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Transition-state analysis for fracture nucleation in polymers: The Lennard-Jones chain
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We present here a microscopic theory for fracture nucleation in finite chains, which may account for results
found in simulations and in some experimental situations. We obtain the characteristic breaking time for an
ensemble of one-dimensional Lennard-Jones chains, which is mainly a large prefactor times an Arrhenius rate.
We show that the expression scales well and that the activation energy agrees with the analytical results. We
show that the delay in the fragmentation is a consequence of the long-range time correlation in the relative
motion of two adjacent particles. This correlation is responsible for the origin of a self-organized memory as
well as the large elongation necessary for irreversible break to occur. We discuss the possibility of using this
simple theory to understand the main characteristic of fragmentation in more complex and realistic systems.
[S0163-182608)01717-2

[. INTRODUCTION Blumberg-Selingeret al® They consider the system as an
Ising model where a bond breaks or not. Their mean field
The subject of fractures has been, for a very long time, &olution is not appropriate for a one-dimensional system, and
field of research in engineering and material science. Howas consequence the obtained stability condition is somewhat
ever, it has only recently attracted the attention of theoreticaill defined. Buech& and Zhurkov have suggested that the
physics. With the recent development on nonlinear and dissolid breaking time must be proportional to a Boltzmann
sipative dynamics the subject becomes now plausible with &ctor. They omitted the dependence on the chain length, and
more precise description, going beyond the computational atheir activation energy needs some corrections. Some im-
phenomenological view. The physics and chemistry of fragprovement in this direction has been made by Ceisal.’
mentation is a very rich and complex subject, and only forHowever, their work has no reference to the chain dynamics.
simple systems is an analytical theory of fracture possible. The main shortcoming of those models is the total ab-
There is a reasonable number of systems such as additivessence of comparison with experiments and simulations.
fluids, and DNA in solutions whose motion in turbulent re- Since experiments on single chains are quite difficult, one
gime is subject to hydrodynamics scission. In order to undermust rely on good computer simulations to model the main
stand polymer degradation one must build a theory for thespects of the dynamics of fragmentation. In this way, both
breaking of single chains. This theory of course does notomputer simulations and analytical results have been ob-
exist, nevertheless, we shall list here some of the maitained for harmonft and anharmonic chairffs? Welland
achievements in this directidn? et al® performed computer simulations on 1D systems. They
There are two fundamental questions that a theory of fracused the Lennard-Jones potential and fixed boundary condi-
ture must answer. First, what is the condition for a giventions. They evaluated numerically the fracture size probabil-
system to be considered stable? Second, how long will it takéy with the distance to the chain’s end. In their work they
for an unstable system to break? The problem addressed defined the breaking time as an average of 100 runs. This
Refs. 10—12 is that of developing a theory that providesvas an important point, however, we showed 4térat the
some basis to answer both questions for anharmonic chaimBstribution of breaking time follows the Poisson law.
under stress. Real polymers, or any other solids, are indeed To understand the thermodynamics of breaking, extensive
three-dimensional objects. However, under stress the maisimulations were performé¥to determine the conditions
fragmentation occurs along the direction of the bond of twounder which an anharmonic stretched chain will break. The
neighbors. Consequently we suggest that the main importawalynamic of a rectilinear chain of 2100 monomers interacting
motion is in the direction of the stretched chain. This is thevia the Lennard-Jones potential was followed by solving a
most simple model, and may be a stepping stone towards set of simultaneous Langevin equations. For such nonlinear
more general theory, which should include polymers netsystems, the breaking time is strongly dependent on the ini-
works, gels, and systems with higher dimensions. tial conditions and on the noise sequence. Consequently an
As early as 1920, Griffithdiscussed the time evolution of ensemble of such chains decays with a Poisson law and one
continuous macroscopic flows that may be present on solidan only obtain the characteristic breaking time. A method to
polymers. However, the first work on chain instability was obtain a reliablgcharacteristicbreaking time was then dis-
the famous Peierls instability for an infinity one-dimensionalcussed. It was found that the breaking time was orders of
(1D) harmonic chairf. The subject of stability for a finite magnitude higher than one would expect from a Kramers-
anharmonic chain has been discussed by many different atype™® theory. It was noticed as well that in order for an
thors (see Refs. 8, 10, 12, and references therédnmodel irreversible break to occur in a stretched chain, a bond must
based on equilibrium statistical mechanics was proposed blge extended to a length considerably greater than the length
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at which the restoring force is maximized. This healing ca- 05— T L BUTUO . . T
pacity was also observed experimentally in iron whiskers '
under stress. They contain few defects and remain undam e
aged in a metastable state before a fracture occurs. This phe ’ q
nomenon was called delayed fractdrélevertheless our /
model is restricted to one dimension, and as we do not wani,;,(¢) o.1 - 4
to study the phenomena or delayed fracture here, we may
claim that this may be a very common phenomenon in phys-
ics. 01 F 1
In a previous work! we investigated the dynamical renor-
malization at the onset of a fracture. We discussed a possible 03 , , , , , ) ,
mechanism to explain the sell-similarity found in fractures 0 02 04 06 08 1 12 14 16
patterns. Using this renormalization it was possible to obtain ¢
correlations functions for the displacements which for short-

range time agree with théexacy correlations functions for ¢ the hond elongation. Energies are in units of the binding energy
the harmonic chain. Later, we studféthe dynamical stabil- e, and distance in units of the lattice spaceThe chain has 100

ity of chains under fracture. We got the limiting conditions particles and is submitted to a str&n The interaction between the
that a bond may extend before breaking. The results were iparticles is given by the Lennard-Jonnes potent@l.S=Sy; (b)
agreement with the simulations. Consequently, for single ans=0.019; (c) S=0.014.

harmonic chains the stability conditions are well established.

Our main objeqtive_here is to answer the second_questiorbreaking probability to be eXp-150 smaller than the prob-
Whatis the breaking time of a chain, and how does it dependyjity of single breaking. From this point of view, one may
on the temperature, stress, friction, and number of monomer§ay that the average time for a chain to break will be the

in the chair? , _ average time for one of its bonds to break. From that, an
The approach that we shall take is to follow the chainggfective potential for the breaking of a single bond may be
dynamics through the breaking process. We make use Qfptained for a chain of fixed length=N(a+S). The chain

both computer simulation and the state of the art reaction; p particles in which a bond is stretched by an extra
rate theory to justify our model for simple chains. We Cor"amount¢>, while the otherdN— 1 bonds relax, has a potential
sider an ensemble afi identical chains, each chain of which energy of

hasN particles of masd, which at equilibrium are sepa-

rated from each other by a distareeWe stretch every bond

of the chain by an amour8, then we connect the chains to ~ Uer(¢) =U(a+S+¢)+(N-1)U[a+S—¢/(N-1)].

a thermal reservoir of temperatufie The displacement of 2
thel particle from the equilibrium position i§ . The chains

interacting weakly with each other via a friction force  This definition of the effective breaking potential may be
—M, & . Herey, is the friction constant ang, is the ve-  applied to any pair potentidl. However, in this work we
locity of the particle at the chain in relation to a static me-shall restrict our simulations to the 12:6 Lennard-Jones po-
dium. The equation of the motion for theparticle is then ~ tential with unity binding energy. Equatid@) shows that for
) ] any chain of lengttN there is a finite strai®,, such that the
MéE=F(a+S+§—§-1)—F(atSt&,:1— &) My elastic energy accumulated in the chaiw [W=U(a
+Sy)—U(a)] should be equal to the necessary energy to
(). (1) break a bonddW=1. For anyS>S;, the effective potential
HereF(x) is the force between the first neighbors, which wehas the metastable minimum ét=0, and the absolute mini-
take from a Lennard-Jones potentifi(t) simulates the ther- Mum has ap, corresponding to a broken chain. This means
mal bath with intensityrs, with 7 as a uniform distribution  that Ue(¢o) <Uer(0). In this situation the global minimum
of random numbers in the intervall<z=<1. The value obr corresponds to a break. Observe that for any realistic pair
depends on the time incremeft that one uses to numeri- potentialU must have a maximum straif,., as well, be-
cally integrate Eq(1). Our times are given in units of, yond which there is no restoring force in the chain. The
:277/w0, (wO: wS:O)r WherewS is the maximum phonon Lennard-Jones potential h&hale.109. In Flg 1 we p|0t
frequency of the stretched chain. We take the Brownian forcéhe effective potential as a function of the bond elongation
as a constant in the time intervall =0.005r, and by the In Fig. 1(a we haveS=S;; Fig. 1(b) S>S; Fig. 1c) S
fluctuation dissipation theorem, we get o <Sp. In Fig. 1(b) we notice that the broken chain is the

=6M y,KgT/At. stable situation.

Now that an effective breaking potential has been clearly
defined, the main simplification of this theory will be to de-
scribe the chain fragmentation process as the evolution of

Extensive simulatior§ on single chains have shown that one particle in the effective potential, E), from the meta-
the chain will break in just one bond. This is a very plausiblestable to the global equilibrium position. The average time
argument when one considers that the possibility of doubldor the Ith bond to break will be the average time for a
breaking is not an easy process, in terms of energy. For typiparticle to escape from this potential. The equation of motion
cal polymers at room temperature, we estimate the doublfor a particle in this potential is then

FIG. 1. Effective potential for the break of a bond as a function

Il. THE ONE-PARTICLE MODEL
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FIG. 3. The logarithm of the breaking time as a function of the
FIG. 2. Characteristic first time passagf@) for a bond to reach inverse of temperature. Hei®=0.035. () Upper curveN=100;

a distanced as a function ofd. The time is in units of zr/wg, (b) N=300.
where wg is the unstretched phonon frequency. We Uise0.025
and S=0.035. Here through we usg=0.25v,. (@) A chain with Now we compare the results from E@t) with those of

100 particles. The average is over 800 experimefiis;a single  the full simulations for a chain. We integrate Ed) and
particle moving in an effective potential with the same conditions agg|low the evolution of a chain until an irreversible break

in (a). The average is over 2000 experiments. occurs. The characteristic breaking time for a set of 800
) . chains is shown in Fig. 2. There we plot the first time pas-
wd=Fex( ) — mwyod+9g(t). 3 sage to cross distaneckas a function ofd. In Fig. 2a), we

have an ensemble of 800 chains and in Fih) 2 set of

Since ¢ is the relative displacement between two real par2000 particles moving in the corresponding effective poten-
ticles, the effective mass is thenu=M/2, F o is the effec-  tial. Here S=0.035, T=0.025, and through this worky,
tive force derived from the potential, E(), the second term =0.250,. The plateau region is where the irreversible
is the friction force, andy the correspondent noise. The av- breaking has happened with no more recombinations. The
erage time for théth bond to break will be the average time plateau defines the breaking time. We shall notice the higher
for this “particle” to escape from the effective potential. bond elongation for the chain when compared with the par-
From these conditions, it is possible to make an estimation dfcle.
the escape rate for the transition from a metastable position In Fig. 3 we plot the natural logarithm of the breaking
at ¢=0 to a position outside the barrier where the particletime as a function of the inverse of temperature. Cugyas
has escaped in an irreversible way. for N=100, whereas curvéb) is for N=200. For both

Now, if we consider that every bond has the same breakchains the results show an Arrhenius rate. Consequently, in
ing probability, and using reaction rate theory, the averag@nalogy with Eq.(4), we suggest for our simulations the

breaking time for the chain can be cast in the form attempt frequencyr=vg and for the barrier height,
=Eg. In Table | we compare the results of simulations with
7=(wolw,)(wy/v) 7o eXp(BEL)/N. (4)  those obtained from our one-particle model. We notice that

while the values oE,, andEg are close, the values of are

Herew,/27 is the unstable frequency at the top of the barrierSUrPrisingly, small(large 7) when compared with those of
andw, /27 is the frequency at the bottom. The factog/ w, vk . Notwithstanding the apparent agreement _betWEgn
takes in consideration the change of time units from the pard"d Es. we observed that for the set of experiment done
ticle 7,= 2/ w, to the chainr,. The usual Boltzmann factor Eb~Es. This is a puzzle because a careful analysis shows
exp(BE,) has 8=1/KsT, andE, as the barrier heightsee that the effective potential, Eg2), has an exact variational
Fig. 1). Equation(4) is the central part of this work. Now we Principle inside. Consequently, it is not possible by any
search for an explicit expression for the attempt frequency Means for the activation enerdys to be smaller thark,, .
Crist et al” presented an estimate for However, their re- Finally, we notice an unexpected large variation .apand
sults were based on energy considerations, and they omittees With N.
the factor @,/v). This problem lies at the heart of modern ) ) )
dissipative dynamics, and needs careful analysis. TABLE |. Parameters for the one-partlt_:le eff_ectlve potential
One systematic approach to the problem of particle evolP): for_th? Kramers modelK), and for the simulationss]. Here
lution over a barrier in a dissipative environment is given bythe strain 1s5=0.035.
Kramers™ He proposed that the main characteristics of

potential with a barrier could be described by two harmonic 100 200 300 400
approximations at the minimum and maximum of the barrier., 3.5970 3.6778 3.7023 3.7142
From that point of view, Eq(1) can be statistically analyzed 2.0547 2.1242 2.1455 2.1559
to give a characteristic escaping time for the well. Followingg, 0.14135 0.13655 0.13504 0.13429
his ideas, we write

Vg 0.00875 0.0191 0.03871 0.0359

E 0.11 0.09 0.12 0.10
v=wv= it (y5/2)2— yo/2. (5) s
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FIG. 4. The logarithm of the breaking time as a function\of FIG. 5. The dark factoD; as a function of8E, . (a) We fix the

We useS:0.03_5. From top to bottomT:0.025,_ 0.028,_ 0.030, _ temperature and we change the strginb) we fix S=0.035, and
0.035. The continuous curves are from the scaling, while the d'a\'/ve change the temperature

monds are from simulations.

ith B=40 we need a precision ¢AE,|<3.10 °. Indeed

e energies are sensitive enough to make the precise correc-
tion of 33% when we go fronN=100 toN=400 at8=40
éexp(BAEb)=1.33].

This excellent result for the one-particle potential is due
to the fact that it has an exact variation principal inside. It is
not a mean field potential, but a strongly correlated one.
lll. THE DARK FACTOR These experiments suggest that the geodesics for the fracture

The above-mentioned results show clearly that somethin@ii” be trajectories_which will minimize the energy foIIOV\_/ing
is missing from our one-particle model, and that improve- osely thglpotennal, qu)'. Itis also worthwhile to notice
ment must be made. First, we observe that the main probleﬁli‘a‘t theN™* dependence yields
comes fromyg; its value is too smal(large 7). We observe
that it does not make any reference to the chain dynamics.
Moreover it makes no distinction between a chain with
monoatomic basis and that with a diatomic or polyatomicfor any value ofS in agreement with the Peirls instability for
one. Consequently, we may include #ma factorDg which  infinite one-dimensional chaifsFor an infinite chain the
will include this missing physics. In this way, ER) may be  particles has a Gaussian distribution of velocities, some of
rewritten as them with enough energy for an instantaneous breaking.
In Fig. 5 we plotDg as a function ofBE for a chain of
v=v Dt (6) 100 particles. In curvéa) we fix the temperaturd=0.05,
while in curve(b) we fix the strainrS=0.035. The increase of
D¢ with temperature explains the reduction on the apparent
barrierEg as obtained from Fig. 3. The qualitative aspects of
o . curve(b) may be understood in terms of modern reaction rate
sequentlyDg is dimensionless. , theory, where corrections on Kramers rate decrease with
_ Second’, we show that _Eq0,) scales well withN. For two BE, . However, the behavior expressed on cufaeis op-
differentN’s, one may write Eq(4) as posite to those results presented in Refs. 14 and 17. This
rather peculiar behavior shows tHag is not a simple func-
7(N)=7(Np)e”*Eo(N/Ny). @ tion of BE,. Since energy consideration is not enough to
Here AE,=E,(N)—E,(N,) is a small difference due to fi- explain_ the breaking distributi_on, this suggests a non-
nite size effects. Mark(_)wan system where t_he histofjnemory of t_he pro-
In Table | we give values for the parameters of the effec-CESS IS fundamental. That is what we expect by intuition for
tive potential as a function dfl. In Fig. 4 we displayr(N)  any process of fragmentation. ,
as a function oiN for different values of temperatures. We 1 he origin of memory must be searched for in the corre-
useN; =300 to scale the other values. The continuous lined2tions between neighboring particles in the chain. Using Eg.
are obtained from Eq(7), whereas the points are obtained (1) We write down an equation for the differenel=¢,
from curves similar to those in Fig. 3. As a guide to the eye,~ éi-1, and we reorganize those equations in such a way
we put an error bar of 1%. The four lines from up to downthat at the breaking poink=k, ¢ =y, and ¢, =y/(N
are for the temperatures 0.025, 0.028, 0.030, 0.035. Thg 1)+Vi. Herey, is a small oscillation and y,=0. Now
agreement between the simulations and &.is remark-  EQ. (3) may be rewritten as
able. As a consequence, we see that the activation energies .
are really those obtained from the effective potential. For GO — _ f ol
example, for an errofA7/7<0.01, as observed in Fig. 4, wY(O)=Ferly) = p or(t PyaOdi+h). @

Before we discuss those results, we note that Wellan
et al? plotted 7 as a function off. From their results we got
In(7) as a function of, which suggested a straight line.
However, their four points were not enough to obtain a goo
activation energy.

lim 7(N)=0

N— oo

The factorDg, namely, the dark factdf,may depend on the
temperature, strain, and friction, but does not dependlon
We notice that bothy and v have units of frequency, con-
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FIG. 6. The time-dependent correlation functigt) for the
relative displacement. Here time is given in units af/2g. (a)
The theoretical value for the harmonic chaib) the full simula-
tions for the anharmonic chain.

FIG. 7. The Laplace transform of the memory functﬁ(rz) as
a function ofz. Data are the same as in Fig.fG(.z) is in units of
l/wg, while z is in units of wg. (a8 Upper curve anharmonic
modes;(b) the harmonic modes.
where the new noise
Grote-Hynes theory? which basically replacesy by a self-
h=(f,—f_1+09)/2 consistentvgy which is the maximum value of

now has a coherent part ~
v+ ul(v)= wg. (12
g=2F(a+S)—F(a+S+y; 1)—F(a+Sty_1) (9 -

HereI'(z) is the Laplace transform df(t). _

In Fig. 7 we plotl’(z) as a function ofz. HereI'(z) is in
units of v, andz in units of wy. The upper curve is for full
anharmonic modes, while the lower curve is for the har-

(h(t)h(t"))=ukgTT(t—t"), (10) monic approximation. One can see that for snzathe dy-

) . namic memory is larger than the static one and has a very
here() means thermal average. Smcg we know the time evoéharp variation. Usingl(z) in Eq. (12), one obtains
lution of h(t) we may use the ergodic theorem vk lver=~9. Notwithstanding that this result is not capable of

1\ [T accounting for all discrepancies, it clearly points out the right
(h(t)h(t"))= lim (?H h(t+t")h(t'+t")dt". (11)  direction.

T 0 The next step comes from the observation that both the
Kramers and Grote-Hynes results are up bond limits to the
reaction raté’ The main idea is that the first time passage of
a particle through a barrier is not irreversible since fluctua-
tions may bring it back. For low barrief8E;, <10, the non-
linear modes interact with the coherent noise and that delays
the reactiont”** From a systematic review of those theories
2 for a particle, we may write

P(0)=2703(0)+ 5 R,

given by the motions of the neighboring particles. This co-
herent motion requires a memory functidift) which ac-
cording to fluctuation-dissipation theory, reads

By use of Egs.(9—(11), one may construct the self-
organized memory'(t). The important fact is that from a
pure chaotic motion the system builds up a memory.

Using a harmonic approximation on H®), we obtain the
approximate analytical result

De=vivaih, (13)
where
i(OY(0) wnere
Yi(ty
R(t)= ——————~. 5
(yi(0)y,(0)) Buro;
Now, using a similar argument to those used by Florencio A= 2
and Leé® for the classical harmonic chain, we obtain )
)
R(t)=Jo(wst), Xf exr{—ﬁ<7 (p— bp)*+ UZ?f(QqS)quS-
wherelJ, is the zero order Bessel function. (14)

In Fig. 6, we plotR(t) as a function oft. Here, time is
given in units of 2r/wg. Curve(a) is Jy(wst) for the har-  The superscript ah stands for the anharmonic part of the po-
monic chain. Curveb) is for the full simulation of the an- tential. Here() is a coupling parameter, which relates the
harmonic chain. The short time behavior for the approximahoise with the nonlinear modé4.Again, notice that\ is
tion is quite reasonable. dimensionless. We have computed the values\ dh the

In the last fifteen years important progress has been madegion 26<8<50; they contribute only with a small factor,
in the understanding of reaction rates for the generalizegdo this approach is unable to explain the highest values of
Langevin equationGLE). The first improvement is from Dg.
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FIG. 8. Theoretical critical bond length and experiments as a |G, 9. The logarithm oD as a function of 0 — ¢y)2. Here
function of the strain(@) ¢,; (b) ¢y,; (C) ¢y. The experiments are T—q 5.
described by diamonds for the chains and by the single error bars
for the particles. For the chains we average over 10 ensembles of |, Fig. 9 we plot the logarithm oD as a function of
800 chains. For the particles we average over 10 ensembles of 20(2%: _ ¢b)z for T=0.05. The straight line is the minimum

independent particles each. square fit and is given by IBE)=4.57+2.66(d% — ¢y,)°.
V. BEYOND THE ONE-PARTICLE MODEL We compare Witl’}GK,f,/2=2.7i 0.6 for S=0.035. We have
not been able to find the parameterHowever, fora=2.3
We have exhausted the reaction rate theory for a onethe agreement is perfect.
particle model, without being able to give a full description | arge values of¢* are not only characteristic of the
of the problem. Now we shall leave the simplicity of the | ennard-Jones potential, indeed they are a consequence of
one-particle reasoning and look in the opposite directionihe |ong-range interaction described by any power-law
What is the main difference between the chain dynamics angehaviof? of the typeUox ¢, wherea is a constant. They
the one-particle motion, which was not included in ourrepresent a large class of lattices, since in general one ex-
modeP To answer this question, it is crucial to notice that i”pects that any physical system may have an ionic or dipolar
a chain the critical elongatiorzﬁ;‘ is Iarger than that of a behavior even as a secondary phenomenon.
single particle¢; . We have already investigated this phe-  Now we shall discuss two opposite limits of large and
nomenon, looking at the stability of the modes of the anharsmallD¢. In Fig. 5 we notice that a smdll is obtained for
monic chain in the continuous limit There we found the large S and low T. We performed new simulations wit8
existence of three important bound lengths for the chains=0.05 andT in the range 0.0£T<0.005, and we get
¢b, ém, and ¢y ; values which necessarily fulfib,<¢y,  Dg(T~0.006)~20. In that limit ¢* — ¢, and the systems
< ¢n. HereUgn(hy) =0 is the minimum critical value and will not be very far away from equilibrium. Here the break
¢y, is the maximum value for the bond length obtained frommeans that it is just crossing the barrier. This is the usual
the stability conditions. From this kind of argument one ex-process described in detail by the Grote-Heynes approxima-
pectspm< g <. tion, for which the minimum value predicted B~ 9.
In Fig. 8 the bond elongation is plotted as a function of  Finally, let us consider the extreme lin®—S,. For a
the strain. There we plot the critical values obtained by thesystem of particles in such a potential, we expect that after
simulationse} andd); , and the theoretical values,, ¢, thermal equilibrium is reached half of the particles may be
and ¢,,. We see that the simulations fall on the expectedfound at both sides of the well. For such a chairsasS;,
limits obtained from the stability conditions. From Fig. 8 and however, ¢} —«, and this gives an infinite breaking time,
Fig. 2 we also see that the system stays in the regipn even for a finite barrieE, as shown in Fig. (). This is a
< ¢y < ¢y longer than at equilibrium, consequently, this result that cannot be obtained using one-particle theory.
characterizes a nonequilibrium situation. Indeed, the system
is very far from equilibrium, and consequently we expect V. CONCLUSIONS
that the usual ergodic hypothesis, E41), used in most
reaction rate calculations will not be appropriate to describe We developed a microscopic theory that gives us simple
the problem. However, it is still possible to evaluate Eig)y ~ analytical expressions for the characteristic breaking time of
using the fact that the particle will spend the most timean ensemble of chains in contact with a thermal reservoir. As
aroundg? . With thisad hochypothesis one may rewri@: @ starting p_oint we tried to create a one-particle theory. For
as that we defined an effective potential which turns out to be
an exact variational minima for those trajectories that bring
the system from a metastable position to a stable one. As a
. (19 result we notice the existence of a very low attempt fre-
quency compared with that of the chain vibration.
Herea is some parameter that may come from normalization With the definition of corrective factdd g, the chain dy-
of the nonequilibrium distributionk , is the second deriva- namics was introduced in our model. Two points distinguish
tive of the effective potential ap; which is positive. the chains from the particle. First, the existence of a self-

2
W Buwy BKy 4 2
DF_a Veu 277_ ex% 2 (¢C d)b)
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organized memony'(t). Second, the existence of a long way as to make it mechanically resistant. As expected from
critical length ¢z necessary for an irreversible break. Thethis theory even without a precise knowledge of the system
first makes our model non-Markovian. Moreover, the secondve may suggedd>1, and propose a procedure to compute
suggests a system far from equilibrium, where time and enthe rate. However, to obtain this for DNA goes beyond the
semble averages are not exchangeable. In this way, the reaghjective of this work.
tion rate becomes an exponential function of this critical In conclusion, we developed a theory for chain fragmen-
value which reduces to the one-particle model, in the limittation which gives us the result obtained by simulations. The
¢e— b breaking rate is an Arrhenius rate times an attempt fre-
This theory has the main characteristic obtained in comquency. The attempt frequency is described by the Kramers
puter simulations. As a result the breaking time may be eXrate divided by a dark factddr which is larger than unity.
pressed as a product of a typical Arrhenius rate times a Nonfhere are, at least, two important situations where the dark
trivial dark factor. Experiments on single chains with factor D¢ is important. First, all real time simulations are
periOdiC boundary Conditions, Coupled with a thermal bathdone in the range of SmaBEb, since |arge values of it are
are difficult to do. The closest ideal noninteracting chains areot accessible by present day Computers_ Second, most ge|s
diluted solutions of macromolecules. Odell and Ta¥lor angd soft materials fall in this range. This, of course, is the
computed the kinetic rate for DNA dissociation in an elon-sijtuation of a large class of materials including biological
gated fluid. They used Eigner's d&t#o estimate the attempt ones, which for lowE,, may break only due to thermal fluc-
frequency asy=6.5x10" s™*. The vibration frequency is tuations at environmental temperatures. For those phenom-
well known from IR spectroscopy for te=0 linkage to be  ena, D should be taken in consideration. In particular we

of the order of 18 s*. The difference between theory and predict large values ddr, and an underestimated activation
experiments suggest B¢ of the order 10 to 10°. These energyE, .

results are shown fgBE,=4.5 in Fig. 5, curvda). They are
possible for strains a bit smaller than those we have here, or
for a large correlation length. This is a good example of large
Dr. These biological systems are characterized by a small
E, and a strong resistance to fragmentation. It is not too hard | would like to thank Professor J. Hinch from Cambridge
to speculate that its internal structure has important spatidlniversity for calling my attention to the work of Odell and
and temporal memory and that nature built DNA in such aTaylor.
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