
21)1yl . Hereyl is a small oscillation and( yl50. Now
Eq. ~3! may be rewritten as

m ÿ~ t !5Feff~y!2mE
0

t

G~ t2t8!ẏ~ t8!dl81h~ t !, ~8!

a-

FIG. 5. The dark factorDF as a function ofbEb . ~a! We fix the
temperature and we change the strainS; ~b! we fix S50.035, and
we change the temperature.
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10 580 57F. A. OLIVEIRA
where the new noise

h5~ f k2 f k211g!/2

now has a coherent part

g52F~a1S!2F~a1S1yl 11!2F~a1S1yl 21! ~9!

given by the motions of the neighboring particles. This c
herent motion requires a memory functionG(t) which ac-
cording to fluctuation-dissipation theory, reads

^h~ t !h~ t8!&5mkBTG~ t2t8!, ~10!

here^& means thermal average. Since we know the time e
lution of h(t) we may use the ergodic theorem

^h~ t !h~ t8!&5 lim
T→`

S 1

TD E
0

T

h~ t1t9!h~ t81t9!dt9. ~11!

By use of Eqs. ~9!–~11!, one may construct the self
organized memoryG(t). The important fact is that from a
pure chaotic motion the system builds up a memory.

Using a harmonic approximation on Eq.~9!, we obtain the
approximate analytical result

G~ t !52g0d~ t !1
vS

2

2
R~ t !,

where

R~ t !5
^yl~ t !yl~0!&

^yl~0!yl~0!&
.

Now, using a similar argument to those used by Floren
and Lee18 for the classical harmonic chain, we obtain

R~ t !5J0~vSt !,

whereJ0 is the zero order Bessel function.
In Fig. 6, we plotR(t) as a function oft. Here, time is

given in units of 2p/vS . Curve ~a! is J0(vSt) for the har-
monic chain. Curve~b! is for the full simulation of the an-
harmonic chain. The short time behavior for the approxim
tion is quite reasonable.

In the last fifteen years important progress has been m
in the understanding of reaction rates for the generali
Langevin equation~GLE!. The first improvement is from

FIG. 6. The time-dependent correlation functionR(t) for the
relative displacement. Here time is given in units of 2p/vS . ~a!
The theoretical value for the harmonic chain;~b! the full simula-
tions for the anharmonic chain.
-

o-

o

-

de
d

Grote-Hynes theory,16 which basically replacesnK by a self-
consistentnGH which is the maximum value of

n21nG̃~n!5vb
2. ~12!

Here G̃(z) is the Laplace transform ofG(t).
In Fig. 7 we plotG̃(z) as a function ofz. HereG̃(z) is in

units ofg0 , andz in units ofv0 . The upper curve is for full
anharmonic modes, while the lower curve is for the h
monic approximation. One can see that for smallz the dy-
namic memory is larger than the static one and has a v
sharp variation. UsingG̃(z) in Eq. ~12!, one obtains
nK /nGH'9. Notwithstanding that this result is not capable
accounting for all discrepancies, it clearly points out the rig
direction.

The next step comes from the observation that both
Kramers and Grote-Hynes results are up bond limits to
reaction rate.17 The main idea is that the first time passage
a particle through a barrier is not irreversible since fluctu
tions may bring it back. For low barriersbEb,10, the non-
linear modes interact with the coherent noise and that de
the reaction.17,14 From a systematic review of those theori
for a particle, we may write

DF5nKnGH
21l, ~13!

where

l5Abmvb
2

2p

3E expF2bS mvb
2

2
~f2fb!21Ueff

ah~Vf! D Gdf.

~14!

The superscript ah stands for the anharmonic part of the
tential. HereV is a coupling parameter, which relates th
noise with the nonlinear modes.17 Again, notice thatl is
dimensionless. We have computed the values ofl in the
region 20,b,50; they contribute only with a small factor
so this approach is unable to explain the highest value
DF .

FIG. 7. The Laplace transform of the memory functionG̃(z) as
a function ofz. Data are the same as in Fig. 6.G̃(z) is in units of
1/vS , while z is in units of vS . ~a! Upper curve anharmonic
modes;~b! the harmonic modes.
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IV. BEYOND THE ONE-PARTICLE MODEL

We have exhausted the reaction rate theory for a o
particle model, without being able to give a full descriptio
of the problem. Now we shall leave the simplicity of th
one-particle reasoning and look in the opposite directi
What is the main difference between the chain dynamics
the one-particle motion, which was not included in o
model? To answer this question, it is crucial to notice that
a chain the critical elongationfc* is larger than that of a
single particlefp* . We have already investigated this ph
nomenon, looking at the stability of the modes of the anh
monic chain in the continuous limit.12 There we found the
existence of three important bound lengths for the cha
fb , fm , andfh ; values which necessarily fulfillfb,fm
,fh . Here Ueff(fm)50 is the minimum critical value and
fh is the maximum value for the bond length obtained fro
the stability conditions. From this kind of argument one e
pectsfm,fc* ,fh .

In Fig. 8 the bond elongation is plotted as a function
the strain. There we plot the critical values obtained by
simulationsfc* andfp* , and the theoretical valuesfb , fm ,
and fh . We see that the simulations fall on the expec
limits obtained from the stability conditions. From Fig. 8 a
Fig. 2 we also see that the system stays in the regionfm

,fc* ,fh longer than at equilibrium, consequently, th
characterizes a nonequilibrium situation. Indeed, the sys
is very far from equilibrium, and consequently we expe
that the usual ergodic hypothesis, Eq.~11!, used in most
reaction rate calculations will not be appropriate to descr
the problem. However, it is still possible to evaluate Eq.~14!
using the fact that the particle will spend the most tim
aroundfc* . With thisad hochypothesis one may rewriteDF

as

DF5a
nK

nGH
Abmvb

2

2p
expFbKf

2
~fc* 2fb!2G . ~15!

Herea is some parameter that may come from normalizat
of the nonequilibrium distribution.Kf is the second deriva
tive of the effective potential atfc* which is positive.

FIG. 8. Theoretical critical bond length and experiments a
function of the strain.~a! fm ; ~b! fb ; ~c! fh . The experiments are
described by diamonds for the chains and by the single error
for the particles. For the chains we average over 10 ensemble
800 chains. For the particles we average over 10 ensembles of
independent particles each.
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In Fig. 9 we plot the logarithm ofDF as a function of
(fc* 2fb)2 for T50.05. The straight line is the minimum
square fit and is given by ln(DF)54.5712.66(fc* 2fb)2.
We compare withbKf/252.760.6 for S50.035. We have
not been able to find the parametera. However, fora52.3
the agreement is perfect.

Large values offc* are not only characteristic of th
Lennard-Jones potential, indeed they are a consequenc
the long-range interaction described by any power-l
behavior12 of the typeU}x2a, wherea is a constant. They
represent a large class of lattices, since in general one
pects that any physical system may have an ionic or dip
behavior even as a secondary phenomenon.

Now we shall discuss two opposite limits of large a
smallDF . In Fig. 5 we notice that a smallDF is obtained for
large S and low T. We performed new simulations withS
50.05 and T in the range 0.01,T,0.005, and we get
DF(T'0.006);20. In that limit fc*→fb , and the systems
will not be very far away from equilibrium. Here the brea
means that it is just crossing the barrier. This is the us
process described in detail by the Grote-Heynes approxi
tion, for which the minimum value predicted isDF'9.

Finally, let us consider the extreme limitS→S0 . For a
system of particles in such a potential, we expect that a
thermal equilibrium is reached half of the particles may
found at both sides of the well. For such a chain asS→S0 ,
however,fc*→`, and this gives an infinite breaking time
even for a finite barrierEb as shown in Fig. 1~a!. This is a
result that cannot be obtained using one-particle theory.

V. CONCLUSIONS

We developed a microscopic theory that gives us sim
analytical expressions for the characteristic breaking time
an ensemble of chains in contact with a thermal reservoir.
a starting point we tried to create a one-particle theory.
that we defined an effective potential which turns out to
an exact variational minima for those trajectories that br
the system from a metastable position to a stable one. A
result we notice the existence of a very low attempt f
quency compared with that of the chain vibration.

With the definition of corrective factorDF , the chain dy-
namics was introduced in our model. Two points distingu
the chains from the particle. First, the existence of a s

a

rs
of
00

FIG. 9. The logarithm ofDF as a function of (fc* 2fb)2. Here
T50.05.
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organized memoryG(t). Second, the existence of a lon
critical length fc* necessary for an irreversible break. T
first makes our model non-Markovian. Moreover, the seco
suggests a system far from equilibrium, where time and
semble averages are not exchangeable. In this way, the
tion rate becomes an exponential function of this criti
value which reduces to the one-particle model, in the lim
fc*→fb .

This theory has the main characteristic obtained in co
puter simulations. As a result the breaking time may be
pressed as a product of a typical Arrhenius rate times a n
trivial dark factor. Experiments on single chains wi
periodic boundary conditions, coupled with a thermal ba
are difficult to do. The closest ideal noninteracting chains
diluted solutions of macromolecules. Odell and Taylo19

computed the kinetic rate for DNA dissociation in an elo
gated fluid. They used Eigner’s data20 to estimate the attemp
frequency asn56.53107 s21. The vibration frequency is
well known from IR spectroscopy for theP5O linkage to be
of the order of 1012 s21. The difference between theory an
experiments suggest aDF of the order 104 to 105. These
results are shown forbEb>4.5 in Fig. 5, curve~a!. They are
possible for strains a bit smaller than those we have here
for a large correlation length. This is a good example of la
DF . These biological systems are characterized by a sm
Eb and a strong resistance to fragmentation. It is not too h
to speculate that its internal structure has important spa
and temporal memory and that nature built DNA in such
o
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way as to make it mechanically resistant. As expected fr
this theory even without a precise knowledge of the syst
we may suggestDF@1, and propose a procedure to compu
the rate. However, to obtain this for DNA goes beyond t
objective of this work.

In conclusion, we developed a theory for chain fragme
tation which gives us the result obtained by simulations. T
breaking rate is an Arrhenius rate times an attempt
quency. The attempt frequency is described by the Kram
rate divided by a dark factorDF which is larger than unity.
There are, at least, two important situations where the d
factor DF is important. First, all real time simulations ar
done in the range of smallbEb , since large values of it are
not accessible by present day computers. Second, most
and soft materials fall in this range. This, of course, is t
situation of a large class of materials including biologic
ones, which for lowEb may break only due to thermal fluc
tuations at environmental temperatures. For those phen
ena,DF should be taken in consideration. In particular w
predict large values ofDF , and an underestimated activatio
energyEb .
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