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Transmission through a many-channel random waveguide with absorption
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and Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138*
~Received 10 November 1997!

We compute the statistical distribution of the transmittance of a random waveguide with absorption in the
limit of many propagating channels. We consider the average and fluctuations of the conductanceT5tr t†t,
wheret is the transmission matrix, the density of transmission eigenvaluest ~the eigenvalues oft†t), and the
distribution of the plane-wave transmittancesTa and Tab . For weak absorption~length L smaller than the
exponential absorption lengthja), we compute moments of the distributions, while for strong absorption (L
@ja), we can find the complete distributions. Our findings explain recent experiments on the transmittance of
random waveguides by Stoytchev and Genack@Phys. Rev. Lett.79, 309 ~1997!#. @S0163-1829~98!02917-8#
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I. INTRODUCTION

Interference between multiply scattered waves leads
strong fluctuations in the transmitted intensity through a d
ordered mesoscopic sample.1 While a theory of the primary
fluctuation phenomena was originally constructed in the c
text of electron transport through metals or sem
conductors,2,3 it was soon realized that the fluctuations a
characteristic of systems involving multiple elastic scatter
of any kind of waves, like sound, microwaves, and light, a
that they can be described within the same theoret
framework.4 Experiments with light or microwave radiatio
can be carried out with a very high accuracy, and allow fo
precise verification of the theoretical predictions for the co
plete transmission distribution, rather than of its mean a
variance only.5–7

The relative importance of the fluctuations is determin
by the ratio Nl /L, where N is the number of transvers
propagating channels in the waveguide,L its length, andl is
the elastic mean free path. To observe strong fluctuation
is important to achieve as low values ofNl /L as possible.
This is difficult for optical experiments, because scatter
are weak and the typical number of transverse channelsN is
large.8 Moreover, in contrast to electronic systems, where
total flux is conserved, in optical systems the interferen
pattern may be affected as a result of loss or absorpt
Absorption does not destroy the phase coherence of a tr
mitted wave; it merely rearranges the interference patt
while the relative importance of the interference phenom
is unaffected. This is different from electronic system
where inelastic scattering due to, e.g., electron-electron in
actions obscures the interference phenomena because o
presence of a large incoherent background signal.

An important step in the pursuit of low values ofNl /L
for optical systems was recently reported by Stoytchev
Genack.7 They achievedNl /L'3 for microwave transmis-
sion through a copper tube with randomly placed polystyr
scatterers~a ‘‘random waveguide’’!. Apart from the length-
dependence of the variance of the transmittance, the m
sured transmittance distribution agrees surprisingly well w
the theoretical predictions.9–11 The agreement is surprisin
for a number of reasons. First, because the experiment is
570163-1829/98/57~17!/10526~11!/$15.00
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regime of strong absorption, the longest waveguide be
approximately five times the exponential absorption len
ja , while the theory of Refs. 9–11 was derived f
waveguides without absorption. Second, because the v
ance of the transmittance depends sublinearly onL, which
cannot be explained within the existing theory for nona
sorbing random waveguides. And third, because the exp
ment was compared to a theory forNl /L@1, while Nl /L
was not really large in the experiment.

Several papers have dealt with the problem of transm
sion through absorbing waveguides with only one propag
ing mode (N51).12–16 In order to analyze and explain opt
cal or microwave experiments like that of Ref. 7, which a
done in waveguides with many propagating channels, i
necessary that a theory of the transmission fluctuations
the localization transition in many-channel rando
waveguides with absorption (N@1) be developed. It is the
aim of the present paper to present such a theory.

The geometry of the random waveguide is quasi-o
dimensional~width W much smaller than the lengthL). The
relevant length scales are the elastic mean free pathl , the
exponential absorption lengthja , and the localization length
j5Nl , whereN@1 is the number of transverse channels
the waveguide, see Fig. 1~a!. Althougha priori the localiza-
tion lengthj is a property of the nonabsorbing system, w
find that it also governs the interference effects and the
calization transition in a quasi-one-dimensional rand
waveguide with absorption. We assume thatl !ja!j, i.e.,
absorption is weak on the scale of a single scattering ev
but it becomes dominant before interference effects ca
waves to localize. This is appropriate for experiments on
transmission of light and microwave radiation through ra
dom waveguides.5–7 The assumptionja!j is crucial for our
theory of the transmittance fluctuations in the localized
gime L@j.

Transmission through the waveguide is described by
N3N transmission matrixt, from which the three principa
types of transmittances can be computed,

Tab5utabu2, Ta5 (
b51

N

utabu2, T5 (
a,b51

N

utabu2. ~1!

The transmittanceT is the equivalent of the conductance f
an electronic system. It is the transmitted intensity if t
10 526 © 1998 The American Physical Society
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57 10 527TRANSMISSION THROUGH A MANY-CHANNEL RANDOM . . .
sample is illuminated through a diffusor~all channels have
equal incident power!. The transmittancesTa andTab mea-
sure the total transmitted intensity and the intensity in ch
nelb, respectively, if the sample is illuminated through cha
nel a only. ~For N@1, this corresponds to plane-wav
illumination.! The transmittanceTab is related to the speckle
pattern, the configuration of randomly positioned dark a
bright spots observed if a disordered sample is illumina
by a laser beam. The transmission matrixt can be decom-
posed into unitary matricesu and v and a matrix of trans-
mission eigenvaluestm (m51, . . . ,N), the eigenvalues o
t†t,

t5u diag~t1
1/2, . . . ,tN

1/2!v, 0<tm<1. ~2!

Time-reversal symmetry implies thatv5uT. For comparison
with the electronic case, we also address the case of bro
time-reversal symmetry. The matricesu andv are uniformly
distributed in the unitary group,17 as in the absence o
absorption.18 To find the transmittance distribution, it re
mains to find the statistical distribution of the transmiss
eigenvaluestm in the limit N@1 corresponding to thick
waveguides.

This paper is organized as follows: In Sec. II we recall t
scattering approach for the distribution of the transmittan
and its extension to absorbing systems.15,17 The transmit-
tance distribution in the diffusive regimel !L!j is consid-
ered in Sec. III. In Sec. IV we consider the crossover to
localized regimeL*j. Sections III and IV primarily focus
on the statistical distribution of the transmittance~or conduc-
tance! T. The distribution of the transmittancesTa andTab is
discussed in Sec. V. In Sec. VI, we discuss the relation of
work to the experiments of Stoytchev and Genack.7 We con-
clude in Sec. VII.

II. SCATTERING APPROACH

The statistical distribution of the transmission matrix
obtained using a scattering approach similar to the Fok
Planck approach to the distribution of transmission eigen

FIG. 1. ~a! The random waveguide that we consider here
quasi-one-dimensional: its lengthL is much larger than its widthW.
The other relevant length scales are the wavelengthl, the elastic
mean free pathl , the exponential decay lengthja , and the local-
ization lengthj5Nl , where N@1 is the number of transvers
channels in the waveguide. We assumel!l !ja!j. No assump-
tion is made about the lengthL compared toja and j. ~b! A thin
slice of lengthdL ~left! is added to a random waveguide.
-
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ues in a disordered waveguide without absorption.19–22 The
Fokker-Planck approach was also applied to the reflec
eigenvalues of a disordered absorbing waveguide.12,23–26

Technical difficulties17 prevented a further generalization
the transmission eigenvalues of an absorbing waveguide
yond the caseN51.12–16 Starting from the random-matrix
model of Ref. 17, we take a slightly different approac
which is explained below.

Consider a disordered waveguide withN propagating
channels and lengthL, see Fig. 1. Its transmission and r
flection properties are described by the scattering matrixS.
The 2N32N matrix S has the standard decomposition in
N3N reflection and transmission matrices,

S5S r t 8

t r 8
D . ~3!

We now add a thin slice of widthdL to the waveguide and
calculate the change of the transmission matrixt and the
reflection matrixr . The slice has scattering matrixS1, which
is parametrized as17

S15S r 1 t18

t1 r 18
D 5S v8Arv v8Atu8

uAtv 2uAru8
D . ~4!

Here u, u8, v, and v8 are N3N unitary matrices andt
5diag (t1 , . . . ,tN) andr5diag (r1 , . . . ,rN) are diagonal
matrices containing the reflection and transmission eigen
ues of the thin slice. In the presence of time-reversal sy
metry (b51), one hasu85uT andv85vT. A statistical en-
semble of disordered waveguides is obtained by conside
waveguides with different configurations of the scattere
Following Ref. 17, we assume thatu, u8, v, and v8 are
uniformly distributed in the unitary group, and that the fir
moments of the diagonal matricesr andt are

N21^tr r&5dL/l , ~5a!

N21^tr t&512~dL/l 1dL/l a!, ~5b!

wherel is the elastic mean free path andl a is the ballistic
absorption length. The ballistic absorption lengthl a is re-
lated to the exponential decay lengthja as l a52ja

2/l .
Upon addition of the thin slice at the left end of the di

ordered waveguide, its transmission matrixt and reflection
matrix r are changed according to

t→t~12r 18r !21t1 , ~6a!

r→r 11t18r ~12r 18r !21t1 . ~6b!

The new transmission and reflection matricest andr do not
depend ont8 and r 8. Since we know the statistical distribu
tion of the matricest1, t18 , r 1, andr 18 of the thin slice, and of
the matricest and r of the waveguide at lengthL, we thus
can find the statistical distribution of the transmission a
reflection matricest and r of the waveguide at lengthL
1dL. In this way, one obtains a Fokker-Planck equation
the distribution ofr and t.

In nonabsorbing random waveguides (l a→`) this
Fokker-Planck equation depends on the transmission ei
valuest1 , . . . ,tN only. It is known as the Dorokhov-Mello-

s
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10 528 57P. W. BROUWER
Pereyra-Kumar~DMPK! equation,19,20 and it is one of the
major tools for the study of quantum transport.22 The DMPK
equation has been generalized to the reflection eigenva
of random waveguides with absorption.24–26 For transmis-
sion through absorbing waveguides with many propaga
channels (N@1), however, the Fokker-Planck approa
proves useless:17 The transmission eigenvalues do not d
couple from the eigenvectors oft†t andr †r , so that the num-
ber of variables is of orderN2, rather thanN. In this work,
we take a different approach: we use Eqs.~5! and ~6! to
derive a set of partial differential equations for the ensemb
averages of traces of~products of! r and t, without direct
reference to the transmission eigenvaluestm . @We need to
include the reflection matrixr , because theL evolution of t
depends onr , cf. Eq. ~6!.# A similar set of evolution equa
tions for traces of the form tr (t†t)n for the case of nonab
sorbing random waveguides has been derived from
DMPK equation in Refs. 21 and from a microscopic theo
in Ref. 27. In the next two sections we present a deta
discussion of these evolution equations and their solutio
the limit of random waveguides with many channelsN
@1).

III. DIFFUSIVE REGIME

In this section we consider evolution equations for tra
of products of the reflection matrixr and the transmission
matrix t, and obtain a solution as an expansion in 1/N. We
keep the ratioL/l fixed as we expand in 1/N. Such a expan-
sion is valid in the diffusive regimel !L!j, where j
5Nl is the localization length of the system in the absen
of disorder. We explain the method by the computation
the averageŝT&5^tr t†t& and^tr r †r & to leading order inN,
and then discuss the more general traces tr(t†t)n, the density
of transmission eigenvaluest, the weak-localization correc
tion to the average transmittance, and the transmittance
tuations.

A. Average of the transmittanceT

The simplest evolution equations are those for the aver
transmittancê T&5^tr t†t& and the average reflectance^R&
5^tr r †r &. A combination of Eqs.~5! and ~6! yields

]L^tr t†t&52~ l 211l a
21!^tr t†t&1cbl 21^tr t†t trr †r &

1db,1cbl 21^tr t†tr †r &, ~7a!

]L^tr r †r &522~ l 211l a
21!^tr r †r &1cbl 21^~ tr r †r !2&1N

1db,1cbl 21^tr ~r †r !2&, ~7b!

where cb5b/(bN122b) and b51 (2) in the presence
~absence! of time-reversal symmetry. Although Eq.~7! does
not form a closed set of equations from which the avera
^tr t†t& and^tr r †r & can be computed directly, it can be us
to compute the transmittance distribution in the limit
many channels (N@1). The reason is that the terms th
couple theL dependence of̂tr t†t& and^tr r †r & to averages
of traces with higher powers oft andr are small by a factor
of order N, so that their effect can be taken into accou
perturbatively. For nonabsorbing waveguides, such largN
expansions have been studied in Ref. 21; for the reflec
es
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properties of absorbing waveguides, a large-N solution ac-
cording to these lines was given in Ref. 28.

To find the leading large-N behavior of ^tr t†t& and
^tr r †r &, we retain only terms that are of orderN in the
differential equation~7!. A trace is counted as a factorN. To
leading order inN, the average of a product of traces equ
the product of the averages,22 while corrections are of rela
tive order N22. Further, we may neglect̂tr t†tr †r & and
^tr (r †r )2& with respect to^tr t†t&^tr r †r & and ^tr r †r &2.
Then Eq.~7! simplifies to

l ]L^tr t†t&52~11g2N21^tr r †r &!^tr t†t&1O~1!,
~8a!

l ]L^tr r †r &522~11g!^tr r †r &

1N1N21^tr r †r &21O~1!, ~8b!

whereg5l /l a . These equations are the same as those
tained from a diffusion-equation approach, neglecting
wavelike nature of the radiation. In the next subsections,
terference corrections will be taken into account by addit
of the terms that we discarded as we simplified Eq.~7! to Eq.
~8!. The solution of Eq.~8! with initial conditions ^tr t†t&
5N, ^tr r †r &50 at L50 reads forL,l a@l

^T&5^tr t†t&5
j

ja sinh s
, ~9a!

^R&5^tr r †r &5N2
j

ja
coth s, ~9b!

whereja5@l l a/2#1/2 and s5L/ja . The length scaleja is
the classical exponential decay length for an absorbing
dom waveguide. In the weak absorption regimeL!ja , Eq.
~9! simplifies to Ohm’s laŵ T&5N2^R&5j/L, while in the
strong absorption regimeL@ja , the reflectanceR saturates
at the valueN2j/ja , while the transmittanceT decays ex-
ponentially with decay lengthja ,

^T&5
2j

ja
e2L/ja, L@ja . ~10!

B. Traces of the form tr „t†t…n and the density
of transmission eigenvalues

We now generalize the evolution equation~8! to arbitrary
traces of the form

Mx1 , . . . ,xn
[^tr x1

†x1 . . . xn
†xn&, ~11!

where the symbolxj can bet or r . These traces are importan
for the density of transmission eigenvalues and for the d
tribution of the transmittancesTa and Tab in the diffusive
regime, see Sec. V. Repeating the steps leading to Eq.~8!,
we find
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l ]LMx1 , . . . ,xn
52~p111!~11g!Mx1 , . . . ,xn

1 (
k51

n
1

N
Mx1 , . . . ,xk

Mr ,xk11 , . . . ,xn

1 (
k51

n
p1pk

N
Mx1 , . . . ,xk21

Mxk11 , . . . ,xn

2 (
k52

n
p11pn

N
Mx1 , . . . ,xk21

Mxk , . . . ,xn

1cyclic permutations1O~1!, ~12!

Mx1 , . . . ,xn
~0!5N)

j 51

n

~12pj !,

wherepj51 (0) if xj is r (t). The solution forL,l a@l and
n52 reads

^tr ~ t†t !2&5
j

ja
S 2s1coth s

4 sinh2 s
2

s

4 sinh4 sD , ~13a!

^tr t†tr †r &5
j

ja
S 1

4 sinhs
1

s coth s21

4 sinh3 s D , ~13b!

^tr ~r †r !2&5N2
j

ja
S 3 coths

2
1

coth s

4 sinh2 s
2

s

4 sinh4 sD ,

~13c!

where as befores5L/ja . For weak absorption, Eq.~13!
agrees with results obtained from the DMPK equation21

while for strong absorption Eq.~13! simplifies to

^tr ~ t†t !2&52~Lj/ja
2!e22L/ja,

^tr t†tr †r &5~j/2ja!e2L/ja, ~14!

^tr ~r †r !2&5N2~3j/2ja!.

The averageŝtr (t†t)n& correspond to moments of th
densityr(t) of transmission eigenvaluest. The densityr(t)
is recovered from the moments as the imaginary part of
Green functionG(z)

r~t!5p21tr G~t1 i0!,

G~z!5^tr ~z2t†t !21&5 (
n50

` K S tr ~ t†t !n

zn11 L . ~15!

For the calculation ofr(t) we thus need the momen
Mt, . . . ,t5N21tr (t†t)n for all n. In principle this requires
computation of all momentsMx1 , . . . ,xm

with m<n and with

xj being eitherr or t. As the number of possible momen
Mx1 , . . . ,xm

proliferates exponentially fast with increasingm,
this is not feasible. This is a fundamental difference with
set of moment equations for the case of a nonabsorb
waveguide, where only moments of the form̂tr (t†t)m&
need to be taken into account.

In the strong absorption regimeL@ja , however, a solu-
tion for r(t) can be found in closed form. Inspection of th
e

e
g

general evolution equation~12! for L@ja shows that the
leading behavior of tr (t†t)n and tr (t†t)nr †r has the
asymptotic form

tr ^~ t†t !n&5anjLn21ja
2ne2nL/ja1... , ~16a!

^tr ~ t†t !nr †r &5bnjLn21ja
2ne2nL/ja1... , ~16b!

wherean andbn are numerical coefficients. The dots indica
terms that are smaller by a large factorja /L or exp(2L/ja).
The evolution equation~12! provides a recursion relation
between the coefficientsan andbn ,

an5
n

n21 (
m51

n21

bn2mam , bn5
1

4
an . ~17!

From Eq. ~10! we find a152. The generating function
F(z)5(n51

` anzn of the coefficientsan is the so-called
‘‘product-log’’ function ~the principal value of the functiona
inverse ofx→xex),

F~z!5 (
n51

`

anzn522 Pln ~2z!. ~18!

The product-log function is real only if its argument is larg
than21/e. Using Eq.~15!, we find the Green functionG(z),

G~z!5
N

z
2

2j

zL
Pln S 2

Le2L/ja

jaz D , ~19!

and hence the density of transmission eigenvaluesr(t).
The density of transmission eigenvalues is shown in F

2. The existence of a maximum transmission eigenva
tmax5eLe2L/ja/ja!1 is quite different from the case of
nonabsorbing random waveguide, where the support ofr(t)
extends from 0 to 1 throughout the diffusive regime.22 A
common feature of absorbing and nonabsorbing rand
waveguides is that the maximal transmission eigenvaluetmax
is a factor;L/l @1 larger than the average transmissi
eigenvalue. It is this broad support of the densityr(t) that is
responsible for many of the qualitative similarities of inte
ference phenomena in strongly absorbing and nonabsor
systems.

FIG. 2. Density of transmission eigenvalues of a strongly
sorbing random waveguide in the diffusive regimeja!L!j.
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C. Weak-localization correction

Weak localization is a small negative interference corr
tion to the classical transmittance.29,30 In electronic systems
the weak-localization correction is suppressed by a tim
reversal symmetry-breaking magnetic field. In the fram
work of an expansion in 1/N, the weak-localization correc
tion is theO(1) correction to anO(N) average. Here we
compute the weak-localization correctionsdT anddR to the
average transmittancêT&5^tr t†t& and reflectance^R&
5^tr r †r &.

The starting point is the exact evolution equation~7!,
where we now keep all terms up to subleading order inN,

l ]L^tr t†t&52~11g2N21^tr r †r &!^tr t†t&

2db,1N
22^tr r †r &^tr t†t&

1db,1N
21^tr t†tr †r &, ~20a!

l ]L^tr r †r &522~11g!^tr r †r &111N21^tr r †r &2

2db,1N
22^tr r †r &21db,1N

21^tr ~r †r !2&.

~20b!

We substitute the result of the previous subsection
^tr t†tr †r & and^tr (r †r )2& and solve Eq.~20! for ^tr t†t& and
^tr r †r & up to order unity. As a result, we find the wea
localization corrections to the average reflection and tra
mission,

dT5db,1S coth s22s

4 sinhs
2

s

4 sinh3 sD , ~21a!

dR5db,1S 1

4
1

s coth s21

4 sinh2 s D . ~21b!

The weak-localization correction to the reflectanceR has
been calculated previously in Ref. 28. In the weak absorp
regime, we recover the well-known universal valuedR
52dT5 1

3 db,1 ,21 while for strong absorption the weak
localization correction reads

dT52db,1

L

ja
e2L/ja, dR5

1

4
db,1 . ~22!

D. Mesoscopic fluctuations

Mesoscopic fluctuations of the transmittanceT and the
reflectanceR are characterized by the variances varT,var R
and the covariance cov (R,T). Like the weak-localization
correction, they are of order 1 in a large-N expansion.22 Pro-
ceeding as in the case of the weak-localization correction
find that varT,var R and cov (R,T) obey

l ]LvarT522~11g2N21^tr r †r &! var T

12N21^tr t†t&cov ~R,T!12N21^tr ~ t†t !2r †r &

12db,1N
21^tr t†tr †tTt* r &, ~23a!
-

-
-

r

s-

n

e

l ]Lcov ~R,T!523~11g2N21^tr r †r &! cov ~R,T!

1N21^tr t†t& var R24b21N21^tr t†tr †r &

14N21b21^tr t†t~r †r !2&, ~23b!

l ]Lvar R524 ~11g2N21^tr r †r &! var R

14b21N21^tr r †r ~12r †r !2&. ~23c!

The averages of the form̂tr (t†t)n(r †r )m&, can be computed
from Eq.~12!. In the presence of time-reversal symmetry, w
also need to knoŵ tr t†tr †tTt* r &, which satisfies~for b
51)

l ]L^tr t†tr †tTt* r &524~11g2N21^tr r †r &!

3^tr t†tr †tTt* r &1N21^tr t†t&

3~2^tr t†t~r †r !2&24^tr t†tr †r &

1^tr t†t&!13N21^tr t†tr †r &2.

~24!

The solution of Eqs.~23! and ~24! reads forL,l a@l

var T5
2s229s coth s112

16 sinh2 s
2

3s2

16 sinh4 s

1
1

b F8s coth s211

16 sinh2 s
1

6s223s coth s23

16 sinh4 s

1
3s2

8 sinh6 sG , ~25a!

cov ~R,T!5
1

b F 3 coths

16 sinhs
2

2s2 coth s25s23 coths

16 sinh3 s

2
3s2 coth s23s

16 sinh5 s G , ~25b!

var R5
1

b F1

8
2

1

16 sinh2 s
1

4s223s coth s23

16 sinh4 s

1
3s2

8 sinh6 sG . ~25c!

The L dependence of the transmittance fluctuations, norm
ized to the average, is shown in Fig. 3. For weak absorpt

FIG. 3. Fluctuations of the transmittanceT in the diffusive re-
gime L!j.
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L!ja , we find the well-known universal conductance flu
tuations varT52cov (R,T)5var R52/15b, while for
strong absorption Eq.~25! simplifies to

var T5
L2

2ja
2

e22L/ja,

cov~R,T!52
3

4b
e2L/ja, ~26!

var R5
1

8b
.

The variance ofR was obtained earlier in Ref. 28. Note th
the relative size of the transmittance fluctuations is equa
strongly absorbing and weakly absorbing systems, vaT
}(L/j)2^T&2.

The dependence of the fluctuations on the presenc
absence of time-reversal symmetry is different from w
one expects from the nonabsorbing case and deserves
discussion. In nonabsorbing disordered systems, the vari
of the transmittance is decreased by a factor 2 if tim
reversal symmetry is broken, varT52/15b. This universal
1/b dependence is well understood in terms of diagramm
perturbation theory2,3 or random-matrix theory.31 For a
strongly absorbing system, in contrast, the size of the tra
mittance fluctuations does not depend on the presenc
absence of time-reversal symmetry, see Eq.~26!. This is re-
markable, since the average transmittance in strongly abs
ing waveguides exhibits the usualb-dependent weak
localization correction that is suppressed if time-rever
symmetry is broken.

To see why the varT does not depend on the presence
absence of time-reversal symmetry in absorbing systems
consider the relevant pairs of the Feynman paths for the
fuson and cooperon contributions to varT. They are shown
in Fig. 4. In a waveguide without absorption, both the diff
son and cooperon paths have equal weight. The cooper
suppressed if time-reversal symmetry is broken, thus
plaining the factor two reduction of the fluctuations. In t
presence of absorption, the diffuson and cooperon contr
tions no longer have equal weights, as paths for the coop
contribution typically have a larger length. Therefore, unle
the vertices 1 and 2 are within a distanceja , paths of the
cooperon type are suppressed. Since the diffuson path
Fig. 4~a! can have vertices arbitrarily far apart, the cooper

FIG. 4. Feynman paths for the diffuson~a! and cooperon~b!
contributions of the variance of the transmittanceT. There is only a
cooperon contribution to varT if the vertices 1 and 2 are within a
distanceja of each other. For diffusons, the vertices can be a
trarily far apart. Hence forL@ja , only the diffuson contribution to
var T survives.
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contribution to varT is a factorja /L smaller than the diffu-
son one. This explains why the breaking of time-rever
symmetry has no effect on the transmittance fluctuatio
The situation is different for the weak-localization correcti
to the average transmittance. The appropriate Feynm
paths, which are shown in Fig. 5, contain a closed loop w
a typical length of orderl !l a . As a result the weak-
localization correction to the average transmittance^T& is
not suppressed by absorption.

E. Breakdown of the large-N expansion

Throughout this section we have assumed that inter
ence corrections are small, so that we can treat them pe
batively. This assumption is bound to break down as
lengthL of the waveguide increases, since the relative size
the interference corrections to transmission properties
creases withL. For the transmittanceT, both the fluctuations
and the weak-localization correction become comparable
the average when the length of the waveguide approache
localization lengthj5Nl , cf. Eqs.~22! and~26!. One veri-
fies that higher-order corrections in a 1/N expansion become
comparable tôT& as well asL→j. This breakdown of per-
turbation theory has the same origin as the correspond
breakdown of perturbation theory in systems without abso
tion: it signals the onset of localization. A theory of th
transmittance distribution in the regimeL*j where the per-
turbation theory of this section is not valid, is presented
the next section.

IV. CROSSOVER TO LOCALIZED REGIME

The large-N perturbation theory of the previous sectio
breaks down as the lengthL approaches the localizatio
lengthj. For nonabsorbing random waveguides, a theory
the crossover from the diffusive regime into the localiz
regime requires a true technical tour de force,32–34because of
the intrinsically nonperturbative nature of the crossover.
though the situation for random waveguides with absorpt
looks similar—it has the same divergence of perturbat
theory asL;j—it is not. The reason is the existence of th
small parameterja /j, or 1/gN2. ~Note that the ratioja /j
depends on the absorption properties of the waveguide
its width, but not on its length.! In this section, we use the
smallness ofja /j to compute the distribution of the trans
mittance for lengthsL comparable to, or greater than th
localization lengthj.

A crucial distinction between the case of absorbing a
nonabsorbing waveguides is the saturation of the reflecta
distribution for absorbing waveguides forL*ja . Although
the relative size of the transmittance fluctuations keeps gr
ing asL exceeds the absorption lengthja—eventually caus-

i-

FIG. 5. Two interfering Feynman paths for the wea
localization correction to the average transmittanceT. As the typi-
cal length of the closed loop is of orderl !l a , the weak-
localization correction is not suppressed by absorption.
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ing the breakdown of perturbation theory—the correlatio
between reflection and transmission properties saturate
particular, we find that

~i! Correlations between reflection and transmission
smaller than the product of the averages by a fac
;ja /Nj, irrespective of the lengthL. Hence they can be
neglected ifja!j. ~For nonabsorbing waveguides, correl
tions are smaller by a factorL/Nj, and cannot be ignored fo
L;j.!

~ii ! Traces tr (t†t)nr †(tTt* )mr are a factor;ja /j smaller
than tr (t†t)n1m or tr (t†t)ntr (t†t)m.

A derivation of these properties from the appropriate evo
tion equations is straightforward. We find it more instructiv
however, to give an argument in terms of Feynman path

Feynman paths giving rise to correlations betweenR and
T are shown in Fig. 6. The solid path, which contributes
R, does not penetrate the sample more than a decay le
ja . As a consequence, the relative size of the correla
cov(R,T) saturates atL;ja . At this length scale, perturba
tion theory is still valid, and we find cov(R,T);(ja /
Nj)^R&^T&!^R&^T& irrespective of length. The same arg
ment applies to arbitrary correlators involving tr (r †r )n,
since their relative sizes saturate atL;ja as well, and to the
traces of the form tr (t†t)nr †(tTt* )mr .

The formal framework in which the crossover to the l
calized regime is described, is the so-called ‘‘thick-w
limit,’’ in which the limit N→` is taken, keepings5L/j
fixed. In the previous section, the ratioL/l was kept fixed,
rather thanL/j. The thick-wire limit is used in the field-
theoretic description of localization in disordere
waveguides.32,35 Note that the thick-wire limit is unable to
address length scalesL&ja corresponding to the onset o
absorption, since it corresponds tos5ja /j→0 if N→`. In
order to remove the classical exponential decay of the tra
mittance due to absorption, we consider traces of the for

Fn5~2j/ja!2nenL/ja tr ~ t†t !n. ~27!

The differential equations for thes dependence of the
averages of the tracesFn are derived from the exact evolu
tion equations for the averages of~products of! traces
tr (t†t)n(r †r )m, which are constructed as discussed in Sec
As an example, we consider the evolution equation for^F1&
in the thick-wire limit. Hereto we rewrite the evolution equ
tion ~7! for ^tr t†t& in terms of s5L/j and F1
5(2j/ja)exp(2L/ja)tr t†t and take the limitN→`. The re-
sulting equation reads

]s^F1&5db,1~^F18&2 3
4 ^F1&!, ~28!

whereF185(2j/ja)eL/jatr t†tr †r . The evolution equation for
^F18& in the thick-wire limit takes a particularly simple form

FIG. 6. Feynman paths contributing to correlations between
reflectanceR ~solid path! and the transmittanceT ~dashed path!.
The solid path, which contributes to the reflectanceR, does not
penetrate the sample further than the decay lengthja . Therefore,
correlations betweenR andT saturate atL*ja .
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~ja /j!]s^F18&522^F18&1~1/2!^F1&. ~29!

Here we used that̂tr (12r †r )2&5j/2ja for L@ja . The
left-hand side of Eq.~29! vanishes, so that̂F18&5^F1&/4.
Substitution into Eq.~28! yields

]s^F1&52 1
2 db,1̂ F1&, ~30!

We use Eq.~10! for the initial condition, ^F1&51 for s
→0. ~Notice that this is not the ballistic initial condition
Because of the order of limits taken, the initial conditions
→0 has to be evaluated within the strong absorption
gime.! Hence

^F1&5exp~2Ldb,1 /2j!. ~31!

For ja!L!j this agrees with the weak-localization corre
tion to ^T& in the diffusive regime for strong absorption, c
Eq. ~22!.

Let us now consider theL dependence of a general ave
age^) j 51

m Fnj
& in the thick-wire limit. Following the deriva-

tion of Eq. ~30!, we find the general evolution equation

]sK )
j 51

m

FnjL 5(
j 51

m

(
i 51

nj 21
nj

4 K FiFnj 2 i )
k51
kÞ j

m

FnkL
1(

i , j

m
ninj

2 K Fni1nj )k51
kÞ i , j

m

FnkL
2db,1(

j 51

m
nj

2 K )
k51

m

FnkL , ~32a!

K )
j 51

m

FnjL
s→0

5)
j 51

m

dnj ,1
. ~32b!

The set of linear differential equations~32a! is readily
solved. Its solution reads for( jnj<3

^F1&5e2db,1s/2, ~33a!

^F1
2&5cosh~s/2!e2db,1s, ~33b!

^F2&5sinh~s/2!e2db,1s, ~33c!

^F1
3&5 1

3 @cosh~3s/2!12#e23db,1s/2, ~33d!

^F1F2&5 1
3 sinh~3s/2!e23db,1s/2 ~33e!

^F3&5 1
3 @cosh~3s/2!21#e23db,1s/2. ~33f!

Deep in the localized regimes@1, the solution of Eq.~32a!
has the asymptotic form

ln^F1
n&5 1

4 s@n~n21!22ndb,1#2 lnn!. ~34!

In the diffusive regimeL!j, the fluctuations of the trans
mittanceT are much smaller than the average. The varia
of the transmittanceT in the strong absorption regime ca
easily obtained from Eq.~33! and agrees with the result o
Sec. III. We also note that the third cumulant^T3&c behaves
as

e
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^T3&c /^T&35 1
16 ~L/j!41O~L/j!6, ~35!

which is qualitatively different from the case of a nonabso
ing waveguide, wherêT3&c /^T&3;(L/j)5 for b51 and
;(L/j)6 for b52.36,37

For L@j, the fluctuations ofT are much larger than th
average. Therefore, the average and variance of the tran
tance are no longer sufficient to characterize the distribut
Instead, the transmission distribution is log-normal, like fo
waveguide without absorption. This can be understood fr
the fact that for a log-normal distribution ofT, the nth mo-
ment ^Tn& reads

ln^Tn&5n^ lnT&1~n2/2!var lnT. ~36!

Using the asymptotic result~34!, together with Eq.~27!, we
see that Eq.~36! is satisfied for alln with

^ lnT&52L/ja2~L/4j!~112db,1!, ~37a!

var lnT5L/2j. ~37b!

@We neglected the secondL-independent term on the righ
hand side of Eq.~34!.38# For a waveguide without absorp
tion, on the contrary, the average and variance of lnT are
approximately equal and depend on the localization lengj
only: ^ ln T&522L/bj and var lnT54L/bj. The insensitivity
to b of the transmittance fluctuations for a waveguide w
absorption was already discussed in Sec. III.

V. TRANSMITTANCES TA AND TAB

So far we have mainly considered the statistical distri
tion of the transmittanceT, which is appropriate if the wave
guide is illuminated through a diffusor. Using the results
the previous two sections, it is only a small step to find
distributions of the transmittancesTa and Tab , which de-
scribe a situation in which the waveguide is illuminat
through a single channel only~e.g., by a plane wave!. In fact,
it is sufficient to consider the transmittanceTa , since the
distribution ofTab follows directly from that ofTa ,39

P~Tab!5NE
0

`dTa

Ta
P~Ta!expS 2

NTab

Ta
D . ~38!

The statistical distribution of the transmittancesTa and
Tab for nonabsorbing random waveguides has been ca
lated in Refs. 9–11. ForL!j, the distribution ofTa is
Gaussian with mean̂Ta&5N21^T&5l /L, variance varTa
52l /3NL, and non-Gaussian tails. The non-Gaussian f
tures of the distribution become more pronounced as
length of the waveguide approaches the localization len
j5Nl . In the localized regimeL@j, Ta has a log-normal
distribution, with the same mean and variance as the tra
mittanceT.11

Let us now discuss the effect of absorption on the dis
bution ofTa . ~The variance ofTa in the presence of absorp
tion has also been considered in Refs. 40 and 41.! In terms of
the unitary matrixu that diagonalizestt† @cf. Eq.~2!# and the
transmission eigenvaluestm , the transmittanceTa reads

Ta5(
m

uuamu2tm . ~39!
-

it-
n.

m

-

f
e

u-

-
e

th

s-

i-

The matrixu is uniformly distributed in the unitary group
For largeN, we may consider the matrix elementsuam as
independently distributed Gaussian random numbers w
zero mean and variancêuuamu2&51/N. In this limit, the
Laplace transformF(z) of P(Ta) becomes10,11

F~z!5E
0

`

dTae2NzTaP~Ta!5K)
m

~11ztm!21L .

~40!

In the strong absorption regimeL@ja , we can substitute
the results of Sec. IV for the averages of moments of
transmission eigenvalues. The result is

F~z!5 (
n50

`

znexpFn~n21!
L

4j
2ndb,1

L

2j
2n

L

ja
G . ~41!

Transforming back, we find thatTa is log-normally distrib-
uted with mean and variance

^ ln Ta&52
L

ja
2~112db,1!

L

4j
2 ln N, ~42a!

var ln Ta5
L

2j
. ~42b!

The origin of the remarkable simple log-normal distributio
of Ta in the strong absorption regime is understood from
simple argument.44 In the strong absorption regime, diffusio
takes place only inside a volumeja!L, and motion is qua-
siballistic on larger length scales. Inside a segment ofja ,
absorption plays no role, and the distribution of the transm
tance Ta is Gaussian, with mean;l /ja and variance
;l 2/jja , as in the case of a nonabsorbing random wa
guide. Since the dynamics on larger length scales is qu
ballistic, the transmittanceTa of a waveguide of lengthL is
the product of the individual transmittances of uncorrela
segments of sizeja . From the central limit theorem we the
immediately derive that forL@ja , the transmittanceTa is
log-normally distributed with variance var lnTa;L/j.

The distribution ofTa in the strong absorption regime i
shown in Fig. 7 for several values ofL/j. In the localized

FIG. 7. Distribution of the transmittanceTa for L/j50.1, 0.5, 2,
and 10 in a strongly absorbing random waveguide. Inset: The sa
but on a logarithmic scale.
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regimeL@j, the distribution ofNTa is the same as that o
the transmittance~or conductance! T. However, the log-
normal distribution~42! of the transmittanceTa is valid for
all L@ja , i.e., before the onset of localization.

In the diffusive regimel !L!j, the distribution ofTa is
sharply peaked around the average^Ta&5N21^T&. Fluctua-
tions around the average are described by the cumulant

var Ta5
ja

4j
^Ta&

2S 2s1coth s2
s

sinh2 sD , ~43a!

^Ta
3&c5

3ja
2

32j2
^Ta&

3S 8s2191
4s2

sinh4 s

2
6s215s coth s21

sinh2 s D , ~43b!

wheres5L/ja . Eq. ~43! is valid for both weak and strong
absorption. In the weak absorption regimeL!ja , Eq. ~43!
reduces to the known results for a nonabsorb
waveguide9,10

var Ta5
2L

3j
^Ta&

2, ^Ta
3&c5

16L2

15j2
^Ta&

3, ~44!

whereas for strong absorption we find

var Ta5
L

2j
^Ta&

2, ^Ta
3&c5

3L2

4j2
^Ta&

3. ~45!

The strong absorption limit of varTa was previously ob-
tained in Refs. 41–43.

The distribution of the transmittanceTab in the strong
absorption regime is easily obtained using Eq.~38!. It is
shown in Fig. 8 for several values ofL/j. For L!j, the
distribution ofTab is negative exponential~Rayleigh!. In the
localized regimeL@j, the distribution is log-normal.

VI. EXPERIMENTS

In this section, we discuss the application of our work
the recent microwave experiments by Stoytchev a
Genack.7 In these experiments, the distribution of the tran
mittanceTa was measured in a cylindrical copper tube w
randomly placed polystyrene scatterers. The presenc
many scatterers in a narrow waveguide results in a relativ

FIG. 8. Distribution of the transmittanceTab for L/j50.1, 0.5,
2, and 10, in a strongly absorbing random waveguide. The limit
negative exponential distribution forL!j is shown dotted.
g

d
-

of
ly

small localization length (j;5 m, while the lengthL of the
waveguide varies between 50 cm and 2 m!, but at the cost of
strong absorption (ja'30 cm!. Lacking a theory for absorb
ing random waveguides, the authors of Ref. 7 conside
the distribution of the transmittance divided by its mea
Ta5Ta /^Ta&, and compared it to the theoretical predictio
for nonabsorbing waveguides.9–11 Because of the absorption
the average transmittance^Ta& cannot be used to determin
the ratioL/j. Instead, in Ref. 7,L/j was computed from the
formula varTa5(2/3)(L/j), which is valid for weakly ab-
sorbing waveguides only@cf. Eq. ~44!#.

Surprisingly, the measured probability distribution ofTa
was found to follow the theoretical predictions for nona
sorbing waveguides in the diffusive regime quite accurate
provided one uses the ratioL/j obtained from varTa , as
explained above. This is surprising, because the wavegu
of Ref. 7 are strongly absorbing,L/ja ranging from 2 to 6,
and because the experiment is close to the localiza
threshold (j/L up to 3). The agreement is not so good ifL/j
is directly extracted from the experimental parameters.
particular, the measured variance ofTa was found to depend
sublinearly onL, while the theory for a nonabsorbing wave
guide predicts a linearL dependence~or a superlinearL
dependence if localization effects are taken into account!.

How do these observations compare to our results for
transmittance distribution of random waveguides with a
sorption? Following Ref. 7, we use the ratioC(L)
5^T a

3&c /(var Ta)2 to characterize the distribution. The the
oretical predictions forC(L) and (j/L)var Ta as a function
of L/ja in the diffusive regime are shown in Fig. 9@see also
Eq. ~43!#. We find that

~i! as a result of absorption, varTa crosses over from
2
3 L/j to 1

2 L/j for 1&L/ja&10,
~ii ! the ratio C(L) crosses over fromC(L)512/5 for

weak absorption to 3 for strong absorption, the crosso
occurring for 3&L/ja&30.

The lengthL of the random waveguides in the experime
lies between 2ja and 6ja . Hence, the waveguides are lon
enough to fully observe the sublinear behavior of varTa , but
too short to see a significant enhancement ofC(L) above the
weak absorption limitC(L)512/5. @Note that the experi-
ment indeed shows a slight enhancement ofC(L) for the
longest waveguide.7# We expect that higher cumulants ofTa ,

g

FIG. 9. ~a! The ratioC(L)5^T a
3&c /(var Ta)2 versusL/ja in the

crossover between weak and strong absorption.~b! The ratio
(j/L)var Ta versusL/ja . The errorbars~a! and squares~b! indicate
the results of the experiment of Ref. 7.
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if properly normalized, show the same ‘‘postponed’’ cros
over behavior aŝT a

3&c . This could explain why the entire
transmittance distribution of Ref. 7 agrees with wea
absorption theory rather than with strong-absorption theo

While the above considerations offer a qualitative exp
nation for the most striking experimental observations,
theory presented here fails to account for the measureme
var Ta versusL quantitatively. This is clearly illustrated by
comparison of the experimental results of Ref. 7 and
theory in Fig. 9~b!. Notice that the fact that the theoretica
curves in the figure were derived forL!j, while the ratio
j/L is not necessarily large in the experiment (j/L down to
3), cannot explain the difference, as localization effects
crease fluctuations rather than decrease them. For the lon
waveguide (L/ja'6), Stoytchev and Genack find varTa
'0.43L/j, whereas we find varTa> 1

2 L/j for all L. The
reason for this discrepancy is not known. A quantitati
comparison with the experiment forC(L) is difficult because
of the uncertainty of the experimental data@see Fig. 9~a!#.

According to Eq.~43! or Fig. 9~a!, absorption causes th
distribution of the transmittance to deviate significantly fro
that of a nonabsorbing waveguide only ifL/ja*10. It should
not be difficult to verify this experimentally, e.g., by a de
crease ofja due to the addition of strongly absorbing sca
terers to the waveguide. We also find that the size of
fluctuations depends linearly onL/j, both in the weak and
strong absorption regimes, but with different slopes (2/3 a
1/2, respectively!. While the experiment of Ref. 7 confirm
the initial L dependence with slope 2/3 as well as the dev
tion for L;ja , more experimental input is required to verif
the linear dependence with slope 1/2 in the strongly abso
ing regime.

VII. CONCLUSION

We have computed the statistical properties of the tra
mittance of a multichannel random waveguide with abso
tion. We have considered both the diffusive regime, wh
the transmittance distribution is Gaussian and the locali
regime, where the transmittance distribution is log-norm
Our main findings are summarized in Table I.

Up to the present, no optical or microwave experiments
our knowledge, have been able to address the localized
gime L*j, where the fluctuations of the transmittance a
larger than the average. The mere presence of strong ab
tion modifies the localization transition, but does not su
press the fluctuations. As stronger scatterers tend to be s
ger absorbers, it might be easier from the experimental p
of view to construct a random waveguide withL*j in the
strong absorption regime than a comparable random wa
guide without absorption.

Our work assumes that absorption sets in before local
tion, i.e., thatja!j. The assumption was necessary, beca
we useja /j as a small parameter. It is appropriate for t
-

-
.
-
e
of

e

-
est

e

d

-

b-

s-
-
e
d

l.

o
re-
e
rp-
-
n-

nt

e-

a-
e

experiment of Stoytchev and Genack, in which the ratioja /j
is less than 0.1. A theory of the localization transition
random waveguides that is nonperturbative inja /j, which
would require a nonlinears-model formulation,35 remains to
be developed.

To conclude, we would like to remark that the problem
transmission through random media in the presence of
sorption is also important for the problem of ‘‘directe
localization.’’45–48 Directed localization refers to the loca
ization transition in a disordered ring with an imaginary ve
tor potential, introduced by Hatano and Nelson.45 This model
is relevant for, e.g., the pinning of vortices to columnar
fects in superconductors, or for problems in populat
biology.48 In a purely one-dimensional geometry (N51), the
support of the spectrum in the complex plane is entirely
termined by the transmittance of the disordered ring at c
plex energies, i.e., with absorption~or gain!.47 Such a rela-
tion may also exist for the multichannel waveguid
considered in this paper.
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TABLE I. Statistical properties of the transmittanceT for weak
and strong absorption. The relevant length scales are the loca
tion length j5Nl and the exponential decay lengthja

5@ l l a /2#1/2, whereN is the number of channels,l is the elastic
mean free path, andl a is the ballistic absorption length.

No/weak
absorption

Strong
absorption

Diffusive l !L!ja ja!L!j

P(T) Gaussian Gaussian
^T& j/L (2j/ja)e2L/ja

dT 2
1
3 (L/j)^T& 2

1
2 (L/j)^T&

var T 2
15b

(L/j)2^T&2 1
8

(L/j)2^T&2

r(t) bimodal tmax5eL^T&/2j

Localized L@j L@j
P(T) log-normal log-normal
^ ln T& 22L/bj 2L/ja1O(L/j)
varlnT 4L/bj L/2j
tt.
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