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Transmission through a many-channel random waveguide with absorption
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We compute the statistical distribution of the transmittance of a random waveguide with absorption in the
limit of many propagating channels. We consider the average and fluctuations of the condiictanc&,
wheret is the transmission matrix, the density of transmission eigenvalig® eigenvalues df't), and the
distribution of the plane-wave transmittancEg and T,,. For weak absorptioiilength L smaller than the
exponential absorption lengt,), we compute moments of the distributions, while for strong absorption (
>¢,), we can find the complete distributions. Our findings explain recent experiments on the transmittance of
random waveguides by Stoytchev and Genfhys. Rev. Lett79, 309(1997)]. [S0163-182608)02917-9

[. INTRODUCTION regime of strong absorption, the longest waveguide being
approximately five times the exponential absorption length
Interference between multiply scattered waves leads téa, While the theory of Refs. 9-11 was derived for
strong fluctuations in the transmitted intensity through a disWaveguides without absorption. Second, because the vari-
ordered mesoscopic sampl&Vhile a theory of the primary ance of the transmittance depends sublinearlyL.omvhich
fluctuation phenomena was originally constructed in the con€@nnot be explained within the existing theory for nonab-
text of electron transport through metals or semi-Sorbing random waveguides. And third, because the experi-

conductor€? it was soon realized that the fluctuations areMeNt was compared to a theory fdr’/L>1, while N//L
was not really large in the experiment.

characteristic of systems involving multiple elastic scattering Several papers have dealt with the problem of transmis-
framework? Experiments with light or microwave radiationa‘ 9 modg N=1). In.order to analyze and explam opti-

" ) > cal or microwave experiments like that of Ref. 7, which are
can be carried out with a very high accuracy, and allow for gy5h6 i waveguides with many propagating channels, it is
precise verification of the theoretical predictions for the comgcessary that a theory of the transmission fluctuations and
pIe;e transm|557|on distribution, rather than of its mean anghe |ocalization transition in many-channel random
variance on!ﬁ‘. o ~ waveguides with absorptioNe&1) be developed. It is the

The relative importance of the fluctuations is determinedaim of the present paper to present such a theory.
by the ratioN//L, whereN is the number of transverse =~ The geometry of the random waveguide is quasi-one-
propagating channels in the waveguitldgts length, and” is  dimensionalwidth W much smaller than the length). The
the elastic mean free path. To observe strong fluctuations, ielevant length scales are the elastic mean free patthe
is important to achieve as low values N¥'/L as possible. exponential absorption length , and the localization length
This is difficult for optical experiments, because scatterers=N/’, whereN>1 is the number of transverse channels in
are weak and the typical number of transverse chariwéds the waveguide, see Fig(d. Althougha priori the localiza-
Iarge.8 Moreover, in contrast to electronic systems, where thdion length ¢ is a property of the nonabsorbing system, we
total flux is conserved, in optical systems the interferencdind that it also governs the interference effects and the lo-
pattern may be affected as a result of loss or absorptiorfalization transition in a quasi-one-dimensional random
Absorption does not destroy the phase coherence of a tran@aveguide with absorption. We assume tHat{,<¢, i.e.,
mitted wave; it merely rearranges the interference patterr@bsorption is weak on the scale of a single scattering event,
while the relative importance of the interference phenomen&Ut it becomes dominant before interference effects cause
is unaffected. This is different from electronic systems,Waves to localize. This is appropriate for experiments on the
where inelastic scattering due to, e.g., electron-electron inteffansmission of light and microwave radiation through ran-

actions obscures the interference phenomena because of m waveguideS. ' The assumptioi,<¢ is crucial for our
presence of a large incoherent background signal.

héory of the transmittance fluctuations in the localized re-
An important step in the pursuit of low values f//L

gimelL>¢&.
for optcal Systems was recently reporied by Stoytchey angy,/\ye et AR, T TERAE 2 LEERE Y e
Qenack. They ach|evecN//L§3 for microwave transmis- types of transmittances can be computed,
sion through a copper tube with randomly placed polystyreney
scattererga “random waveguide). Apart from the length- N N
dependence of the variance of the transmittance, the mea-  Tap=|taol?, Ta=2, [tal?, T= X2 [ta2 (D)
sured transmittance distribution agrees surprisingly well with b=1 ab=1
the theoretical predictions!! The agreement is surprising The transmittanc@ is the equivalent of the conductance for
for a number of reasons. First, because the experiment is inan electronic system. It is the transmitted intensity if the
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L ues in a disordered waveguide without absorptioi? The
Fokker-Planck approach was also applied to the reflection
/\[W eigenvalues of a disordered absorbing wavegtidé 26

Technical difficultie$” prevented a further generalization to

the transmission eigenvalues of an absorbing waveguide be-

A< 1o<< B << & yond the casdN=1.1271® Starting from the random-matrix

@ model of Ref. 17, we take a slightly different approach,

which is explained below.
Consider a disordered waveguide wilh propagating

\ channels and length, see Fig. 1. Its transmission and re-
flection properties are described by the scattering ma&rix

(b) The 2N X 2N matrix S has the standard decomposition into

. . - NXN reflection and transmission matrices,
FIG. 1. (@ The random waveguide that we consider here is

oL L

quasi-one-dimensional: its lengthis much larger than its widti. rot’
The other relevant length scales are the wavelengtthe elastic S:( ,)_ 3
mean free patlr’, the exponential decay leng#y, and the local- tr

ization lengthé=N/, where N>1 is the number of transverse We now add a thin slice of widtliL to the waveguide and
channels in the waveguide. We assuite/ <£,<£. NO assump- 50 1ate the change of the transmission matriand the

tion is made about the length compared tc¢, and &. (b) A thin . . . . .
slice of lengthsL (left) is added to a random waveguide. _reflectlon m.atrlxr. The slice has scattering mat;, which
is parametrized a$

sample is illuminated through a diffus@all channels have / / , /

s . ria ty v \/;v v'yTu

equal incident power The transmittance$, and T,, mea- = = ) (4

sure the total transmitted intensity and the intensity in chan- th 1y uyro —uypu’

e e el o aled o0 o ereu, ', and o are NN uniry malries anc
Y ’ P P =diag (71, . . .,7\) andp=diag (o, . . . ,pN) are diagonal

illumination.) The transmittanc@ ., is related to the speckle
pattern, the configuration of randomly positioned dark an
bright spots observed if a disordered sample is illuminate
by a laser beam. The transmission matrigan be decom-
posed into unitary matriceg andv and a matrix of trans-
rTT]ission eigenvalues,, (u=1,...N), the eigenvalues of
t't,

es of the thin slice. In the presence of time-reversal sym-

etry (3=1), one hasi’=u" andv’=v". A statistical en-
semble of disordered waveguides is obtained by considering
waveguides with different configurations of the scatterers.
Following Ref. 17, we assume that u’, v, andv’ are
uniformly distributed in the unitary group, and that the first
moments of the diagonal matricesand 7 are

£atrices containing the reflection and transmission eigenval-

t=u diag T%lz, - ,T%‘/Z)U, Os=7,<L (2
71 — y/,
Time-reversal symmetry implies that=u". For comparison Nt p)=dLiz, (3
with the electronic case, we also address the case of broken N~Xtr 7y=1—(SLI/+6LI/ ) (5b)
/ 7 ),

time-reversal symmetry. The matricesandv are uniformly
distributed in the unitary groufd, as in the absence of where/ is the elastic mean free path arfq is the ballistic
absorption'® To find the transmittance distribution, it re- absorption length. The ballistic absorption lengty is re-
mains to find the statistical distribution of the transmissionlated to the exponential decay lengthas/ ,=2¢2// .
eigenvaluesr, in the limit N>1 corresponding to thick Upon addition of the thin slice at the left end of the dis-

waveguides. ordered waveguide, its transmission matriand reflection
This paper is organized as follows: In Sec. Il we recall thematrix r are changed according to

scattering approach for the distribution of the transmittance,

and its extension to absorbing system’ The transmit- t—t(1—rqr) "y, (6a)
tance distribution in the diffusive regimé<L < ¢ is consid-
ered in Sec. Ill. In Sec. IV we consider the crossover to the r—ro+tir(l—rir) "y, (6b)

localized regimeL=¢. Sections Il and 1V primarily focus o _ _
on the statistical distribution of the transmittarioe conduc- ~ The new transmission and reflection matricesdr do not
tance T. The distribution of the transmittanc@s andT,,is ~ depend ort” andr’. Since we know the statistical distribu-
discussed in Sec. V. In Sec. VI, we discuss the relation of oufion of the matrices,, t;, ry, andry of the thin slice, and of
work to the experiments of Stoytchev and Gena®ke con-  the matrices andr of the waveguide at length, we thus
clude in Sec. VII. can find the statistical distribution of the transmission and
reflection matricegd andr of the waveguide at length
+ 4L In this way, one obtains a Fokker-Planck equation for
the distribution ofr andt.

The statistical distribution of the transmission matrix is In nonabsorbing random waveguides’ (~») this
obtained using a scattering approach similar to the FokkerFokker-Planck equation depends on the transmission eigen-
Planck approach to the distribution of transmission eigenvalvaluesr, ...,y only. It is known as the Dorokhov-Mello-

Il. SCATTERING APPROACH
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Pereyra-Kumar(DMPK) equationt®?° and it is one of the properties of absorbing waveguides, a laNjesolution ac-
major tools for the study of quantum transp&rhe DMPK  cording to these lines was given in Ref. 28.

equation has been generalized to the reflection eigenvalues To find the leading largé behavior of (tr t't) and

of random waveguides with absorptiéhi? For transmis-  (tr rr), we retain only terms that are of ordéf in the
sion through absorbing waveguides with many propagatinglifferential equatior(7). A trace is counted as a factbi. To
channels N>1), however, the Fokker-Planck approachleading order irlN, the average of a product of traces equals
proves uselesY: The transmission eigenvalues do not de-the product of the averagéSwhile corrections are of rela-
couple from the eigenvectors tft andr 'r, so that the num-  tive order N"2. Further, we may neglecttr ttrr) and
ber of variables is of ordeN?, rather thamN. In this work,  (tr (rr)2) with respect to(tr t"t)(tr r'r) and (tr rr)2.

we take a different approach: we use E@S). and (6) to  Then Eq.(7) simplifies to

derive a set of partial differential equations for the ensemble-
averages of traces dproducts of r andt, without direct
reference to the transmission eigenvalugs [We need to
include the reflection matrix, because thé evolution oft
depends om, cf. Eq. (6).] A similar set of evolution equa-
tions for traces of the form trt{t)" for the case of nonab- Za{trefry=—2(1+ y)(tr r'r)
sorbing random waveguides has been derived from the 1 12

DMPK equation in Refs. 21 and from a microscopic theory HNENTXrrin)*+0(1), (8

in Ref. 27. In the next two sections we present a detailed

discussion of these evolution equations and their solution invherey=///,. These equations are the same as those ob-
the limit of random waveguides with many channeld ( tained from a diffusion-equation approach, neglecting the

7o (tr thty=—(1+y—N"Xtr r'r))(tr tTt)+ O(1),
(8

>1). wavelike nature of the radiation. In the next subsections, in-
terference corrections will be taken into account by addition
Il. DIFFUSIVE REGIME of the terms that we discarded as we simplified &gto Eq.

. . _ _ _ (8). The solution of Eq.(8) with initial conditions (tr t't)
In this section we consider evolution equations for traces= (trr'ry=0 atL=0 reads for_,/ >/

of products of the reflection matrix and the transmission

matrix t, and obtain a solution as an expansion iN.1¥We

keep the ratid_// fixed as we expand in i. Such a expan- (Ty=(tr t't) = § (93)
sion is valid in the diffusive regime/’<L<§&, where & &, sinhs’

=N/ is the localization length of the system in the absence

of disorder. We explain the method by the computation of

the averageéT)=(tr t't) and(tr rr) to leading order imN, (R)=(tr r'ry=N— Ecoths (9b)
and then discuss the more general tracedtif, the density &a ’

of transmission eigenvalues the weak-localization correc-

tion to the average transmittance, and the transmittance flugghere £,=[/ 7 ,/2]? ands=L/&,. The length scalg, is

tuations. the classical exponential decay length for an absorbing ran-
dom waveguide. In the weak absorption regime ¢, , Eq.
A. Average of the transmittanceT (9) simplifies to Ohm’s law(T) =N—(R)=&/L, while in the

The simplest evolution equations are those for the averaggi’ong absorption regime>¢£,, the reflectanc® saturates
transmittance(T)=(tr t't) and the average reflectan¢g) &t the valueN—¢/¢,, while the transmittanc& decays ex-
=(tr r'r). A combination of Eqs(5) and(6) yields ponentially with decay lengts,

atrtTty=—(/ "1+ /7 tTty+cp/ Nir tht trrTr)

2§
— > a LK >
+ 851057 Xtr t'trr), (78 (T) e L>&,. (10
atrrtey=—=2(/"1+ /7t riry+ e/ N(tr r'r)2)+N
8 > é < > p < > B. Traces of the form tr (t't)" and the density
+ 85105/ Htr (r'r)?), (7b) of transmission eigenvalues

where c;=B/(BN+2—-8) and =1 (2) in the presence We now generalize the evolution equati@) to arbitrary
(absencgof time-reversal symmetry. Although E(7) does traces of the form

not form a closed set of equations from which the averages
(tr t't) and(tr rr) can be computed directly, it can be used
to compute the transmittance distribution in the limit of
many channels N>1). The reason is that the terms that
couple theL dependence dftr t't) and(tr r'r) to averages where the symbak; can bet orr. These traces are important
of traces with higher powers ¢fandr are small by a factor for the density of transmission eigenvalues and for the dis-
of order N, so that their effect can be taken into accounttribution of the transmittance$, and T,, in the diffusive
perturbatively. For nonabsorbing waveguides, such I&tge- regime, see Sec. V. Repeating the steps leading ta&g.
expansions have been studied in Ref. 21; for the reflectiome find

M, x, =(tr XIXq L XX, (11

I
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FIG. 2. Density of transmission eigenvalues of a strongly ab-
sorbing random waveguide in the diffusive regige<L <¢&.

general evolution equatiofil2) for L>¢, shows that the
wherep;=1 (0) if x; isr (t). The solution folL,/,>¢# and  leading behavior of trt(t)" and tr ¢'t)"r'r has the
n=2 reads asymptotic form

2s+coths s ) (139 tr ((tT)") =an£L" 1, "o "Weay (163

t _ —
(tr (t')%)= 4sintts  4sints

£

&a

1 s coths—1 (tr (tT)"rTry=b el g "e "Wt ., (16D

trthtrir)y= —( —— + : ) 13b

< ) £a\4sinhs  4sink's (130 wherea,, andb,, are numerical coefficients. The dots indicate
terms that are smaller by a large factgr/L or exp(—L/&,).

£ (3coths coths s ) The evolution equatior{12) provides a recursion relation

)2y = N— — -
(tr (r'n)*)=N 2 " Zsinfs 4sinfs

&, between the coefficients, andb,,
(1309
n—-1
: 1
where as befores=L/&,. For weak absorption, Eq13) a.= n b. a b.=—a 1
agrees with results obtained from the DMPK equafibn, " n—12 nomEme T an

while for strong absorption Eq13) simplifies to
From Eg. (100 we find a;=2. The generating function

(tr (1T1)2)=2(L &l E2)e 2 4, F(2)=37_,a,z" of the coefficientsa, is the so-called
“product-log” function (the principal value of the functional
(tr tTtrfry=(&r2¢,)e 4, (14)  inverse ofx—xe),

(tr (r'r)2)=N—(3¢/2¢,). ”

F(z)= >, a,2"=—-2PIn(-2). (18)
The averagestr (t't)") correspond to moments of the n=1
densityp(7) of transmission eigenvalues The densityp(7)
is recovered from the moments as the imaginary part of th
Green functionG(z)

p(n=m"Yr G(r+i0),

he product-log function is real only if its argument is larger
an— 1/e. Using Eq.(15), we find the Green functio6(z),

G(2) 2§PI ( Le T (19
Z = - 7 - L
Z e (tThn z zL .2
G)=(rr (z—t")y H=> (| —F). (@15 _ o
n=0 z and hence the density of transmission eigenvap(es.

. The density of transmission eigenvalues is shown in Fig.
L c:ajgulatlgn ofp(7) we thus. nged th_e mo”.‘e“ts 2. The existence of a maximum transmission eigenvalue,
My, (=N""tr (t")" for all n. In principle this requires =ele Y%/£,<1 is quite different from the case of a
«_ With m=n and with max - a -

m nonabsorbing random waveguide, where the suppasi of
x; being eitherr or t. As the number of possible moments extends from 0 to 1 throughout the diffusive regifieA
My, . ... x, Proliferates exponentially fast with increasing  common feature of absorbing and nonabsorbing random
this is not feasible. This is a fundamental difference with thewaveguides is that the maximal transmission eigenvalye
set of moment equations for the case of a nonabsorbing a factor~L//>1 larger than the average transmission
waveguide, where only moments of the forgtr (t't)™) eigenvalue. It is this broad support of the dengify) that is
need to be taken into account. responsible for many of the qualitative similarities of inter-

In the strong absorption reginie>§£,, however, a solu- ference phenomena in strongly absorbing and nonabsorbing

tion for p(7) can be found in closed form. Inspection of the systems.
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C. Weak-localization correction 0.2

Weak localization is a small negative interference correc-
tion to the classical transmittanfe In electronic systems,
the weak-localization correction is suppressed by a time-
reversal symmetry-breaking magnetic field. In the frame-
work of an expansion in N, the weak-localization correc-
tion is the O(1) correction to anO(N) average. Here we
compute the weak-localization cTorrectio&"ﬁ and SR to the
iveragre transmittancéT)=(tr t't) and reflectance(R) S TR
=(trrr). o _ _ 10t 100 10t 10*  10°

The starting point is the exact evolution equatitf, L/¢,
where we now keep all terms up to subleading ordeX jn

£ var T/L¥T)?
©
[

FIG. 3. Fluctuations of the transmittan@ein the diffusive re-

7 atr thty=— (1+y—N~Xtr rr))(tr tht) gime L <¢.
— 85 N7 (tr rTry(tr t't) /Zdcov (R T)=—-3(1+y—N"Xtrr'r)) cov(R,T)
+ 38 N~ Ktr t'tr'ry, (209 +N~Ytr t't) varR—487 N~ Y(tr t"trr)

+4AN"18~Ntr tTt(r'r)?), 23b
Zatretry=—2(1+ y)(tr r'r)+ 1+ N"Ytr rTr)2 AKX (r'e)’) (239

— 85Nt 124 8, N (112). /dvarR=—4(1+y—N"Xtrr'r)) varR
(200) +4BTINTHtrr'r(1-r'n?). (230

. _ _ The averages of the forgtr (tt)"(r'r)™), can be computed
We substitute the result of the previous subsection fofom Eq.(12). In the presence of time-reversal symmetry, we
(tr t"trr) and(tr (rr)?) and solve Eq(20) for (tr t't) and 4150 need to know(tr titr TtTt*r), which satisfies(for 3
(trr'r) up to order unity. As a result, we find the weak- _
localization corrections to the average reflection and trans-

mission, Zatr thritTeory=—4(1+ y—N"Xtr r'r))
% TepttTexpy + N~ L t
B coths— 2s S . (trt'trit't ry +NTH(tr t't)
6 2snns  AsnFs)’ (219 X(2(tr tTt(rr)2y—a(tr tTer'r)
+(tr tTt)) + 3N L(tr tTtrr)2.
1 scoths—1
= -t (29
oR 5'6'1<4+ 4sint? s ) (210 . ’
The solution of Eqs(23) and (24) reads forl,/ >/
The weak-localization correction to the reflectariRehas 252_9s coths+ 12 3g2

been calculated previously in Ref. 28. In the weak absorption  varT=
regime, we recover the well-known universal vald®
=—58T=%554,”" while for strong absorption the weak- 1

16 sinif s 16 sinf s
8s coths—11 6s°—3s coths—3

L : i _ N (
localization correction reads 5| 16 sinf s 16 Snf s
_ L —L/g _1 + 3_52 (259
5T— - 55‘1g_ae a, 5R— Z 5[;’1. (22) 8 S|nH5 s ’
_ _ — 1[ 3coths  2s? coths—5s—3 coths
D. Mesoscopic fluctuations cov(R,T)= 3|16 sinhs 16 Snf s

Mesoscopic fluctuations of the transmittariteand the

reflectancer are characterized by the variances Vavar R _ 3s? coths—3s (25b)
and the covariance co\R(T). Like the weak-localization 16 sinfs |’
correction, they are of order 1 in a larjfeexpansiorf? Pro-

ceeding as in the case of the weak-localization correction, we 11 1 4s?—3s coths—3
find that varT,var R and cov R,T) obey var R= B8 16snfs ~ 16snf s

_ 3s?
ZavaT=—2(1+y—N"Ytrr'r)) var T +—_ | (250
8sintP s

+ 2N~ Xtr ttycov (R, T)+ 2N~ Ktr (tTt)%rr
{ yeov (R T) {tr (CH%n) TheL dependence of the transmittance fluctuations, normal-

+285 Nt thtrTtTe*r), (233 ized to the average, is shown in Fig. 3. For weak absorption,
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1 20" 1 20 ="
- \_)‘f - - \_)f

M o>~ )2 FIG. 5. Two interfering Feynman paths for the weak-
--7 -- localization correction to the average transmittamcé\s the typi-
(a) (b) cal length of the closed loop is of ordef</,, the weak-

localization correction is not suppressed by absorption.
FIG. 4. Feynman paths for the diffusqn) and cooperor(b)

contributions of the variance of the transmittariceThere is only a
cooperon contribution to var if the vertices 1 and 2 are within a Thi lai hv the breaki f i |
distance¢, of each other. For diffusons, the vertices can be arpj->On One. h IS exp aflfns why the breaking of ime-reversa
trarily far apart. Hence foL> ¢, , only the diffuson contribution to SymmEtry_ as no e ect on the transm'tt_anc_e quctuatlpns.
var T survives. The situation is different for the weak-localization correction

to the average transmittance. The appropriate Feynman

L<¢&,, we find the well-known universal conductance fluc- paths., which are shown in Fig. 5, contain a closed loop with
tuations varT=—cov (R,T)=var R=2/153, while for & typical length of order’</,. As a result the weak-
strong absorption Eq25) simplifies to localization correction to the average transmittag@e is

not suppressed by absorption.

contribution to varT is a factor¢, /L smaller than the diffu-

2

L
var T= 52° 2k, E. Breakdown of the largeN expansion
a
Throughout this section we have assumed that interfer-
3 ence corrections are small, so that we can treat them pertur-
COMR,T)=— Eefuga, (26)  patively. This assumption is bound to break down as the
lengthL of the waveguide increases, since the relative size of
1 the interference corrections to transmission properties in-
varR= —. creases with.. For the transmittancg, both the fluctuations
8 and the weak-localization correction become comparable to

The variance oR was obtained earlier in Ref. 28. Note that the average when the length of the waveguide approaches the
the relative size of the transmittance fluctuations is equal inocalization lengthé=N/", cf. Egs.(22) and(26). One veri-
strongly absorbing and weakly absorbing systems, Tvar fies that higher-order corrections in a[_\lléxpansmn become
x(LIE)Z(T)2 comparable tqT) as well asL— £. This breakdown of per-
The dependence of the fluctuations on the presence dprbation theory has the same origin as the corresponding
absence of time-reversal symmetry is different from whatoreakdown of perturbation theory in systems without absorp-
one expects from the nonabsorbing case and deserves sof#@): it signals the onset of localization. A theory of the
discussion. In nonabsorbing disordered systems, the variané@nsmittance distribution in the reginhe= £ where the per-
of the transmittance is decreased by a factor 2 if timelurbation thepry of this section is not valid, is presented in
reversal symmetry is broken, var=2/153. This universal the next section.
1/B8 dependence is well understood in terms of diagrammatic
perturbation th_e0r7y3 or rar_ldom-matrix the(_)rfﬁ For a IV. CROSSOVER TO LOCALIZED REGIME
strongly absorbing system, in contrast, the size of the trans-
mittance fluctuations does not depend on the presence or The largeN perturbation theory of the previous section
absence of time-reversal symmetry, see @6). This is re- breaks down as the length approaches the localization
markable, since the average transmittance in strongly absorkength ¢. For nonabsorbing random waveguides, a theory of
ing waveguides exhibits the usugB-dependent weak- the crossover from the diffusive regime into the localized
localization correction that is suppressed if time-reversafegime requires a true technical tour de fotce'because of
symmetry is broken. the intrinsically nonperturbative nature of the crossover. Al-
To see why the val does not depend on the presence orthough the situation for random waveguides with absorption
absence of time-reversal symmetry in absorbing systems, wieoks similar—it has the same divergence of perturbation
consider the relevant pairs of the Feynman paths for the diftheory asL ~&—it is not. The reason is the existence of the
fuson and cooperon contributions to VEr They are shown small parameteg,/&, or 1/yN2. (Note that the ratic, /¢
in Fig. 4. In a waveguide without absorption, both the diffu- depends on the absorption properties of the waveguide and
son and cooperon paths have equal weight. The cooperon its width, but not on its length.In this section, we use the
suppressed if time-reversal symmetry is broken, thus exsmallness of,/¢ to compute the distribution of the trans-
plaining the factor two reduction of the fluctuations. In the mittance for lengthd comparable to, or greater than the
presence of absorption, the diffuson and cooperon contribdecalization lengthé.
tions no longer have equal weights, as paths for the cooperon A crucial distinction between the case of absorbing and
contribution typically have a larger length. Therefore, unlessionabsorbing waveguides is the saturation of the reflectance
the vertices 1 and 2 are within a distangg paths of the distribution for absorbing waveguides far= ¢,. Although
cooperon type are suppressed. Since the diffuson paths dfe relative size of the transmittance fluctuations keeps grow-
Fig. 4(a) can have vertices arbitrarily far apart, the cooperoning asL exceeds the absorption lengfh—eventually caus-
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— > ~>2,—- W,—- (£al§)d,(F1)=—2(F1)+(L2(Fy). (29)
- ) Here we used thattr (1—r'r)?)=¢£/2¢, for L>¢&,. The

left-hand side of Eq(29) vanishes, so thatF;)=(F,)/4.

FIG. 6. Feynman paths contributing to correlations between thPSubstitution into Eq(28) yields

reflectanceR (solid path and the transmittanc& (dashed path

The solid path, which contributes to the reflectafiedoes not P <F >: _1s <F > (30)
penetrate the sample further than the decay leggthTherefore, A 2Op1 10
correlations betweeR andT saturate at =&, . We use Eq.(10) for the initial condition,(F;)=1 for o

—0. (Notice that this is not the ballistic initial condition.
ing the breakdown of perturbation theory—the correlationsBecause of the order of limits taken, the initial conditien
between reflection and transmission properties saturate. In,0 has to be evaluated within the strong absorption re-
particular, we find that gime) Hence

(i) Correlations between reflection and transmission are
smaller than the product of the averages by a factor (Fi)=exp(—Ldg1/2¢). (31
~&,INE, irrespective of the length. Hence they can be
neglected ifé,< €. (For nonabsorbing waveguides, correla-
tions are smaller by a factdr/N¢, and cannot be ignored for

L~¢&)

For £,<L<<¢ this agrees with the weak-localization correc-

tion to (T) in the diffusive regime for strong absorption, cf.

Eq. (22).

(it) Traces tr €7t)" T(tT¢*)™r are a factor- £, /¢ smaller Let us now consider the dependence of a general aver-

than tr ¢7t)™ ™ or tr (t't)"r ()™ a age(H}“:anj> in the thick-wire limit. Following the deriva-
tion of Eq. (30), we find the general evolution equation

A derivation of these properties from the appropriate evolu-

tion equations is straightforward. We find it more instructive, m Nl m

however, to give an argument in terms of Feynman paths. ag< 11 Fn_> => > HEF, 11 Fa
Feynman paths giving rise to correlations betw&eand j 'ooa=t St

T are shown in Fig. 6. The solid path, which contributes to

R, does not penetrate the sample more than a decay length - nin; "
&,. As a consequence, the relative size of the correlator +Zj 2 | Frieny kljl Fo,
cov(R,T) saturates at ~ &, . At this length scale, perturba- K#i,]
tion theory is still valid, and we find co®,T)~(&,/ m m
NE(RYTY<(R)(T) irrespective of length. The same argu- — 851> ﬁ< IT F, > (329
ment applies to arbitrary correlators involving tr'f)", Plis 2 ke ™
since their relative sizes saturatelat £, as well, and to the
traces of the form tri('t)"r T(tTt*)™r. o

The formal framework in which the crossover to the lo- Jl:[l Fn, :]1;[1 S 1 (32D

o—0

calized regime is described, is the so-called “thick-wire
limit,” in which the limit N—« is taken, keepingr=_L/¢
fixed. In the previous section, the ratidZ” was kept fixed,
rather thanL/&. The thick-wire limit is used in the field-

The set of linear differential equatior82g is readily
solved. Its solution reads fdtjn;<3

theoretic description of localization in disordered (F)y=e %172, (333
waveguides?3® Note that the thick-wire limit is unable to
address length scalds<¢, corresponding to the onset of <|:§>zcosr(g/2)e*5ﬁ,1o, (33b
absorption, since it correspondsde=£,/£—0 if N—oo. In
order to remove the classical exponential decay of the trans- (F,y=sinh(g/2)e %17, (330
mittance due to absorption, we consider traces of the form
F3) = 1[cosi30/2) +2]e 391772, (330
Fo=(2¢1&,) e tr ()" (27) (F1)=s[cos30/2)+2]
(F1F,)=1sinn(3¢/2)e 3%.1772 (33e

The differential equations for the- dependence of the
averages of the tracds, are derived from the exact evolu- (F3)=L[cost{30/2)— 1]e 391972, (33)
tion equations for the averages @products of traces
tr (t"0)"(r'r)™, which are constructed as discussed in Sec. lIDeep in the localized regime>1, the solution of Eq(323)
As an example, we consider the evolution equation(fof)  has the asymptotic form
in the thick-wire limit. Hereto we rewrite the evolution equa- L
tion (7) for (trt't) in terms of o=L/¢ and F, In(F3)=20[n(n—1)—2n8g,]—Inn!. (34)
=(2¢/&,)exp(—LIEHtr tTt and take the limiN—o. The re-

sulting equation reads In the diffusive regimd.< ¢, the fluctuations of the trans-

mittanceT are much smaller than the average. The variance
do(F1)=0851((F1)— 3(F1)), (2g)  of the transmittancd’ in the strong absorption regime can
' easily obtained from Eq33) and agrees with the result of
whereF ;= (2&/¢£,)e"¢atr t'tr 'r. The evolution equation for ~ Sec. Ill. We also note that the third cumuldi®), behaves
(F1) in the thick-wire limit takes a particularly simple form, as
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(T3 (TP =16(LI&)*+O(LI§*, (35) L/e=10 100

which is qualitatively different from the case of a nonabsorb- 3 = 10+

ing waveguide, wherdT3) /(T)3~(L/&)° for B=1 and <

W(L/g)ﬁ for B: 2.36,37 ~ 5 10-2

For L> ¢, the fluctuations off are much larger than the \E': 2 * 10~

average. Therefore, the average and variance of the transmit- ~

tance are no longer sufficient to characterize the distribution. 2 100 10t

Instead, the transmission distribution is log-normal, like for a A 1 T./(T)

waveguide without absorption. This can be understood from \L/£=O.1

the fact that for a log-normal distribution df, the nth mo-

ment(T") reads | |

0 .
In(T")=n(InT) + (n%/2)var InT. (36) 0 1 = 3 4
T,/(T,)

Using the asymptotic resu{B4), together with Eq(27), we

see that Eq(36) is satisfied for alin with FIG. 7. Distribution of the transmittand®, for L/£=0.1, 0.5, 2,
B and 10 in a strongly absorbing random waveguide. Inset: The same,
(InT) = —L/&— (L/4§)(1+ 28p,), (379 but on a logarithmic scale.

var InT=L/2¢. (37D The matrixu is uniformly distributed in the unitary group.
[We neglected the secoridindependent term on the right- For largeN, we may consider the matrix elementg, as
hand side of Eq(34).%%] For a waveguide without absorp- independently distributed Gaussian random numbers with
tion, on the contrary, the average and variance of lre  zero mean and variancéuaﬂlz>=1/N. In this limit, the
approximately equal and depend on the localization leggth Laplace transfornf (z) of P(T,) become¥!!
only: {In Ty=—2L/B¢ and var InT=4L/B¢&. The insensitivity
to B of the transmittance fluctuations for a waveguide with _[” —NzT, _ -1
absorption was already discussed in Sec. III. F(2)= fo dTae ™ 2P(Ta) = < 1,:[ (T+z7,) 7).
(40)
V. TRANSMITTANCES T, AND Tpg _ _ _
In the strong absorption reginme> ¢, , we can substitute
So far we have mainly considered the statistical distributhe results of Sec. IV for the averages of moments of the
tion of the transmittance&, which is appropriate if the wave- transmission eigenvalues. The result is
guide is illuminated through a diffusor. Using the results of
the previous two sections, it is only a small step to find the ” F{ (1)
n(n—

distributions of the transmittanceg, and T,,, which de- F(Z):nzo z"ex

L

scribe a situation in which the waveguide is illuminated
through a single channel onfg.g., by a plane wayeln fact,  Transforming back, we find thak, is log-normally distrib-
it is sufficient to consider the transmittandg, since the uted with mean and variance

distribution of T, follows directly from that ofT,,3°

L L
=dT, NT (InTy)=—+—(1+2851),—InN, (429
P(T.p)=N f —aP(Ta)exp( - ""b) (38) ¥ & Pllag
0 Ta Ta
L
The statistical distribution of the transmittancés and var InT,==— (42b)

Tap for nonabsorbing random waveguides has been calcu- 2¢
lated in Refs. 9-11. Fot <¢, the distribution of T, is  The origin of the remarkable simple log-normal distribution
Gaussian with meafiT,)=N"%T)=//L, variance valT,  of T, in the strong absorption regime is understood from a
=2/7I3NL, and non-Gaussian tails. The non-Gaussian feasimple argument? In the strong absorption regime, diffusion
tures of the distribution become more pronounced as theakes place only inside a volumig<<L, and motion is qua-
length of the waveguide approaches the localization lengtRiballistic on larger length scales. Inside a segment gf
£=N7. In the localized regim&.>¢, T, has a log-normal absorption plays no role, and the distribution of the transmit-
distribution, with the same mean and variance as the transance T, is Gaussian, with mean-//&, and variance
mittanceT. ~/?¢€,, as in the case of a nonabsorbing random wave-
Let us now discuss the effect of absorption on the distriguide. Since the dynamics on larger length scales is quasi-
bution of T,. (The variance off , in the presence of absorp- ballistic, the transmittanc&, of a waveguide of length is
tion has also been considered in Refs. 40 anglalterms of  the product of the individual transmittances of uncorrelated
the unitary matrixu that diagonalizest" [cf. Eq.(2)]and the  segments of sizé,. From the central limit theorem we then

transmission eigenvalues,, the transmittancé, reads immediately derive that fot.>&,, the transmittancd, is
log-normally distributed with variance var T,~L/é.
T :2 Uy |27, - (39) The Qistr_ibution ofT, in the strong absorption regi_me is
e shown in Fig. 7 for several values &f . In the localized
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10-t | =) o
3 o 2.5 =
= 102 | -
3 E / 2K
= 10-3 - L/$=10 Ll L liinn
\.n 1 F TR R B ;\"J g\g E
e 0 5 S 06F
E: Tnb/<Tnb> \,, E
- t -
8 05 o
> -
an C 1 |||||||I 1 |||||||I 1 L1
0 10—t 100 10t 102
0 1 2 3 L/¢,
T,/ (T.) FIG. 9. (a) The ratioC(L)=(T3)./(var T,)? versusL/&, in the

FIG. 8. Distribution of the transmittancg,,, for L/¢=0.1, 0.5, ~ Crossover between weak and strong absorptiim. The ratio
2, and 10, in a strongly absorbing random waveguide. The limiting(é/L)var Za versusL/£, . The errorbarga) and squaregb) indicate
negative exponential distribution far<¢ is shown dotted. the results of the experiment of Ref. 7.

small localization length§~5 m, while the length_ of the
waveguide varies between 50 cm and 2, but at the cost of
strong absorptiong,~30 cm. Lacking a theory for absorb-
ing random waveguides, the authors of Ref. 7 considered
the distribution of the transmittance divided by its mean,
T,=T,/{T,), and compared it to the theoretical predictions
for nonabsorbing waveguidés!! Because of the absorption,
the average transmittan¢&,) cannot be used to determine
the ratioL/¢. Instead, in Ref. 7I./¢ was computed from the
formula varZ,=(2/3)(L/¢), which is valid for weakly ab-
sorbing waveguides onlicf. Eq. (44)].

regimeL> ¢, the distribution ofNT, is the same as that of
the transmittancgor conductance T. However, the log-
normal distribution(42) of the transmittancd , is valid for
all L>¢,, i.e., before the onset of localization.

In the diffusive regime”’<L < ¢, the distribution ofT, is
sharply peaked around the averadg)=N"%(T). Fluctua-
tions around the average are described by the cumulants

varT —E(T )2| 2s+coths— > (433
a ggh e sinkt s/’

<-|-3> _ 3§§ (T >3 852+ 9+ 2 Surprisingly, the measured probability distribution &f
a’c 32¢2 a sintt s was found to follow the theoretical predictions for nonab-
sorbing waveguides in the diffusive regime quite accurately,
6s’+5s coths—1 provided one uses the ratio/¢ obtained from varZ,, as
- SinfE s ' (43b) explained above. This is surprising, because the waveguides

of Ref. 7 are strongly absorbing/¢, ranging from 2 to 6,
and because the experiment is close to the localization
threshold €/L up to 3). The agreement is not so goodlif
Y%s directly extracted from the experimental parameters. In
particular, the measured variancefwas found to depend
16L.2 3 sublinearly onL, while the theory for a nonabsorbing wave-
15§2<Ta> ' (44) guide predict_s a Iin_eaL dependencédor a syperlinearl_
whereas for strong absorption we find dependence if localization effects are taken into acgount
How do these observations compare to our results for the

wheres=L/¢,. Eq. (43) is valid for both weak and strong
absorption. In the weak absorption regime¢,, Eq. (43
reduces to the known results for a nonabsorbin
waveguidé®

2L 2 3
var Ta:3_€_—<Ta> ) <Ta>c:

L ) s 3L transmittance distribution of random waveguides with ab-
var Ta_2_§<Ta> : (Ta>c_4_§2<Ta> : (45 sorption? Following Ref. 7, we use the ratiG(L)
— (73 2 - ‘stributi
The strong absorption limit of vaF, was previously ob- —(Z ac/(var 7,) to characterize the distribution. The the-
tained in Refs. 41—43. oretical predictions folC(L) and (¢/L)var 7, as a function

The distribution of the transmittanct,y, in the strong Of L/&a in the diffusive regime are shown in Fig.[See also
absorption regime is easily obtained using E8g). It is  Ed-(43)]. We find that

shown in Fig. 8 for several values &f/¢. For L<¢, the (i) as a result of absorption, vag crosses over from
distribution of T, is negative exponentidgRayleigh. In the ~ 3L/¢ t0 2L/ for 1=<L/£,=10,
localized regimeL> ¢, the distribution is log-normal. (ii) the ratio C(L) crosses over fronC(L)=12/5 for

weak absorption to 3 for strong absorption, the crossover
occurring for 3sL/£,=<30.

The lengthL of the random waveguides in the experiment

In this section, we discuss the application of our work tolies between 2, and 6&,. Hence, the waveguides are long
the recent microwave experiments by Stoytchev ancdenough to fully observe the sublinear behavior of ¥ar but
Genack’ In these experiments, the distribution of the trans-too short to see a significant enhancemernE(f) above the
mittanceT, was measured in a cylindrical copper tube with weak absorption limitC(L)=12/5. [Note that the experi-
randomly placed polystyrene scatterers. The presence aofient indeed shows a slight enhancemeniCgt.) for the
many scatterers in a narrow waveguide results in a relativeljongest waveguidé] We expect that higher cumulants Bf,

VI. EXPERIMENTS
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if properly normalized, show the same “postponed” cross- TABLE I. Statistical properties of the transmittan€efor weak

over behavior a$7’§>c_ This could explain why the entire and strong absorption. The relevant length scales are the localiza-

transmittance distribution of Ref. 7 agrees with weak-fion length £&=N/ and the exponential decay lengt,

absorption theory rather than with strong-absorption theory=[/7a/2]"*, whereN is the number of channels; is the elastic
While the above considerations offer a qualitative expla-mean free path, and, is the ballistic absorption length.

nation for the most striking experimental observations, the

theory presented here fails to account for the measurement of No/weak strong
var 7, versusL quantitatively. This is clearly illustrated by absorption absorption
comparison of the experimental results of Ref. 7 and theiffusive /<L<é, Ea<L<¢
theory in Fig. 9b). Notice that the fact that the theoretical - -
curves in the figure were derived far<¢, while the ratio  P(T) Gaussian Gaussian
£/L is not necessarily large in the experimegtl{ downto (T ¢l (2¢/€,)e™ e
3), cannot explain the difference, as localization effects in9T —3(LI&K(T) —3(LI&K(T)
crease fluctuations rather than decrease them. For the long&et T L(L/§)2<T>2 }(L/§)2<T>2
waveguide [L/¢,~6), Stoytchev and Genack find vaj 15%imoolal 8 —el(T)2
~0.43 /¢, whereas we find vai,=1L/¢ for all L. The P(” Tmax ¢
reason for this discrepancy is not known. A quantitativeLocalized L>¢ L>¢
comparison with the experiment fa@q(L) is difficult because P(T) log-normal log-normal
of the uncertainty of the experimental datee Fig. %)]. (InT) —2L/B¢ — LI+ O(LIE)
According to Eq.(43) or Fig. 9a), absorption causes the varinT ALIBE L/2¢

distribution of the transmittance to deviate significantly from
that of a nonabsorbing waveguide onlyif¢,=10. It should
not be difficult to verify this experimentally, e.g., by a de- experiment of Stoytchev and Genack, in which the rgtité
crease off, due to the addition of strongly absorbing scat-is less than 0.1. A theory of the localization transition in
terers to the waveguide. We also find that the size of theandom waveguides that is nonperturbative¢jjii ¢, which
fluctuations depends linearly do/¢, both in the weak and would require a nonlinear-model formulatiort° remains to
strong absorption regimes, but with different slopes (2/3 andbe developed.
1/2, respectively While the experiment of Ref. 7 confirms  To conclude, we would like to remark that the problem of
the initial L dependence with slope 2/3 as well as the deviatransmission through random media in the presence of ab-
tion for L~ &,, more experimental input is required to verify sorption is also important for the problem of "directed
the linear dependence with slope 1/2 in the strongly absordocalization.”>~*® Directed localization refers to the local-
ing regime. ization transition in a disordered ring with an imaginary vec-
VIl. CONCLUSION tor potential, introduced by Hatano and Nel$dhis model
is relevant for, e.g., the pinning of vortices to columnar de-
We have computed the statistical properties of the transfects in superconductors, or for problems in population
tion. We have considered both the diffusive regime, Wheresupport of the spectrum in the complex plane is entirely de-
the transmittance distribution is Gaussian and the localizegbrmined by the transmittance of the disordered ring at com-
regime, where the transmittance distribution is Iog—normalp|ex energies, i.e., with absorptidor gain.*’ Such a rela-
Our main findings are summarized in Table I. tion may also exist for the multichannel waveguides
Up to the present, no optical or microwave experiments tq:gnsidered in this paper.
our knowledge, have been able to address the localized re-
gime L= ¢, where the fluctuations of the transmittance are
larger than the average. The mere presence of strong absorp-
tion modifies the localization transition, but does not sup- We thank C. W. J. Beenakker, T. Sh. Misirpashaev, and
press the fluctuations. As stronger scatterers tend to be stroN- M. Shnerb for stimulating discussions. We thank A. Z.
ger absorbers, it might be easier from the experimental poinBenack and M. Stoytchev for correspondence and communi-
of view to construct a random waveguide witkz ¢ in the  cation of the experimental data. This work was supported by
strong absorption regime than a comparable random wavehe “Stichting voor Fundamenteel Onderzoek der Materie”
guide without absorption. (FOM) and by the “Nederlandse organisatie voor Weten-
Our work assumes that absorption sets in before localizaschappelijk Onderzoek”(NWO) and by the NSF under
tion, i.e., thaté,< ¢. The assumption was necessary, becaus&rants no. DMR 94-16910, DMR 96-30064, and DMR 94-
we useé&, /¢ as a small parameter. It is appropriate for the17047.
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