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Dynamic radial distribution function from inelastic neutron scattering
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A real-space, local dynamic structure functig(r,w) is defined from the dynamic structure function
S(Q,w), which can be measured using inelastic neutron scattering. At any particular frequeB¢Q, w)
containsQ-dependent intensity oscillations which reflect the spatial distribution and relative displacement
directions for the atoms vibrating at that frequency. Information about local and dynamic atomic correlations
is obtained from the Fourier transform of these oscillatig(is ) at the particular frequencg(r,») can be
formulated such that the elastic and frequency-summed limits correspond to the average and instantaneous
radial distribution function, respectively, and is thus called the dynamic radial distribution function. As an
example, the dynamic radial distribution function is calculated for fcc nickel in a model which considers only
the harmonic atomic displacements due to phonons. The results of these calculations demonstrate that the
magnitude of the atomic correlations can be quantifiedg{ngw) is a well-defined correlation function. This
leads to a simple prescription for investigating local lattice dynanj#8163-18208)00817-0

I. INTRODUCTION The concept of a real-space dynamic structure function
was introduced in the seminal theoretical papers by Carpen-
Recently, much attention has been focused on problemier and Pelizzart:° Local dynamic pair-correlation functions
related to the local atomic structure and dynamics of manyDPCPH have been obtained experimentally by Aetial.
different materials. For amorphous materials, the short waveand Hannonet al, for amorphous Borof, amorphous
length lattice vibrations are necessarily local in nature and@-Sio,, "° and a polycrystalline YBAL u;0;
contain additional information about the atomic structure. Insuperconductot® using inelastic neutron scattering. The
materials such as high-temperature superconductors and c@PCF obtained for a certain frequency resembles the neutron
lossal magnetoresistors, electron-lattice coupling induces Id?DF obtained from Fourier transformation of the diffraction
cal atomic displacements which have been observed by localata. The DPCF contains peaks corresponding to the atomic
structural probes such as neutron and x-ray pair-distributiopair positions(or coordination shellswhich have coherent
function (PDP analysis, extended x-ray absorption fine density oscillations at that frequency. The DPCF peaks can
structure(EXAFS), NQR, and NMR'3 In such cases, it is be positive or negative, which signifies the in-phase or out-
also important to determine the dynamic nature of the locabf-phase motion of the atomic pair. For amorphous materi-
atomic correlations which are not given by the above meaals, the above authors have demonstrated that the DPCF
surements. The dynamic response of atoms gives an indicgives additional structural information beyond that available
tion of the underlying charge dynamics at the least, and mafrom diffraction techniques.
imply a more profound interaction between electrons and the In addition, the intensitiegand sign$ of the DPCF peaks
lattice, such as polaron formation. A major obstacle in re-should in principle be used for determining other details of
solving this problem arises precisely from this local naturethe correlated motion, such as the magnitude. However, as
The full characterization of local phenomena exists in a gagiannonet al. point out®’ the DPCF is not a true correlation
amongst various experimental techniques. While many truljunction and peaks in thedependence at a given frequency
local probes do exist, such as diffraction PDF analysiscan contain fictitious, long tails. Whereas, the P[DF more
NMR, NQR, and EXAFS, these probes have characteristiformally the radial distribution functiofRDF)] measures the
time scales which are either too slow or too fast to capturgrobability that two atoms are separated by a distandbe
the local atomic dynamics. However, inelastic neutron scatbPCF has no such interpretation. This arises from the pre-
tering is exceptional, and has the capability to resolve botleise Fourier transform kernel used to obtain the DPCF from
local and dynamic features. With the advent of high resoluthe inelastic neutron data. In the present paper, we examine
tion, high intensity pulsed-neutron chopper spectrometers dhe properties ofg(r,w) by Fourier transformation of the
spallation sourcessuch as PHAROS at LANSCE and MARI dynamic scattering functio§(Q, ») using a simple variation
at the ISIS facility, it has been possible to measure the full of the DPCF analysis. By doing so, one restores a probabi-
dynamic scattering functio®(Q,w) up to very large mo- listic interpretation ofg(r,w). This is evidenced by the fact
mentum transfer§Q~20-30 A~ or more. In particular, that the average RDelastic,g(r,»=0)] and instantaneous
the Q dependence of the intensity at constant frequencyRDF [frequency summed(r,w)] are obtained directly from
gives information about the spatial distribution and relativeg(r,w). The local dynamic functiom(r,w) is thus called
displacements of atoms vibrating at that frequency. In printhe dynamic radial distribution function.
ciple, one should be able to ascertain the local dynamics The interpretation of the instantaneous and average RDF
contained in theQ dependence by using Fourier methods togives more insight into the nature g{r,»). The instanta-
extractg(r,w), a real-space dynamic structure function. neous RDF measures the probability of two atoms being
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separated by a distanceby averaging “snap-shots” of the where B(Q,w) is a slowly varying intensity component
structure over all time, whereas the average RDF is the prolwhich arises from incoherent, multiple, multiphonon scatter-
ability of two independentiytime-averaged atoms being a ing and the instrumental background. This must be modeled
certain distance apatt. Thus, differences in the instanta- (or fitted) and subtracted for eaah in order to perform the
neous and average RDFs imply the existence of correlateHourier transformation without termination errors. Thus,
atomic motions. The» dependence at constantan then be  S(Q,w)-B(Q,w) is intended to represent the coherent in-
used to determine the frequencies of such correlated motioglastic scatteringf(Q) is a weighting function whose choice
Finally, comparison of(r,®) to the intensity of the average determines the functional form of the radial partgtf,®),
(uncorrelategl RDF peakg(r,o=0) quantifies the strength as will be shown later.

of the atomic correlations. Previous authofs® have included ®-dependent weight-

In order to test these ideas, a real-space approach for pehg functionf(Q)=1/Q?. The resulting function, referred to
forming theoretical calculations of the dynamic RDF is de-previously, is called the dynamic pair-correlation function
veloped. While some specifics of this approach are only forbPCF by the authors. The use of this weighting function has
mally correct for periodic systems, the general results arenerit and the reason for this particular choice is discussed in
applicable to amorphous or glassy systems. The correlatefie Appendix.
atomic motions in a model consisting of harmonic phonons |n the present paper, a weighing factqQ)=1 is cho-
in nickel are considered in this paper agff,) is calcu-  sen. This transformation is entirely analogous to the pair-
lated for the first few nearest-neighbor pairs in polycrystal-distribution function (PDP analysis of diffraction dat&:
line nickel. A comparison of the instantaneous and averaggrhe pair distribution functiop(r) and the radial distribu-
RDFs shows that significant “in-phase” atomic correlationstion function (RDF) g(r) are simply related by the equation
(17% of the average RDF intensitgire present for the near- ¢(r)=4#r2p(r).] In fact, by making this choice the elastic
est neighbor atomic pair. The calculated results agree WitBomponentg(r,sz) and the frequency summeg(r,w)
neutron diffraction RDF measurements of Ni and other ma'(the frequency range Spanning the entire datal St pre-
terials (such as aluminum, not shown hgrvhere it is ob-  cisely the average and instantaneous RDFs. These are ex-
served that nearest neighbor peaks are narrower than thoggmely important limits since the interpretation of the aver-
originating from well separated atomic paifs® The fre-  age and instantaneous RDFs is well defined. This is
quency dependence at the nearest neighbor separation gémonstrated by introducing the general pair correlation
dominated t_)y the low frequency anpl Iong wavelengthfynction G(r,t)=(gi(t')g;(t—t"))y, which is averaged
phonons which tend to move the atomic pair together as yer all possible initial times’ for two atoms labeled and
unit. j separated by a distance The dynamic radial distribution

In this simple example, the local dynamic correlation fynction is just the time Fourier transform G{(r t):
function determines the involved atomic pairs, their relative

displacements, frequency range, and strength of a local cor- .

related motion. It is expected that the following prescription, g(f,w)“f dte(gi(t")gj(t—t"))¢ . 2

in conjunction with DPCF methods, will lay a groundwork ) ) .

for the consistent experimental evaluation of local and dy-The interpretation of the average RDF as the probability of

namic atomic correlations in more complicated systems. ~ Separation by when each atomic position is averagede-
pendentlyover time follows simply from Eq(2)

Il. THEORY
When an inelastic neutron scattering measurement is g(r,w=0)°<fdt(@li(t')gj(t—t'))t'=<9i(t)>t<9j(t)>t-
made on an amorphous or polycrystalline material, the inten- 3)

sity is proportional t&5(Q, w), the(orientationally averaged . . , )
dynamic scattering functiorhkQ and%w are defined as the Be€ing & single-atom average over the atomic motions, the
momentum and energy transferred to the sample. In order @verage RDF.contalns no atomic correlation. .The.mstanta—
extract the local atomic structure and dynameithout re- ~ N€OUS RDF, given by Fhe sum over aI.I fre‘guenues, |s”seen as
sorting to modeling the dynamical scattering function can the average over all time of successive “snap-shots” of the
be Fourier transformed over the spatial coordinates, giving &0Mic structure:
real-space dynamic functiag(r,w).

The procedure for obtaining(r,w) begins by separating g(r):J dwg(r,w)ocJ dwf dtei“’t<gi(t')9j(t—t'))v
the data into severd-dependent cuts each covering a dif-
ferent range of frequencies. The chosen frequency range for
each cut depends on the finite energy transfer binning in the =f d{gi(t")g;(t—t"))¢ (1) =(gi()g;(1));. (4
experiment, but can be as small as the energy resolution of
the spectrometer, or as large as one wishes. Thus, in thBifferences between the instantaneous and average RDF are
casew is an average quantity over some specified frequency signature of local and dynamic atomic correlation.
range. We can write a general spatial Fourier transform for Instantaneous RDFs are obtained from x-ray and pulsed-

eachQ cut as neutron diffraction since these techniques sum over all en-
5 ergy transfers. In order to obtain the average RDF, an inelas-
r oo . . . . . . .
_ ; tic experiment is a necessity. Thus, with an inelastic neutron
rw)=— dQsi r)f ,w)—B(Q,w)], ) .
9(r,e) T fo QAQsNQNHQLS(Q,@)~B(Q.)] scattering measurement & Q,w) using a pulsed-neutron

(1) chopper spectrometer, one is able to obtain both the instan-
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taneous and average RDFs from the same data set. Despétee only interested in local real-space information, the sum

the fact that theQ resolution is significantly better in a dif- over atoms is retained and will be evaluated neighbor-by-

fraction experiment, the RDFs obtained from inelastic meaneighbor over the first few coordination shells. Following

surements compare quite favorably to diffraction restits. Carpentell,6 the orientational averages of Ed6a and(6b)

Of course, the strength of the inelastic measurement lies iare then

the possibility to determine which frequency range contrib-

utes most significantly to the differences in the instantaneous 1

and average RDF. Analysis of the detailsggf,w) can de- So(Q,w)= G2) 8(w) > bibje i Yijo(QRy), (73

termine the nature of the correlation, such as in-phase or Y

out-of phase displacements. The end result is the measure-

ment of the frequency and relative displacements of the local

correlated motion between a given pair of atoms. 1(
In order to examine these ideas, we calcutge w) for a

simple crystalline system consisting of harmonic atomic dis- bibje*Wi*Wi iR

placements due to phonons. We proceed with the calculation X Z 2:« W e s(w—w,(q))

from the perspective of the van Hove scattering function. b v

The phonon expansion &(Q,w) is given by the sum of 1 . R

elastic, one-phonon, and multiphonon tetms X3 [ei(qv)* - £j(av)][jo(QRj) +i2(QR;j)]

The elastic and one-phonon terms are given by the equations
to be summed over all pairs of atoms in the system

202

Zmﬁ (n(w)+1)

)

—[Ryj-&(an)]*[Ry- 3;(qn]i»(QR)) |, (7b)

wherejo(x) andj,(x) are spherical Bessel functions. It is
assumed, for the simple harmonic phonon model, that the
polycrystalline average of the multiphonon scattering is
slowly varying inQ, and therefore does not contribute to the

So(Q,w)= % 5(w); bibje*Wi*WieiQ'RiJ, (6a)

%202 dynamic atomic structure. This is warranted by estimates of
S1(Qw)= NDD 20 [N(w)+1] second ordefmultiphonon thermal diffuse scattering for a
fcc powdert’ Thus, the following calculations will include
bibe” Wi~V only the elastic and one-phonon processes.
XZ J e'QRij The Fourier transform over the spatial coordinates now
4 VMiM; becomes quite simple. We use K to evaluate the trans-
R R _ forms of Eqs(7a and(7b) separately. We can easily remove
X > [Q- &i(qr)]*[Q- gj(qu)]e'dRi the incoherent scattering by ignoring terms wiithj. Since
av we also do not wish to consider the contribution of mul-
X 8(w—w,(q)). (6b) tiphonon scattering, for the purposes of calculation, the

slowly varying background functioB(Q,w) is zero. Previ-
For these formulas(j) labels the atoms of masdd;;) and  ous authors™® chose to divide out th&-dependent terms
(coherenk scattering lengtt; ;) within the crystalR;; is the  (Q,) and/or thew-dependent terms in the inelastic expres-
vector joining the atoms)(w) is the Bose filling factorg is  sion before the transformation. However, we retain them,
the phonon wave vector in the first Brillouin zone,(q) is  and the elastic and inelastic parts of the real space dynamic

the phonon dispersion relation withlabeling the different  function g(r,») are given below. For the elastic part,
phonon branches, ang(qv) is the atomic polarization vec-

tor of theith atom for the particular phonon mode. The pho- 1
non polarizations are defined without the plane-wave phase o(r,w)= m 5(@)2 bib;go(r —Rjj), (83
factor [which is explicit in formula (6b)]. The function g

exp(—W) is the Debye-Waller factor whose argumeaft
=Q*u?)/2, is proportional to the mean-squared atomic dis-Where
placement of theéth atom.S,(Q, ) is the multiphonon in- op e
tensity, which is a complicated sum over several phonon gO(r_Rij):_f QdQsin(Qr)jo(QRij)e‘Wi‘WJ.
events. 7T Jo

For phonons in a crystal, it is common to use the period- (8h)
icity of the crystal to reduce the sum over atoms to a delta
function conserving the crystal momentum for elastic andAs discussed abovey(r —R) is the average RDF of a pair
inelastic scattering. However, in order to relate to an experiof atoms separated Y. Figure Xa) shows the typical con-
ment performed on a polycrystalline sample, the above fortribution of a single atomic pair of bondlengkto the av-
mulas must be orientationally averaged over all directions oérage RDF. The average RDF is simply a Gaussian centered
Q. If one performs the sum over atoms first, the orientationaht R with peak width given by(u?)2. The area under the
average is very cumbersome, requiring one to bootstrapverage RDF peak is equal to the number of neighboring
through the different Brillouin zones intersected by a spheratoms in the coordination shell.
of radiusQ and calculate the argument of EGb). Since we The inelastic part can be written as
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60 ‘ The inelastic structure function can thus be factored into
_(a) 1 separate radial and frequency components. The two radial
—_ componentskKy(r) +K,(r) and K,(r) are plotted in Fig.
=z Y 3 1(b). It is seen thak,(r) can be thought of as a “narrow-
g 2 ] ing” or “broadening” function, depending on the sign of
\:’? 20| ] F'(w), when compared to the average RDF. The broadening
function, for example, will add intensity to the ends of the
o ] average RDF peak in Fig(d) and remove it from the center.
—_ 0 } ; : } } In a similar fashion, the sum of the radial functions
f’s 200 | (b) ] Ko(r - R) + Kz(r -R) is. considered a “displaqement” func-
- tion, as it shifts Gaussian weight from one side to the other.
S o L An important point to realize is the probability of two atoms
5 200 b ] being separated hyintegrated over all space must equal one
5 whether correlations are included or not. Consequently, the
L -400 | —K,(r) 1 peak areas in both the instantaneous and average RDF must
S 600 [ K ek (] be the same, and are equal to the number of neighboring
I A atoms. The influence of atomic correlation will only redis-
o -800 2 3 4 tribute the average RDF intensity. A corollary of this state-
r, bond length (&) ment is that the integral of the inelastic structure function

over all space and frequency must equal zero. When added to
FIG. 1. (a) The radial distribution function pealg(r) for elastic the average _RDF fungtlon, these rqdlal functlpns tend to
scattering from a single coordination shell with equilibrium change the width or shift the peak while conserving the peak
bondlengthR=2.5 A and mean-squared atomic displacemer area. A comparison of these ra_dlal_ func_t|ons and thos_e- of the
=0.005 A2. (b) The characteristic radial functions related to the DPCF of Arai and co-workers is given in the Appendix.
one-phonon inelastic scatterirg,(r) and Kq(r)+K,(r) for the All of the information about the local dynamic atomic
same bondlength and mean-squared displacemerig)as,(r) correlation is contained within the correlation functions
multiplies the longitudinal displacement-displacement correlationF () and FL(w). Both functions are evaluated simply by
function and will narrow or broaden the average RDF when addegyeraging the correlations over the surfaces of constant fre-
together. Ko(r) + Ko(r) multiplies the displcement-displacement ,ency within the first Brillouin zone of the material. Spe-
correlation function and will displace the average RDF peak Whe'}:ifically F(w) is the displacement-displacement correlation
added together. function between two atoms, analogous to the spin-spin cor-
1 relation function measured by magnetic neutron scattering.
— _ _ FL(w) measures the pair displacement correlations along the
91(1, @)= 720 2 bib{Fj(@)[Ko(r —Rij) +Ka(r —R;j)] me |
! (b%) 5 it ° ! ? N bond joining the two atoms. The supersciiptonsequently
—FL(w)K (r—R;)} (93 refers to the longitudingbair correlations. However, it must
ijL@)h2 LA be stated that this does not imply that the phonons which

where the subscript 1 refers to the one-phonon contributioffntribute to this correlation function are necessarily longi-
and the functions contained in E€@) are defined as tudlnal._ For example, a transve_rse mode_ polz_irlze_d in the
(010 direction and propagating in th&00 direction in an
o [ fcc crystal has longitudinal pair correlations for t(@10
Kn(r—Rij)= - J Q%dQ sin(Qr)jn(QRij)e‘Wi‘Wi, second nearest neighbor atomic pair.
0 A short comment must be made about the relevance of the
(9b) above formalism to amorphous or glassy systems. Although,
the periodicity of the crystal is not used in the lattice sums
during the derivation, the periodicity and symmetry of the
crystal is implicit in the Brillouin zone summation of Egs.
(90 and (9d). The expansion of the lattice dynamics of a
glassy system in terms of plane waypbionon$ is not natu-
ral, since the lattice momentum is not an eigenstate of a
disordered solid. Thus, the above formalism is perhaps not
very useful to perform model calculations of disordered sys-
tems. However, the general form of E@a) and the inter-
L 1 h? pretation of the measured correlations holds true for any sys-
Fij(0)= Nm [n(w)+1] tem in the limit of small vibrational amplitudes and can be
v utilized for analyzing amorphous systems. Equati¢®e
~ s on iRy and(9d) simply express a convenient method for calculating
x% [Rij- &i(qv)*[Rjj- &;(qu)]e™ i the correlation functions in systems with overall long-range
periodicity in terms of plane waves. The transformation of
X 8(w—w,(Q)). (9d)  the experimental data by El) can be used on any system.

Fij(o) [N(w)+1]

1w
3N 20 MM,
><q2 [81(qu)* - &;(qr) 1" Ri S0 —w,(q)),

(90
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FIG. 2. The normalized phonon density-of-states of Nickel cal- -8¢f ' ; } ]
culated from a five neighbor Born-von Kaan model. The indi- al <[0.5,0.5,0] :
vidual longitudinal £) and transverseT({1,T2) branches are also F -7 N\ ]
shown. 0 /_\,va—

[ - ! ]
IlIl. MODEL CALCULATIONS ON NICKEL -4 - ‘| ’l 3
[ oo

In the following section, we introduce a simple model to -80 : '1'0' — '2'0 3'0"' 20
illustrate the ideas of the local, dynamic functions discussed Vv
above. The model consists of the harmonic phonon vibra- , ho (me )

tions fcc nickel. The constants for a Born-vonrigen har-

monic fp”.nghk;nOdeL lnclgglng én;eracilr?nsl.tUp %tao_é:]e fifth FIG. 3. The frequency-dependent displacement-displacement
nhearest neighbor, were obtained from the fiterattrehese ._correlation function F(w) (solid line and longitudinal

were used to calculate the phonon frequencies and pOIarIZ@Tsplacement-displacement correlation functiétt(w) (dashed

tion vectors for approximately 67 000 regularly gridded |ine) for the first four nearest neighbor atomic pairs in nickeTat
values within an octant of the fcc Brillouin zone. Figure 2 —o k. The atomic pairs are labeled in the cubic fcc lattice as

shows the phonon density-of-stated(w)] obtained from [0.5,0.5,0, [1,0,0], [0.5,0.5,1, and[1,1,0.

the lattice dynamical calculations by binning the phonon fre- .

quencies in 0.25 meV intervals through the Brillouin zone.g;(qv)]=|R;;-e(qv)|? for F-(w). As mentioned previ-

octant after properly weighting the high-symmetry modes. ously, the correlation functions are averages over surfaces of
The radial functions were obtained by calculating the zeconstant frequency. In general, the constant frequency sur-

roth and second order spherical Bessel functions for@00 faces need not be simple, and may be multiply connected as

points from 0 to 60 A*. These functions were then Fourier is well known in the case of Fermi surfaces. In the case of

transformed according to Eq¢8a) and (9b). For a mon-  F(w), the correlation function is proportional to the average

atomic cubic Bravais lattice, the given formulas can be simphonon phase difference between the pair of atoms for all

plified. The scattering length factdsb;/(b?)=1 and the phonon modes of frequenay.

Debye-Waller factor is obtained from a single mean-squared The Brillouin zone sum foF (w) can be performed over

atomic displacement given by the reduced zone for any one of the equivalent atomic pairs
in a given coordination shell. However, due to the nature of
o 1P Z(w) fiow the dot product term remaining i-(w), the sum over the
(u%= 2M f de o O oT) (10 octant of the Brillouin zone for a single neighbor in a coor-

dination shell is not sufficient to capture all of the contribu-

Radial functions were calculated for the first four nearesttions to the correlation function. One must either sum over
neighbor shells and the results are identical to Fig. 1, albeithe full zone for a single neighbor, or sum over all neighbors
centered at the proper pair distance and broadene@i®y  in the reduced zone. We have chosen to use a reduced zone

Results from the phonon dispersion calculation were usegdhile summing over all pairs in the coordination shell. The
to calculate the correlation functions of E48c)—(9d). Con-  results of the Brillouin zone sums were put into 1-meV en-
sidering that nickel is a simple fcc metal with only one atomergy bins and the correlation functiof§w) andF'(w) are
per unit cell, the phonon polarization vectors defined abovghown in Fig. 3 for the first four neighbor shells of Ni. Near-
are equal at every lattice sitéhe phase factor is explicitly est neighbors are labeled by their real space postions in the
separated from the phonon eigenvectoiEhus, the argu- cubic lattice:[0.5,0.5,0, [1,0,0], [0.5,0.5,1, and[1,1,0].
ments of the displacement correlation functions reduce to Some comments are in order about the trends in the cor-
gi(qr)* - gj(qr)=1 for F(w) and [R;-&(qv)]*[R;; relation functionsF (w) andF-(w). The first is that the sign
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of the correlation function is an indication of the in-phase or 120 ————— - . - -
out-of-phase motion of an atomic pair. At low frequencies Nickel, T=300 K
(or long wavelengthswhere near by atoms move together, 100 | |——Average A |
the sign is always positive. Second, the correlation functions & | |__. :"e'as"" ‘

= =-Instantaneous

tend to oscillate more rapidly as a function of frequency for
larger bond distances. This is because the phase difference
between atoms will oscillate more rapidly for a larger bond
length in the sum over the Brillouin zone. Last, the large
peaks in the correlation functions correspond to van Hove
singularities in the phonon density of states.

These general trends are easily understood by considering
the F(w) displacement-displacement correlation function for
the nearest neighbor pair. At low frequencies, all three pho-
non branches move these atoms in the same direction, and
F(w) is positive. At 24 meV, which is the zone boundary
transverse phonon frequency band, the function is negative,

5 D @
o o o

Radial Distribution Function (A™)
[\
o

o

ST ) . 2 3 4 5
indicating that the overall tendency is for nearest neighbor .

atoms to have opposite displacements. A similar out-of- r, bond length (A)

phase correlation is seen for the longitudinal zone boundary

phonon band at 33 meV. FIG. 4. The average RD[g,(r)] and the inelastic RDFg;(r)]

TheF'(w) longitudinal displacement-displacement corre-for the first four nearest neighbors in nickel &t=300 K. Also
lation function is dominated by two peaks at 18 and 33 meVshown is the instantaneous R[fr) which is the sum of the av-
being positive and negative respectively. The 18 meV peakrage and inelastic RDFs. The figure shows that the instantaneous
consists mainly of thé111)-type transverse zone boundary RDF peak widths are narrower than the average RDF peaks, signi-
phonons. The displacement field of this phonon band tenglying that there_ are |n-pha_se_correlat<_ad motions betwe_en the first
to move all atoms in every other plane perpendiculdfid) fevy nearest nelghbors.. ThIS. is espeC|aIIy.true for the first nearest
in the same direction. The in-phase motions of some neigh?€/gNbor, where the inelastic RDF contributes 17% of the total
boring atoms within each plane point along the bond direc/nstantaneous RDF peal_< height. The remainder arises from uncor-
tion and contribute to the large positive peak at 18 meV. Therelated’ single-atom motions.
longitudinal zone boundary phonon band at 33 meV is com-
posed of mainly(100)- and (111)-type phonons. In the lon- as a unit. Consequently, the probability of measuring the pair
gitudinal band, a predominance of atoms in the nearesit large distances from the equilibrium bond distance at any
neighbor shell move in opposite directions along the bond. instant of time is reduced compared to the independent time-

The results for the radial and frequency components caaveraging of each atom.
be combined according to Ea) give the fullg,(r,w). To The virtue of the inelastic experiment is that one can de-
determine the influence of the phonon vibrations on thegermine the frequency ranges which are most responsible for
structure[the dependence @, (r,w) onr] it is most profit-  the observed deviations in the instantaneous and average
able to consider the sum over frequenpyr). g,(r) repre- RDFs. This is demonstrated by evaluating the full frequency
sents the inelastic contribution of the polycrystalline aver-dependence fog,(r=constw) precisely at the pair dis-
aged thermal diffuse scattering to the instantaneous RDRances, as shown for the first four nearest neighbors in Fig. 5.
Since ther- and w-dependent components in E@a) are  Due to the different weighting oKq(r) +K,(r) andK,(r)
being multiplied, inelastic intensity occurs only where theby the F(w) andF-(w) correlation functions, respectively,
RDF is nonzero, i.e., only withir-(u?) of the pair distances g,(r,®) is a complex function of» in the vicinity of a pair
[see Fig. 1b)]. Wheng(r) is added to the average RDF distance. However, for the case of phonons in nickel, the
function go(r), one obtains the instantaneous R@Fr) combination ofK,(r)F-(w) tends to dominate for almost
=go(r)+g4(r). All of these radial distribution functions, the entire frequency range. This is mainly due to the fact that
the average, inelastic, and instantaneous, are shown in Fig. K,(r) has a much greater magnitude th&g(r) + Ko(r) [(as
The integral ofg,(r) overr for each peak gives zero as it in Fig. 1(b)] while the frequency-dependent correlation func-
should, since the total probability is conserved for both in-tions have equal magnitud@s in Fig. 3. The frequency
stantaneous and average RDFs. dependencies in Fig. 5 follow closely the frequency depen-

The functiong,(r) represents the local atomic correlation dence ofF-(w). Thus, correlation function which measures
induced by phonons. The main effect of the inelastic structhe atomic motions along the bond joining the two atoms
ture is to narrow the instantaneous RDF peaks compared ®@ominates, and the components of the inelastic structure tend
the average RDF. It is apparent that the narrowing is veryo narrow or broaden the average RDF peaks.
significant for the first nearest neighbor, and contributes ap- The origin of the dynamic atomic correlations in nickel
proximately 17% of the instantaneous RDF peak heifié ~ can be ascertained from Fig. 5. The inelastic intensity at
remainder arising from uncorrelated motioBuch a narrow-  g(r =first nearest neighbaw) has essentially three important
ing of the instantaneous RDF peak implies that the atomicontributions. The first is due to the in-phase long wave-
motions due to phonons introduce a correlation upon thdength, low frequency modes. The second arises from in-
nearest neighbor pair which tends to move the atoms inphase atomic correlations of pairs of atoms in planes perpen-
phase. In other words, the atomic pair tends to move togetheticular to the transverse mode propagation vedtb8sme\).
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5 N AR FIG. 6. Instantaneous RDF of nickel &t=300 K as measured
02t [0.5,0.5,0] ] with the Glass Liquid Amorphous Diffractometer at the Intense
[ ] Pulsed Neutron Source of Argonne National Laboratdref. 13.
0L Plotted over the experimental data is the instantaneous RDF calcu-
0.2 [ lated from theory. The inset figure shows the fitted gaussian width
=1 of the experimental data and the theoretical widths for the first four
Q4. 00 coordination shells. The dashed line in the inset figure is the uncor-
0 10 20 30 40 related width(proportional to{u?)*/).
ho (meV)

of Fig. 6 shows the theoretical and fitted experimental peak
FIG. 5. The dynamic radial distribution function wijdths. The dashed line in the inset of Fig. 6 shows the peak

g(r =constw) evaluated at the first four pair distances in nickel at\idth value which arises from entirely uncorrelated, single
T=0K. The atomic pairs are labeled in the cubic fcc lattice asatom motion aff = 300 K. Both the experimental and theo-
[0.50.5,, 1,00, [0'5’0'5’11.’ and[l,_l,O]. For each ne'ghborf th? Iretical peak widths show the pronounced narrowing of the
frequency dependence is dominated by the longitudina . .
displacement-displacement correlations. More separated neighbopgarest neighbor peak ,as compared to the mF’re distant Peaks
tend to have more oscillations in the frequency dependence. gnd the uncorrelated width. The more more distant coordina-

tion shells show a small degree of correlation. Thus, the ef-
The third is the out-of-phase motions of atoms in zonefect of local atomic correlation can be observed from a dif-
boundary longitudinal mode83 meV). Overall, the prepon-  fraction experiment. This is perhaps not very surprising. The
derance of low frequency modes, especially at finite teMRpPF is obtained from the diffraction data by Fourier trans-
peratures, favors the in-phase narrowing of the mstantaneoqérmmg all of the intensity contained i8(Q) including the
RDF. As expected, one must consider all of the phononig,se scattering. The thermal diffuse scattering is highly

r_nodes in order to get a pictqre of the local atomic.cor.rela- tructured inQ space, having power law tails near Bragg
tions. For the subsequent nelg_hbors, the_ faster o_scnlatlon O%oints due to the large occupancy of low frequency phonons.
the phase factor and weaker interatomic potential tends t oo : -
; ; onsequently, it will contribute additional structure to the

reduce the effecf10% or lesy and the inelastic structure RDF ab that the B tteri
contributes only weakly to the instantaneous RDF. above that from the bBragg scattering.

It is perhaps unexpected, for the nearest neighbor pair,
that there are atomic correlations due to the phonon vibra-
tions which are of sufficient amplitude to be measured. As is IV. CONCLUSION
apparent from Fig. 4, the first RDF peak has a much nar-
rower peak width as compared to more distant peaks. Thus, Much of the strength of inelastic pulsed-neutron chopper
the effect of the thermal diffuse scattering on the instantaspectrometers lies in the ability to measure ¢helependen-
neous RDF of nickel should be observable in the diffractioncies of S(Q,w), at any frequency, up to very large momen-
experiment. In fact, it is observed in the instantaneous RDREum transfer. For amorphous or polycrystalline samples, this
measured by pulsed neutron scatteriagthe Glass Liquid Q dependence is related to the spatial distribution and rela-
Amorphous Diffractometer at the Intense Pulsed Neutronive displacement directions for atoms vibrating at a given
Source of Argonne National Laboratgry? Figure 6, shows frequency. Thus, the inelastic portion 8fQ, ) amounts to
the experimental instantaneous RDF of nickel at 300 K plotthe energy-resolved diffuse scattering from the sample. This
ted with the theoretical instantaneous RDF from Fig. 4. Thediffuse scattering can have many origins for many different
first four experimental RDF peaks were fitted to the sum ofmaterials, such as phonons, local modes, polarons, etc. In
four Gaussians using a least-squares fitting method. The inseases where such local atomic motions are of interest, the
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Fourier transform ofS(Q,w) over the spatial coordinates
gives a local, dynamic functiog(r,w).

The transform ofS(Q,w) to g(r,w) is defined in an
analogous manner to the radial distribution functi®&DF)
(or pair-distribution functiopobtained from diffraction mea-
surements. In this fashiow(r,) is a probability conserv-
ing function in the sense that either the averégastio RDF
or instantaneousgenergy-integratedRDF can be obtained.
The main outcome of this statement is that the structure con-
tributed to the instantaneous RDF from the inelastic scatter-
ing can only displace or change shape compared to the av-

Radial DPCF Functions (A™)

erage RDF, while conserving the peak area. The prescription —K',(r)

to follow is to obtain both the instantaneous and average 4t ]
RDF fromg(r,w), since differences in these RDFs implies o [ V|- K'o(N)+K',(r)
the existence of local and dynamic atomic correlation. Using . . ‘

the ability of inelastic neutron scattering to resolve the en- 1 2 3 4
ergy transfer, one can then determine at which frequencies r, bond length (A)

the local distortions are occurring.

To demonstrate these ideas, the dynamic radial distribu-
tion function g(r,w) was calculated for atomic displace- ' _ / . ; , ,
ments due to phonons in fcc nickel. A difference in the in-"2dial functionsKs(r) andKe(r) +K5(r). K(r) has a single peak
stantaneous RDF and average RDF is observed for the! t.he pair distance, unlike the dynamic RDF radial f““CFK’f(’F)'
nearest neighbor peak, where the instantaneous RDF peakVYQ'Ch ha a W shape. Consequently, the DPCF formalism is more

' . . .~ uSeful for identifying inelastic features, However, the DPCF peak
narrower than the average, implying that local Cprrel"’.‘tlprhasalong tail on the low-side, making it difficult to determine the
due to phonon vibrations tends to move the atomic pair IN%trength of atomic correlation.
phase. This observation is supported by instantaneous RDF
measurements from neutron diffraction. By looking into the
frequency dependence at ConstanEqueu to the nearest frequency-dependent correlation functions of the DPCF are
neighbor pair distance, it is apparent that the in-phase corrddentical to those of the dynamic distribution function
lation comes from the preponderance of low-frequency, lon@(r, ), the radial functions differ due t6(Q). The DPCF
wavelength phonons. This can be understood by considerinigelastic radial functions, denotéd,(r) andKg(r)+K5(r),
that the phonons in nickel produce thermal diffuse scatteringare shown in Fig. 7. The benefit of the weighting factor is
which is observed as tails of the Bragg peak in reciprocathat the inelastic structure functid€(r) has a single peak
space. The thermal diffuse scattering is therefore highlyat the atomic pair distance, similar to a RDF peak. Thus, this
structured in rec!procal space and contributes additional locghmulation is quite useful for direct comparison of the
structure to the instantaneous RDF. _ _ DPCF at a particular frequency to the RDF. It is also pos-

The calculations on nickel, and their comparison to dif-gjp\e that dynamic features will be more prominent in some

fraction data, dgmonsyrate 'gwo important conclusions. FirStcases, due to the single peak. However, the DPCF radial
the RDF analysis of d|ﬁract|<_)n data represents the 'ns_tamar'unctions have tails extending below the peak. This becomes
neous structure of the material and the observed atomic COL- ore severe problem for short and intermediate pair dis-
relations originate from the thermal diffuse scattering. Sec;[ . he inelastic struct tai tributi f
ond, the extraction of the local dynamic structure function ances, since the inelastic structure contains contributions o

allows one to determine which atomic pairs have correlated!! Pairs longer than the given pair distance. Consequently,
motion by comparison of the instantaneous and average RDRN€_Cannot speak of a probabilistic interpretation of the
and consequently to determine the frequencies. The energ§PCF and cannot calculate the true RDFs. '
resolvedg(r,w) measurements are therefore unique probes AS We have seen, the Fourier transform jg{x) is a

which bridge the gap between slow and fast local probes in & function (convoluted with a Gaussian Debye-Waller
consistent manner. facton. The Fourier transform ofj,(x) consists of aé

function plus a step function giving the characteristic DPCF

functions. Retaining the factor o®? in our formulation

is equivalent to taking twice the derivative of the DPCF with
The author is grateful to R. A. Robinson, T. Egami, D. respect ta (exactly, —d?/dr?). This operation removes the

Louca, and W. Dmowski for extremely helpful discussionsstep and relegates the inelastic intensity to withifu?)*2

and assistance with experimental data. This work is supef the pair position. The penalty for this operation is that the

ported in part by the division of Basic Energy Sciences of theK,(r) radial functions no longer contain a single peak, but

FIG. 7. The dynamic pair correlation functigpPCB inelastic
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