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Dynamic radial distribution function from inelastic neutron scattering
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A real-space, local dynamic structure functiong(r ,v) is defined from the dynamic structure function
S(Q,v), which can be measured using inelastic neutron scattering. At any particular frequencyv, S(Q,v)
containsQ-dependent intensity oscillations which reflect the spatial distribution and relative displacement
directions for the atoms vibrating at that frequency. Information about local and dynamic atomic correlations
is obtained from the Fourier transform of these oscillationsg(r ,v) at the particular frequency.g(r ,v) can be
formulated such that the elastic and frequency-summed limits correspond to the average and instantaneous
radial distribution function, respectively, and is thus called the dynamic radial distribution function. As an
example, the dynamic radial distribution function is calculated for fcc nickel in a model which considers only
the harmonic atomic displacements due to phonons. The results of these calculations demonstrate that the
magnitude of the atomic correlations can be quantified andg(r ,v) is a well-defined correlation function. This
leads to a simple prescription for investigating local lattice dynamics.@S0163-1829~98!00817-0#
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I. INTRODUCTION

Recently, much attention has been focused on probl
related to the local atomic structure and dynamics of m
different materials. For amorphous materials, the short wa
length lattice vibrations are necessarily local in nature a
contain additional information about the atomic structure.
materials such as high-temperature superconductors an
lossal magnetoresistors, electron-lattice coupling induces
cal atomic displacements which have been observed by l
structural probes such as neutron and x-ray pair-distribu
function ~PDF! analysis, extended x-ray absorption fin
structure~EXAFS!, NQR, and NMR.1–3 In such cases, it is
also important to determine the dynamic nature of the lo
atomic correlations which are not given by the above m
surements. The dynamic response of atoms gives an ind
tion of the underlying charge dynamics at the least, and m
imply a more profound interaction between electrons and
lattice, such as polaron formation. A major obstacle in
solving this problem arises precisely from this local natu
The full characterization of local phenomena exists in a g
amongst various experimental techniques. While many tr
local probes do exist, such as diffraction PDF analy
NMR, NQR, and EXAFS, these probes have characteri
time scales which are either too slow or too fast to capt
the local atomic dynamics. However, inelastic neutron sc
tering is exceptional, and has the capability to resolve b
local and dynamic features. With the advent of high reso
tion, high intensity pulsed-neutron chopper spectrometer
spallation sources~such as PHAROS at LANSCE and MAR
at the ISIS facility!, it has been possible to measure the f
dynamic scattering functionS(Q,v) up to very large mo-
mentum transfers~Q;20– 30 Å21 or more!. In particular,
the Q dependence of the intensity at constant freque
gives information about the spatial distribution and relat
displacements of atoms vibrating at that frequency. In p
ciple, one should be able to ascertain the local dynam
contained in theQ dependence by using Fourier methods
extractg(r ,v), a real-space dynamic structure function.
570163-1829/98/57~17!/10560~9!/$15.00
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The concept of a real-space dynamic structure funct
was introduced in the seminal theoretical papers by Carp
ter and Pelizzari.4,5 Local dynamic pair-correlation function
~DPCF! have been obtained experimentally by Araiet al.
and Hannon et al., for amorphous Boron,6 amorphous
g-SiO2,

7–9 and a polycrystalline YBa2Cu3O7
superconductor,9,10 using inelastic neutron scattering. Th
DPCF obtained for a certain frequency resembles the neu
PDF obtained from Fourier transformation of the diffractio
data. The DPCF contains peaks corresponding to the ato
pair positions~or coordination shells! which have coheren
density oscillations at that frequency. The DPCF peaks
be positive or negative, which signifies the in-phase or o
of-phase motion of the atomic pair. For amorphous mat
als, the above authors have demonstrated that the D
gives additional structural information beyond that availa
from diffraction techniques.

In addition, the intensities~and signs! of the DPCF peaks
should in principle be used for determining other details
the correlated motion, such as the magnitude. However
Hannonet al. point out,6,7 the DPCF is not a true correlatio
function and peaks in ther dependence at a given frequen
can contain fictitious, long tails. Whereas, the PDF@or more
formally the radial distribution function~RDF!# measures the
probability that two atoms are separated by a distancer , the
DPCF has no such interpretation. This arises from the p
cise Fourier transform kernel used to obtain the DPCF fr
the inelastic neutron data. In the present paper, we exam
the properties ofg(r ,v) by Fourier transformation of the
dynamic scattering functionS(Q,v) using a simple variation
of the DPCF analysis. By doing so, one restores a prob
listic interpretation ofg(r ,v). This is evidenced by the fac
that the average RDF@elastic,g(r ,v50)# and instantaneous
RDF @frequency summedg(r ,v)# are obtained directly from
g(r ,v). The local dynamic functiong(r ,v) is thus called
the dynamic radial distribution function.

The interpretation of the instantaneous and average R
gives more insight into the nature ofg(r ,v). The instanta-
neous RDF measures the probability of two atoms be
10 560 © 1998 The American Physical Society
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57 10 561DYNAMIC RADIAL DISTRIBUTION FUNCTION FROM . . .
separated by a distancer by averaging ‘‘snap-shots’’ of the
structure over all time, whereas the average RDF is the p
ability of two independentlytime-averaged atoms being
certain distance apart.11 Thus, differences in the instanta
neous and average RDFs imply the existence of correl
atomic motions. Thev dependence at constantr can then be
used to determine the frequencies of such correlated mo
Finally, comparison ofg(r ,v) to the intensity of the averag
~uncorrelated! RDF peakg(r ,v50) quantifies the strength
of the atomic correlations.

In order to test these ideas, a real-space approach for
forming theoretical calculations of the dynamic RDF is d
veloped. While some specifics of this approach are only
mally correct for periodic systems, the general results
applicable to amorphous or glassy systems. The correl
atomic motions in a model consisting of harmonic phono
in nickel are considered in this paper andg(r ,v) is calcu-
lated for the first few nearest-neighbor pairs in polycryst
line nickel. A comparison of the instantaneous and aver
RDFs shows that significant ‘‘in-phase’’ atomic correlatio
~17% of the average RDF intensity! are present for the near
est neighbor atomic pair. The calculated results agree w
neutron diffraction RDF measurements of Ni and other m
terials ~such as aluminum, not shown here!, where it is ob-
served that nearest neighbor peaks are narrower than t
originating from well separated atomic pairs.12,13 The fre-
quency dependence at the nearest neighbor separatio
dominated by the low frequency and long waveleng
phonons which tend to move the atomic pair together a
unit.

In this simple example, the local dynamic correlati
function determines the involved atomic pairs, their relat
displacements, frequency range, and strength of a local
related motion. It is expected that the following prescriptio
in conjunction with DPCF methods, will lay a groundwo
for the consistent experimental evaluation of local and
namic atomic correlations in more complicated systems.

II. THEORY

When an inelastic neutron scattering measuremen
made on an amorphous or polycrystalline material, the int
sity is proportional toS(Q,v), the~orientationally averaged!
dynamic scattering function.\Q and \v are defined as the
momentum and energy transferred to the sample. In orde
extract the local atomic structure and dynamics~without re-
sorting to modeling!, the dynamical scattering function ca
be Fourier transformed over the spatial coordinates, givin
real-space dynamic functiong(r ,v).

The procedure for obtainingg(r ,v) begins by separating
the data into severalQ-dependent cuts each covering a d
ferent range of frequencies. The chosen frequency range
each cut depends on the finite energy transfer binning in
experiment, but can be as small as the energy resolutio
the spectrometer, or as large as one wishes. Thus, in
case,v is an average quantity over some specified freque
range. We can write a general spatial Fourier transform
eachQ cut as

g~r ,v!5
2r

p E
0

`

QdQ sin~Qr ! f ~Q!@S~Q,v!2B~Q,v!#,

~1!
b-
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where B(Q,v) is a slowly varying intensity componen
which arises from incoherent, multiple, multiphonon scatt
ing and the instrumental background. This must be mode
~or fitted! and subtracted for eachv in order to perform the
Fourier transformation without termination errors. Thu
S(Q,v)-B(Q,v) is intended to represent the coherent
elastic scattering.f (Q) is a weighting function whose choic
determines the functional form of the radial part ofg(r ,v),
as will be shown later.

Previous authors6–9 have included aQ-dependent weight-
ing function f (Q)51/Q2. The resulting function, referred to
previously, is called the dynamic pair-correlation functio
DPCF by the authors. The use of this weighting function h
merit and the reason for this particular choice is discusse
the Appendix.

In the present paper, a weighing factorf (Q)51 is cho-
sen. This transformation is entirely analogous to the p
distribution function ~PDF! analysis of diffraction data.11

@The pair distribution functionr(r ) and the radial distribu-
tion function~RDF! g(r ) are simply related by the equatio
g(r )54pr 2r(r ).# In fact, by making this choice the elasti
componentg(r ,v50) and the frequency summedg(r ,v)
~the frequency range spanning the entire data set! are pre-
cisely the average and instantaneous RDFs. These are
tremely important limits since the interpretation of the av
age and instantaneous RDFs is well defined. This
demonstrated by introducing the general pair correlat
function G(r ,t)}^gi(t8)gj (t2t8)& t8 , which is averaged
over all possible initial timest8 for two atoms labeledi and
j separated by a distancer . The dynamic radial distribution
function is just the time Fourier transform ofG(r ,t):

g~r ,v!}E dteivt^gi~ t8!gj~ t2t8!& t8 . ~2!

The interpretation of the average RDF as the probability
separation byr when each atomic position is averagedinde-
pendentlyover time follows simply from Eq.~2!

g~r ,v50!}E dt^gi~ t8!gj~ t2t8!& t85^gi~ t !& t^gj~ t !& t .

~3!

Being a single-atom average over the atomic motions,
average RDF contains no atomic correlation. The instan
neous RDF, given by the sum over all frequencies, is see
the average over all time of successive ‘‘snap-shots’’ of
atomic structure:

g~r !5E dvg~r ,v!}E dvE dteivt^gi~ t8!gj~ t2t8!& t8

5E dt^gi~ t8!gj~ t2t8!& t8d~ t !5^gi~ t !gj~ t !& t . ~4!

Differences between the instantaneous and average RDF
a signature of local and dynamic atomic correlation.

Instantaneous RDFs are obtained from x-ray and puls
neutron diffraction since these techniques sum over all
ergy transfers. In order to obtain the average RDF, an ine
tic experiment is a necessity. Thus, with an inelastic neut
scattering measurement ofS(Q,v) using a pulsed-neutron
chopper spectrometer, one is able to obtain both the ins
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10 562 57R. J. McQUEENEY
taneous and average RDFs from the same data set. De
the fact that theQ resolution is significantly better in a dif
fraction experiment, the RDFs obtained from inelastic m
surements compare quite favorably to diffraction result14

Of course, the strength of the inelastic measurement lie
the possibility to determine which frequency range contr
utes most significantly to the differences in the instantane
and average RDF. Analysis of the details ofg(r ,v) can de-
termine the nature of the correlation, such as in-phase
out-of phase displacements. The end result is the meas
ment of the frequency and relative displacements of the lo
correlated motion between a given pair of atoms.

In order to examine these ideas, we calculateg(r ,v) for a
simple crystalline system consisting of harmonic atomic d
placements due to phonons. We proceed with the calcula
from the perspective of the van Hove scattering functi
The phonon expansion ofS(Q,v) is given by the sum of
elastic, one-phonon, and multiphonon terms15

S~Q,v!5S0~Q,v!1S1~Q,v!1Sm~Q,v!, ~5!

The elastic and one-phonon terms are given by the equa
to be summed over all pairs of atoms in the system

S0~Q,v!5
1

^b2&
d~v!(

i j
bibje

2Wi2WjeiQ•Ri j , ~6a!

S1~Q,v!5
1

N^b2&

\2Q2

2v
@n~v!11#

3(
i j

bibje
2Wi2Wj

AMiM j

eiQ•Ri j

3(
qn

@Q̂• «̂ i~qn!#* @Q̂• «̂ j~qn!#eiq•Ri j

3d„v2vn~q!…. ~6b!

For these formulas,i ( j ) labels the atoms of massMi ( j ) and
~coherent! scattering lengthbi ( j ) within the crystal,Ri j is the
vector joining the atoms,n(v) is the Bose filling factor,q is
the phonon wave vector in the first Brillouin zone,vn(q) is
the phonon dispersion relation withn labeling the different
phonon branches, and«i(qn) is the atomic polarization vec
tor of the i th atom for the particular phonon mode. The ph
non polarizations are defined without the plane-wave ph
factor @which is explicit in formula ~6b!#. The function
exp(2Wi) is the Debye-Waller factor whose argumentWi

5Q2^ui
2&/2, is proportional to the mean-squared atomic d

placement of thei th atom.Sm(Q,v) is the multiphonon in-
tensity, which is a complicated sum over several phon
events.

For phonons in a crystal, it is common to use the peri
icity of the crystal to reduce the sum over atoms to a de
function conserving the crystal momentum for elastic a
inelastic scattering. However, in order to relate to an exp
ment performed on a polycrystalline sample, the above
mulas must be orientationally averaged over all directions
Q. If one performs the sum over atoms first, the orientatio
average is very cumbersome, requiring one to boots
through the different Brillouin zones intersected by a sph
of radiusQ and calculate the argument of Eq.~6b!. Since we
pite
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are only interested in local real-space information, the s
over atoms is retained and will be evaluated neighbor-
neighbor over the first few coordination shells. Followin
Carpenter,16 the orientational averages of Eqs.~6a! and ~6b!
are then

S0~Q,v!5
1

^b2&
d~v!(

i j
bibje

2Wi2Wj j 0~QRi j !, ~7a!

S1~Q,v!5
1

N^b2&

\2Q2

2v
„n~v!11)

3(
i j

(
qn

bibje
2Wi2Wj

AMiM j

eiq•Ri j d„v2vn~q!…

3F1

3
@ «̂ i~qn!* • «̂ j~qn!#@ j 0~QRi j !1 j 2~QRi j !#

2@R̂i j • «̂ i~qn!#* @R̂i j • «̂ j~qn!# j 2~QRi j !G , ~7b!

where j 0(x) and j 2(x) are spherical Bessel functions. It
assumed, for the simple harmonic phonon model, that
polycrystalline average of the multiphonon scattering
slowly varying inQ, and therefore does not contribute to th
dynamic atomic structure. This is warranted by estimates
second order~multiphonon! thermal diffuse scattering for a
fcc powder.17 Thus, the following calculations will include
only the elastic and one-phonon processes.

The Fourier transform over the spatial coordinates n
becomes quite simple. We use Eq.~1! to evaluate the trans
forms of Eqs.~7a! and~7b! separately. We can easily remov
the incoherent scattering by ignoring terms withi 5 j . Since
we also do not wish to consider the contribution of mu
tiphonon scattering, for the purposes of calculation,
slowly varying background functionB(Q,v) is zero. Previ-
ous authors6–9 chose to divide out theQ-dependent terms
(Q2) and/or thev-dependent terms in the inelastic expre
sion before the transformation. However, we retain the
and the elastic and inelastic parts of the real space dyna
function g(r ,v) are given below. For the elastic part,

g0~r ,v!5
1

^b2&
d~v!(

i j
bibjg0~r 2Ri j !, ~8a!

where

g0~r 2Ri j !5
2r

p E
0

`

QdQ sin~Qr ! j 0~QRi j !e
2Wi2Wj .

~8b!

As discussed above,g0(r 2R) is the average RDF of a pai
of atoms separated byR. Figure 1~a! shows the typical con-
tribution of a single atomic pair of bondlengthR to the av-
erage RDF. The average RDF is simply a Gaussian cent
at R with peak width given bŷ u2&1/2. The area under the
average RDF peak is equal to the number of neighbor
atoms in the coordination shell.

The inelastic part can be written as
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g1~r ,v!5
1

^b2& (
i j

bibj$Fi j ~v!@K0~r 2Ri j !1K2~r 2Ri j !#

2Fi j
L ~v!K2~r 2Ri j !%, ~9a!

where the subscript 1 refers to the one-phonon contribu
and the functions contained in Eq.~9! are defined as

Kn~r 2Ri j !5
2r

p E
0

`

Q3dQ sin~Qr ! j n~QRi j !e
2Wi2Wj ,

~9b!

Fi j ~v!5
1

3N

\2

2vAMiM j

@n~v!11#

3(
qn

@ «̂ i~qn!* • «̂ j~qn!#eiq•Ri j d„v2vn~q!…,

~9c!

Fi j
L ~v!5

1

N

\2

2vAMiM j

@n~v!11#

3(
qn

@R̂i j • «̂ i~qn!#* @R̂i j • «̂ j~qn!#eiq•Ri j

3d„v2vn~q!…. ~9d!

FIG. 1. ~a! The radial distribution function peakg0(r ) for elastic
scattering from a single coordination shell with equilibriu
bondlengthR52.5 Å and mean-squared atomic displacement^u2&
50.005 Å2. ~b! The characteristic radial functions related to t
one-phonon inelastic scatteringK2(r ) and K0(r )1K2(r ) for the
same bondlength and mean-squared displacement as~a!. K2(r )
multiplies the longitudinal displacement-displacement correlat
function and will narrow or broaden the average RDF when ad
together. K0(r )1K2(r ) multiplies the displcement-displaceme
correlation function and will displace the average RDF peak w
added together.
n

The inelastic structure function can thus be factored i
separate radial and frequency components. The two ra
componentsK0(r )1K2(r ) and K2(r ) are plotted in Fig.
1~b!. It is seen thatK2(r ) can be thought of as a ‘‘narrow
ing’’ or ‘‘broadening’’ function, depending on the sign o
FL(v), when compared to the average RDF. The broaden
function, for example, will add intensity to the ends of th
average RDF peak in Fig. 1~a! and remove it from the center
In a similar fashion, the sum of the radial function
K0(r 2R)1K2(r 2R) is considered a ‘‘displacement’’ func
tion, as it shifts Gaussian weight from one side to the oth
An important point to realize is the probability of two atom
being separated byr integrated over all space must equal o
whether correlations are included or not. Consequently,
peak areas in both the instantaneous and average RDF
be the same, and are equal to the number of neighbo
atoms. The influence of atomic correlation will only redi
tribute the average RDF intensity. A corollary of this sta
ment is that the integral of the inelastic structure functi
over all space and frequency must equal zero. When adde
the average RDF function, these radial functions tend
change the width or shift the peak while conserving the p
area. A comparison of these radial functions and those of
DPCF of Arai and co-workers is given in the Appendix.

All of the information about the local dynamic atom
correlation is contained within the correlation functio
F(v) and FL(v). Both functions are evaluated simply b
averaging the correlations over the surfaces of constant
quency within the first Brillouin zone of the material. Sp
cifically, F(v) is the displacement-displacement correlati
function between two atoms, analogous to the spin-spin c
relation function measured by magnetic neutron scatter
FL(v) measures the pair displacement correlations along
bond joining the two atoms. The superscriptL consequently
refers to the longitudinalpair correlations. However, it mus
be stated that this does not imply that the phonons wh
contribute to this correlation function are necessarily lon
tudinal. For example, a transverse mode polarized in
~010! direction and propagating in the~100! direction in an
fcc crystal has longitudinal pair correlations for the~010!
second nearest neighbor atomic pair.

A short comment must be made about the relevance of
above formalism to amorphous or glassy systems. Althou
the periodicity of the crystal is not used in the lattice su
during the derivation, the periodicity and symmetry of t
crystal is implicit in the Brillouin zone summation of Eqs
~9c! and ~9d!. The expansion of the lattice dynamics of
glassy system in terms of plane waves~phonons! is not natu-
ral, since the lattice momentum is not an eigenstate o
disordered solid. Thus, the above formalism is perhaps
very useful to perform model calculations of disordered s
tems. However, the general form of Eq.~9a! and the inter-
pretation of the measured correlations holds true for any s
tem in the limit of small vibrational amplitudes and can
utilized for analyzing amorphous systems. Equations~9c!
and~9d! simply express a convenient method for calculati
the correlation functions in systems with overall long-ran
periodicity in terms of plane waves. The transformation
the experimental data by Eq.~1! can be used on any system

n
d

n
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III. MODEL CALCULATIONS ON NICKEL

In the following section, we introduce a simple model
illustrate the ideas of the local, dynamic functions discus
above. The model consists of the harmonic phonon vib
tions fcc nickel. The constants for a Born-von Ka´rmán har-
monic spring model, including interactions up to the fif
nearest neighbor, were obtained from the literature.18 These
were used to calculate the phonon frequencies and pola
tion vectors for approximately 67 000 regularly griddedq
values within an octant of the fcc Brillouin zone. Figure
shows the phonon density-of-states@Z(v)# obtained from
the lattice dynamical calculations by binning the phonon f
quencies in 0.25 meV intervals through the Brillouin zo
octant after properly weighting the high-symmetry modes

The radial functions were obtained by calculating the
roth and second order spherical Bessel functions for 40Q
points from 0 to 60 Å21. These functions were then Fourie
transformed according to Eqs.~8a! and ~9b!. For a mon-
atomic cubic Bravais lattice, the given formulas can be s
plified. The scattering length factorbibj /^b2&51 and the
Debye-Waller factor is obtained from a single mean-squa
atomic displacement given by

^u2&5
\2

2M E dv
Z~v!

v
cothS \v

2kTD . ~10!

Radial functions were calculated for the first four neare
neighbor shells and the results are identical to Fig. 1, al
centered at the proper pair distance and broadened by^u2&.

Results from the phonon dispersion calculation were u
to calculate the correlation functions of Eqs.~9c!–~9d!. Con-
sidering that nickel is a simple fcc metal with only one ato
per unit cell, the phonon polarization vectors defined ab
are equal at every lattice site~the phase factor is explicitly
separated from the phonon eigenvectors!. Thus, the argu-
ments of the displacement correlation functions reduce
«̂ i(qn)* • «̂ j (qn)51 for F(v) and @R̂i j • «̂ i(qn)#* @R̂i j

FIG. 2. The normalized phonon density-of-states of Nickel c
culated from a five neighbor Born-von Ka´rmán model. The indi-
vidual longitudinal (L) and transverse (T1,T2) branches are also
shown.
d
-

a-

-

-

-

d

t-
it

d

e

to

• «̂ j (qn)#5uR̂i j • «̂(qn)u2 for FL(v). As mentioned previ-
ously, the correlation functions are averages over surface
constant frequency. In general, the constant frequency
faces need not be simple, and may be multiply connecte
is well known in the case of Fermi surfaces. In the case
F(v), the correlation function is proportional to the avera
phonon phase difference between the pair of atoms for
phonon modes of frequencyv.

The Brillouin zone sum forF(v) can be performed ove
the reduced zone for any one of the equivalent atomic p
in a given coordination shell. However, due to the nature
the dot product term remaining inFL(v), the sum over the
octant of the Brillouin zone for a single neighbor in a coo
dination shell is not sufficient to capture all of the contrib
tions to the correlation function. One must either sum o
the full zone for a single neighbor, or sum over all neighbo
in the reduced zone. We have chosen to use a reduced
while summing over all pairs in the coordination shell. T
results of the Brillouin zone sums were put into 1-meV e
ergy bins and the correlation functionsF(v) andFL(v) are
shown in Fig. 3 for the first four neighbor shells of Ni. Nea
est neighbors are labeled by their real space postions in
cubic lattice:@0.5,0.5,0#, @1,0,0#, @0.5,0.5,1#, and@1,1,0#.

Some comments are in order about the trends in the
relation functionsF(v) andFL(v). The first is that the sign

-

FIG. 3. The frequency-dependent displacement-displacem
correlation function F(v) ~solid line! and longitudinal
displacement-displacement correlation functionFL(v) ~dashed
line! for the first four nearest neighbor atomic pairs in nickel atT
50 K. The atomic pairs are labeled in the cubic fcc lattice
@0.5,0.5,0#, @1,0,0#, @0.5,0.5,1#, and@1,1,0#.
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of the correlation function is an indication of the in-phase
out-of-phase motion of an atomic pair. At low frequenci
~or long wavelengths! where near by atoms move togethe
the sign is always positive. Second, the correlation functi
tend to oscillate more rapidly as a function of frequency
larger bond distances. This is because the phase differ
between atoms will oscillate more rapidly for a larger bo
length in the sum over the Brillouin zone. Last, the lar
peaks in the correlation functions correspond to van H
singularities in the phonon density of states.

These general trends are easily understood by conside
theF(v) displacement-displacement correlation function
the nearest neighbor pair. At low frequencies, all three p
non branches move these atoms in the same direction,
F(v) is positive. At 24 meV, which is the zone bounda
transverse phonon frequency band, the function is nega
indicating that the overall tendency is for nearest neigh
atoms to have opposite displacements. A similar out-
phase correlation is seen for the longitudinal zone bound
phonon band at 33 meV.

TheFL(v) longitudinal displacement-displacement corr
lation function is dominated by two peaks at 18 and 33 me
being positive and negative respectively. The 18 meV p
consists mainly of the~111!-type transverse zone bounda
phonons. The displacement field of this phonon band te
to move all atoms in every other plane perpendicular to~111!
in the same direction. The in-phase motions of some ne
boring atoms within each plane point along the bond dir
tion and contribute to the large positive peak at 18 meV. T
longitudinal zone boundary phonon band at 33 meV is co
posed of mainly~100!- and ~111!-type phonons. In the lon
gitudinal band, a predominance of atoms in the nea
neighbor shell move in opposite directions along the bon

The results for the radial and frequency components
be combined according to Eq.~9a! give the fullg1(r ,v). To
determine the influence of the phonon vibrations on
structure@the dependence ofg1(r ,v) on r # it is most profit-
able to consider the sum over frequencyg1(r ). g1(r ) repre-
sents the inelastic contribution of the polycrystalline av
aged thermal diffuse scattering to the instantaneous R
Since ther - and v-dependent components in Eq.~9a! are
being multiplied, inelastic intensity occurs only where t
RDF is nonzero, i.e., only within;^u2& of the pair distances
@see Fig. 1~b!#. When g1(r ) is added to the average RD
function g0(r ), one obtains the instantaneous RDFg(r )
5g0(r )1g1(r ). All of these radial distribution functions
the average, inelastic, and instantaneous, are shown in F
The integral ofg1(r ) over r for each peak gives zero as
should, since the total probability is conserved for both
stantaneous and average RDFs.

The functiong1(r ) represents the local atomic correlatio
induced by phonons. The main effect of the inelastic str
ture is to narrow the instantaneous RDF peaks compare
the average RDF. It is apparent that the narrowing is v
significant for the first nearest neighbor, and contributes
proximately 17% of the instantaneous RDF peak height~the
remainder arising from uncorrelated motion!. Such a narrow-
ing of the instantaneous RDF peak implies that the ato
motions due to phonons introduce a correlation upon
nearest neighbor pair which tends to move the atoms
phase. In other words, the atomic pair tends to move toge
r
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as a unit. Consequently, the probability of measuring the p
at large distances from the equilibrium bond distance at
instant of time is reduced compared to the independent ti
averaging of each atom.

The virtue of the inelastic experiment is that one can
termine the frequency ranges which are most responsible
the observed deviations in the instantaneous and ave
RDFs. This is demonstrated by evaluating the full frequen
dependence forg1(r 5const,v) precisely at the pair dis-
tances, as shown for the first four nearest neighbors in Fig
Due to the different weighting ofK0(r )1K2(r ) and K2(r )
by the F(v) and FL(v) correlation functions, respectively
g1(r ,v) is a complex function ofv in the vicinity of a pair
distance. However, for the case of phonons in nickel,
combination ofK2(r )FL(v) tends to dominate for almos
the entire frequency range. This is mainly due to the fact t
K2(r ) has a much greater magnitude thanK0(r )1K2(r ) @~as
in Fig. 1~b!# while the frequency-dependent correlation fun
tions have equal magnitude~as in Fig. 3!. The frequency
dependencies in Fig. 5 follow closely the frequency dep
dence ofFL(v). Thus, correlation function which measure
the atomic motions along the bond joining the two ato
dominates, and the components of the inelastic structure
to narrow or broaden the average RDF peaks.

The origin of the dynamic atomic correlations in nick
can be ascertained from Fig. 5. The inelastic intensity
g(r 5first nearest neighbor,v! has essentially three importan
contributions. The first is due to the in-phase long wav
length, low frequency modes. The second arises from
phase atomic correlations of pairs of atoms in planes perp
dicular to the transverse mode propagation vectors~18 meV!.

FIG. 4. The average RDF@g0(r )# and the inelastic RDF@g1(r )#
for the first four nearest neighbors in nickel atT5300 K. Also
shown is the instantaneous RDFg(r ) which is the sum of the av-
erage and inelastic RDFs. The figure shows that the instantan
RDF peak widths are narrower than the average RDF peaks, s
fying that there are in-phase correlated motions between the
few nearest neighbors. This is especially true for the first nea
neighbor, where the inelastic RDF contributes 17% of the to
instantaneous RDF peak height. The remainder arises from un
related, single-atom motions.
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10 566 57R. J. McQUEENEY
The third is the out-of-phase motions of atoms in zo
boundary longitudinal modes~33 meV!. Overall, the prepon-
derance of low frequency modes, especially at finite te
peratures, favors the in-phase narrowing of the instantane
RDF. As expected, one must consider all of the phon
modes in order to get a picture of the local atomic corre
tions. For the subsequent neighbors, the faster oscillatio
the phase factor and weaker interatomic potential tend
reduce the effect~10% or less! and the inelastic structur
contributes only weakly to the instantaneous RDF.

It is perhaps unexpected, for the nearest neighbor p
that there are atomic correlations due to the phonon vib
tions which are of sufficient amplitude to be measured. A
apparent from Fig. 4, the first RDF peak has a much n
rower peak width as compared to more distant peaks. T
the effect of the thermal diffuse scattering on the instan
neous RDF of nickel should be observable in the diffract
experiment. In fact, it is observed in the instantaneous R
measured by pulsed neutron scattering~at the Glass Liquid
Amorphous Diffractometer at the Intense Pulsed Neut
Source of Argonne National Laboratory!.13 Figure 6, shows
the experimental instantaneous RDF of nickel at 300 K p
ted with the theoretical instantaneous RDF from Fig. 4. T
first four experimental RDF peaks were fitted to the sum
four Gaussians using a least-squares fitting method. The

FIG. 5. The dynamic radial distribution functio
g(r 5const,v) evaluated at the first four pair distances in nickel
T50 K. The atomic pairs are labeled in the cubic fcc lattice
@0.5,0.5,0#, @1,0,0#, @0.5,0.5,1#, and @1,1,0#. For each neighbor, the
frequency dependence is dominated by the longitud
displacement-displacement correlations. More separated neigh
tend to have more oscillations in the frequency dependence.
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of Fig. 6 shows the theoretical and fitted experimental pe
widths. The dashed line in the inset of Fig. 6 shows the p
width value which arises from entirely uncorrelated, sing
atom motion atT5300 K. Both the experimental and theo
retical peak widths show the pronounced narrowing of
nearest neighbor peak as compared to the more distant p
and the uncorrelated width. The more more distant coord
tion shells show a small degree of correlation. Thus, the
fect of local atomic correlation can be observed from a d
fraction experiment. This is perhaps not very surprising. T
RDF is obtained from the diffraction data by Fourier tran
forming all of the intensity contained inS(Q) including the
diffuse scattering. The thermal diffuse scattering is high
structured inQ space, having power law tails near Brag
points due to the large occupancy of low frequency phono
Consequently, it will contribute additional structure to th
RDF above that from the Bragg scattering.

IV. CONCLUSION

Much of the strength of inelastic pulsed-neutron chop
spectrometers lies in the ability to measure theQ dependen-
cies ofS(Q,v), at any frequency, up to very large mome
tum transfer. For amorphous or polycrystalline samples,
Q dependence is related to the spatial distribution and r
tive displacement directions for atoms vibrating at a giv
frequency. Thus, the inelastic portion ofS(Q,v) amounts to
the energy-resolved diffuse scattering from the sample. T
diffuse scattering can have many origins for many differe
materials, such as phonons, local modes, polarons, etc
cases where such local atomic motions are of interest,

t
s

l
ors

FIG. 6. Instantaneous RDF of nickel atT5300 K as measured
with the Glass Liquid Amorphous Diffractometer at the Inten
Pulsed Neutron Source of Argonne National Laboratory~Ref. 13!.
Plotted over the experimental data is the instantaneous RDF ca
lated from theory. The inset figure shows the fitted gaussian w
of the experimental data and the theoretical widths for the first f
coordination shells. The dashed line in the inset figure is the un
related width~proportional to^u2&1/2!.
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57 10 567DYNAMIC RADIAL DISTRIBUTION FUNCTION FROM . . .
Fourier transform ofS(Q,v) over the spatial coordinate
gives a local, dynamic functiong(r ,v).

The transform ofS(Q,v) to g(r ,v) is defined in an
analogous manner to the radial distribution function~RDF!
~or pair-distribution function! obtained from diffraction mea
surements. In this fashion,g(r ,v) is a probability conserv-
ing function in the sense that either the average~elastic! RDF
or instantaneous~energy-integrated! RDF can be obtained
The main outcome of this statement is that the structure c
tributed to the instantaneous RDF from the inelastic scat
ing can only displace or change shape compared to the
erage RDF, while conserving the peak area. The prescrip
to follow is to obtain both the instantaneous and aver
RDF from g(r ,v), since differences in these RDFs implie
the existence of local and dynamic atomic correlation. Us
the ability of inelastic neutron scattering to resolve the
ergy transfer, one can then determine at which frequen
the local distortions are occurring.

To demonstrate these ideas, the dynamic radial distr
tion function g(r ,v) was calculated for atomic displace
ments due to phonons in fcc nickel. A difference in the
stantaneous RDF and average RDF is observed for
nearest neighbor peak, where the instantaneous RDF pe
narrower than the average, implying that local correlat
due to phonon vibrations tends to move the atomic pair
phase. This observation is supported by instantaneous
measurements from neutron diffraction. By looking into t
frequency dependence at constantr equal to the neares
neighbor pair distance, it is apparent that the in-phase co
lation comes from the preponderance of low-frequency, lo
wavelength phonons. This can be understood by conside
that the phonons in nickel produce thermal diffuse scatter
which is observed as tails of the Bragg peak in recipro
space. The thermal diffuse scattering is therefore hig
structured in reciprocal space and contributes additional lo
structure to the instantaneous RDF.

The calculations on nickel, and their comparison to d
fraction data, demonstrate two important conclusions. F
the RDF analysis of diffraction data represents the insta
neous structure of the material and the observed atomic
relations originate from the thermal diffuse scattering. S
ond, the extraction of the local dynamic structure functi
allows one to determine which atomic pairs have correla
motion by comparison of the instantaneous and average R
and consequently to determine the frequencies. The ene
resolvedg(r ,v) measurements are therefore unique pro
which bridge the gap between slow and fast local probes
consistent manner.
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APPENDIX

The dynamic pair correlation function is defined by E
~1! with the weighting functionf (Q)51/Q2. While the
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frequency-dependent correlation functions of the DPCF
identical to those of the dynamic distribution functio
g(r ,v), the radial functions differ due tof (Q). The DPCF
inelastic radial functions, denotedK28(r ) andK08(r )1K28(r ),
are shown in Fig. 7. The benefit of the weighting factor
that the inelastic structure functionK28(r ) has a single peak
at the atomic pair distance, similar to a RDF peak. Thus,
formulation is quite useful for direct comparison of th
DPCF at a particular frequency to the RDF. It is also po
sible that dynamic features will be more prominent in so
cases, due to the single peak. However, the DPCF ra
functions have tails extending below the peak. This becom
a more severe problem for short and intermediate pair
tances, since the inelastic structure contains contribution
all pairs longer than the given pair distance. Consequen
one cannot speak of a probabilistic interpretation of
DPCF and cannot calculate the true RDFs.

As we have seen, the Fourier transform ofj 0(x) is a
d function ~convoluted with a Gaussian Debye-Wall
factor!. The Fourier transform ofj 2(x) consists of ad
function plus a step function giving the characteristic DP
functions. Retaining the factor ofQ2 in our formulation
is equivalent to taking twice the derivative of the DPCF w
respect tor ~exactly,2d2/dr2!. This operation removes th
step and relegates the inelastic intensity to within;^u2&1/2

of the pair position. The penalty for this operation is that t
K2(r ) radial functions no longer contain a single peak, b
have a W shape. As has been shown, this is precisely
functional form required to preserve the overall probabil
between the average and instantaneous RDFs. Thus
dynamic RDF and DPCF formulations both have benefit
the analysis of the dynamic features in the inelastic exp
ment.

FIG. 7. The dynamic pair correlation function~DPCF! inelastic
radial functions,K28(r ) andK08(r )1K28(r ). K28(r ) has a single peak
at the pair distance, unlike the dynamic RDF radial function,K2(r ),
which has a W shape. Consequently, the DPCF formalism is m
useful for identifying inelastic features, However, the DPCF pe
has a long tail on the low-r side, making it difficult to determine the
strength of atomic correlation.
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