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Polarons and bipolarons incis-polyacetylene
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We present a parametrization for the Pariser-Parr-Pople Hamiltonian for the descriptisipolyacetylene
(cPA). In contrast tdrans-polyacetylene, we have to include symmetry breaking between neighboring sites
into the Su-Schrieffer-Heeger-type one-electron part of the Hamiltonian. Our parametrization is based on
correlatedab initio calculations orcis-hexatriene and on the results of independent calculations found in the
literature. For open-shell systensingly charged polaronsve use the annihilated unrestricted Hartree-Fock
method to avoid the artificial spin contaminations inherent in Utikrestricted HIF calculations, which lead
to the inclusion of fractions of the correlation energy in UHF total energies which cannot be controlled and are
different for different systems and even for different geometries of the same system. Thus UHF is useless for
the calculation of potential hypersurfaces and thus in turn for dynamical simulations. We find ¢RAin
singly-charged polarons are formed, while in doubly-charged chains stable bipolarons are found, although of a
quite large width. This is in contrast to recent results reported by Shimoi andYbg8himoi and S. Abe,
Synth. Met.69, 687 (1995 and Phys. Rev. B0, 14 781(1994] who found that two singly-charged polarons
are more stable for realistic parameter values than a doubly-charged bipolaron. We further find that the charged
polarons are mobile in the chain and thus we conclude that polarons and bipolarons can serve as charge carriers
(the latter ones spinless dopedcPA. [S0163-182808)06706-X

[. INTRODUCTION idealized sketch of the soliton structure are shown in Fig. 2
where theu; are the displacement coordinates of the CH unit
The -conjugated polymer polyacetylenéPA) consists i parallel to the chain axis.
of weakly coupled linear chains of CH units. If the bonds  Here neutral solitons carry one spin and thus their charged
would be of equal length, PA would be a quasi-one-counterparts are spinless and mobile. If a chain without any
dimensional metal, where theg?2 orbitals of carbon form a deformation or unpaired electron is doped just with one elec-
half-filled 7= band. However, such states are not stable due ttron, another nonlinear quasiparticle, namely a polaron, is
the Peierls distortiof:the system becomes more stable byformed. In the polaron case, a conformatiarB-A for the
the formation of alternating long and short CC bonds. Thebond alternation phase is present and two leyéie lower
presence ofp? hybridized carbons allows the formation of one doubly, the upper one singly occupied in the negatively
two isomerscPA andtPA wheretPA is the thermodynami- charged casen the gap appear* A further electron would
cally stable one, whilePA is a metastable isomer, formed enter the upper polaron level to form a doubly-charged bipo-
initially in the synthesigsee Ref. 2 The structures of the laron. However, intPA the bipolarons cannot be stable, be-
two isomers are sketched in Fig. 1. cause the repulsion of the two charges separates them, with-
It was found very early thaPA can be easily doped, both out cost of energy because the phasesand B are
chemically and electrochemically, and becomes conductingegenerate. Thus instead of a bipolaron an unbound pair of
upon doping with spinless charge transport at low dopingcharged solitons is formed.
levels. FurthertPA is photoconducting. The conductivity =~ However, it was established by electron nuclear double-
can be varied in a range of several orders of magnitude, aesonance measurements thatt®A chains containing a
high doping levels to higher values than that of copfsee, neutral soliton a spin-density wave exists with alternating
e.g., Refs. 1, p signs of the spin density on neighboring CH units, which
Naturally this behavior leads to a large number of theo-cannot be explained by the simple SSH mdtéf. Also
retical investigations. At the beginning of these studies was>C-NMR (nuclear magnetic resonanckne shapes could
the pioneering work of Su, Schrieffer, and He€de{SSH not be explained by the SSH modéIThus electron-electron
who introduced the SSH Hamiltonigoorresponding in the interactions were introduced into the model with the help of
continuum limit to well-known models in field thedty The ~ on-site and nearest-neighbor Hubbard tetfis.As a more
SSH model is basically of the Hkel type and electron- reliable model the Pariser-Parr-PopRPH Hamiltonian was
phonon interactions are included via an expansion of the
next-neighbor resonance integrals in the bond lengbhs-
jected onto the chain axisip to the linear ternfdue to the
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Heeget* found the existence of mobile domain walls be- .
tween chain segments of differefiiut energetically degen- |
eratg bond alternation phases andB, i.e., solitons. These

solitons are associated with an energy-level at midgap in the

SSH model. The structures of the different phases and an FIG. 1. Schematic sketch of the structures®A andcPA.
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FIG. 2. Sketch of the structures of the different bond alternation
phasesA and B together with that of the metallic structurey;(
=0) and of the soliton inPA. ug is the dimerization constant, with
an experimental value of 0.026 (Refs. 50 and 511 FIG. 3. Sketch of the structures of the different bond alternation
phasesA and B together with that of the metallic structurey; (
=0) and of the polaron icPA.
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used*~*%and also other semiempirical aab initio methods
were applied’*8In the case of the PPP model, it turned out
that a reparametrization is necessary, because the SSH pa-Theoretical investigations arPA using SSH-type Hamil-
rameters contain already implicitly effects of electron-tonians go back to Brazowskii and KirotaHeegef® and
electron interactions and therefore are not consistent with th&/ang, Su, and Martin®® As discussed above, solitons turn
PPP model, which contains these effects expliditlifow-  out to be not a suitable excitation in these systems, because
ever, in open shell cases the usually applied unrestrictedf the lifted degeneracy of the two phases, but two solitons
Hartree-Fock methodUHF) could not be used because it become confined to form polarons or bipolarons, with a
introduces spin contaminations into the wave functions. ThistructureA-B-A in contrast toA-B for solitons, where in the
means, that the UHF state is not an eigenstate of the squaredntral segment, the geometry of tBephase is not fully
spin operator, which leads to even qualitatively wrong re<formed in the case of polarons. The length of Bighase is
sults, like the artificial preference of UHF for equidistant determined by a delicate balance between the energy gain
structures, which results in far too large and even divergingrom, e.g., charge separation and the energy loss due to for-
(with increasing chain lengjhsoliton widths. Thus, instead mation of the energetically unfavorabR: phase. Thus the
of UHF one could use the annihilated UWRUHF) method  possibility of polaron or bipolaron formation depends
which yields correct expectation values of the squared spiBtrongly on the individual structure of each material, and
operato® More recently, Rossi and Schneiffecould show  reparametrizations of model Hamiltonians are, in principle,
on the example ofPA that the SSH model could describe necessary for each system separately, especially if the poly-
ground-state properties rather well, while in the case of exmers contain groups other than CH.
citations (also soliton or polaron excitationghe electron- In the literature some further previous investigations on
electron interaction is important. Similar to feer!®? they  cPA can be found. Shimoni and Abe published investiga-
conclude that a careful reparametrization of the PPP Hamiltions using the PPP Hamiltonian in UHF approximation on
tonian is necessary. exciton polaron® and on bipolaron$3tin cPA. However,
However, there are not many conducting polymers knowrthe deficiencies of an UHF approach to open-shell systems
which exhibit a degenerate ground state [tk (or perni-  were already mentioned abow&PA clusters of a size up to
graniling and thus allow soliton formation. The simplest 40 CH units containing kink-antikink defects with the help of
such case isPA where this degeneracy of the two minima is the local-density-functional approximation were studied by
lifted. In this case we have again two different bond alterna-ye et al® Springborg? used an SSH-type Hamiltonian aug-
tion phases, namely the so-called cis-transddj é&nd the mented with second-neighbor and on-site terms, while
trans-cisoid B) structures, where experiments as well as theSuhaf* investigated the stability of infinite chains 6PA
oretical studies indicate that the cis-transol) (phase is andcPA with full translational symmetry on thab initio HF
energetically favorabl&=2* As in the case ofPA one can level (in the case ofPA also with corrections due to electron
define a dimerization coordinate with one degree of freedoneorrelation. Bredas and co-worket%®® performed similar
for each CH grougsee the sketch in Fig.)3 studies with a different basis set. These studies yield impor-
However, in contrast toPA this coordinate irtPA is not  tant information about the degree of dimerization, the dimer-
parallel to the chain axis. As mentioned above, of the two PAzation energy and the energy difference between the two
isomerscPA is a metastable one and in the process of the PAhases, which are necessary for a parametrization of model
synthesis one can obtain each desired ratio of the amount ¢familtonians. Effects of Coulomb interactions between the
tPA with that ofcPA, where from a temperature of 180 °C electrons on the stability of bipolarons were investigated by
no morecPA is found in the mixturé. Other conducting Wen and Si*
polymers without degenerate ground states are, e.g., In this work we applied the PPP Hamiltonian &®A
polythiophené, polyparaphenylerfé or polypyrrole?® How-  using the AUHF approach. We present a scheme for a pa-
ever, for our investigation we have chosePA because it is rametrization of this mode(in this connection we discuss
the simplest such case and therefore an ideal starting poimaiso shortly the problems connected with the UHF approxi-
for the investigation of this type of polymers. mation) which can be used in a similar fashion also for other
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conducting polymers. Further, we discuss dynamical simulaHere|,=11.54 eV denotes the ionization potential of a CH
tions and geometry optimizations on singly and doublyunit® z,=1 is the charges of the ionic cores (CHand
chargedcPA chains. The geometrical model we used fory,,=11.25 eV is the on-site Hubbard repulsitrThis value

cPA is discussed in Appendix A. stems from a previous parametrization of the PPP

Hamiltoniart® and is close to the usually quoted value of the
Il. METHOD difference between ionization potential and electron affinity
of carbon(11.08 eV). The charge-density bond order matri-
A. The PPP Hamiltonian in the AUHF approximation cesP (shortly called density matricgsre given by
The PPP model for the semiempirical description of the N
electrons of a systelfseparated approximately from the rest o_ AT AT _pa . pB
of the electronsis well known and described in detail in Prs_zl 0jCriCsii  Prs=Prs+ Prs. @

Refs. 35—39. The total energy of a system is thus given as a - , )
sum of different terms: whereoj is the occupation number of the molecular orbital

_ _ (MO) j for spin o (0 or 1). Note, that we use real MO
EO=EPO4+ EKN=ET+EM+ET" "+ E+EK", (1)  coefficientscy in all our calculations.
For the two-electron integrals we use the Ohno

whereE™ denotes the energy of the electrons E™" is the approximatiorf:!

repulsion energy of the positively charged ionic coes, ™

is the interaction energy betweenand = electrons,E? is

the o-electron energya detailed description of this term is Yris=a m
given in Appendix B, andEX" is the kinetic energy of the oS
ionic cores in case of time simulatiortsee below. In the ~ Wheree is the elementary charge ang is the dielectric
PPP approximatiorE?~ " is formally assumed to vanish, constant. The electron-phonon coupling maiis given as
thus E°~"=0 in our case. However, the term is included (note the symmetry breaking which leads to a lifting of the

2
2
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®
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implicitely via the parametrization. degeneracy of the phasAsandB already on the SSH level
Using the mean-fieldHartree-Fock approximation in B
UHF form, the wave function of ther electrons is written as Brs=B(r) dsr+1(1= )+ B(r—1) 6 —1(1=61),

a Slater determinant from different spatial orbitals for differ- .
- - ; - . . —b;—[u(r)—u(r+1)]a;; r even
ent spins. The orbitdl for spino (o=« or B) is written as a B(r)= _ (9)
linear combination of basis functions, one at every éite —by—[u(r)—u(r+1)]az; r odd.
thogonalized linear combinations of 2 function at each  Here the parametets, anda, describe the bonds parallel to
site): the chain axis antl; anda, are the inclined ones. This form
N of the electron-phonon interaction was also used by Wang
- _2 . 5 and Martind? in the framework of the SSH model oPA.
()= - Cri xr(r), 2 The eigenvalue problem is solved by a self-consistent it-
eration, i.e., we need a guess for the density matfesAs
wherer runs over all sites in a chain. Further we have theguess for smaller chairsip to N=10) we use the results of
zero differential overlap approximation in the PPP modela simple Hekel calculation, while for larger chains we use

which states that as guess the converged density matrices of shorter ones.
. ) Since we need accurate numerical gradients in the parametri-
Xt (D xs(0) =[x (r)]*6s. (3 zation, we have to use a convergency threshold for the en-

1gy of 10° 13 eV. This high accuracy leads especially for

real. The integrals between the basis functions are the para ing chains to the necessity of allarge nu_mber of Iteration

eters entering the Hamiltonian. Performing the usual varias:ydes.(Up to several thousands without using thrapolaﬂon
techniques The totalm-electron energy and the ionic repul-

tional calculation, we obtain the coupled eigenvalue equa-- .
sion energy are given by

Note, that in our case the basis functions are assumed to

tions
OAO _ [ OAC T 1 [od N o
E7ci=¢iC; (4) E :Eé 2;4 (FrstFr)Prs,
for the unknown coefficient vectoy . The elements of the
Fock matrices are given byu= 8 if o=« and vice verspa 1
Ennzi 2 (1= 615)ZiZsyrs - (10
N rs
o_pN " a B _ . .
Frs=Frst 7’”P”+Zl (Pi+Pro) yr(1 5”)}5“ As mentioned above, the UHF model has the disadvan-
tage that the total wave function is not an eigenfunction of
—Plyis(1=3rs), (5)  the squared spin operator. Investigations A have

showrf that with the UHF approximation one obtains a soli-
ton width which diverges with increasing chain length. Fur-
ther due to the spin contaminations in the UHF wave func-
Srat Brs. (6) tions_ one obtains total_ energies Whiph contéimknown
fractions of the correlation energy which decrease exponen-

where the one-electron part is

N

_Ir_z Ziyri(1—6yy)

Fh=
t=1
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tially with increasing dimerization amplitude. Thus a UHF approximately correct expectation value of the squared spin
potential surface is even qualitatively wrong and UHF pre-operator independent of the chain length or geomédry.,
dicts an equidistant ground state #ftA in contradiction to an expectation value of the squared spin operator of
experiment! The most straightforward method to overcome 0.7506:2 instead of the correct value of 3/ for doublet
this problem is the extended HEEHF) method}***where states incPA). In the case of S?)=0%2, AUHF makes it
the spin contaminations are projected out of the ansatz waveossible to describe spin polarizations of the closed-shell
function before the variation is performed. However, the resystem, i.e., it does not necessarily converge to the RHF
sulting equations are quite complicated and thus the methosblution. However, one has to keep in mind that AUHF—
seems not to be feasible for time simulations on largebesides all of its advantages—dissociates in the same way as
chains. Another possibility would be the restricted open-shelRHF. Thus, for instance, Hgives an incorrect dissociation
HF (ROHPF method, where the same spatial orbitals for dif- behavior with AUHF. In our optimizations and time simula-
ferent spins are used as in the restricted (RHF) but the tions, however, displacements are usually far below the dis-
occupation numbers of the orbitals are allowed to be 0, 1 osociation regions for the bonds. The annihilation operator is
2 (0 and 2 in the RHJF: Unfortunately, ROHF cannot de- (see also Ref. 20, and references therein
scribe the spin polarization and is thus inappropriate for our ~
use. R S—(s+1)(s+2)
Finally, because of the experiences with this method in Asi1= ) (st1)(s+2)
the tPA casé>?* we decided to use the annihilated UHF (S)-(s+1)(s+2)
(AUHF) method® where—starting from a guess with correct The annihilated density matrices can be computed by simple
<82>—the contamination coming from the next higher mul- matrix multiplications by the matrices formed directly from
tiplicity is projected out at every self-consistent field itera-the MO coefficients. From the UHF density matrides the
tion. This procedure usually converges to a state with amnnihilated matriceg” (o=« or ) are obtained as

(11)

M2J*=[A%2—2A Tr(P*PP)—N Tr(P*P#)+3 Tr(P*PP)+ pg—q+2 Tr2(P*P#)—2 Tr(P*PPP*PF)

—[p—Tr(P*P#)]PP+ PPPPP+[N—4 Tr(P*PF) — 3+ 2A]P“PPP+ P*PF+ PPP[2 Tr(P*PF) —p+1-A]

"'U

—2[P*PPP*P + PR PPP ] +4P"PPPPPP", (12)

M2=A%+pq+[2—2A—N+Tr(P“P/)]Tr(P*R#)—2 Tr(P*B*P“PF). (13

Here TK ) denotes the trace of the argument in brackets, = where mcy denotes the mass of a CH group. In the Born-
the number ofa-spin electronsg is that of theB-spin elec- Oppenheimer approximation we can consider the CH groups
tronsA=q—2(s+1), s=(p—q)/2 andN is the total num- as classical particles moving in the poten&af". Thus New-

ber (p+q) of electrons. WithA chosen as given above, the ton’s equations of motion are

largest contaminating state is annihilatéd.is obtained by

an interchange of with 8 andp with q in the above equa- d2u(i) JEPO _
tions. meﬁW=—au(i)= (I) (16)

B. Kinetic energy, time simulation, and geometry optimization  Explicit equations for the derivatives are detailed in Appen-
dixes A and C. With the geometriegi,ty) at any timet,

and their time derivativew(i,ty), we can compute in a
simple one-step procedure the positions and velocities at the

The kinetic energy in a time simulation is given by

N
1 .
Ekm:i mCHE [[(I)]Z, (14) time ty+ At by
i=1
. — . _ ) F(i,tg)
where the dot denotes a time derivative. Insertion of the ex- v(i,tgt At)=w(i,ty)+ At,
plicit equation for the position vectgAppendix A yields Mt
2 u(i,to+At)=u(i,tg) +v(i,to+At)At. (17)

kin_ L s [ d ; el

EXM=2 mep= 2§ 5t [re(i) +u(ig(i)]
i=1 . . . . .
During a simulation, the conservation of total energy is

1 1 checked to ensure that the time st&p was chosen small
=5 mCHE [u(ig(i)]?= meﬁE [ui)] gnough. Ge_o_metry optimization can be performed by reduc-
ing all velocities after a time step with the same factor or by
using a Fletcher-Powell algorithm using the energy gradi-

Mer=mMcr 9(i) 1%, (15  ents.
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C. Parametrization u=—uy imply one unsaturated carbon at one of the chain
As the first step of our numerical work we had to performe”ds- We consider periodic boundary conditions in finite

a parametrization of the model based on the results of indekh@ins as unrealistic and thus use open chain ends through-

pendent theoretical calculations and/or experiments. An oriout:

entation is the reparametrization of the PPP modelt ok - i P )
performed previousl§®2! Here a=a; =a,=1.9 eV/A and of ab initio calculations on the infinite chaifsee Refs. 29,

b=b,=b,=2.4 eV were found, with the electron-phonon 30, 32, and 33 and Tablg for our parametrization: there

interaction a less than half of the SSH values. This had onEXiStS an absolute energy minimum foPA at u=u, (A
main reason: A part of the electron-phonon interactions 9125 accompanied by a local maximum around 0 and a

included via the geometry dependence of the integrals in thi9c&l minimum aroundi=—u, (B phas¢ where the length

ys and not in the one-electron part. Thus in a PPP Hamil2f CC double bonds and CC single bonds in both phases
tonian electron-phonon and electron-electron interaction§heuld not differ too much. Thus we need to have a set of
cannot be trivially separated from each other. And the differParameters which yields a double-well potential with e
ences in the energies of the two bond alternation phases apfase being lower in energy than tBephase. Further we
already contained in the's and thereforela, —a,| could be ~ Nave performeab initio HF/MP2 calculations oM points
much smaller than it was reported for pure SSH Hamilto-U(1) with 0<u(l)<3 using a 6-31G" basis set orcis-
nians or Hubbard modelsvhere only the on-site term of the hgxatnene again using theAUSSIAN94 program packgge_
electron-electron interactions is pre@ezﬁt”The same holds Since such calculations can be considered as very reliable for

also for PPP Hamiltonians where the geometry dependenc&Potential surface in tha-phase region, we have to require
of the ¥'s is neglected, as in the work of Shimoi and thatour PPP energies are as close as possible to this potential

Abe 83031 The results of these types of studies could becurve(which shows a minimum at=uq and thus the mini-

misleading, because the electron-phonon interactions cofoum requirement is fulfilled automatically if this potential is
tained only in the one-electron part of the model could havd€producedl Again we want to include the correlation effects
other effects than is the case in a more realistic model, wheré@ the parameter values into a PPP/RHF calculatiorisn
electron-phonon interactions are contained both in the ondl€xatriene. Thus we can reduce our four-dimensional param-
and in the two-electron part of the Hamiltonian. Since this€ter space with the help of the following three general re-
property of the interaction follows clearly and unambigu-duirements: o

ously from the geometry dependence of all integrals imlan (1) We require that ati=up, (uy, close to 0, equidistant
initio treatment of a system, we consider a PPP Hamiltoniaghain the derivative of the sum of the totad-electron and
with geometry dependents (Ohno formula as more real- nuclear repulsion energies with respectithas to vanish for
istic than geometry-independent two-electron interaction pa®dd N. This implies

First of all we have to consider a basic qualitative result

rameters. -
As a first step we have to get an idea about the range of d(ET+E™) -0 (20)
the one-electron parameters which can be considered as re- du '

U:Um

alistic. Note that the parameter valae=1.9 eV/A found for
tPA (Ref. 2 is related to the bond length projected on theand thus yields the dependence of one of the parameters, in
polymer axis intPA. In the case of our choice of the gener- our case we have chosen, as a function(numerically
alized coordinateu for cPA (see Appendix A this corre-  given of the other three:
sponds to a value of 0.08 eV/A. Thus the region for the
parameters which can be considered as realistic and has to be a;=ay(by,by,a,5). (21
investigated is

(2) ForN=6 and 0<u(l)<3 wherel counts theM cal-

1.9 eV<b;, by;<3.6 eV, culatedab inito values of the potentiaEMP3[u(1)], we re-
quire that the deviations of our total PPP energy values,
0.05 eViA<a,, a,<0.13 eV/A. (18 E°Yy(1)], from EMPZu(1)] is minimal and vanishes ideally:
The on-site two-electron term,, is not considered as a vari- M
able because the symmetry breakingcPA is already con- _ to  =MP2 _
tained in the geometry dependence of thg, which all AE Z‘l {E°fu(D]-E"u(h)]}=0. 22)

depend on the constant, and on the distance between sites )
r ands. In contrast ttPA we have forcPA the behavior ~ This yields numerically a second paramefee have chosen
b,) as a function of the other three, with one of them being

Yer+2lu=ug® Vror+2lu=—uy (199  dependent already by virtue of conditi¢h):
which is exactly the desired symmetry breaking. Note that a b,=by(a;,a,,b;)=b,(a,,b;). (23
double-well potentialwhich is assumed fotPA in general,
see ab initio results beloyw cannot exist for finite even- (3) At u= — ug we require that for odtl the derivative of

numbered chains, because in that case a negative value ofthe total PPP energy with respectuoanishes:

implies a structure with two unsaturated carbons at the chain

ends. This is not the case in calculations on an infinite chain dEw©Y

with periodic boundary conditions or for odd-numbered du =0. (24)
small chains because in the latter case bothu, and u=—ug
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FIG. 5. E™ (AUHF) as function ofu and the remaining free
parametetb, (the other three parameters are determined such that
conditions 1 to 3 are fulfilled foN=9.

-0.02 = . g
04 08 0.8

1 172 1f4 1t6
ulA] . . . L .
possible to meet conditio8). Crucial for this failure is con-

FIG. 4. E™ (AUHF) as a function of the coordinate for dif-
ferent values ob, andb;=2.4 eV, a,=0.6 eV/A, N=6 (dashed
lines) in comparison tEMP? (solid lines.

This condition yields together witfl) and(2) a third param-
eter as a functiorfagain numerically givenof the last free
one:

a;=ay(ay,by,by)=ay(by). (25

dition (2): as in thetPA casé®?!it is not possible to repro-
duce an MP2 potential with the SSH model and simulta-
neously fulfill the extrema conditions. In the AUHF case, we
obtain a nearly linear dependencetgfon b, . It is interest-
ing to note that the free parameteyris in a direct relation to
the dimerization energy

EP= (Et0t|u=um_Et0t|u=uo)

1
N (26)

In detail, the requirements yield the following:

and thus the choice db; can be based on physical argu-
ments. Further the parametey is also related to the sym-
metry breaking

(1) Numerically we found that the derivative of the total
m-electron energy with respect toatu=u,, as a function of
the parametea,; for any fixed parameter tripleag,b,,b,) is
approximately linear. This yields a very simple procedure for
the determination odi; for any triple of the other parameters:
for two test valuesl anda? we computed the above deriva-

tive atu=uy,. Then with the help of successive linear extra- ,q\vever. more weakly. If we chandg by 1 eV, thenEP
and interpolationsa,; is determined such that the absolute changes,by 8 meV anéPP only by 1.8 meV. Inc,reasingl

value of the derivative ati=up, is smaller as a prescribed yocrease€P and EPP. Further shifting the left minimum
threshold value chosen as10eV/A. We use here the value f0m “Ug 1o —UgtA by a poéitiveA increase<=P® and
of u,, which is the minimum oE?” (see Appendix Cinstead _ decrease&®. In Fig. 5 we show the potenti&@™ as func-

of u=0 since this choice significantly simplifies the numeri- ;o0 of u and the remaining free parametey for N=9
cal work andu,,=0.0023 A is a very small deviation from (AUHF cas8.

the equidistant case. Further we found that for any pair
(bq,b,) the functiona;=a;(a,) is also linear.

(2) Figure 4 shows as an example the MP2 energies i
comparison to the potenti&@™ calculated for different val-
ues ofb, for b;=2.4 eV (AUHF casg¢. We have chosen
here the simple differencesE instead of their absolute val-
ues because in the former case we can oliigizis a function

1
EDD:— (Et0t|u:

N (27)

tot|
—uO_E0|u:u0)

Here the dependence of the dimerization energy on the
IE>arameterb1 can be clearly seen. This dependence can be
Used to take a value d&f;, where theEP is correct according
to calculations published previously. However, on the other
hand, this fixes als&°P, what might lead to problems.

It turned out that it is rather troublesome to perform the
: i ' rutie above-mentioned procedure for larger chains. Fortunately we
of b, for any fixed pair @,,a,) by a simple Hermite inter-  ¢onq that in the AUHF case conditions 1—3 can be fulfilled
polation. We found that errors made by the useA® in-  for |arger chains with the same set of parameters determined
stead of the absolute values are negligible. It turned out thaf,, N=g. Only the values of the spring constait the
b2=b2(_b1,a_\2) is a very simple function, in a very good first dimerizationE®, and the symmetry breaking®® then be-
approximation, even linear. . come a function of the chain lenghth, which converges for

(3) The zeroes of the derivative & with respect tau at increasingN. A feature that is not present in the UHF case:
U= —Uo can again be determined by a simple Hermite interere one needs different sets of parameters for different
polation. However, note that the accuracy of the derivativehain lengths, which is quite an unphysical situation and has
for N>15 can become quite low in the numerical differen-jis reason in the spin contaminations which increase consid-
tiation. erably with increasing\. Further, the UHF method tends to
We performed the parametrization procedure both for therefer thetrans-cisoid phase more, the largeM becomes.
UHF and the AUHF model. However, for the simplest SSHThis is again an indication of the unphysical nature of the
Hamiltonian our procedure is not applicable: In this case it iSJHF results due to spin contaminations. We show in Table |
possible to fulfill conditions(1) and (2), but then it is not values forEP and EPP found in the literature.
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TABLE I. Theoretical values foE® andEPP published previ-  formation is a charge and spin cloud which is also localized
ously in the literaturgab initio minimal basis calculationsE(ex)  in the center of the chain with half widths comparable to that
calculated values on the basis of HF/MP4 calculationstiR¥ by Ib, the half width of the polaroii4s) is smaller than for the

. D_ . . ’

Suhai(Ref. 47 (E”=22.75 meV/CH; all values in meV/CH parameter set I&78). The polaron represents itself by a small
equidistant segement in the center of the deformation. The
half width is converged with increasing chain length around

EP (cPA) EPP (cPA) EP (tPA) Ref. EP(ex) EPP(ex)

206 54 182 24 257 6.7 a value ofN=50. The results of the optimizations are given
75 5 155 48 11.0 0.7 in Fig. 6 for the casé&\N=70 and parameter set Ib.
140 5 190 49 16.7 0.7 The energy eigenvalues indicate that two levels in the gap

are associated with the polaron which are shifted from the
) _ lower and the upper band edge, respectively, into the gap.
Our values from the parametrized PPP model are Sl'ghtl¥|owever, in contrast to SSH resdithe two levels are not

D i i N
32:\??):23% V\\//r?iléfssr?gxglg :hg 3?#5;11 t;entwesn t?ﬁe\;zl_ symmetric to midgap. We do not want to discuss the actual
9 yway. energy values for these levels, because, as it is well known,

fore these values can be used just as a qualitative orientatiq_r|1F levels cannot be directly connected to the measured spec-

and not as definite physical guantities. More thoro " . : . .
by q tagh tra, but additional correlation corrections, exciton shifts, and

initio calculations orcPA in a better basis set and with cor- . o
relation corrections would be necessary. In our calculatiorprObany a different parametrization would be necessary for

we use five sets of parameters: la and Ib have the left minithis Purpose. _
mum atu=—uy, la, Ib, and lic atu= — ug+0.1. Group | Next we examine the case of the doubly-charged chain.

was introduced to get also larger values ER® as indicated Figure 7 shows geometry optimizations for parameter set la
by the calculation by Shuh&t. The parameter sets together Using AUHF and UHF for comparison. In the case of UHF
with the resulting symmetry breaking and dimerization enerand N=56 [see Figs. @)-7(c)], a bipolaron structure is

gies are given in Table II. formed, which changes to tw@verlapping polarons forN
=116 [Figs. Ad)-7(f)]. So in the case of UHF, the forma-
Ill. GROUND-STATE OPTIMIZATIONS tion of a bipolaron foN=56 is clearly a confinement effect

o ) of the small chain, a result which is consistent with the find-

We performed optimizations @fPA chains(even number  ings of Shimoi and Ab&' The problem is the large spin
of carbong doped with one and two eIEth‘O,”S’ rEESpffCt“’ely'contamination of the UHF solution: The calculated value of
In our geometry optimizations we used a “time step” of 0.5 8%2 for N=116 is too large to give the result physical

fs and a damping fgctor for the ve_I(_)cmes n ea_ch time step o ignificance. Thus we performed the same calculations also
0.3. Some calculations were additionally carried out using a

. with the AUHF method. We found that projecting out the

Fletcher-Powell algorithf to enhance convergency. The ' . L . L
geometry was optimized until the changes in the coordinate¥" cont_ammafuons leads to a RHF solution, which is not
u(i) between two consecutive “time steps” were less thannecessarlly S0 In the.case of a closed-shell AUH'.: calcula-
10°% A. To determine the width of thébroad bipolaron t|on_, resulting in a bipolaron structureAfB—A) having a
structures correctly, we performed geometry optimizationddUite broad half width of about 33, but with a total energy
starting from the ground-state structure of the doped systef@Pout 0.7 eV above the UHF solution. Making the same
as a first step and compared these results with optimizatior&eries of calculations for parameter set Ib, we found a similar
carried out with starting geometries of a greater width tharPehavior: In this case, already fbi=56 a pair of polarons is
the one found in the first step. As the unit for the determinaformed in the UHF calculatiortwith even larger spin con-
tion of distances we us& which is the length of a &<C—C taminatior) and for N=116, the structure of the two sepa-
unit in cistransconformation, projected onto the chain axis. rated polarons is more pronounced than in case la, the AUHF
This is half of the length of an elementary cella®A (2.19  result again gives a bipolaron. We conclude from these re-
A) in our model. For the calculations we use the AUHF sults(the behavior of which can be reproduced with any of
method and, for comparison, UHF. the parameter sets investigated hetleat despite the higher

In the case of a singly-charged chain, the result of thdotal energy of the AUHF solution and as we are clearly
optimization is the formation of a singly-charged polaron inoutside of the dissociation regiofwhere AUHF does not
the center of the chains. Associated with this geometry dework, see Sec. Il A aboyethe AUHF result is physically

TABLE Il. Sets la,b and lla—c of parameters used in our simulations.

Set la Ib lla b lic

a, (eV/A) 0.067 957 0.061 379 0.059 587 0.065 876 0.069 416
a, (eV/A) 0.070 439 0.062 760 0.054 751 0.065 268 0.068 728
b, (eV) 3.1 1.9 2.0 2.8 3.6

b, (eV) 3.045 105 1.865 050 1.981 153 2.764 389 3.565 256
EP (meV/CH), N=69 27.386 37.533 14.155 5.380 2.090

EPP (meV/CH), N=69 0.188 1.742 8.138 2.472 1.015
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FIG. 6. The bond distancés,d d, ., between sites andn+ 1 where the upper line connects even to odd and the lower one odd to
even numbered sites, respectively, the spin denssties(P2,— P£.) (b,e and the charge densitieg=1—(PZ,+ P%.) (c,f) where the two
lines connect the densities between odd and between even numbereq sitgsectively, in the two plotsa), (b), and(c) are for parameter
set la,(d), (e), and(f) for parameter set Ib, both f&d=70 and a singly-charged chain.

more meaningful because of the quite large spin contamina- IV. DYNAMICS

tion in the UHF calculation. o . _ .
The remaining question is that of the width of tBgphase In the dynamic simulations we us&t=0.05fs, while
some simulations performed witht=0.001fs show the

with increasing chain length, because up to now it is nOtsame results. Also simulations with analyticapproximate
clear if the A-B-A structure is really a bipolaron or, as in j Y P

: o . . . and numerical gradients, respectively, show comparable re-
tPA, a soliton-antisoliton pair, where the distance increases 9 P y P

linearly with the chain length. In our case, the electron-suns' First we followed the time evolution of a singly-

: L . ., charged chain wittN=70, starting with the ground-state ge-
electron interaction is not treated as a free parameter in thgmetr for the parameter set la. The results are shown in Ei
model, and thus—based on the results of SSH-like y P ' 9-

modeld'*??7_it makes sense to assume that varying the
symmetry-breaking="" should change the bipolaron width, as one expects from the optimizations. However, due to the

a smaller bipolaron for largeE®® and vice versa. To inves- oy cocs energy the ideal polaron structure is somewhat over-
tigate this, we made a series of AUHF calculations WD'té‘ Pa8shot and then the system bounces back close to the starting
rameter sets lla—Ewhich offers a larger variation ifE structure, while the excess energy excites lattice vibrations.
than sets la, b varying the chain length frofN=56 to  After this first oscillation we observe further ones, however,
N=200. The resulting converged bipolaron widtlsee Fig.  with a more complicated structure due to the excess energy.
8) show the expected behavior of the system: for siB&R, The spin and charge densities, as well as the lattice deforma-
the width is converging quite slowly, while for larger values tion, remain localized around the center of the chain, how-
(here 8 meY, a smaller bipolaron width of about 2%an be ever, the spin density at some times suddenly vanishes,
observed. Figure 9 shows converged geometries and chargéich raises the question, whether the AUHF iterations at
densities(the spin densities are nearly zpwaf the resulting these times do not converge to unphysical solutions. This is
structures folN=200. For the parameter sets la and Ib wesupported by the fact that the error in energy conservation
find a convergence comparable to that of llc, which is to bebecomes larger than the kinetic energy which is shown in
expected from the small value &°P. We conclude that for Fig. 14a). At the present stage of our investigations we are
doubly charged chains in the ground state, a bipolaron iforced to leave this question open. The parameter set Ib
formed within the range of parameters investigated. The acyields similar results.

tual width of the bipolaron for realistic parameters is hard to  In Fig. 11 we show the results of a corresponding simu-
determine because of the quite large variations'¥f in the lation for a doubly-charged chain with= 100 for parameter

ab initio results quoted above. set la. Here we find again the formation of a bipolaron at

Obviously, in the first femtoseconds a polaron is formed
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FIG. 7. Comparison of UHF and AUHF, doubly-charged chain. First coludn56, UHF; second colummN= 116, UHF; third column:
N=116, AUHF. First row: bond distance, ,.,; second row: spin densitg, ; third row: charge density,. The lines connect even- and
odd-numbered sites, respectively. Parameter set la.

times where deep minima of the total potential energy are Finally, we want to discuss the mobility of polarons. For
observed. When bouncing back the initial geometry is overthis purpose we place the optimum geometry of the charged
shot and at the maxima of the potential energy we find strucpolaron close to the chain end of a chain of 70 units and
tures of the type\-B-A-B-A corresponding to the formation follow the dynamics evolving from this initial geometry in
of two tightly bound polarons. However, the bipolaron is the singly charged chain. The results for parameter set | are
definitely the stable structure, favored by 17.5 meV/CH overlshown in Fig. 12.

the two polarongFig. 14b)]. The geometry and the charge  opyiously, the polaron structure accompanied by its spin
density perform sinusoidal oscillations around the bipolaronynq charge cloud moves without any change of its form
structure, where the frequency of the charge-density oscillagq,gh the chain and is reflected at the chain end. The ex-
tion is half that of the geometry oscillation. This is similar to o< energy, as Fig. (& indicates, is radiated into lattice

the findings in a SSH model, howeyer, there the frequency If)honons. It is interesting to observe that the kinetic energy of
one-fourth as Wang, Su, and Martino reportédhe results the chain is nearly constant from 20 to 100[Fg. 140)]
for parameter set Ib are similar and thus not shown here. and does not change as the polaron is reflected at the chain
end. For larger simulation times, the kinetic energy increases
half 1.0meV exponentially, the whole chain starts to vibrate and the mov-
width (31 ing structure—lattice deformation plus spin and charge
cloud—is destroyed. But still, charge as well as spin density
stay localized even at larger simulation times. Of course, also
the error in energy conservation increases dramatically after
120 fs, so a smaller time step or a different integration
method would be necessary to follow the dynamics further.

80
55
50
45
40
35
30
25
20

1940 60 80 100 120 140 160 180 200 The corresponding results for parameter set Ib are shown in
n .
Fig. 13.
FIG. 8. Converged bipolaron widths fodi=56, 76, 96, 116. Due to the larger dimerization energy, the polaron is

Parameter sets lla,b,c. slower in this case than in the former one. Also the excess
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FIG. 9. The bond distanceg,0 d,, .1 between sites andn
+1 where the upper lines connect even- to odd- and the lower ones
odd- to even-numbered sites and the charge densgjesl FIG. 10. The time evolution of the bond lengiths,,, 1(t) (for n
—(P2,+P£) (b,d where the lines connect the densities betweeneven (a), the spin densitys,(t) again for evem only (b) and the
odd- and even-numbered sitesrespectively, in the two plotga) charge densitieg,,(t) at even sites onlyc) for a chain of 70 units
and (b) are for parameter set ll&¢) and(d) for parameter set lic, and parameter set la, starting from the singly charged chain in its
both for N=200 and a doubly-charged chain. equilibrium geometry.

energy is Iarggr and induce; large amplitude lattice Vibratio.rbuasiparticles they obtained differ from ours. On the other
in another region of the chain than that where the polaron I2and. the results obtained by et all3 with' the local-

located. Again around this point in time the errors become

to0 large[Fig. 14d)] and thus we did not follow the system density approximation are in fair agreement with ours. The
further. other interesting result is the finding of mobile polarons. The

simulations with a singly-charged polaron on the chain end

illustrate the quasiparticle character of the polaron, which is

weakened at larger simulation times by lattice phonons. Our
Our calculations yield several interesting results: One igesults also show the possibility of polarons and bipolarons

the stability of the bipolaron incPA in the AUHF/PPP acting as charge carriers.

model, which is a matter of discussion in the literature. The For obtaining these results, we have developed a method-

geometry optimization, as well as the simulations startinglogy for the parametrization of the PPP Hamiltonian for

from a doubly-charged chain in equilibrium geometry, un-cPA which can be applied in a similar fashion to other con-

ambiguously show that. Wang, Su, and Martihgot similar  ducting polymers. We emphasize here that reparametriza-

results in the simple SSH case. However, a direct comparitions are indispensible if semiempirical Hamiltonians are

son between their and our results is not possible since theigsed for the description of polymers with different geometri-

parametrization leads to a very large symmetry-breaking encg| structures.

ergy [100 meV/CH forEPP (Ref. 29]. Shimoi and Ab&®

conclude on the basis of a UHF/PPP model that at low dop-

ing levels polarons are favored over bipolarons. The short- ACKNOWLEDGMENTS

comings of their approach were already discussed above. On
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FIG. 11. The time evolution of the bond lengiis,,  ;(t) (for n
odd only (a) and the charge densitigg(t) at odd sites onlyb) for
a chain of 100 units and parameter set Ib, starting from the doubly- C)

charged chain in its equilibrium geometry.

100
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APPENDIX A: THE GEOMETRY OF cPA It

f Our_ am 1s :10 ﬁesﬁnlbe ? Chalr(lj o CH ufn]lts IZCIS con- H FIG. 12. The time evolution of the bond lengiths,,, 1(t) (for n
ormation, with the help of one degree of freedom per C odd (a), the spin density5,(t) again at oddh only (b), and the

group, such that it describes the transition fromheo the  charge densitieg, (t) at odd sites onlyc) for a chain of 70 units

B phase. First of all we had to determine the geometricahnd parameter set Ia, starting from the singly-charged chain with
parameters of the stabke phase. For this purpose we per- the optimized polaron distortion placed close to chain end.
formed a full geometry optimization on a small segment of a

cPA chain, namelycis-hexatriene with the help of thab 1 ) _

initio HF method corrected for electron correlation with the 9(1)= 5 (LaD) = Lee(D),

many-body perturbation theory of second order irllgle

Plesset partitioning(MP2) using the program package r(i)=rq(i)+u(i)g(i). (A1)

GAUSSIAN94°? For our optimization we used a valence split
basis set augmented boytype polarization functions on car- Thus for undistorted chains the generalized coordinate is
bon andp-type ones on hydrogei6-31G™* (Ref. 52]. The  (Uo=1 A)
results of this optimization are given in Fig. 15.

Of the numbers given in Fig. 15 we use the bond lengths
d'f and d¥ together with the bond anglg,. (index tc de- uii)=y 0  equidistant (A2)
notes trans-cisoid, indext cis-transoid of the central unit to —Up trans-cisoid.
construct the geometry ofaPA chain in theA phase. In Fig.
16 we show details of the resulting geometry used for th
definition of the coordinates(i) for the CH units. To ob- 1 1
tain the geometry of th8 phase and the coordinagi) we — arc=7=yic: Xtc=5 dy cog ay); he=> dy sin(aye),
define the following operations:(1) Exchange of the bond
lengths, (2) the crossing points of the chain axis with the 1 1
bond dy are conserved, an(B) each CH group is free to Xg= X+ > dic: Xet=Xg™ 5 d¥; ag=a cos<
move on a straight lineq) defined by its position in thé
and in theB phase, respectively.

Then the position vector of the CH groups given by and
rq(i), which is based on theb initio calculations on
hexatriene, andi(i), the generalized displacement coordi-
nate:

U, cis-transoid

eThe guantities defined in Fig. 16 are calculated as

2Xct
(A3)

1 1 X(—X
_ T Atc o . == tc 9
htc_z d1 Sm(aCt)’ 9 2 (htc_th). (A4)
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odd) (a), the spin densityS,(t) again at oddh only (b), and the ooz - i1 d)
charge densitie,(t) at odd sites onlyc) for a chain of 70 units I i 2
and parameter set Ib, starting from the singly-charged chain with -002 p =5 = ~ o
the optimized polaron distortion placed close to chain end. t [fs]
With the numbers from Fig. 15 is then numerically FIG. 14. Kinetic energy and error in energy conservation for the
time simulations: (a) singly-charged chain, starting from equilib-
0.025 874 987 rium, parameter set I@ee Fig. 19 (b) doubly-charged chain, start-
g= 0.013 745 635 i (A5) ing from equilibrium, parameter set I@ee Fig. 1}, (c) singly-

charged chain, starting with polaron at the chain end, parameter set

Assuming that &PA chain always starts with a bond parallel |a (see Fig. 1% (d) as before, parameter set (ee Fig. 1B
and below the chain axis on its left-hand side, we can write

the position vectors of all its uniisas IR 1
ij . . . .
=== [r()—r(DIg()dik—9g(i)o].  (A9)
r()=rg(i) +u(i)A(mody(i— 1)g=ra(i) +u(i)g(i), (k) Ry =T S
(A6)
where Note, that this definition of the generalized displacement co-
ordinates does not lead to a bond angl®f 120° for the
A(O)=(_1 0 ) A(1)=(1 0 ) equidistant chaitiu(i)=0], but to an angle of 124°, which
= o -1)7 = 0o —-1) is a nevertheless reasonable value for that quantity.
1 0 -1 0
— . — 8, | 117.6425°
6(2)_(0 1)’ '2‘(3)_< 0 1)' (A7) dh | 10828
dF | 1.3493

5, | 118.4932°
i | 125.1470°
d | 145284
Bs | 121.3040°
Y1 | 1214882°

The distance between two CH unit@&ndj is given by
Rij=v[ri)—r(j)]

=\[rg(i)—rg(i)+u(gi)—ui)g(j)1% (A8) N _ , _
FIG. 15. Optimized geometry dfis-hexatriene(HF/MP2 with
and its derivative is calculated as 6-31G™* basis.
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APPENDIX C: GRADIENTS OF THE & ENERGY

cis-transoid . 455 X . .
Forner*®® had derived an analytical expression for the
™~ calculation of the gradient of the-electron energy in the
I trans-cisoid case of the UHF method from the converged density matri-

: _ ces (E"). Using the variational theorem on which the UHF
" method is based one can show that

I
|
|
' ' IEunr  IEGuet IEUNE

FIG. 16. Details of the geometry aPPA used for the definition au(j) - au(j)
of the coordinateu(i).

IVt

m {Pjj(Py—22)

N
1
APPENDIX B:  o-ELECTRON ENERGY =3 tzl (1=j)

The o bond can be assumed as being well localized, and a2 DB2
thus the totalo-electron energy can be written as a sum of +Py(Pj;—22)) + 22,2;— 2[ (P{)“+ (Pj)°1}
pair potentials between next neighbors. We use a Taylor ex- N

- . . d0;
pansion of the energy of@bond between unitandj in the +2> ﬂ Pit;
bond lengthR; ;, ; truncated after the harmonic term: =1 du(j)
N—-1 K N—-1
E7=Eg+A2, (Rij1~Ro)+5 2 (Rijii=Ro)? P=Pji+Pf (CD
=Eg+Ei,q, (B1)  holds, where the; are the charges of the ionic cores at unit

A . j (here the ions are all CHions and thug;=1). The de-
whereR, denotes the equilibrium length of a free CC Smglerivatives of they;, and the, can be trivially calculated

bond and we use the valiy=1.54 A (see, e.g., Ref. 53 vticall
Since we need only relative energies and energy derivaa 2 yucaty. . . :
Unfortunately, this simple expression holds strictly only

tives for our study, we can Sag_zo' For the determination for the UHF case, while in AUHF there would occur in ad-
of the other two parameters we impose two conditions on oy 4 very complicated term which contains derivatives of

o potential. First of all the potential has to have its minimuM e yensity-matrix elements. Therefore, one can use alterna-
atR; j+1=Ry by definition for alli. This leads to the condi- tively the numerical derivative

tion

JEaupelu(1),...u(N)] 1

dEiv”l:O:}A:O (B2) = [E=AUHF, _ 1y _ =AUHF

dR i1 au(j)
The remaining parameté¢ follows from the condition that
the total energy of a chain has to be minimal in the ideally
dimerized geometry of thé& phasgu(i)=ug in our casg

EMYF(£h)=EAYTu(1),...u() =h,...u(N)].  (C2)

"L GET JEM" JE? The necessary magnitude lofcan be estimated analytically
< | au +au(i) +(9u(i) =0. (see Ref. 4B In Ref. 46 also other methods for the calcula-
i=1 S N . . . . .

u(i)=uo u()=uo u@=u tion of numerical derivatives are described, for example an

(B3) extrapolation forh approaching zero. However, for the ap-

This condition yields folK the expression plication of such methods the determination of the AUHF

energy for at least 10—12 values lofis necessary, and thus

EiNzl([aE”/ﬁu(i)]|u(i):uo+[aE””/(9u(i)]|u(i):u0) they would be too costly computationally, especially for

K=—-—<8n—"1<w — : . larger chains. The optimum value forcan be also estimated
2i-1 2R RO)[aR'*'“/aU(J)]|“(J)_“6(JB4) from comparisons between numerical and analytical gradi-

ents of the UHF method where E(C1) is exact.
This expression allows us to compute uniguely the value of We investigated numerically if E4C1) could be used as
K for a given set of parameters and a given length of théin approximation to the true gradient also in the AUHF
chain, ensuring thus that tfephase is an energy minimum. model. It turned out that in the case of geometry optimiza-
Note, that in contrast toPA the minimum of the potential is tions and time simulations, the error made by application of
not exactly au(i) =0 for odd-numbered chains, but we have EQ. (C1) to AUHF is negligibly small. The error in the ge-
ometries obtained, in fact, is beyond the convergence crite-
dE? rion. However, Eq(C1) cannot be used in cases where the
#0. (BS) f derivatives have to be computed as exactly as pos-
du zeroes of deriva p y as p
u=0 sible, which is necessary for the parametrization. Since in
The deviation of the position of the maximumBf from the  this case we only need to treat short chains, the application
equidistant chain is only 0.002 32 A. of Eq. (C2) does not lead to computational problems.
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