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Two- and three-dimensional polaronic motion: Beyond the Holstein model

Marco Zoli*

Dipartimento di Matematica e Fisica, Sezione INFM, Universita´ di Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
~Received 29 September 1997!

The effects of dimensionality on small-polaron motion have been studied in the framework of the Holstein
model in which the intermolecular forces act through a first-neighbors pair potential. A perturbative approach
allows one to calculate the matrix elements determining both the polaronic band and the site-jump hopping
probability as a function of temperature. It is found that the crossover temperatureTd* between bandlike and
diffusive motion is sensibly reduced in low-dimensional systems due to the enhanced importance of the
off-diagonal scattering processes. By increasing the polaron binding energy the bandwidth narrows and the
hopping probability quickly drops, henceTd* is shifted upwards. It is shown that the dispersion in the phonon
spectrum is essential for the validity of the model.@S0163-1829~98!05713-0#
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I. INTRODUCTION

During the last few years, the physics of~bi!polarons has
been widely investigated in connection with the discovery
high-Tc superconductivity in ceramic compounds.1–4 The lo-
cal dynamics of the apical oxygen atom and the chain-cop
cluster in some high-Tc materials would suggest the presen
of polaron tunneling and nonadiabatic behavior in t
electron-lattice system.5,6 Structural and optical properties7

together with anomalousc-axis electrical transport8 have
been interpreted in terms of nonlinear dynamic models re
ing on the concept of self-localization. A charge carrier
said to be self-trapped when it bounds within a potential w
due to atomic displacements from their equilibrium po
tions. Since these displacements are caused by the pres
of electrons the two features, potential well and elect
wave function, must be determined self-consistently. T
size of the region of lattice deformation induced by the c
rier determines the polaron radius. If this size islarger than
the lattice constant the polaron is referred to as large or of
Fröhlich type. In this case, the polaron problem can
treated by assuming the validity of the effective-mass a
continuum approximations9 and, in general, one is faced wit
the quantum-mechanical problem of a Fermi particle~the
charge carrier! interacting with a boson field~the quantized
crystal lattice!. On the other hand, when the size of the latt
distortion is of the same order of~or less than! the lattice
constant the polaron has asmall radiusand the discretenes
of the lattice must be taken into account.10 The electron-
phonon interaction and the dimensionality of the system11,12

determine the transition between the large radius state
the small radius state. In the ground state of the system
path-integral approach provides a powerful tool to inve
gate the properties of the polaron.13,14At finite temperatures,
the transition between low-T bandlike motion and high-T
diffusive motion can be described in the framework of t
Holstein model or molecular crystal model~MCM!.15 The
MCM, originally formulated for a one-dimensional system
is based on a discrete nonlinear Schro¨dinger equation which
constitutes the foundation for several studies of physical
biological systems in which nonlinear effects take place16–19

and self-trapped carriers determine the type of motion.20 At
570163-1829/98/57~17!/10555~5!/$15.00
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sufficiently high temperatures the lattice vibrations can
treated classically, the motion is thermally activated and
hopping rate grows exponentially. In terms of the MCM, t
transition temperatureT* is usually estimated as about 40
of the typical Debye temperature. HoweverT* could be in-
fluenced by the dimensionality of the system. The pres
study extends the MCM formalism to the two- and thre
dimensional cases pointing out the consequences on the
sition between bandlike and hopping motion.

II. THE MODEL AND THE RESULTS

In the molecular crystal model, the system is a lattice oN
identical diatomic molecules whose internuclear displa
ment coordinates deviate from their equilibrium values. T
state of the system is described by

c~r ,x1¯xN!5(
j

aj~x1¯xN!f~r2 j b,xj !, ~1!

wherer is the electron coordinate,xj is the internuclear de-
viation from equilibrium at thej th molecular site,b is a unit
lattice vector,f is the electron wave function localized at th
j th site and the coefficientsaj of the superposition obey th
time-dependent Schro¨dinger equation:
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2G2E~xj !D •aj~x1¯xN!

5(
lÞ j

J~xl ,xj !al~x1¯xN!. ~2!

M is the reduced molecular mass andv0 is the Einstein
phonon frequency.E(xj ) is the electron energy at thej th
lattice site and it is assumed as a linear function of the in
nuclear vibrational coordinate,E(xj )52Auxj u. A is a posi-
tive constant measuring the strength of the electron-lat
interaction and determining the binding energy of the p
laron which is given, in essence, byEb5A2/(2Mv0

2).
J(xl ,xj ) is the electronic overlap integral of the tight-bindin
approximation and it describes the electronic motion throu
the lattice. TheJ’s dependence on the lattice vibration coo
10 555 © 1998 The American Physical Society



-
o
th

th
n

o
iv

n.
ires

a

en-
re-
and

10 556 57MARCO ZOLI
dinates can been neglected.15 2nJ is the bare electron band
width with n being the coordination number. Then, the p
laron state properties are essentially specified by
parametersA, J, and v0 . In particular, if nJ.Eb the po-
laron dimension is larger than the lattice spacing and
polaron is of the Fro¨hlich type, whereas the small-polaro
regime is attained once the conditionnJ,Eb is fulfilled.
Input parameters satisfying the latter condition will be ch
sen in the following. In the case of a large electron effect
mass and strong electron-phonon coupling, relevant
r
e

l
d

-
e

e

-
e
to

narrow-band materials,J can be treated as the perturbatio
It should be remarked that a perturbative approach requ
even more restrictive conditions on the smallness ofJ.21

Therefore only the lower part of the range ofJ values, for
which the polaron is small, can be consistently used in
perturbative solution of Eq.~2!. I consider a model in which
first-neighbor molecular sites interact through a pair pot
tial. This introduces a dispersion in the optical-phonon f
quencies whose expressions are given, in the one-, two-,
three-dimensional system, respectively, by
v1D
2 ~k!5

a1g

M
1

1

M
Aa212ag coskb1g2,

v2D
2 ~k!5

a12g

M
1

1

M
Aa212ag~coskxb1coskyb!12g2@11cos~kxb2kyb!#,

v3D
2 ~k!5

a13g

M
1

1

M
Aa212ag~coskxb1coskyb1coskzb!1g2@31 l ~k!#,

l ~k!52 cos~kxb2kyb!12 cos~kxb2kzb!12 cos~kyb2kzb!. ~3!
ion
The intramolecular force constanta and the intermolecula
first-neighbor force constantg are input parameters of th
theory. In terms of the Einstein phonon frequency,a is given
by the relation,v0

252a/M . An isotropic interaction mode
has been implicitly assumed both in the square lattice an
 in

the simple cubic lattice.
The three-dimensional~3D! matrix elements, which are

responsible for the site jump~from j to j 8! induced by the
perturbationJ, are given in momentum space representat
by
^ j ..Nk ..uVu j 8..Nk8 ..&52J(
m

)
k

FdNkx
,N

kx
8 dNky

,N
ky
8 dNkz

,N
kz
8 S 12

f 2~m,k!

4
~2Nkx

8 11! D S 12
f 2~m,k!

4
~2Nky

8 11! D
3S 12

f 2~m,k!

4
~2Nkz

8 11! D1dNkx
,N

kx
8 dNkz

,N
kz
8 SANky

8

2
dNky

,N
ky
8 212ANky

8 11

2
dNky

,N
ky
8 11D

3S 12
f 2~m,k!

4
~2Nkx

8 11! D S 12
f 2~m,k!

4
~2Nkz

8 11! D f ~m,k!1dNkx
,N

kx
8 dNky

,N
ky
8

3SANkz
8

2
dNkz

,N
kz
8 212ANkz

8 11

2
dNkz

,N
kz
8 11D S 12

f 2~m,k!

4
~2Nkx

8 11! D
3S 12

f 2~m,k!

4
~2Nky

8 11! D f ~m,k!1dNky
,N

ky
8 dNkz

,N
kz
8 SANkx

8

2
dNkx

,N
kx
8 212ANkx

8 11

2
dNkx

,N
kx
8 11D

3S 12
f 2~m,k!

4
~2Nky

8 11! D S 12
f 2~m,k!

4
~2Nkz

8 11! D f ~m,k!G ,
~4!

f ~m,k!5S 4Mvk

N\ D 1/2 A

Mvk
2 sin~k•mb/2!@sin~k•mb/2!1cos~k•mb/2!#.
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The m summation runs over first neighbors molecular si
andNk is the number ofk quanta. The 2D matrix element
are obtained from Eq.~4! by suppressing the oscillator po
larized along thez axis. Then the intersite tunneling is du
either to scattering processes in which the phonon occu
tion numbers do not change~diagonal transitions! or to pro-
cesses in which some of these numbers change by one~off
diagonal transitions!. In the two- and three-dimensional sy
tems, only processes in which at most one oscillator chan
its quantum numbers have been retained: these yield
lowest-order contributions proportional to 1/N.

At T50, the phonon occupation numbers are all zero a
only diagonal transitions can take place. Hence, from Eq.~4!,
the ground-state polaron band halfwidth is given by

DEn,d5nJ expF2
1

N (
kx

sin2~kxb/2! (
ky ,kz

dA2\2

M „\v~k!…3G ,
~5!

whered is the dimensionality of the system. Summation ov
kz pertains to the 3D case only. The electron-lattice coupl
induces exponential renormalization of the intersite tunn
ing and narrowing of the polaronic band. Accordingly, t
polaron moves slowly through the lattice and localization
the site is likely to occur. This effect is expected to be mo
pronounced in low-dimensional systems where the num
of overlapping polaronic wave functions is reduced. Ho
ever, we point out that the contraction of the band is stron
influenced by the phonon spectrum. In Fig. 1, the grou
state polaron bands in 1D, 2D, and 3D are plotted versug,
the parameter which determines the dispersion in the pho
frequencies. We choose the valuesA52 eV Å21, \v0
550 meV, andJ5\v0/2 which guarantee a small-polaro
regime. It is seen that the bands grow by increasingg but,
below a certain value of.30 meV, the 1D ground-stat
band turns out to be larger than the 2D and 3D bands
other words the polaron band broadens, as expected,
function of d only if intermolecular interactions are suffi
ciently strong. This suggests that quantitative polaronic m

FIG. 1. Ground-state polaron band halfwidths, in one, two, a
three dimensions, versus the first-neighbor intermolecular inte
tion energy.g is the force constant. The intramolecular interacti
energy is\v0550 meV.
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els should be very sensitive to the detailed structure of
vibrational spectrum and the phonon dispersion is esse
in providing realistic models of polaronic motion. A pur
Einstein model or even a model with weak intermolecu
couplings seem therefore inappropriate in this context. T
intermolecular vibration energyAg/M530 meV is therefore
the threshold valuefor the validity of the model. Obviously
this value depends onv0 . In the following calculations, a
value Ag/M535 meV will be assumed. Note that the p
laron band halfwidth is substantially smaller than the b
electronic valuenJ. The antiadiabatic inequalityDEn,d
,\v0 is fulfilled for the polaron.

At finite T, the polaron band halfwidth due to diagon
scattering processes is

DEn,d
T 5nJ expF2

1

N (
kx

sin2~kxb/2!

3 (
ky ,kz

dA2\2

M „\v~k!…3
coth

b\v~k!

2 G , ~6!

where b is the inverse temperature. By increasingT the
bandwidth diminishes whereas the off-diagonal transitions
Eq. ~4! ~whose probability is proportional to the Bose the
mal factors! become more relevant. The diagonal proces
contribute to the real part of the polaron self-energy wher
the off-diagonal hops, contributing to the imaginary part
the self-energy, determine the polaron lifetimetp . When a
temperatureT* is attained in whichtp.\/DET the polaron
band description breaks down and the polaron moves v
succession of random site jumps. The site jump probabi
due to nondiagonal transitions between localized states,
be calculated perturbatively. The result is

W~ j→ j 8!5
nJ2

\2 expF2
1

N (
kx

~12coskxb!

3 (
ky ,kz

dA2\2

M „\v~k!…3
coth

b\v~k!

2 G .
E

2`

1`

dtH expF 1

N (
kx

~12coskxb! (
ky ,kz

3
dA2\2

M „\v~k!…3
csch

b\v~k!

2
cos„v~k!t…G21J , ~7!

wheret is the time during which perturbation theory applie
Actually the integration range does not extend to infinity, t
numerical convergence of the time integral being f
enough. The cutofftmax depends on dimensionality an
weakly on temperature. Equations~6! and ~7! have been
computed as a function of temperature for several sets
input parameters. In Fig. 2, I have assumed the same pa
eters as in Fig. 1 which yield a polaron binding energy
.209 meV for an oxygen molecular solid. The intermolec
lar vibration energy has been fixed at 35 meV. It can be s
that T* grows with dimensionality beingT1D* .100 K, T2D*
.130 K, andT3D* .150 K. The typical Debye temperature
580 K. The polaron band narrows by loweringd although the

d
c-
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percentual halfwidthDEn,d
T /nJ is 5.431022 in 3D, 5.8

31022 in 2D and 6.831022 in 1D ~at T510 K!. The cutoff
in the interaction time shortens as a function ofd being, at
T510 K, t1D

max52310214 s, t2D
max51.6310214 s and t3D

max

51.38310214 s. This means that numerical convergence
the time integral in Eq.~7! is achieved by using 203 points i
1D, 162 points in 2D, and 138 points in 3D. Nonethele
computation of the hopping probability in 3D is much mo
time consuming because of the momentum space sum
tions. The shortening oftd

max by increasingd follows from
the fact that the phonon spectrum dispersion essent
damps the oscillating behavior of the argument in the ex
nential as a function oft and such dispersion gets larger b
increasingd. In fact, from Eqs.~3!, one gets

vd
2~kx5ky5kz50!2vd

2~kx5ky5kz5p!52dg/M ,
~8!

and this suggests that stronger intermolecular forces also
duce the maximum interaction time. For instance, tak
Ag/M545 meV, we gett2D

max51.3310214 s atT510 K. A
dispersionless phonon spectrum would not permit a con
gence in thedt integration thus confirming the inadequa
of an Einstein model for the boson field. By enhancingg, Td*
is shifted towards higher temperatures. Moreover, as Fi
shows, a substantial variation ofTd* occurs if the electron-
lattice coupling is increased. SettingA at 3 eV Å21 yields a
polaron binding energy of.470 meV and, as a consequenc
we getT1D* .170 K, T2D* .210 K, andT3D* .245 K. In this
case the percentual halfwidths of the bands, atT510 K, are
DE6,3

T /6J51.431023, DE4,2
T /4J51.631023 and DE2,1

T /2J
52.231023. Note that the energy scale in Fig. 3 is smal
by a factor 20 than in Fig. 2 hence, stronger electron-lat
coupling causes both narrowing of the band and decrea
of the site jump probability. Then, the lifetime of the loca
ized polaron state gets longer and off-diagonal scatter
which destroys the coherence of the wave function, beco
effective only at higher temperatures. Finally, I have stud
the behavior ofTd* as a function of the transfer integralJ.
The results are summarized in Fig. 4:Td* decays by increas

FIG. 2. Polaron band halfwidths and site jump probabilit
~times\! versus temperature in 1D, 2D, and 3D. The triangles m
the crossover temperatures between bandlike and hopping reg
f
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ing J and tends to stabilize atJ values which fulfill the
adiabatic conditionnJ@\v0 for the bare electrons. In tha
range however the present perturbative approach does
apply.21 We observe that narrow-band electronic systems
hibit the highestTd* and that the differenceT3D* 2T2D* is
smaller thanT2D* 2T1D* . Both differences slightly decreas
versusJ, beingT3D* 2T2D* 523 K andT2D* 2T1D* 536 K at J
510 meV, T3D* 2T2D* 515 K and T2D* 2T1D* 522 K at J
560 meV.

III. CONCLUSIONS

I have studied the polaron motion in 1D, 2D, and 3D
taking into account the discreteness of the lattice and the
of the intermolecular coupling strengths. The dispersion
the optical-phonon frequencies is fundamental in order
estimate correctly the ground-state polaron band ind dimen-
sions. This result is consistent with a recent study by Ale
androv pointing out the inadequacy of the dispersionl
Holstein model in evaluating the small-~bi!polaron mass.22

The bare electronic transfer integral of the tight-binding a
proximation, the electron-lattice coupling, and the intram
lecular vibrational energy, which are the input parameters

k
es.

FIG. 3. As in Fig. 2 but withA53 eV Å21.

FIG. 4. Crossover temperatures between bandlike and hop
motion versus the overlap electronic integralJ, in 1D, 2D, and 3D.
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57 10 559TWO- AND THREE-DIMENSIONAL POLARONIC . . .
our model, have been chosen to satisfy the condition for
existence of the small polaron. The perturbative method,
transfer integral being the perturbation, has been applie
evaluate the matrix elements responsible for the pola
band narrowing and the hopping probability from site to si
We observe that both the polaronic energy band and the h
ping conductivity are rather sensitive to the value of t
overall electron-lattice coupling which determines the bin
ing energy of the polaron. The transitionTd* between the
low-temperature range, in which a bandlike descripti
holds, and the high-temperature range, in which the mot
is thermally activated, strongly depends~i! on the dimension-
ality of the system,~ii ! on the binding energy of the sma
polaron, and~iii ! on the bare electronic bandwidth.Td* de-
e
e
to
n
.
p-

-

n
n

creases by reducingd, being 150 K in 3D, 130 K in 2D, and
100 K in 1D if a polaron binding energy of.0.2 eV is
assumed. By doubling the binding energy,Td* is shifted up-
wards of about 70–80 K and narrowing the electronic ba
results in a further increase ofTd* . In view of the exponen-
tial growth of the site jump probability versus temperatu
the width of the transition region is negligible so that eithe
bandlike or a hopping motion is expected as the signature
polaron transport.
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