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Phase diagram for large two-dimensional bipolarons in a magnetic field

Wilson B. da Costa* and Franc¸ois M. Peeters†

Universiteit Antwerpen (UIA), Departement Natuurkunde, Universiteitsplein 1, B-2610 Antwerpen, Belgium
~Received 14 January 1997!

We perform a path-integral calculation of the ground state energy of a bipolaron confined to two dimensions
and which is placed in a perpendicular magnetic field. The present calculation is valid for arbitrary magnetic
field strength, arbitrary strength of the repulsion between the electrons, and arbitrary electron-phonon coupling
constant. We find that thebipolaron exhibits ~1! a discontinuous transition from the polaronic state to the
bipolaronic state and~2! a transition from the dressed~bi!polaron state to the~bi!polaron stripped state. These
three transitions depend on the magnetic field and the strength of the repulsion between the electrons.
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I. INTRODUCTION

There are increasing experimental1,2 indications that po-
larons and bipolarons, which can exist under conditions
strong electron-phonon interaction, may play an import
role in explaining many characteristics of high-Tc cuprates.
Recently, several theoretical studies of the properties
small and large polarons and bipolarons have appeared3–14

which go beyond the weak coupling approximation.
In the present paper we study the ground state of a la

bipolaron moving in two dimensions~2D! in the case where
an external perpendicular magnetic field is present. Prev
work on this problem was concentrated on~1! the study of
the 3D problem11,12 where it was found that a magnetic fie
increased the stability region of the bipolaron. In fact in t
strong magnetic field limit it was shown12 that the 3D bipo-
laron problem reduces to a 1D bipolaron with an effect
electron-phonon coupling constant which increases w
magnetic field.~2! The strong-coupling 2D bipolaron9 where
it was found that the magnetic field reduces the stability
the bipolaron slightly. The aim of the present work is
investigate if this magnetic field induced reduction in the
bipolaron stability is also present at intermediate electr
phonon coupling. In order to do so we generalize the Fe
man polaron theory to the bipolaron case, which is belie
to be valid for arbitrary electron-phonon coupling strength15

Furthermore, we also address the magnetic field stripp
transition, which was first studied in Ref. 16 for the polar
problem, but which was overlooked in Refs. 9,11–13 in
case of a bipolaron in a magnetic field.

In Refs. 16,17 the influence of a magnetic field on a sin
polaron was examined: the ground state properties of a th
dimensional and two-dimensional polaron were studied
it was found that there exists a transition of the Feynm
polaron from a dressed polaron state to a stripped pola
state with increasing magnetic field strength. The phys
idea behind such an effect is the following: if the electr
moves too quickly~i.e., the electron frequency is larger tha
the optical phonon frequency! through the crystal its polar
ization cloud will no longer be able to follow the electro
and an electron with the band mass, instead of the dre
mass will be observed. With other words, the polaron
stripped of his polarization cloud. Such a bare elect
570163-1829/98/57~17!/10569~7!/$15.00
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moves in a potential well created by the phonons.
Using the path integration technique, the ground st

properties of a system of two electrons interacting with ea
other by the Coulomb force and indirectly through the op
cal phonons is investigated in the limit of zero temperatu
The state of the system is determined by the strength of
electron-phonon coupling constanta, the strengthU(rW1

2rW2) of the Coulomb repulsion, and the strength of the ma
netic field. We found four different states:~i! two stripped
polarons infinitely separated,~ii ! two dressed polarons infi
nitely separated,~iii ! the bipolaron state where two electron
are dressed around the same position; and~iv! the bipolaron
state in which the two undressed electrons move withi
common potential well formed by the phonons.

The outline of the present paper is as follows. In Sec
we present the Fro¨hlich Hamiltonian and a generalization o
the Feynman trial action and show that it can be obtain
from the Hamiltonian of a Feynman bipolaron model. In S
III we use the Feynman variational principle to derive
upper bound to the exact ground state energy of the b
laron. Finally, in the last section our numerical results a
our concluding remarks are presented.

II. FEYNMAN BIPOLARON

In this section, we present the Hamiltonian which d
scribes two electrons interacting with the vibrational mod
of a crystal and pave the way to a Feynman-type approac
the bipolaron problem. The Hamiltonian describing the 2
bipolaron in a magnetic field is given by

H5
1

2m (
j 51,2

S pW j1
e

c
AW j D 2

1(
kW

\vkWS akW
†
akW1

1

2D1HI1U~rW12rW2!, ~1!

with the electron-phonon interaction

HI5 (
j 51,2

(
kW

~VkWakWe
ikW•rW j1VkW

* akW
†
e2 ikW•rW j !, ~2!
10 569 © 1998 The American Physical Society
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10 570 57WILSON B. da COSTA AND FRANC¸ OIS M. PEETERS
whererW j (pW j ) are the position~momentum! operators of the
j th electron,m is the electron band mass,akW

†(akW) are the
creation~annihilation! operators for phonons with wave ve
tor kW , and frequencyvkW , U(rW12rW2)5e2/e`urW12rW2u is the
Coulomb potential between the two electrons. The two e
trons interact with an external magnetic fieldBW 5rotAW , which
is taken along thez axis, and the vector potential is written i
the symmetrical Coulomb gaugeAW j5(B/2)(2yj ,xj ,0). For
longitudinal optical phonons we take dispersionless phon
vkW5vLO , the Fourier transform of the electron-phonon i
teraction, takes the formVkW5\vLOApa/Ak(2\/mvLO)1/4

in two dimensions, whereA is the area of the crystal an
a5e2/\vLO(1/e`21/e0)AmvLO/2\ is the dimensionless
electron-phonon coupling constant, which depends on
static (e0) and high-frequency (e`) dielectric constants.

In the well-known Feynman path-integral representat
of the partition function the phonon variables can be elim
nated exactly. After this elimination each electron path c
tributes e2S[ rW1(t),rW2(t)] to the path integral. The actio
S@rW1(t),rW2(t)# is defined as the time integral over the L
grangian of this dynamical system.15,18 For our purpose we
want to calculate the partition function and therefore we
troduce imaginary timest52 i t 5b, with b215TkB ,
whereT is the temperature of the system andkB the Boltz-
mann constant. After eliminating the field variables,15 we
obtain the actionS@rW1(t),rW2(t)# ~see also, Ref. 6!

S@rW1~ t !,rW2~ t !#5Se1SI ,c1SI ,ph, ~3!

where

Se52
1

2(i 51

2 E
0

b

dt$rẆ i~ t !21 ivc@xi~ t !ẏi~ t !2yi~ t !ẋi~ t !#%,

~4!

is the action of two free electrons in a magnetic field w
vc5eB/mc the cyclotron frequency. The interaction part
the action consists of the direct Coulomb repulsion

SI ,c52E
0

b

dtU@rW1~ t !2rW2~ t !#, ~5!

and the action which contains a memory effect as a con
quence of the elimination of the phonons

SI ,ph5 (
j ,l 51,2

(
kW

uVku2E
0

b

dtE
0

b

dsGvk
~ t2s!eikW•[ rW j ~ t !2rW l ~s!] ,

~6!

with

Gv~u!5
1

2
n~v!~evuuu1ev~b2uuu!!, ~7!

the phonon Green’s function, wheren(v)51/(eb\v21) is
the occupation number of phonons with frequencyv.

In Feynman’s polaron model one replaces the virtual p
non cloud surrounding the electron by a fictitious parti
which is bound to the electron through a spring. In a bip
laron system we have two electrons, each with their o
c-

s

e

n
-
-

-

e-

-

-
n

phonon cloud, and consequently the Feynman bipola
model consists of four particles, described by the followi
Hamiltonian:

HF5 (
j 51,2

F 1

2mS pW j1
e

c
AW j D 2

1
PW j

2

2M
1

k

2
~rW j2RW j !

2G
1

k8

2
@~rW12RW 2!21~RW 12rW2!2#2

K

2
~rW12rW2!2, ~8!

where (rW j ,pW j ) are the electron coordinates with massm and
which interact with a second particle, called the fictitio
particle, with coordinates (RW j ,PW j ) of massM . k, k8 are the
oscillator strengths characterizing the interaction of the e
trons with the fictitious particles. The Coulomb repulsio
between the electrons is approximated by a quadratic re
sion with strengthK. The resulting bipolaron model is illus
trated in Fig. 1. Note that the model is determined by
four parametersM , k, k8, andK. The action corresponding
to the Hamiltonian~8!, in which we have eliminated the
coordinates of the fictitious particle, is given by

St@rW1~ t !,rW2~ t !#52E
0

b

dtF (
j 51

2
m

2
rẆ j~ t !22

K

2
@rW1~ t !2rW2~ t !#2G

2E
0

b

dtE
0

b

dsGw~ t2s!

3F\~k21k82!

4Mw (
j 51,2

@rW j~ t !2rW j~s!#2

1
\kk8

Mw
@rW1~ t !2rW2~s!#2G . ~9!

Notice that the self-interaction and the repulsive Coulo
interaction in the original action@Eq. ~3!# is in this trial ac-
tion replaced by quadratic functions. This is similar to wh
was done by Feynman in its original work.15 It is also well
known that the Coulomb potential can be reduced exactly
that of an harmonic oscillator in four dimensions.19

Recently, the present authors10 obtained the ‘‘exact’’
eigenfrequencies of the Feynman bipolaron model~8! in the
presence of a magnetic field. Such a magnetic field cou

FIG. 1. Graphical representation of the Feynman bipola
model.
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57 10 571PHASE DIAGRAM FOR LARGE TWO-DIMENSIONAL . . .
the polaron motion in the two directions perpendicular to
magnetic field which results in seven nonzero eigenfrequ
cies for the diagonalized bipolaron model. The diagonaliz
Hamiltonian~8! was found to be

HF5(
i 51

7

si S ckW
†
ckW1

1

2D , ~10!

with the eigenfrequenciessi which are found as the positiv
real solutions of the algebraic equation~for details we refer
to Ref. 10!

s2$2s2~s22v2!21vc
2~s22w2!2%$@s41~2g32v2!s2

1%422g3w2#22vc
2s2~s22w2!2%50, ~11!

and the trivial solutions850. In Eq. ~11! we definedv2

5(k1k8)/m, w25(k1k8)/M is the square of the fre
quency of the oscillator~analogous to the Feynman param
eter w in the single-polaron problem!, %454kk8/M , and
g35K/m, wherem215m211M 21.

The polaron limit is obtained by decoupling the two ele
trons from each other, i.e.,k85K50 in Eq. ~11!. This re-
sults in the equation

s2~s22v2!22vc
2~s22w2!250, ~12!

for the eigenfrequencies which was first obtained in Ref.
Next we consider the zero magnetic field limit of Eq.~11!
and find

s2@2s2~s22w2!2#@s41~2g32v2!s21%422g3w2#250,
~13!

which results in the four eigenfrequenciess450,

s1
25

M1m

mM
~k1k8!5v2, ~14a!

and

s2,3
2 5

1

2H v22
2K

m
6F S M2m

mM
~k1k8!2

2K

m D 2

1
4

mM
~k2k8!2G1/2J , ~14b!

as obtained in Refs. 4 and 6.
In the process of diagonalizing Eq.~8!, two canonically

conjugate constants of motion enter:

P15
1

4
~x11x2!2

1

2vc
~p1y1p2y!2

1

2vc
~P1y1P2y!

~15a!

and

P25
1

4
~y11y2!1

1

2vc
~p1x1p2x!1

1

2vc
~P1y1P2x!,

~15b!

which satisfy the commutation relation@P1 ,P2#5
2 i /2vc . They are related to the position of the classic
orbit center. The explicit time evolution of the electron p
sition coordinates are found to be
e
n-
d

-

.

l

x1~ t !5P11 i (
j 51

7

dj~cje
isj t1cj

†e2 isj t! ~16a!

and

y1~ t !5P22 i (
j 51

7

dj~cje
isj t1cj

†e2 isj t!, ~16b!

wherecj (cj
†) are annihilation~creation! operators for quan-

tized motion of the internal degrees of freedom and wh
satisfy @cj ,cl

†#5d j ,l . Similar expressions are obtained fo
the coordinates of the second electron.

The coefficientsdi are rather complicated, but in the ca
of K50 they reduce appreciably and are given by

di
25

1

4si

si
22w2

3si
212~21! ivcsi2v2 , i 51•••3 ~17a!

and

di
25

1

4

si
22w2

4si
32~21! ivc~3si

22w2!22v2si

, i 54•••7.

~17b!

III. THE BIPOLARON GROUND STATE ENERGY

The ground state energy of the bipolaron system is ca
lated using the Feynman variational principle which provid
an upper bound to the exact bipolaron ground state ene
Ebip . This variational principle states that

Fbip<Ft2
1

b
^S2St& t , ~18!

whereFt is the free energy of some trial actionSt . ^•••& t is
a path integral average with weighteSt. This inequality is
valid for real actionsS andSt but may break down whenS
and St contain imaginary terms as in the present case. T
problem was studied in Refs. 20,21, where only minor d
viations from Eq.~18! were found in the presence of a
external magnetic field. Therefore, as a first step towards
ultimate goal of solving the bipolaron problem in a magne
field, we assume that Eq.~18! is valid as was done in Ref
16. In the present paperS is given by Eq.~3! and we take for
the trial actionSt the expression given by Eq.~9!.

From the diagonalized Hamiltonian@see Eq.~8!# one no-
tices that the partition function of the Feynman model co
sists of the partition function of seven one-dimensional h
monic oscillators. Besides one has to sum over allow
values of the constants of motionPx andPy , which is equal
to (LxLy/2p)mvc when we assume that the system is co
fined to move in a box with dimensionsLx andLy . Then the
partition function is given by

ZF5
A

2p\
mvcA m

2p\2b )
i 51

7
1

2sinh~b\si /2!
, ~19!
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FIG. 2. Ground state energy~a!, the polaron mass~b!, and the inverse mean-square distance~c! as a function of the cyclotron frequenc
for a fixed electron-phonon coupling constant ofa54 and Coulomb repulsionU55.
t

of

-

-

from which the free energy,FF52(1/b)lnZF , is easily cal-
culated. At zero temperature the free energy reduces to
zero point energy of the model Hamiltonian, i.e.,1

2 ( i 51
7si .

The bipolaron ground state energyEbip , is obtained as the
zero temperature limit of the free energy~18!. In what fol-
lows we use dimensionless units\5vLO5m51, and con-
he

sequently the bipolaron energy is expressed in units
\vLO . Furthermore, we introduce the notationv1

25v2 and
v2,3

2 5 1
2 @v26 1

2 Av424%4# , which are the squares of the fre
quencies given by Eq.~13! for K50. Notice that they satisfy
v1

25v2
21v3

2 and v2
2v3

25%4 and they also satisfy the fol
lowing inequalities:v2>w>v3>0. ForK50 and using the
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FIG. 3. The same as Fig. 2 but now as a function of the coupling constanta and for a nonzero Coulomb repulsionU55 andvc510.
e-
notation~11! and following the approach of Ref. 16 we d
rive the following estimate for the bipolaron energy:

Ebip5
1

2(i 51

7

si22w22F ~v22w2!(
i 51

7 di
2si

si1w
1

%4

w (
i 54

7 di
2

si1wG
1

U

2
A p

D12~0!
2aAp

2E0

`

due2uF 1

AD11~u!
1
1

AD12~u!
G , ~20!

where

D11~u!5(
i 51

7

di
2~12e2siu! ~21a!

and
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D12~u!5(
i 51

3

di
2~12e2siu!1(

i 54

7

di
2~11e2siu!, ~21b!

with U5e2/e` . Introducing the ratio of the dielectric con
stantsh5e` /e0 we obtain the following relation betwee
the Coulomb and electron-phonon coupling constant:U
5A2a/(12h). Thus in the physical allowed region w
must haveU>A2a. In general the integral in Eq.~20! has to
be calculated numerically and subsequentlyEbip has to be
minimized with respect to the three variational parameterv,
w, and %. The above expression~20! reduces to the one
polaron result of Ref. 17 in the presence of a magnetic fi
for U→` and to the result of Ref. 6 in the limit of zer
magnetic field. In the strong coupling limit the results of R
9 are recovered.

The square of the mean-square separationR between the
two electrons is given by

R25^@rW1~u!2rW2~u!#2&54D12~0!. ~22!

In order to calculate the bipolaron transition we have
compare the bipolaron energy with the energy of two se
rate polarons which are infinitely far apart. This limit is co
tained in Eq.~20! and is obtained by choosingk85K50 and
U50. Now only two variational parametersv andw are left.
The resulting upper boundEpol to the ground state energy17

is given by

Epol5
1

2(i 51

3

si2w2~v22w2!(
i 51

3 sidi
2

~w1si !

2
1

2
Ap

2
aE

0

` e2u

AD~u!
du, ~23!

where

FIG. 4. Phase diagram for the bipolaron in a magnetic field
ld

.

-

D~u!5(
i 51

3

di
2~12e2siu! ~24!

and

di
25(

i 51

3
1

2si

si
22w2

3si
212~21! ivcsi2v2 , ~25!

with the eigenfrequenciessi to be determined from the solu
tion of the third order algebraic equation, Eq.~12!, in si

2 . The
bipolaron transition occurs when the ground state energyEbip
of the bipolaron is equal to the ground state energy 2Epol of
two separate polarons, i.e.,Ebip52Epol .

IV. PHASE DIAGRAM

In this section we present the numerical results for
polaron and bipolaron energy. First we investigate the bi
laron state as a function of the magnetic field. A typic
result of the bipolaron energy per particle as a function ofvc
is shown in Fig. 2~a! for a54 and fixed Coulomb repulsion
U55. The dotted curves are the results of the metasta
states. We also calculated numerically the correspond
mass of the Feynman bipolaron model 2M* 52(v/w)2 and
show it in Fig. 2~b!. Note that for largevc we haveM*
'1 which is the free electron mass and consequently
bipolaron transition corresponds to the stripping transit
which is analogous to a similar transition which was fou
for a single polaron in Ref. 16. The inverse of the me
square separation 1/R, in units of AmvLO /\, is shown for
the same set of parameters in Fig. 2~c!. With increasingvc ,
a discontinuous transition occurs atvc'9.724, at which
point the bipolaron stripped state has a lower energy.
vc,9.724 the stable bipolaron state consists of two he
polarons and the energy increases with magnetic field sim
to the case of a quasifree particle. Within the present Fe
man type of approach the polaron dressed state is still mo
and has an effective mass which is more than two order
magnitude larger than the bare electron mass. At the tra
tion, the two polarons find it energetically more favorable
move within one effective potential well created by th
phonons. The behavior of the ground state energy of
stripped state as a function of the magnetic field@see Fig.
2~a!# is typically the one of a particle bound in a potenti
well. The electrons are not dressed and move inside
well. In the present approach the composite system: elec
1 well is translational invariant in contrast to e.g., the a
proach of Ref. 9 where the electron in the strong coupl
limit is bound in space. The size of the bipolaron state
larger than in the dressed state. We found that the magn
field at which the stripping transition occurs depends v
strongly on the strength of the repulsive Coulomb inter
tion.

Next we investigate the system as function of t
electron-phonon coupling strength. In Fig. 3~a!, a typical re-
sult for the energy per polaron is depicted as a function
electron-phonon coupling strengtha for a fixed value of the
Coulomb repulsionU55 and the cyclotron frequencyvc
510. The corresponding mass and inverse radius are sh
in Figs. 3~b! and 3~c!, respectively. Note that we find two
transition points. For smalla we have two separate strippe



ge

t

n

er
ma
ro

ro
et
th
th
e
th

o-
ve

ar
in

to

ral
con-
h
gh
he
size

ery

and
s
e-

ing
us
o-

un-
al
the

c,

57 10 575PHASE DIAGRAM FOR LARGE TWO-DIMENSIONAL . . .
polarons each with an effective mass which is slightly lar
than 1, i.e.,M* '1. Notice thatR,` in this state which is
a consequence of the presence of the magnetic field. In
polaron state we have R25^rW1

2&1^rW2
2&52^rW1

2&'2l B
2

52\/mvc which is finite for BÞ0. With increasinga, a
transition is found ata'3.53 where the stripped bipolaro
has a lower energy. When we further increasea, the bipo-
laron self-energy increases continuously untila'4.09 at
which point the dressed bipolaron state has a lower en
and consequently is the stable state. The one-polaron
increases with three orders of magnitude and the bipola
radius decreases with almost a factor of 2.

Our results are summarized in the polaron-bipola
phase diagram which is shown in Fig. 4, where the magn
field at which the transition occurs is plotted versus
electron-phonon coupling constant for fixed values of
electron-electron Coulomb repulsion. The phase diagram
hibits four possible states for this system. First there is
polaron-bipolaron transition which occurs fora'3.6 and
which is practically independent ofvc . This transition oc-
curs at slighly largera values with increasingvc , e.g., for
vc50 it occurs ata53.564, while for vc5160 it takes
place fora53.597. In the polaron region we have the p
laron stripping transition which is given by the dotted cur
and which ends in the critical pointa51.60, vc52.10
where a second order transition takes place. In the bipol
region we also have a stripping transition with increas
magnetic field. This transition is shown forU50 ~solid
curve! and for U55 ~dashed curve!. Notice that with in-
r

he

gy
ss
n

n
ic
e
e
x-
e

on
g

creasingU smaller magnetic fields are needed in order
induce the stripping transition.

V. CONCLUSION

In the present work we used the Feynman path-integ
method to study the ground state properties of a system
sisting of two electrons moving in two dimensions whic
interact with each other by the Coulomb force and throu
optical phonons in the presence of the magnetic field. T
ground state energy, the Feynman polaron mass, and the
of the state were studied numerically which showed a v
rich behavior. Namely, for certain values ofa, U, andvc the
bipolaron undergoes phase transitions where the mass
the mean square separation 1/R between the two electron
exhibit a discontinuity. This discontinuity can be a cons
quence of the polaron-bipolaron transition or of the stripp
transition. The later transition was overlooked in previo
work9,11–13 on the magnetic field dependence of the bip
laron.
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