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Two- and three-dimensional polaronic motion: Beyond the Holstein model
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The effects of dimensionality on small-polaron motion have been studied in the framework of the Holstein
model in which the intermolecular forces act through a first-neighbors pair potential. A perturbative approach
allows one to calculate the matrix elements determining both the polaronic band and the site-jump hopping
probability as a function of temperature. It is found that the crossover tempefigtusetween bandlike and
diffusive motion is sensibly reduced in low-dimensional systems due to the enhanced importance of the
off-diagonal scattering processes. By increasing the polaron binding energy the bandwidth narrows and the
hopping probability quickly drops, hendg is shifted upwards. It is shown that the dispersion in the phonon
spectrum is essential for the validity of the mod&0163-182608)05713-(

[. INTRODUCTION sufficiently high temperatures the lattice vibrations can be
treated classically, the motion is thermally activated and the
During the last few years, the physics (bf)polarons has hopping rate grows exponentially. In terms of the MCM, the

been widely investigated in connection with the discovery oftransition temperaturé* is usually estimated as about 40%
high-T, superconductivity in ceramic compountié.The lo-  of the typical Debye temperature. Howevet could be in-
cal dynamics of the apical oxygen atom and the chain-coppétuenced by the dimensionality of the system. The present
cluster in some higfi-, materials would suggest the presencestudy extends the MCM formalism to the two- and three-
of polaron tunneling and nonadiabatic behavior in thedimensional cases pointing out the consequences on the tran-
electron-lattice system® Structural and optical properties Sition between bandlike and hopping motion.
together with anomalous-axis electrical transpdithave
been interpreted in terms of nonlinear dynamic models rely- Il. THE MODEL AND THE RESULTS
ing on the concept of self-localization. A charge carrier is . .
said to be self-trapped when it bounds within a potential well " the molecular crystal model, the system is a lattical of
due to atomic displacements from their equilibrium posi-identical diatomic molecules whose internuclear displace-
tions. Since these displacements are caused by the preserﬂi‘@nt coordinates de_wate fr(_)m their equilibrium values. The
of electrons the two features, potential well and electrorstate of the system is described by
wave function, must be determined self-consistently. The
sjze of the .region of lattice defprmation in(_:luc_ed by the car- l,b(f,Xl"'XN):Z aj(xy - X @(r—jb,x;), (1)
rier determines the polaron radius. If this sizédasger than ]
the lattice constant the polaron is referred to as large or of the ) ) i )
Frohlich type. In this case, the polaron problem can peWherer is the electron coordinate; is the internuclear de-

treated by assuming the validity of the effective-mass and/iation from equilibrium at thgth molecular siteb is a unit
continuum approximatiognd, in general, one is faced with lattice vector,¢ is the electron wave function localized at the

the quantum-mechanical problem of a Fermi partittiee jth site and the coefficients; of the superposition obey the
charge carrierinteracting with a boson fiel@he quantized ~time-dependent Schdinger equation:
crystal lattice. On the other hand, when the size of the lattice

N 2 2
distortion is of the same order @br less thap the lattice — _ ﬁ_ 2, Mg 5| _ e
constant the polaron hassanall radiusand the discreteness ('h ot Z 2M Vit 2 X7~ BOG) a0 xy)
of the lattice must be taken into accodftThe electron-
phonon interaction and the dimensionality of the systefh _ '
determine the transition between the large radius state and ;, IO x)a (X X @

the small radius state. In the ground state of the system the

path-integral approach provides a powerful tool to investi-M is the reduced molecular mass ang is the Einstein
gate the properties of the polarbh* At finite temperatures, phonon frequencyE(x;) is the electron energy at thigh

the transition between low- bandlike motion and high-  lattice site and it is assumed as a linear function of the inter-
diffusive motion can be described in the framework of thenuclear vibrational coordinaté (x;) = — A|xj|. A is a posi-
Holstein model or molecular crystal modeViICM).X®> The  tive constant measuring the strength of the electron-lattice
MCM, originally formulated for a one-dimensional system, interaction and determining the binding energy of the po-
is based on a discrete nonlinear Sdinger equation which laron which is given, in essence, b,=A?%(2Mw}).
constitutes the foundation for several studies of physical and(X;,x;) is the electronic overlap integral of the tight-binding
biological systems in which nonlinear effects take ptdcl  approximation and it describes the electronic motion through
and self-trapped carriers determine the type of motfost  the lattice. Thel’s dependence on the lattice vibration coor-
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dinates can been neglected2nJ is the bare electron band- narrow-band materials] can be treated as the perturbation.
width with n being the coordination number. Then, the po-It should be remarked that a perturbative approach requires
laron state properties are essentially specified by theven more restrictive conditions on the smallnessldf
parametersd, J, and wg. In particular, ifnJ>E, the po- Therefore only the lower part of the range bfvalues, for
laron dimension is larger than the lattice spacing and thevhich the polaron is small, can be consistently used in a
polaron is of the Frhlich type, whereas the small-polaron perturbative solution of E2). | consider a model in which
regime is attained once the conditiol<E, is fulfilled.  first-neighbor molecular sites interact through a pair poten-
Input parameters satisfying the latter condition will be cho-tial. This introduces a dispersion in the optical-phonon fre-
sen in the following. In the case of a large electron effectivequencies whose expressions are given, in the one-, two-, and
mass and strong electron-phonon coupling, relevant tohree-dimensional system, respectively, by

aty 1
wiy(k)= ~ W Ja?+2ay coskb+ v,
) at2y 1 5 5
w5p(k)= v + v Vo +2ay(cosk,b+coskyb)+2y1+cogkb—k/b)],
) at3y 1 > .
w5p(k)= VIR Va?+2ay(coskeb+cosk,b+cosk,b) + y*[3+1(k)],
(k) =2 cog kb —k,b) +2 cogkb—k,b) +2 cogk,b—k,b). 3

The intramolecular force constantand the intermolecular the simple cubic lattice.

first-neighbor force constany are input parameters of the  The three-dimensiong3D) matrix elements, which are
theory. In terms of the Einstein phonon frequeneys given  responsible for the site jumf@rom j to j’) induced by the

by the relation,w3=2a/M. An isotropic interaction model perturbationJ, are given in momentum space representation
has been implicitly assumed both in the square lattice and iby

. e f2(m,k) , f2(m,k) ,
{(j.Ng..|V]j ..Nk..>=—J% ]_k[ 5ka'NLkay'NLyéNkzaNéz(1_ 7 (N +1) | 1= —— (2N +1)
f2(mk) [Nk, [Ni 1
X 1= @N+1) +5ka,Ni’<X5NkZ,Ni’<Z 75Nky,N{<y—1_ TaNky,NlLy+1
f2mk) fPmk)
X|1— 7 (2ka+1) 1- 2 (2Nk1+1) f(m,k)+5ka,N|§X5Nky,N((y
X \/Nﬁza —\/NLZH S 1—f2(m’k) 2N] +1
2 NN -1 > Ny Ny +1 7z @Ng+1)
f2(mk) [Nk, [Ny +1
X| 1= @Ny +1) [ f(mk)+ 5Nky,N,’<y5NkZ,Nl;z > 5ka,NlLX—1_ B 5ka,N"<X+l
f2(m, k) f2(m,k)
x| 1- ——"" (2N} +1) || 1— (2N} +1) | f(m,k) |,
4 y 4 z
(4)
AMw \Y? A _
f(mk)=|——=—| — sin(k-mb/2)[sin(k-mb/2)+cogk-mb/2)].
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e els should be very sensitive to the detailed structure of the
! ! | | vibrational spectrum and the phonon dispersion is essential
A=ReV/A _ in providing realistic models of polaronic motion. A pure
J=R5meV A Einstein model or even a model with weak intermolecular
L {D | couplings seem therefore inappropriate in this context. The
L ——2D 1 intermolecular vibration energyy/M =30 meV is therefore
20 — 3D - the threshold valudor the validity of the model. Obviously
| this value depends owg. In the following calculations, a
. value \y/M =35 meV will be assumed. Note that the po-
-0 laron band halfwidth is substantially smaller than the bare
electronic valuenJ. The antiadiabatic inequalitAE, 4
<hwg is fulfilled for the polaron.

At finite T, the polaron band halfwidth due to diagonal
P T I Y B scattering processes is
20 25 30 35 40 45 50

30 —

10 —

POLARON BAND HALFWIDTH (meV)

M (meV 1
7/ fme) AE] 4=nJ exp{ -3 > sirf(k,b/2)
FIG. 1. Ground-state polaron band halfwidths, in one, two, and kx
three dimensions, versus the first-neighbor intermolecular interac- dA2p2 Bhw(K)
tion energy.y is the force constant. The intramolecular interaction X 3 , (6)
energy isfi wo=50 meV. Kk, M (frw(k)) 2

The m summation runs over first neighbors molecular sitesVhere 8 is the inverse temperature. By increasimgthe
andN, is the number ok quanta. The 2D matrix elements bandwidth diminishes y\{hereas the off—dlagonal transitions in
are obtained from Eq4) by suppressing the oscillator po- Eqg. (4) (whose probability is proportional to the Bose ther-
larized along thez axis. Then the intersite tunneling is due M& factors become more relevant. The diagonal processes
either to scattering processes in which the phonon occup&Ontribute to the real part of the polaron self-energy whereas
tion numbers do not changeiagonal transitionsor to pro- the off-diagonal hops, gontnbutmg to thg imaginary part of
cesses in which some of these numbers change byafhe 1€ self-energy., determine the polaron Ilfetle@. When a
diagonal transitions In the two- and three-dimensional sys- [emperature™ is attained in whichr,=#/AE" the polaron.
tems, only processes in which at most one oscillator changd@nd description breaks down and the polaron moves via a
its quantum numbers have been retained: these yield theHccession of random site jumps. The site jump probability,
lowest-order contributions proportional to\L/ due to nondiagonal transitions between_locallzed states, can
At T=0, the phonon occupation numbers are all zero andP® calculated perturbatively. The result is
only diagonal transitions can take place. Hence, from(&yq.

the ground-state polaron band halfwidth is given b .., nF 1
g P 9 y W(j—j )=?ex;{—ﬁ% (1—coskyb)
1 , dA?h?
AEn,d:n‘] ex;{ - N ; Sll'lz(kxb/Z) 2 W}

X y 1Kz

dA?#? Bho(k)
(5) Xk%z M (hw(k))® coth—3 }

Yy

whered is the dimensionality of the system. Summation over o 1
k, pertains to the 3D case only. The electron-lattice coupling f dr( exr{— E (1—cosk,b) 2
induces exponential renormalization of the intersite tunnel- N % ky Kz
ing and narrowing of the polaronic band. Accordingly, the d A2%2

; L9 Bhw(k)
polaron moves slowly through the lattice and localization at X 5 csch coqw(k)7)
the site is likely to occur. This effect is expected to be more M (% w(K)) 2
pronounced in low-dimensional systems where the number
of overlapping polaronic wave functions is reduced. How-whereris the time during which perturbation theory applies.
ever, we point out that the contraction of the band is stronglyActually the integration range does not extend to infinity, the
influenced by the phonon spectrum. In Fig. 1, the groundnumerical convergence of the time integral being fast
state polaron bands in 1D, 2D, and 3D are plotted vessus €nough. The cutoffr™® depends on dimensionality and
the parameter which determines the dispersion in the phonofieakly on temperature. Equatiori6) and (7) have been
frequencies. We choose the valuds=2eV Al fw, Ccomputed as a function of temperature for several sets of
=50 meV, andJ=7%w/2 which guarantee a small-polaron input parameters. In Fig. 2, | have assumed the same param-
regime. It is seen that the bands grow by increagnigut, ~ eters as in Fig. 1 which yield a polaron binding energy of
below a certain value of=30 meV, the 1D ground-state =209 meV for an oxygen molecular solid. The intermolecu-
band turns out to be larger than the 2D and 3D bands. Ifar vibration energy has been fixed at 35 meV. It can be seen
other words the polaron band broadens, as expected, astizat T* grows with dimensionality being1,=100 K, T3,
function of d only if intermolecular interactions are suffi- =130 K, andT3,=150 K. The typical Debye temperature is
ciently strong. This suggests that quantitative polaronic mod580 K. The polaron band narrows by loweridglthough the

— o X

—1], )



10 558 MARCO ZOLI 57

- ,51_07.“‘!.‘,l.,..t.ul.l.t,_
v = v r\7/M=35meV i .
£ = Kl | A=3eV/A o >
. £ . 0.8 r , £
[ ~ = [ J=25bmeV No2
= D a - D
= i =
= = Z 06 -1 5
= 4 =< — 2D g
T § T é
<q M << n,
. % 2 oo 3
S = o 02 = D
gnj = [i::: r —
25 &
S ] | N = S r &
D—i 1 ] W ] Lol b i L I m ‘3_1 OO | IO 1 L (/]
50 1OO 150 200 250 50 100 150 200 250 300
TEMPERATURE (K) TEMPERATURE (K)
FIG. 2. Polaron band halfwidths and site jump probabilities FIG. 3. As in Fig. 2 but withA=3 eV A1,

(timest) versus temperature in 1D, 2D, and 3D. The triangles mark

the crossover temperatures between bandlike and hopping regimdag J and tends to stabilize at values which fulfill the
adiabatic conditiomJ># w, for the bare electrons. In that

percentual haIf\NldthAET d/nJ is 5.4x1072 in 3D, 5.8 range however the present perturbative approach does not

%1072 in 2D and 6.8 10 2 in 1D (at T=10 K). The cutoff apply?! We observe that narrow-band electronic systems ex-

in the interaction time shortens as a functiondobeing, at  hibit the highestTy and that the differenc@%,—T5; is

T=10K, 7g%=2x10""s, 755*=1.6x10 *s and r35¢ smaller thanT},—T},. Both differences slightly decrease

=1.38x10 **s. This means that numerical convergence ofversusJ, being T%;— T3,=23 K and T3,— T¥,=36 K atJ

the time integral in Eq(7) is achieved by using 203 points in =10 meV, Tio—Ti=15K and Tip—Tip=22K at J

1D, 162 points in 2D, and 138 points in 3D. Nonetheless,= g0 meV.

computation of the hopping probability in 3D is much more

time consuming because of the momentum space summa-

tions. The shortening of® by increasingd follows from

the fact that the phonon spectrum dispersion essentially | have studied the polaron motion in 1D, 2D, and 3D by

damps the oscillating behavior of the argument in the expotaking into account the discreteness of the lattice and the role

nential as a function of and such dispersion gets larger by of the intermolecular coupling strengths. The dispersion of

IIl. CONCLUSIONS

increasingd. In fact, from Eqgs.(3), one gets the optical-phonon frequencies is fundamental in order to
estimate correctly the ground-state polaron band dimen-
wi(ke= ky=k,=0)— wi(ke= ky=k,=m)=2dy/M, sions. This result is consistent with a recent study by Alex-

(8) androv pointing out the inadequacy of the dispersionless
Holstein model in evaluating the smalbi)polaron masé?
and this suggests that stronger intermolecular forces also reshe bare electronic transfer integral of the tight-binding ap-
duce the maximum interaction time. For instance, takingoroximation, the electron-lattice coupling, and the intramo-
Vy/IM=45meV, we getrj5*=1.3x10 s atT=10K. A lecular vibrational energy, which are the input parameters of
dispersionless phonon spectrum would not permit a conver-

gence in thedr integration thus confirming the inadequacy 200 [ T
of an Einstein model for the boson field. By enhancing} L -- 1D v/M=35meV ]
is shifted towards higher temperatures. Moreover, as Fig. 3 180 |- ——2D  A=ReV/A
shows, a substantial variation ®f; occurs if the electron- r 3D 1
lattice coupling is increased. Settidgat 3 eV A yields a 160

polaron binding energy o£470 meV and, as a consequence,

we getTip=170 K, T5p=210 K, andT3p=245K. In this < qao k-
case the percentual halfwidths of the bandsTath K, are . k

3/6\] 1.4x10°3, 2/4\] 1.6x10°% and AE} 2] e 120 I
—2 2x 1073, Note that the energy scale in Fig. 3 is smaller r
by a factor 20 than in Fig. 2 hence, stronger electron-lattice 100 i

coupling causes both narrowing of the band and decreasing
of the site jump probability. Then, the lifetime of the local- C | ‘ ‘ -
: : , Yoy S AV BN S £
ized polaron state gets longer and off-diagonal scattering,

) i 10 20 30 40 50 60
which destroys the coherence of the wave function, becomes J (meV)
effective only at higher temperatures. Finally, | have studied ’
the behavior ofT§ as a function of the transfer integral FIG. 4. Crossover temperatures between bandlike and hopping
The results are summarized in Fig. ® decays by increas- motion versus the overlap electronic integialin 1D, 2D, and 3D.
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our model, have been chosen to satisfy the condition for thereases by reducing, being 150 K in 3D, 130 K in 2D, and
existence of the small polaron. The perturbative method, the00 K in 1D if a polaron binding energy o0&0.2 eV is
transfer integral being the perturbation, has been applied tgssumed. By doubling the binding energy, is shifted up-
evaluate the matrix elements responsible for the polarogards of about 70-80 K and narrowing the electronic band
band narrowing and the hopping probability from site to site..agits in a further increase 3t . In view of the exponen-

We observe that both the polaronic energy band and the hogz growth of the site jump probability versus temperature,
ping conductivity are rather sensitive to the value of theyhe \idth of the transition region is negligible so that either a

overall electron-lattice coupling which determines the bind-p5ndiike or a hopping motion is expected as the signature for
ing energy of the polaron. The transitidff; between the polaron transport.

low-temperature range, in which a bandlike description
holds, and the high-temperature range, in which the motion
is thermally activated, strongly depen(@son the dimension-
ality of the system(ii) on the binding energy of the small
polaron, andiii) on the bare electronic bandwidtfhy de-
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