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Phase diagram for large two-dimensional bipolarons in a magnetic field

Wilson B. da Costa and Franois M. Peeter’s
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We perform a path-integral calculation of the ground state energy of a bipolaron confined to two dimensions
and which is placed in a perpendicular magnetic field. The present calculation is valid for arbitrary magnetic
field strength, arbitrary strength of the repulsion between the electrons, and arbitrary electron-phonon coupling
constant. We find that thbipolaron exhibits (1) a discontinuous transition from the polaronic state to the
bipolaronic state an¢?) a transition from the dresseti)polaron state to théi)polaron stripped state. These
three transitions depend on the magnetic field and the strength of the repulsion between the electrons.
[S0163-18298)03417-1

I. INTRODUCTION moves in a potential well created by the phonons.
Using the path integration technique, the ground state
There are increasing experimentaindications that po- properties of a system of two electrons interacting with each
larons and bipolarons, which can exist under conditions opther by the Coulomb force and indirectly through the opti-
strong e|ectr0n_phonon interaction, may p|ay an importanﬁ&' phOﬂOﬂS is investigated in the limit of zero temperature.
role in explaining many characteristics of high-cuprates. ~The state of the system is determined by the strength of the
Recently, several theoretical studies of the properties oélectron-phonon coupling constanmt, the strengthU(Fl

small and large polarons and bipolarons have app&afed —r) of the Coulomb repulsion, and the strength of the mag-
which go beyond the weak coupling approximation. netic field. We found four different state§) two stripped
_In the present paper we study the ground state of a larggolarons infinitely separatedij) two dressed polarons infi-
bipolaron moving in two dimension@D) in the case where pitely separatedijii ) the bipolaron state where two electrons
an external_ perpendicular magnetic field is present. Previougre dressed around the same position; @ythe bipolaron
work on this problem was concentrated @ the study of state in which the two undressed electrons move within a
the 3D probleni**where it was found that a magnetic field common potential well formed by the phonons.
increased the stability region of the bipolaron. In fact in the  The outline of the present paper is as follows. In Sec. I
strong magnetic field limit it was showhthat the 3D bipo- e present the Fdich Hamiltonian and a generalization of
laron problem reduces to a 1D bipolaron with an effectivethe Feynman trial action and show that it can be obtained
electron-phonon coupling constant which increases Withrom the Hamiltonian of a Feynman bipolaron model. In Sec.
magnetic field(2) The strong-coupling 2D bipolarmvhere || we use the Feynman variational principle to derive an
|t was found that the magnetic f|e|d reduceS the Stab|l|ty Ofupper bound to the exact ground state energy Of the bipo_

the bipolaron slightly. The aim of the present work is 0 aron. Finally, in the last section our numerical results and
investigate if this magnetic field induced reduction in the 2Dgyr concluding remarks are presented.

bipolaron stability is also present at intermediate electron-

phonon coupling. In order to do so we generalize the Feyn-

man polaron theory to the bipolaron case, which is believed Il. FEYNMAN BIPOLARON

to be valid for arbitrary electron-phonon coupling strength. In this section, we present the Hamiltonian which de-

Furthermore, we also address the magnetic field strippingihes two electrons interacting with the vibrational modes
transition, Whlch_was first studied in _Ref. 16 for the po_laronof a crystal and pave the way to a Feynman-type approach of
problem, but which was overlooked in Refs. 9,11-13 in theye pinglaron problem. The Hamiltonian describing the 2D

case of a bipolaron ip a magnetic field. o . bipolaron in a magnetic field is given by
In Refs. 16,17 the influence of a magnetic field on a single

polaron was examined: the ground state properties of a three-

dimensional and two-dimensional polaron were studied and H— i <5+ E%.)z

it was found that there exists a transition of the Feynman 2m&, |\ ¢!

polaron from a dressed polaron state to a stripped polaron

state with increasing magnetic field strength. The physical +2 hog ata*+1 FH AU =) 1)
idea behind such an effect is the following: if the electron - KTk 2 ! o2k

moves too quicklyi.e., the electron frequency is larger than

the optical phonon frequengyhrough the crystal its polar- with the electron-phonon interaction

ization cloud will no longer be able to follow the electron,

and an electron with the band mass, instead of the dressed o .

mass will be observed. With other words, the polaron is H = 2 2 (Vgalzeik-fj+V’kfa;fe*ik-fj), 2)
stripped of his polarization cloud. Such a bare electron =12 g
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wherer; (pJ) are the positiofmomentum operators of the
jth electron,m is the electron band masak(ak) are the
creation(annihilatior) operators for phonons with wave vec-
tor k, and frequencyog, U(r;—r,)=e€%e.|ri—r,| is the

Coulomb potential between the two electrons. The two elec-

trons interact with an external magnetic fi@e: rotA, which
is taken along the axis, and the vector potential is written in

the symmetrical Coulomb gaugiq:(B/Z)(—yj X;,0). For

longitudinal optical phonons we take dispersionless phonons

wi=w o, the Fourier transform of the electron-phonon in-
teraction, takes the fornVi=7%w o\malAk(2h/mw o)Y*

in two dimensions, wheré\ is the area of the crystal and
a=e’lhw o(1le,.— lleg)Vmw o/2h is the dimensionless

electron-phonon coupling constant, which depends on the

static (eg) and high-frequencyd.,) dielectric constants.
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FIG. 1. Graphical representation of the Feynman bipolaron
del.

In the well-known Feynman path-integral representation

of the partition function the phonon variables can be elimi-
nated exactly. After this elimination each electron path con

tributes e S1M20] o the path integral. The action

Srq(t),r»(t)] is defined as the time integral over the La-
grangian of this dynamical systetn® For our purpose we

want to calculate the partition function and therefore we in-

troduce imaginary timesr=—it=g8, with B8 '=Tkg,
whereT is the temperature of the system akglthe Boltz-
mann constant. After eliminating the field variablésye

obtain the actior§[r4(t),r»(t)] (see also, Ref.)6

Sry(1),r2()1=Se+ Sy c+ S phs 3)

where

)= Yi(Ox;(D 1}
(4)

is the action of two free electrons in a magnetic field with
w:=eB/mc the cyclotron frequency. The interaction part of
the action consists of the direct Coulomb repulsion

2 B .
- __ C ()24 i (1)
221 fo dt{r|(t) +iwdXxi(t)y;(t

B - -
Sie=— fo dtU[r(t) —ra(t)], ©)

and the action which contains a memory effect as a conse-

guence of the elimination of the phonons

SI,ph:_ 2 Z |Vk|2
12 g

=

JﬁdtJBdsG (t—s)ek [rO=n(1
o Jo “k
(6)

G,(U)==n(w)(e?lVl+eoFIub), (7)

the phonon Green’s function, whergw)=1/(e***—1) is
the occupation number of phonons with frequeiacy

In Feynman'’s polaron model one replaces the virtual phothat of an harmonic oscillator in four dimensi
non cloud surrounding the electron by a fictitious particle

phonon cloud, and consequently the Feynman bipolaron
‘model consists of four particles, described by the following
Hamiltonian:

E 1/. L \2 F_;2 K
He= 2, [2m\ Pt M) Yam +o(-Ry)?
Ko sy e e K
+?[(rl_R2) +(Ry1—rp) ]_E(rl_rz) , (8)

where (FJ- ,f)j) are the electron coordinates with massand
which interact with a second particle, called the fictitious

particle, with coordinatesR; ,P;) of massM. x, «’ are the
oscillator strengths characterizing the interaction of the elec-
trons with the fictitious particles. The Coulomb repulsion
between the electrons is approximated by a quadratic repul-
sion with strengttK. The resulting bipolaron model is illus-
trated in Fig. 1. Note that the model is determined by the
four parameterd/, «, ', andK. The action corresponding

to the Hamiltonian(8), in which we have eliminated the
coordinates of the fictitious particle, is given by

1= [y

— f:dtf:dsew(t—s)

SLra(t).ra(t)

2
13, 3RS0 0P }

h(Kk?+K'?) N -
w2, OO

hikk' . - )
e (D = To(5)] ©

Notice that the self-interaction and the repulsive Coulomb

interaction in the original actiofEq. (3)] is in this trial ac-

tion replaced by quadratic functions. This is similar to what

was done by Feynman in its original wotklt is also well

known that the Coulomb potential can be redgéed exactly to
S.

Recently, the present authdtsobtained the “exact”

which is bound to the electron through a spring. In a bipo-eigenfrequencies of the Feynman bipolaron md@gin the
laron system we have two electrons, each with their owmpresence of a magnetic field. Such a magnetic field couples
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the polaron motion in the two directions perpendicular to the 7

magnetic field which results in seven nonzero eigenfrequen- xl(t)=H1+iE dj(c; e'SJt+c e 'sit (163
cies for the diagonalized bipolaron model. The diagonalized =1
Hamiltonian(8) was found to be
and
! 1
He= >, si(cEcﬁ s (10 ! _ _
=1 2 y1<t)=112—i§‘,l dj(cieit+cle™sih),  (16b)
=

with the eigenfrequencies which are found as the positive
real solutions of the algebraic equatiffor details we refer
to Ref. 10

2= A7~ 0?2+ wi(SP = W) PH[ s+ (25— v?)S?
2)2} O

and the trivial solutionsg=0. In Eq. (11) we definedv?
=(k+k")u, WwW>=(xk+«k')IM is the square of the fre-
guency of the oscillatofanalogous to the Feynman param-

eterw in the single-polaron probleme*=4««’'/M, and
vs=K/m, wherey t=m~1+M~L

+Q4—273W2] —w S 2(s? (11

The polaron limit is obtained by decoupling the two elec-

trons from each other, i.ex'=K=0 in Eq. (11). This re-
sults in the equation
SZ(SZ_UZ)Z_

wi(s?—w?)2=0, (12

for the eigenfrequencies which was first obtained in Ref. 16.

Next we consider the zero magnetic field limit of H4l)
and find

S~ $(s*~W)2|[s*+ (273~ v?)s2+ 04~ 2y WP]?=0

(13
which results in the four eigenfrequencies=0,
2_M+m TN 14
si=— o (kt ) =05, (143
and
[, 2K [(M-m 2K)\?
4 1/2
_ . I\2
+mM(K K') ], (14b)

as obtained in Refs. 4 and 6.
In the process of diagonalizing E(B), two canonically
conjugate constants of motion enter:

1 1
H 4(X1+X2) (ply p2y) (P1y+ PZy)
(153
and
1 1
(Y1+y2)+ (Plx+ P2ox) t5—(P1y+ P2,
C
(15b
which satisfy the commutation relationIl;,II,]=
—il2w.. They are related to the position of the classical

orbit center. The explicit time evolution of the electron po-
sition coordinates are found to be

wherec; (ch) are annihilationcreation operators for quan-
tized motion of the internal degrees of freedom and which
satisfy [ c; ,cf]z&,,,. Similar expressions are obtained for
the coordinates of the second electron.

The coefficientsd; are rather complicated, but in the case
of K=0 they reduce appreciably and are given by

- s 1...3 (17
T 354 2(—Diwgs —o?' 13 (173
and
@=> s v 4...7
4487 (— 1) 0(35P—W?) — 207, '
(17b)

Ill. THE BIPOLARON GROUND STATE ENERGY

The ground state energy of the bipolaron system is calcu-
lated using the Feynman variational principle which provides
an upper bound to the exact bipolaron ground state energy
Epip- This variational principle states that

1
Foip<F(— ,E<S_ S, (18

whereF, is the free energy of some trial acti®. (- - - ) is

a path integral average with weigk. This inequality is
valid for real actionsS and S; but may break down whe8
and S; contain imaginary terms as in the present case. This
problem was studied in Refs. 20,21, where only minor de-
viations from Eq.(18) were found in the presence of an
external magnetic field. Therefore, as a first step towards the
ultimate goal of solving the bipolaron problem in a magnetic
field, we assume that E@18) is valid as was done in Ref.
16. In the present pap&is given by Eq(3) and we take for
the trial actionS; the expression given by E).

From the diagonalized Hamiltonidsee Eq.(8)] one no-
tices that the partition function of the Feynman model con-
sists of the partition function of seven one-dimensional har-
monic oscillators. Besides one has to sum over allowed
values of the constants of motidh, andIl,, which is equal
to (LyL,/2m)mw. when we assume that the system is con-
fined to move in a box with dimensions, andL, . Then the
partition function is given by

7
/ 1
2mh*B H 2sini(Bfis;/2)’ (19

A

ZE=5h Mo
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FIG. 2. Ground state enerdg), the polaron mask), and the inverse mean-square distaf@es a function of the cyclotron frequency
for a fixed electron-phonon coupling constantaof 4 and Coulomb repulsiobd =5.

from which the free energyEe= — (1/8)InZe, is easily cal- sequently the bipolaron energy is expressed in units of
culated. At zero temperature the free energy reduces to tI‘fé“’LO Fuzrth?rmore we introduce the notatier=v? and
zero point energy of the model Hamiltonian, i.83;_,’s; . w53=3[v?*3\u*~4¢%], which are the squares of the fre-
The bipolaron ground state enerBy;,, is obtained as the duencies glven by EC(13) fOf K=0. Notice that they satisfy
zero temperature limit of the free ener¢ig). In what fol- wi= w5+ 03 and wiwi=p* and they also satisfy the fol-
lows we use dimensionless uniis= w, o=m=1, and con- lowing inequalitiesw,=w=w3=0. ForK=0 and using the
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FIG. 3. The same as Fig. 2 but now as a function of the coupling constand for a nonzero Coulomb repulsidth=5 andw.=10.

notation(11) and following the approach of Ref. 16 we de-
rive the following estimate for the bipolaron energy: + —, (20

where

2 1= s |
Ebip™ 22 Simaw=2 )21 si+w+WZ‘4 s+w

N

11(U) and

7 T s ot 2
-

7
Dya(u 2 (1—e SY) (219




10574 WILSON B. da COSTA AND FRAN®IS M. PEETERS 57
160 —— T T . 3
D(u)=2, di(1-e %) (24
-------- Polaron =1
Mor | ——u=0 ] and
""" v=5s : 3 2_ 2
120 L Polaron [ Bipolaron @23 1 i S —w N 25
i1 25 357 +2(— 1) wcS—v
100 . with the eigenfrequencies to be determined from the solu-
tion of the third order algebraic equation, Ef2), in si2 . The
80 L 1 bipolaron transition occurs when the ground state enBgy
& 2 of the bipolaron is equal to the ground state energy2of
(v/w)"=1 two separate polarons, i.€yjp,=2Epo-
60 .
| IV. PHASE DIAGRAM
40 1 In this section we present the numerical results for the
,»' | polaron and bipolaron energy. First we investigate the bipo-
20 L e laron state as a function of the magnetic field. A typical
] result of the bipolaron energy per particle as a functiow of
....... P (v/w)2>>1- is shown in Fig. 2a) for =4 and fixed Coulomb repulsion
ol 1 ey I MM U=5. The dotted curves are the results of the metastable
0 1 2 3 4 5 6 states. We also calculated numerically the corresponding

o mass of the Feynman bipolaron modé¥12 =2 (v/w)? and
FIG. 4. Phase diagram for the bipolaron in a magnetic field. Show it in Fig. 2b). Note that for largew, we haveM*
~1 which is the free electron mass and consequently the
bipolaron transition corresponds to the stripping transition
which is analogous to a similar transition which was found
for a single polaron in Ref. 16. The inverse of the mean

with U=e?/e... Introducing the ratio of the dielectric con- Square separation R/ in units of ymaw o /#, is shown for
stants7=e../ €, we obtain the following relation between the same set of parameters in Figc)2With increasingw,

the Coulomb and electron-phonon coupling constant: @ discontinuous transition occurs a~9.724, at which

= \2a/(1— 7). Thus in the physical allowed region we POint the bipolaron stripped state has a lower energy. For
must havel = \2«. In general the integral in EG20) has to 0:<9.724 the stable blp.olaron state consists pf two h'ea'vy
be calculated numerically and subsequertly, has to be polarons and the energy increases Wlt_h magnetic field similar
minimized with respect to the three variational parameters t© the case of a quasifree particle. Within the present Feyn-
w, and 0. The above expressiof20) reduces to the one man type of approach the polaron dressed state is still mobile

polaron result of Ref. 17 in the presence of a magnetic field"d has an effective mass which is more than two orders of
for U—o and to the result of Ref. 6 in the limit of zero Magdnitude larger than the bare electron mass. At the transi-

magnetic field. In the strong coupling limit the results of Ref, i the two polarons find it energetically more favorable to
9 are recovered move within one effective potential well created by the

The square of the mean-square separaRdetween the phonons. The behavior of the ground state energy of the
two electrons is given by stripped state as a function of the magnetic figdde Fig.
2(a)] is typically the one of a particle bound in a potential
R*=([ry(u)—r(u)]?)=4Dx0).

well. The electrons are not dressed and move inside this
well. In the present approach the composite system: electron
In order to calculate the bipolaron transition we have to+ well is translational invariant in contrast to e.g., the ap-
compare the bipolaron energy with the energy of two sepaproach of Ref. 9 where the electron in the strong coupling
rate polarons which are infinitely far apart. This limit is con- limit is bound in space. The size of the bipolaron state is
tained in Eq(20) and is obtained by choosing =K=0 and larger than in the dressed state. We found that the magnetic
U=0. Now only two variational parametessandw are left.  field at which the stripping transition occurs depends very
The resulting upper bouné, to the ground state enerfy strongly on the strength of the repulsive Coulomb interac-

3 7
D12(U)=Zl o|i2(1—e—5i“)+24 d?(1+e7sY), (21b

(22

is given by tion.
3 5 Next we investigate the system as function of the
E :12 s—w—(v2-w?)S sid; electron-phonon coupling strength. In FigaB a typical re-
pol &t ™ v <1 (w+s) sult for the energy per polaron is depicted as a function of

electron-phonon coupling strengaéhfor a fixed value of the
Coulomb repulsiond =5 and the cyclotron frequencs,
=10. The corresponding mass and inverse radius are shown
in Figs. 3b) and 3c), respectively. Note that we find two
transition points. For smalk we have two separate stripped

(23

_l\/f Je_d
2V2%)s o o

where



57

PHASE DIAGRAM FOR LARGE TWO-DIMENSIONAL . .. 10575

polarons each with an effective mass which is slightly largercreasingU smaller magnetic fields are needed in order to
than 1, i.e.M*~1. Notice thatR< in this state which is induce the stripping transition.
a consequence of the presence of the magnetic field. In the
polaron state we have R?=(r2)+(ra)=2(r3)~2I2
=2h/mw. which is finite for B#0. With increasinge, a
transition is found atx~3.53 where the stripped bipolaron
has a lower energy. When we further increasethe bipo- method to study the ground state properties of a system con-
laron self-energy increases continuously untit=4.09 at sisting of two electrons moving in two dimensions which
which point the dressed bipolaron state has a lower energyiteract with each other by the Coulomb force and through
and consequently is the stable state. The one-polaron maggtical phonons in the presence of the magnetic field. The
increases with three orders of magnitude and the bipolaroground state energy, the Feynman polaron mass, and the size
radius decreases with almost a factor of 2. of the state were studied numerically which showed a very
Our results are summarized in the polaron-bipolarorrich behavior. Namely, for certain values@f U, andw, the
phase diagram which is shown in Fig. 4, where the magnetiipolaron undergoes phase transitions where the mass and
field at which the transition occurs is plotted versus thethe mean square separatiorRIletween the two electrons
electron-phonon coupling constant for fixed values of theexhibit a discontinuity. This discontinuity can be a conse-
electron-electron Coulomb repulsion. The phase diagram exguence of the polaron-bipolaron transition or of the stripping
hibits four possible states for this system. First there is thdransition. The later transition was overlooked in previous
polaron-bipolaron transition which occurs for~3.6 and  work>**~**on the magnetic field dependence of the bipo-
which is practically independent a@,. This transition oc- laron.
curs at slighly largew values with increasing,, e.g., for
w:.=0 it occurs ata=3.564, while forw.=160 it takes
place for@=3.597. In the polaron region we have the po-
laron stripping transition which is given by the dotted curve  This work was supported by the Flemish Science Foun-
and which ends in the critical poink=1.60, v.=2.10 dation and W.B.C is supported by the Brazilian National
where a second order transition takes place. In the bipolaroResearch Council - CNPq. This work was supported by the
region we also have a stripping transition with increasingInteruniversity Poles of Attraction Programme - Belgium
magnetic field. This transition is shown fad=0 (solid State, Prime Minister’s office - Federal Office for Scientific,
curve and for U=5 (dashed curve Notice that with in- Technical and Cultural Affaires.”

V. CONCLUSION

In the present work we used the Feynman path-integral
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