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Polarons and bipolarons incis-polyacetylene
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Chair for Theoretical Chemistry, Friedrich-Alexander University, Egerlandstrasse 3, D-91058 Erlangen, Germany

~Received 10 February 1997; revised manuscript received 9 September 1997!

We present a parametrization for the Pariser-Parr-Pople Hamiltonian for the description ofcis-polyacetylene
(cPA). In contrast totrans-polyacetylene, we have to include symmetry breaking between neighboring sites
into the Su-Schrieffer-Heeger-type one-electron part of the Hamiltonian. Our parametrization is based on
correlatedab initio calculations oncis-hexatriene and on the results of independent calculations found in the
literature. For open-shell systems~singly charged polarons! we use the annihilated unrestricted Hartree-Fock
method to avoid the artificial spin contaminations inherent in UHF~unrestricted HF! calculations, which lead
to the inclusion of fractions of the correlation energy in UHF total energies which cannot be controlled and are
different for different systems and even for different geometries of the same system. Thus UHF is useless for
the calculation of potential hypersurfaces and thus in turn for dynamical simulations. We find that incPA
singly-charged polarons are formed, while in doubly-charged chains stable bipolarons are found, although of a
quite large width. This is in contrast to recent results reported by Shimoi and Abe@Y. Shimoi and S. Abe,
Synth. Met.69, 687 ~1995! and Phys. Rev. B50, 14 781~1994!# who found that two singly-charged polarons
are more stable for realistic parameter values than a doubly-charged bipolaron. We further find that the charged
polarons are mobile in the chain and thus we conclude that polarons and bipolarons can serve as charge carriers
~the latter ones spinless! in dopedcPA. @S0163-1829~98!06706-X#
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I. INTRODUCTION

The p-conjugated polymer polyacetylene1 ~PA! consists
of weakly coupled linear chains of CH units. If the bon
would be of equal length, PA would be a quasi-on
dimensional metal, where the 2pp orbitals of carbon form a
half-filled p band. However, such states are not stable du
the Peierls distortion:2 the system becomes more stable
the formation of alternating long and short CC bonds. T
presence ofsp2 hybridized carbons allows the formation o
two isomers,cPA andtPA wheretPA is the thermodynami-
cally stable one, whilecPA is a metastable isomer, forme
initially in the synthesis~see Ref. 2!. The structures of the
two isomers are sketched in Fig. 1.

It was found very early thattPA can be easily doped, bot
chemically and electrochemically, and becomes conduc
upon doping with spinless charge transport at low dop
levels. Further,tPA is photoconducting. The conductivit
can be varied in a range of several orders of magnitude
high doping levels to higher values than that of copper~see,
e.g., Refs. 1, 2!.

Naturally this behavior leads to a large number of the
retical investigations. At the beginning of these studies w
the pioneering work of Su, Schrieffer, and Heeger3,4 ~SSH!
who introduced the SSH Hamiltonian~corresponding in the
continuum limit to well-known models in field theory5!. The
SSH model is basically of the Hu¨ckel type and electron
phonon interactions are included via an expansion of
next-neighbor resonance integrals in the bond lengths~pro-
jected onto the chain axis! up to the linear term~due to the
small displacements of the CH units!. Su, Schrieffer, and
Heeger3,4 found the existence of mobile domain walls b
tween chain segments of different~but energetically degen
erate! bond alternation phasesA andB, i.e., solitons. These
solitons are associated with an energy-level at midgap in
SSH model. The structures of the different phases and
570163-1829/98/57~17!/10512~14!/$15.00
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idealized sketch of the soliton structure are shown in Fig
where theui are the displacement coordinates of the CH u
i parallel to the chain axis.

Here neutral solitons carry one spin and thus their char
counterparts are spinless and mobile. If a chain without
deformation or unpaired electron is doped just with one el
tron, another nonlinear quasiparticle, namely a polaron
formed. In the polaron case, a conformationA-B-A for the
bond alternation phase is present and two levels~the lower
one doubly, the upper one singly occupied in the negativ
charged case! in the gap appear.3,4 A further electron would
enter the upper polaron level to form a doubly-charged bi
laron. However, intPA the bipolarons cannot be stable, b
cause the repulsion of the two charges separates them, w
out cost of energy because the phasesA and B are
degenerate. Thus instead of a bipolaron an unbound pa
charged solitons is formed.

However, it was established by electron nuclear doub
resonance measurements that intPA chains containing a
neutral soliton a spin-density wave exists with alternat
signs of the spin density on neighboring CH units, whi
cannot be explained by the simple SSH model.6–10 Also
13C-NMR ~nuclear magnetic resonance! line shapes could
not be explained by the SSH model.11 Thus electron-electron
interactions were introduced into the model with the help
on-site and nearest-neighbor Hubbard terms.12,13 As a more
reliable model the Pariser-Parr-Pople~PPP! Hamiltonian was

FIG. 1. Schematic sketch of the structures oftPA andcPA.
10 512 © 1998 The American Physical Society
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57 10 513POLARONS AND BIPOLARONS INcis-POLYACETYLENE
used14–16and also other semiempirical andab initio methods
were applied.17,18 In the case of the PPP model, it turned o
that a reparametrization is necessary, because the SSH
rameters contain already implicitly effects of electro
electron interactions and therefore are not consistent with
PPP model, which contains these effects explicitly.19 How-
ever, in open shell cases the usually applied unrestric
Hartree-Fock method~UHF! could not be used because
introduces spin contaminations into the wave functions. T
means, that the UHF state is not an eigenstate of the squ
spin operator, which leads to even qualitatively wrong
sults, like the artificial preference of UHF for equidista
structures, which results in far too large and even diverg
~with increasing chain length! soliton widths. Thus, instead
of UHF one could use the annihilated UHF~AUHF! method
which yields correct expectation values of the squared s
operator.20 More recently, Rossi and Schneider18 could show
on the example oftPA that the SSH model could describ
ground-state properties rather well, while in the case of
citations ~also soliton or polaron excitations! the electron-
electron interaction is important. Similar to Fo¨rner,19,21 they
conclude that a careful reparametrization of the PPP Ha
tonian is necessary.

However, there are not many conducting polymers kno
which exhibit a degenerate ground state liketPA ~or perni-
graniline! and thus allow soliton formation. The simple
such case iscPA where this degeneracy of the two minima
lifted. In this case we have again two different bond alter
tion phases, namely the so-called cis-transoid (A) and the
trans-cisoid (B) structures, where experiments as well as t
oretical studies indicate that the cis-transoid (A) phase is
energetically favorable.22–24 As in the case oftPA one can
define a dimerization coordinate with one degree of freed
for each CH group~see the sketch in Fig. 3!.

However, in contrast totPA this coordinate incPA is not
parallel to the chain axis. As mentioned above, of the two
isomerscPA is a metastable one and in the process of the
synthesis one can obtain each desired ratio of the amou
tPA with that ofcPA, where from a temperature of 180 °
no more cPA is found in the mixture.1 Other conducting
polymers without degenerate ground states are, e
polythiophene,1 polyparaphenylene25 or polypyrrole.26 How-
ever, for our investigation we have chosencPA because it is
the simplest such case and therefore an ideal starting p
for the investigation of this type of polymers.

FIG. 2. Sketch of the structures of the different bond alternat
phasesA and B together with that of the metallic structure (ui

50) and of the soliton intPA. u0 is the dimerization constant, with
an experimental value of 0.026 Å~Refs. 50 and 51!.
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Theoretical investigations oncPA using SSH-type Hamil-
tonians go back to Brazowskii and Kirova,27 Heeger28 and
Wang, Su, and Martino.29 As discussed above, solitons tur
out to be not a suitable excitation in these systems, beca
of the lifted degeneracy of the two phases, but two solito
become confined to form polarons or bipolarons, with
structureA-B-A in contrast toA-B for solitons, where in the
central segment, the geometry of theB phase is not fully
formed in the case of polarons. The length of theB phase is
determined by a delicate balance between the energy
from, e.g., charge separation and the energy loss due to
mation of the energetically unfavorableB phase. Thus the
possibility of polaron or bipolaron formation depend
strongly on the individual structure of each material, a
reparametrizations of model Hamiltonians are, in princip
necessary for each system separately, especially if the p
mers contain groups other than CH.

In the literature some further previous investigations
cPA can be found. Shimoni and Abe published investig
tions using the PPP Hamiltonian in UHF approximation
exciton polarons30 and on bipolarons16,31 in cPA. However,
the deficiencies of an UHF approach to open-shell syste
were already mentioned above.cPA clusters of a size up to
40 CH units containing kink-antikink defects with the help
the local-density-functional approximation were studied
Ye et al.13 Springborg32 used an SSH-type Hamiltonian aug
mented with second-neighbor and on-site terms, wh
Suhai24 investigated the stability of infinite chains oftPA
andcPA with full translational symmetry on theab initio HF
level ~in the case oftPA also with corrections due to electro
correlation!. Bredas and co-workers22,33 performed similar
studies with a different basis set. These studies yield imp
tant information about the degree of dimerization, the dim
ization energy and the energy difference between the
phases, which are necessary for a parametrization of m
Hamiltonians. Effects of Coulomb interactions between
electrons on the stability of bipolarons were investigated
Wen and Su.34

In this work we applied the PPP Hamiltonian tocPA
using the AUHF approach. We present a scheme for a
rametrization of this model~in this connection we discus
also shortly the problems connected with the UHF appro
mation! which can be used in a similar fashion also for oth

n

FIG. 3. Sketch of the structures of the different bond alternat
phasesA and B together with that of the metallic structure (ui

50) and of the polaron incPA.
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10 514 57WOLFRAM UTZ AND WOLFGANG FÖRNER
conducting polymers. Further, we discuss dynamical sim
tions and geometry optimizations on singly and dou
chargedcPA chains. The geometrical model we used
cPA is discussed in Appendix A.

II. METHOD

A. The PPP Hamiltonian in the AUHF approximation

The PPP model for the semiempirical description of thep
electrons of a system~separated approximately from the re
of the electrons! is well known and described in detail i
Refs. 35–39. The total energy of a system is thus given
sum of different terms:

Etot5Epot1Ekin5Ep1Enn1Es2p1Es1Ekin, ~1!

whereEp denotes the energy of thep electrons,Enn is the
repulsion energy of the positively charged ionic cores,Es2p

is the interaction energy betweens and p electrons,Es is
the s-electron energy~a detailed description of this term i
given in Appendix B!, andEkin is the kinetic energy of the
ionic cores in case of time simulations~see below!. In the
PPP approximationEs2p is formally assumed to vanish
thus Es2p50 in our case. However, the term is include
implicitely via the parametrization.

Using the mean-field~Hartree-Fock! approximation in
UHF form, the wave function of thep electrons is written as
a Slater determinant from different spatial orbitals for diffe
ent spins. The orbitali for spins ~s5a or b! is written as a
linear combination of basis functions, one at every site~or-
thogonalized linear combinations of a 2pp function at each
site!:

c i
s~rI !5(

r

N

cri
s x r~rI !, ~2!

wherer runs over all sites in a chain. Further we have t
zero differential overlap approximation in the PPP mo
which states that

x r* ~rI !xs~rI !5ux r~rI !u2d rs . ~3!

Note, that in our case the basis functions are assumed t
real. The integrals between the basis functions are the pa
eters entering the Hamiltonian. Performing the usual va
tional calculation, we obtain the coupled eigenvalue eq
tions

F= scI i
s5« i

scI i
s ~4!

for the unknown coefficient vectorscI i
s . The elements of the

Fock matrices are given by~m5b if s5a and vice versa!:

Frs
s 5Frs

N 1Fg rr Prr
m 1(

t51

N

~Ptt
a1Ptt

b!g rt~12d rt !Gd rs

2Prs
s g rs~12d rs!, ~5!

where the one-electron part is

Frs
N 5F2I r2(

t51

N

ztg rt~12d rt !Gd rs1b rs . ~6!
-

r

a

e
l

be
m-
-
-

Here I r511.54 eV denotes the ionization potential of a C
unit,40 zr51 is the charges of the ionic cores (CH1) and
g rr 511.25 eV is the on-site Hubbard repulsion.19 This value
stems from a previous parametrization of the P
Hamiltonian19 and is close to the usually quoted value of t
difference between ionization potential and electron affin
of carbon~11.08 eV!. The charge-density bond order matr
cesP= s ~shortly called density matrices! are given by

Prs
s 5(

j 51

N

oj
scri

s csi
s ; Prs[Prs

a 1Prs
b , ~7!

whereoj
s is the occupation number of the molecular orbi

~MO! j for spin s ~0 or 1!. Note, that we use real MO
coefficientscri

s in all our calculations.
For the two-electron integrals we use the Oh

approximation:41

g rs5aF S 2a

g rr 1gss
D 2

1Rrs
2 G21/2

; a5
e2

4p«0
, ~8!

where e is the elementary charge and«0 is the dielectric
constant. The electron-phonon coupling matrixb is given as
~note the symmetry breaking which leads to a lifting of t
degeneracy of the phasesA andB already on the SSH level!:

b rs5b~r !ds,r 11~12d rN!1b~r 21!ds,r 21~12d r1!,

b~r !5 H 2b12@u~r !2u~r 11!#a1 ; r even
2b22@u~r !2u~r 11!#a2 ; r odd. ~9!

Here the parametersb2 anda2 describe the bonds parallel t
the chain axis andb1 anda1 are the inclined ones. This form
of the electron-phonon interaction was also used by W
and Martino12 in the framework of the SSH model ofcPA.

The eigenvalue problem is solved by a self-consistent
eration, i.e., we need a guess for the density matricesP= s. As
guess for smaller chains~up to N510! we use the results o
a simple Hu¨ckel calculation, while for larger chains we us
as guess the converged density matrices of shorter o
Since we need accurate numerical gradients in the param
zation, we have to use a convergency threshold for the
ergy of 10213 eV. This high accuracy leads especially f
long chains to the necessity of a large number of iterat
cycles ~up to several thousands without using extrapolat
techniques!. The totalp-electron energy and the ionic repu
sion energy are given by

Ep5
1

2 (
rs

(
s

~Frs
s 1Frs

N !Prs
s ,

Enn5
1

2 (
rs

~12d rs!zrzsg rs . ~10!

As mentioned above, the UHF model has the disadv
tage that the total wave function is not an eigenfunction
the squared spin operator. Investigations ontPA have
shown42 that with the UHF approximation one obtains a so
ton width which diverges with increasing chain length. Fu
ther due to the spin contaminations in the UHF wave fu
tions one obtains total energies which contain~unknown!
fractions of the correlation energy which decrease expon
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57 10 515POLARONS AND BIPOLARONS INcis-POLYACETYLENE
tially with increasing dimerization amplitude. Thus a UH
potential surface is even qualitatively wrong and UHF p
dicts an equidistant ground state fortPA in contradiction to
experiment.21 The most straightforward method to overcom
this problem is the extended HF~EHF! method,43,44 where
the spin contaminations are projected out of the ansatz w
function before the variation is performed. However, the
sulting equations are quite complicated and thus the me
seems not to be feasible for time simulations on lar
chains. Another possibility would be the restricted open-sh
HF ~ROHF! method, where the same spatial orbitals for d
ferent spins are used as in the restricted HF~RHF! but the
occupation numbers of the orbitals are allowed to be 0, 1
2 ~0 and 2 in the RHF!. Unfortunately, ROHF cannot de
scribe the spin polarization and is thus inappropriate for
use.

Finally, because of the experiences with this method
the tPA case15,24 we decided to use the annihilated UH
~AUHF! method45 where—starting from a guess with corre
^Ŝ2&—the contamination coming from the next higher mu
tiplicity is projected out at every self-consistent field iter
tion. This procedure usually converges to a state with
e

-

e

-

ve
-
od
r
ll

-

r

r

n

n

approximately correct expectation value of the squared s
operator independent of the chain length or geometry~e.g.,
an expectation value of the squared spin operator
0.7506\2 instead of the correct value of 3/4\2 for doublet
states incPA!. In the case of̂ S2&50\2, AUHF makes it
possible to describe spin polarizations of the closed-s
system, i.e., it does not necessarily converge to the R
solution. However, one has to keep in mind that AUHF
besides all of its advantages—dissociates in the same wa
RHF. Thus, for instance, H2 gives an incorrect dissociatio
behavior with AUHF. In our optimizations and time simula
tions, however, displacements are usually far below the
sociation regions for the bonds. The annihilation operato
~see also Ref. 20, and references therein!

Âs115
Ŝ22~s11!~s12!

^Ŝ2&2~s11!~s12!
. ~11!

The annihilated density matrices can be computed by sim
matrix multiplications by the matrices formed directly fro
the MO coefficients. From the UHF density matricesP= s the
annihilated matricesJ= s ~s5a or b! are obtained as
M2J= a5@A222A Tr~P= aP= b!2N Tr~P= aP= b!13 Tr~P= aP= b!1pq2q12 Tr2~P= aP= b!22 Tr~P= aP= bP= aP= b!#P= a

2@p2Tr~P= aP= b!#P= b1P= bP= aP= b1@N24 Tr~P= aP= b!2312A#P= aP= bP= a1P= aP= b1P= bP= a@2 Tr~P= aP= b!2p112A#

22@P= aP= bP= aP= b1P= bP= aP= bP= a#14P= aP= bP= aP= bP= a, ~12!

M25A21pq1@222A2N1Tr~P= aP= b!#Tr~P= aP= b!22 Tr~P= aP= bP= aP= b!. ~13!
n-
ups

n-

the

is
l
uc-
by
di-
Here Tr~ ! denotes the trace of the argument in brackets,p is
the number ofa-spin electrons,q is that of theb-spin elec-
tronsA5q22(s11), s5(p2q)/2 andN is the total num-
ber (p1q) of electrons. WithA chosen as given above, th
largest contaminating state is annihilated.J= b is obtained by
an interchange ofa with b andp with q in the above equa
tions.

B. Kinetic energy, time simulation, and geometry optimization

The kinetic energy in a time simulation is given by

Ekin5
1

2
mCH(

i 51

N

@rİ~ i !#2, ~14!

where the dot denotes a time derivative. Insertion of the
plicit equation for the position vector~Appendix A! yields

Ekin5
1

2
mCH5(

i 51

N H d

dt
@rId~ i !1u~ i !g~ i !#J 2

5
1

2
mCH(

i 51

N

@ u̇~ i !g~ i !#25
1

2
meff(

i 51

N

@ u̇~ i !#2,

meff[mCH@g~ i !#2, ~15!
x-

wheremCH denotes the mass of a CH group. In the Bor
Oppenheimer approximation we can consider the CH gro
as classical particles moving in the potentialEpot. Thus New-
ton’s equations of motion are

meff

d2u~ i !

dt2
52

]Epot

]u~ i !
5F~ i !. ~16!

Explicit equations for the derivatives are detailed in Appe
dixes A and C. With the geometriesu( i ,t0) at any timet0
and their time derivativesv( i ,t0), we can compute in a
simple one-step procedure the positions and velocities at
time t01Dt by

n~ i ,t01Dt !5n~ i ,t0!1
F~ i ,t0!

meff
Dt,

u~ i ,t01Dt !5u~ i ,t0!1n~ i ,t01Dt !Dt. ~17!

During a simulation, the conservation of total energy
checked to ensure that the time stepDt was chosen smal
enough. Geometry optimization can be performed by red
ing all velocities after a time step with the same factor or
using a Fletcher-Powell algorithm using the energy gra
ents.
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10 516 57WOLFRAM UTZ AND WOLFGANG FÖRNER
C. Parametrization

As the first step of our numerical work we had to perfo
a parametrization of the model based on the results of in
pendent theoretical calculations and/or experiments. An
entation is the reparametrization of the PPP model fortPA
performed previously.19,21 Here a5a15a251.9 eV/Å and
b5b15b252.4 eV were found, with the electron-phono
interaction a less than half of the SSH values. This had
main reason: A part of the electron-phonon interactions
included via the geometry dependence of the integrals in
g’s and not in the one-electron part. Thus in a PPP Ham
tonian electron-phonon and electron-electron interacti
cannot be trivially separated from each other. And the diff
ences in the energies of the two bond alternation phases
already contained in theg’s and therefore,ua12a2u could be
much smaller than it was reported for pure SSH Hamil
nians or Hubbard models~where only the on-site term of th
electron-electron interactions is present!.26,27The same holds
also for PPP Hamiltonians where the geometry depende
of the g’s is neglected, as in the work of Shimoi an
Abe.16,30,31 The results of these types of studies could
misleading, because the electron-phonon interactions
tained only in the one-electron part of the model could ha
other effects than is the case in a more realistic model, wh
electron-phonon interactions are contained both in the o
and in the two-electron part of the Hamiltonian. Since t
property of the interaction follows clearly and unambig
ously from the geometry dependence of all integrals in anab
initio treatment of a system, we consider a PPP Hamilton
with geometry dependentg’s ~Ohno formula! as more real-
istic than geometry-independent two-electron interaction
rameters.

As a first step we have to get an idea about the rang
the one-electron parameters which can be considered a
alistic. Note that the parameter valuea51.9 eV/Å found for
tPA ~Ref. 21! is related to the bond length projected on t
polymer axis intPA. In the case of our choice of the gene
alized coordinateu for cPA ~see Appendix A!, this corre-
sponds to a value of 0.08 eV/Å. Thus the region for t
parameters which can be considered as realistic and has
investigated is

1.9 eV<b1 , b2<3.6 eV,

0.05 eV/Å<a1 , a2<0.13 eV/Å. ~18!

The on-site two-electron termg rr is not considered as a var
able because the symmetry breaking incPA is already con-
tained in the geometry dependence of theg rs , which all
depend on the constantg rr and on the distance between sit
r ands. In contrast totPA we have forcPA the behavior

g r ,r 12uu5u0
Þg r ,r 12uu52u0

, ~19!

which is exactly the desired symmetry breaking. Note tha
double-well potential~which is assumed forcPA in general,
see ab initio results below! cannot exist for finite even
numbered chains, because in that case a negative valueu
implies a structure with two unsaturated carbons at the ch
ends. This is not the case in calculations on an infinite ch
with periodic boundary conditions or for odd-number
small chains because in the latter case bothu5u0 and
e-
i-

e
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u52u0 imply one unsaturated carbon at one of the ch
ends. We consider periodic boundary conditions in fin
chains as unrealistic and thus use open chain ends thro
out.

First of all we have to consider a basic qualitative res
of ab initio calculations on the infinite chain~see Refs. 29,
30, 32, and 33 and Table I! for our parametrization: there
exists an absolute energy minimum forcPA at u5u0 ~A
phase!, accompanied by a local maximum aroundu50 and a
local minimum aroundu52u0 ~B phase! where the length
of CC double bonds and CC single bonds in both pha
should not differ too much. Thus we need to have a se
parameters which yields a double-well potential with theA
phase being lower in energy than theB phase. Further we
have performedab initio HF/MP2 calculations onM points
u(I ) with 0,u(I ),3 using a 6-31G** basis set oncis-
hexatriene again using theGAUSSIAN94 program package
Since such calculations can be considered as very reliable
a potential surface in theA-phase region, we have to requir
that our PPP energies are as close as possible to this pote
curve~which shows a minimum atu5u0 and thus the mini-
mum requirement is fulfilled automatically if this potential
reproduced!. Again we want to include the correlation effec
via the parameter values into a PPP/RHF calculation oncis-
hexatriene. Thus we can reduce our four-dimensional par
eter space with the help of the following three general
quirements:

~1! We require that atu5um ~um close to 0, equidistan
chain! the derivative of the sum of the totalp-electron and
nuclear repulsion energies with respect tou has to vanish for
odd N. This implies

d~Ep1Enn!

du U
u5um

50, ~20!

and thus yields the dependence of one of the parameter
our case we have chosena1 , as a function~numerically
given! of the other three:

a15a1~b1 ,b2 ,a2!. ~21!

~2! For N56 and 0,u(I ),3 whereI counts theM cal-
culatedab inito values of the potential,EMP2@u(I )#, we re-
quire that the deviations of our total PPP energy valu
Etot@u(I)#, from EMP2@u(I )# is minimal and vanishes ideally

DE5(
I 51

M

$Etot@u~ I !#2EMP2@u~ I !#%50. ~22!

This yields numerically a second parameter~we have chosen
b2! as a function of the other three, with one of them bei
dependent already by virtue of condition~1!:

b25b2~a1 ,a2 ,b1!5b2~a2 ,b1!. ~23!

~3! At u52u0 we require that for oddN the derivative of
the total PPP energy with respect tou vanishes:

dEtot

du U
u52u0

50. ~24!



al

fo
s:
-
a
te
d
e

ri-

a

-

th
t

er
iv
n-

th
H

t i

ta-
e

u-
-

the
be

her

he
we

ed
ined

e:
ent
has
sid-
o

he
le I

that

57 10 517POLARONS AND BIPOLARONS INcis-POLYACETYLENE
This condition yields together with~1! and~2! a third param-
eter as a function~again numerically given! of the last free
one:

a25a2~a1 ,b1 ,b2!5a2~b1!. ~25!

In detail, the requirements yield the following:

~1! Numerically we found that the derivative of the tot
p-electron energy with respect tou at u5um as a function of
the parametera1 for any fixed parameter triple (a2 ,b1 ,b2) is
approximately linear. This yields a very simple procedure
the determination ofa1 for any triple of the other parameter
for two test valuesa1

1 anda1
2 we computed the above deriva

tive atu5um . Then with the help of successive linear extr
and interpolations,a1 is determined such that the absolu
value of the derivative atu5um is smaller as a prescribe
threshold value chosen as 1027 eV/Å. We use here the valu
of um which is the minimum ofEs ~see Appendix C! instead
of u50 since this choice significantly simplifies the nume
cal work andum50.0023 Å is a very small deviation from
the equidistant case. Further we found that for any p
(b1 ,b2) the functiona15a1(a2) is also linear.

~2! Figure 4 shows as an example the MP2 energies
comparison to the potentialEtot calculated for different val-
ues ofb2 for b152.4 eV ~AUHF case!. We have chosen
here the simple differencesDE instead of their absolute val
ues because in the former case we can obtainb2 as a function
of b1 for any fixed pair (a1 ,a2) by a simple Hermite inter-
polation. We found that errors made by the use ofDE in-
stead of the absolute values are negligible. It turned out
b25b2(b1 ,a2) is a very simple function, in a very good firs
approximation, even linear.

~3! The zeroes of the derivative ofEtot with respect tou at
u52u0 can again be determined by a simple Hermite int
polation. However, note that the accuracy of the derivat
for N.15 can become quite low in the numerical differe
tiation.

We performed the parametrization procedure both for
UHF and the AUHF model. However, for the simplest SS
Hamiltonian our procedure is not applicable: In this case i
possible to fulfill conditions~1! and ~2!, but then it is not

FIG. 4. Etot ~AUHF! as a function of the coordinateu for dif-
ferent values ofb2 andb152.4 eV, a250.6 eV/Å, N56 ~dashed
lines! in comparison toEMP2 ~solid lines!.
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possible to meet condition~3!. Crucial for this failure is con-
dition ~2!: as in thetPA case19,21 it is not possible to repro-
duce an MP2 potential with the SSH model and simul
neously fulfill the extrema conditions. In the AUHF case, w
obtain a nearly linear dependence ofb2 on b1 . It is interest-
ing to note that the free parameterb1 is in a direct relation to
the dimerization energy

ED5
1

N
~Etotuu5um

2Etotuu5u0
! ~26!

and thus the choice ofb1 can be based on physical arg
ments. Further the parameterb1 is also related to the sym
metry breaking

EDD5
1

N
~Etotuu52u0

2Etotuu5u0
! ~27!

however, more weakly. If we changeb1 by 1 eV, thenED

changes by 8 meV andEDD only by 1.8 meV. Increasingb1
decreasesED and EDD. Further, shifting the left minimum
from 2u0 to 2u01D by a positiveD increasesEDD and
decreasesED. In Fig. 5 we show the potentialEtot as func-
tion of u and the remaining free parameterb1 for N59
~AUHF case!.

Here the dependence of the dimerization energy on
parameterb1 can be clearly seen. This dependence can
used to take a value ofb1 where theED is correct according
to calculations published previously. However, on the ot
hand, this fixes alsoEDD, what might lead to problems.

It turned out that it is rather troublesome to perform t
above-mentioned procedure for larger chains. Fortunately
found that in the AUHF case conditions 1–3 can be fulfill
for larger chains with the same set of parameters determ
for N59. Only the values of the spring constantK, the
dimerizationED, and the symmetry breakingEDD then be-
come a function of the chain lengthN, which converges for
increasingN. A feature that is not present in the UHF cas
Here one needs different sets of parameters for differ
chain lengths, which is quite an unphysical situation and
its reason in the spin contaminations which increase con
erably with increasingN. Further, the UHF method tends t
prefer thetrans-cisoidphase more, the largerN becomes.
This is again an indication of the unphysical nature of t
UHF results due to spin contaminations. We show in Tab
values forED andEDD found in the literature.

FIG. 5. Etot ~AUHF! as function ofu and the remaining free
parameterb1 ~the other three parameters are determined such
conditions 1 to 3 are fulfilled forN59.
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Our values from the parametrized PPP model are slig
above theED values given in the table and between the v
ues forEDD which show a large difference anyway. Ther
fore these values can be used just as a qualitative orienta
and not as definite physical quantities. More thoroughab
initio calculations oncPA in a better basis set and with co
relation corrections would be necessary. In our calculat
we use five sets of parameters: Ia and Ib have the left m
mum atu52u0 , IIa, IIb, and IIc atu52u010.1. Group II
was introduced to get also larger values forEDD as indicated
by the calculation by Shuhai.24 The parameter sets togeth
with the resulting symmetry breaking and dimerization en
gies are given in Table II.

III. GROUND-STATE OPTIMIZATIONS

We performed optimizations ofcPA chains~even number
of carbons! doped with one and two electrons, respective
In our geometry optimizations we used a ‘‘time step’’ of 0
fs and a damping factor for the velocities in each time step
0.3. Some calculations were additionally carried out usin
Fletcher-Powell algorithm46 to enhance convergency. Th
geometry was optimized until the changes in the coordina
u( i ) between two consecutive ‘‘time steps’’ were less th
1024 Å. To determine the width of the~broad! bipolaron
structures correctly, we performed geometry optimizatio
starting from the ground-state structure of the doped sys
as a first step and compared these results with optimizat
carried out with starting geometries of a greater width th
the one found in the first step. As the unit for the determi
tion of distances we used, which is the length of a CvC—C
unit in cistrans-conformation, projected onto the chain ax
This is half of the length of an elementary cell ofcPA ~2.19
Å! in our model. For the calculations we use the AUH
method and, for comparison, UHF.

In the case of a singly-charged chain, the result of
optimization is the formation of a singly-charged polaron
the center of the chains. Associated with this geometry

TABLE I. Theoretical values forED andEDD published previ-
ously in the literature~ab initio minimal basis calculations!. E(ex)
denotes values forcPA which are extrapolated from the direct
calculated values on the basis of HF/MP4 calculations fortPA by
Suhai~Ref. 47! ~ED522.75 meV/CH; all values in meV/CH!.

ED (cPA) EDD (cPA) ED (tPA) Ref. ED(ex) EDD(ex)

206 54 182 24 25.7 6.7
75 5 155 48 11.0 0.7

140 5 190 49 16.7 0.7
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formation is a charge and spin cloud which is also localiz
in the center of the chain with half widths comparable to th
of the geometry deformation. In the case of the parameter
Ib, the half width of the polaron~4d! is smaller than for the
parameter set Ia~7d!. The polaron represents itself by a sma
equidistant segement in the center of the deformation.
half width is converged with increasing chain length arou
a value ofN550. The results of the optimizations are give
in Fig. 6 for the caseN570 and parameter set Ib.

The energy eigenvalues indicate that two levels in the
are associated with the polaron which are shifted from
lower and the upper band edge, respectively, into the g
However, in contrast to SSH results1 the two levels are not
symmetric to midgap. We do not want to discuss the act
energy values for these levels, because, as it is well kno
HF levels cannot be directly connected to the measured s
tra, but additional correlation corrections, exciton shifts, a
probably a different parametrization would be necessary
this purpose.

Next we examine the case of the doubly-charged ch
Figure 7 shows geometry optimizations for parameter se
using AUHF and UHF for comparison. In the case of UH
and N556 @see Figs. 7~a!–7~c!#, a bipolaron structure is
formed, which changes to two~overlapping! polarons forN
5116 @Figs. 7~d!–7~f!#. So in the case of UHF, the forma
tion of a bipolaron forN556 is clearly a confinement effec
of the small chain, a result which is consistent with the fin
ings of Shimoi and Abe.31 The problem is the large spin
contamination of the UHF solution: The calculated value
5.89\2 for N5116 is too large to give the result physic
significance. Thus we performed the same calculations
with the AUHF method. We found that projecting out th
spin contaminations leads to a RHF solution, which is n
necessarily so in the case of a closed-shell AUHF calcu
tion, resulting in a bipolaron structure (A-B-A) having a
~quite broad! half width of about 33d, but with a total energy
about 0.7 eV above the UHF solution. Making the sa
series of calculations for parameter set Ib, we found a sim
behavior: In this case, already forN556 a pair of polarons is
formed in the UHF calculation~with even larger spin con-
tamination! and for N5116, the structure of the two sepa
rated polarons is more pronounced than in case Ia, the AU
result again gives a bipolaron. We conclude from these
sults ~the behavior of which can be reproduced with any
the parameter sets investigated here!, that despite the highe
total energy of the AUHF solution and as we are clea
outside of the dissociation region~where AUHF does not
work, see Sec. II A above!, the AUHF result is physically
16
28

56
TABLE II. Sets Ia,b and IIa–c of parameters used in our simulations.

Set Ia Ib IIa IIb IIc

a1 ~eV/Å! 0.067 957 0.061 379 0.059 587 0.065 876 0.069 4
a2 ~eV/Å! 0.070 439 0.062 760 0.054 751 0.065 268 0.068 7
b1 ~eV! 3.1 1.9 2.0 2.8 3.6
b2 ~eV! 3.045 105 1.865 050 1.981 153 2.764 389 3.565 2
ED ~meV/CH!, N569 27.386 37.533 14.155 5.380 2.090
EDD ~meV/CH!, N569 0.188 1.742 8.138 2.472 1.015
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FIG. 6. The bond distances~a,d! dn,n11 between sitesn andn11 where the upper line connects even to odd and the lower one od
even numbered sites, respectively, the spin densitiesSn5(Pnn

a 2Pnn
b ) ~b,e! and the charge densitiesqn512(Pnn

a 1Pnn
b ) ~c,f! where the two

lines connect the densities between odd and between even numbered sitesn, respectively, in the two plots.~a!, ~b!, and~c! are for parameter
set Ia,~d!, ~e!, and~f! for parameter set Ib, both forN570 and a singly-charged chain.
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more meaningful because of the quite large spin contam
tion in the UHF calculation.

The remaining question is that of the width of theB phase
with increasing chain length, because up to now it is
clear if theA-B-A structure is really a bipolaron or, as i
tPA, a soliton-antisoliton pair, where the distance increa
linearly with the chain length. In our case, the electro
electron interaction is not treated as a free parameter in
model, and thus—based on the results of SSH-l
models1,12,27—it makes sense to assume that varying
symmetry-breakingEDD should change the bipolaron width
a smaller bipolaron for largerEDD and vice versa. To inves
tigate this, we made a series of AUHF calculations with p
rameter sets IIa–c~which offers a larger variation inEDD

than sets Ia, b!, varying the chain length fromN556 to
N5200. The resulting converged bipolaron widths~see Fig.
8! show the expected behavior of the system: for smallEDD,
the width is converging quite slowly, while for larger value
~here 8 meV!, a smaller bipolaron width of about 25d can be
observed. Figure 9 shows converged geometries and ch
densities~the spin densities are nearly zero! of the resulting
structures forN5200. For the parameter sets Ia and Ib w
find a convergence comparable to that of IIc, which is to
expected from the small value ofEDD. We conclude that for
doubly charged chains in the ground state, a bipolaron
formed within the range of parameters investigated. The
tual width of the bipolaron for realistic parameters is hard
determine because of the quite large variations ofEDD in the
ab initio results quoted above.
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IV. DYNAMICS

In the dynamic simulations we useDt50.05 fs, while
some simulations performed withDt50.001 fs show the
same results. Also simulations with analytical~approximate!
and numerical gradients, respectively, show comparable
sults. First we followed the time evolution of a singly
charged chain withN570, starting with the ground-state ge
ometry for the parameter set Ia. The results are shown in
10.

Obviously, in the first femtoseconds a polaron is form
as one expects from the optimizations. However, due to
excess energy the ideal polaron structure is somewhat o
shot and then the system bounces back close to the sta
structure, while the excess energy excites lattice vibratio
After this first oscillation we observe further ones, howev
with a more complicated structure due to the excess ene
The spin and charge densities, as well as the lattice defor
tion, remain localized around the center of the chain, ho
ever, the spin density at some times suddenly vanis
which raises the question, whether the AUHF iterations
these times do not converge to unphysical solutions. Thi
supported by the fact that the error in energy conserva
becomes larger than the kinetic energy which is shown
Fig. 14~a!. At the present stage of our investigations we a
forced to leave this question open. The parameter se
yields similar results.

In Fig. 11 we show the results of a corresponding sim
lation for a doubly-charged chain withN5100 for parameter
set Ia. Here we find again the formation of a bipolaron
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FIG. 7. Comparison of UHF and AUHF, doubly-charged chain. First column:N556, UHF; second column:N5116, UHF; third column:
N5116, AUHF. First row: bond distancesdn,n11 ; second row: spin densitySn ; third row: charge densityqn . The lines connect even- an
odd-numbered sites, respectively. Parameter set Ia.
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times where deep minima of the total potential energy
observed. When bouncing back the initial geometry is ov
shot and at the maxima of the potential energy we find str
tures of the typeA-B-A-B-A corresponding to the formatio
of two tightly bound polarons. However, the bipolaron
definitely the stable structure, favored by 17.5 meV/CH o
the two polarons@Fig. 14~b!#. The geometry and the charg
density perform sinusoidal oscillations around the bipola
structure, where the frequency of the charge-density osc
tion is half that of the geometry oscillation. This is similar
the findings in a SSH model, however, there the frequenc
one-fourth as Wang, Su, and Martino reported.29 The results
for parameter set Ib are similar and thus not shown here

FIG. 8. Converged bipolaron widths forN556, 76, 96, 116.
Parameter sets IIa,b,c.
e
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Finally, we want to discuss the mobility of polarons. F
this purpose we place the optimum geometry of the char
polaron close to the chain end of a chain of 70 units a
follow the dynamics evolving from this initial geometry i
the singly charged chain. The results for parameter set I
shown in Fig. 12.

Obviously, the polaron structure accompanied by its s
and charge cloud moves without any change of its fo
through the chain and is reflected at the chain end. The
cess energy, as Fig. 12~a! indicates, is radiated into lattice
phonons. It is interesting to observe that the kinetic energ
the chain is nearly constant from 20 to 100 fs@Fig. 14~c!#
and does not change as the polaron is reflected at the c
end. For larger simulation times, the kinetic energy increa
exponentially, the whole chain starts to vibrate and the m
ing structure—lattice deformation plus spin and char
cloud—is destroyed. But still, charge as well as spin den
stay localized even at larger simulation times. Of course, a
the error in energy conservation increases dramatically a
120 fs, so a smaller time step or a different integrati
method would be necessary to follow the dynamics furth
The corresponding results for parameter set Ib are show
Fig. 13.

Due to the larger dimerization energy, the polaron
slower in this case than in the former one. Also the exc
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energy is larger and induces large amplitude lattice vibra
in another region of the chain than that where the polaro
located. Again around this point in time the errors beco
too large@Fig. 14~d!# and thus we did not follow the system
further.

V. CONCLUSIONS

Our calculations yield several interesting results: One
the stability of the bipolaron incPA in the AUHF/PPP
model, which is a matter of discussion in the literature. T
geometry optimization, as well as the simulations start
from a doubly-charged chain in equilibrium geometry, u
ambiguously show that. Wang, Su, and Martino29 got similar
results in the simple SSH case. However, a direct comp
son between their and our results is not possible since t
parametrization leads to a very large symmetry-breaking
ergy @100 meV/CH forEDD ~Ref. 29!#. Shimoi and Abe16

conclude on the basis of a UHF/PPP model that at low d
ing levels polarons are favored over bipolarons. The sh
comings of their approach were already discussed above
the contrary, Wen and Su34 use an extended Hubbard mod
and conclude that bipolarons are stable even at la
electron-electron interaction. However, the widths of t

FIG. 9. The bond distances~a,c! dn,n11 between sitesn andn
11 where the upper lines connect even- to odd- and the lower o
odd- to even-numbered sites and the charge densitiesqn51
2(Pnn

a 1Pnn
b ) ~b,d! where the lines connect the densities betwe

odd- and even-numbered sitesn, respectively, in the two plots.~a!
and ~b! are for parameter set IIa,~c! and ~d! for parameter set IIc,
both for N5200 and a doubly-charged chain.
n
is
e

s

e
g
-

ri-
re
n-

-
t-
n

e

quasiparticles they obtained differ from ours. On the oth
hand, the results obtained by Yeet al.13 with the local-
density approximation are in fair agreement with ours. T
other interesting result is the finding of mobile polarons. T
simulations with a singly-charged polaron on the chain e
illustrate the quasiparticle character of the polaron, which
weakened at larger simulation times by lattice phonons. O
results also show the possibility of polarons and bipolaro
acting as charge carriers.

For obtaining these results, we have developed a meth
ology for the parametrization of the PPP Hamiltonian f
cPA which can be applied in a similar fashion to other co
ducting polymers. We emphasize here that reparametr
tions are indispensible if semiempirical Hamiltonians a
used for the description of polymers with different geome
cal structures.
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FIG. 10. The time evolution of the bond lengthsdn,n11(t) ~for n

even! ~a!, the spin densitySn(t) again for evenn only ~b! and the
charge densitiesqn(t) at even sites only~c! for a chain of 70 units
and parameter set Ia, starting from the singly charged chain in
equilibrium geometry.
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APPENDIX A: THE GEOMETRY OF cPA

Our aim is to describe a chain ofN CH units incis con-
formation, with the help of one degree of freedom per C
group, such that it describes the transition from theA to the
B phase. First of all we had to determine the geometr
parameters of the stableA phase. For this purpose we pe
formed a full geometry optimization on a small segment o
cPA chain, namelycis-hexatriene with the help of theab
initio HF method corrected for electron correlation with t
many-body perturbation theory of second order in Mo” ller-
Plesset partitioning~MP2! using the program packag
GAUSSIAN94.52 For our optimization we used a valence sp
basis set augmented byd-type polarization functions on car
bon andp-type ones on hydrogen@6-31G** ~Ref. 52!#. The
results of this optimization are given in Fig. 15.

Of the numbers given in Fig. 15 we use the bond leng
d1

tc and d2
tc together with the bond angleg tc ~index tc de-

notes trans-cisoid, indexct cis-transoid! of the central unit to
construct the geometry of acPA chain in theA phase. In Fig.
16 we show details of the resulting geometry used for
definition of the coordinatesu( i ) for the CH units. To ob-
tain the geometry of theB phase and the coordinateu( i ) we
define the following operations:~1! Exchange of the bond
lengths,~2! the crossing points of the chain axis with th
bond d2

tc are conserved, and~3! each CH group is free to
move on a straight line (g) defined by its position in theA
and in theB phase, respectively.

Then the position vector of the CH groupi is given by
rId( i ), which is based on theab initio calculations on
hexatriene, andu( i ), the generalized displacement coord
nate:

FIG. 11. The time evolution of the bond lengthsdn,n11(t) ~for n
odd only! ~a! and the charge densitiesqn(t) at odd sites only~b! for
a chain of 100 units and parameter set Ib, starting from the dou
charged chain in its equilibrium geometry.
l

a

s

e

gI ~ i !5
1

2
~rI ct~ i !2rI tc~ i !!,

rI~ i !5rId~ i !1u~ i !gI ~ i !. ~A1!

Thus for undistorted chains the generalized coordinate
(u051 Å)

u~ i !5H u0 cis-transoid

0 equidistant

2u0 trans-cisoid.

~A2!

The quantities defined in Fig. 16 are calculated as

a tc5p2g tc ; xtc5
1

2
d2

tc cos~a tc!; htc5
1

2
d2

tc sin~a tc!,

xg5xtc1
1

2
d1

tc ; xct5xg2
1

2
d2

tc ; act5a cosS 2xct

d1
tc D ,

~A3!

and

htc5
1

2
d1

tc sin~act!; gI 5
1

2 S xtc2xct

htc2hct
D . ~A4!

y-

FIG. 12. The time evolution of the bond lengthsdn,n11(t) ~for n
odd! ~a!, the spin densitySn(t) again at oddn only ~b!, and the
charge densitiesqn(t) at odd sites only~c! for a chain of 70 units
and parameter set Ia, starting from the singly-charged chain w
the optimized polaron distortion placed close to chain end.
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With the numbers from Fig. 15,g is then numerically

g5S 0.025 874 987 2
0.013 745 635 7D . ~A5!

Assuming that acPA chain always starts with a bond parall
and below the chain axis on its left-hand side, we can w
the position vectors of all its unitsi as

rI~ i !5rId~ i !1u~ i !A= „mod4~ i 21!…gI 5rId~ i !1u~ i !gI ~ i !,
~A6!

where

A= ~0!5S 21
0

0
21D ; A= ~1!5S 1

0
0

21D ,

A= ~2!5S 1
0

0
1D ; A= ~3!5S 21

0
0
1D . ~A7!

The distance between two CH unitsi and j is given by

Ri j 5A@rI~ i !2rI~ j !#2

5A@rId~ i !2rId~ j !1u~ i !gI ~ i !2u~ j !gI ~ j !#2, ~A8!

and its derivative is calculated as

FIG. 13. The time evolution of the bond lengthsdn,n11(t) ~for n
odd! ~a!, the spin densitySn(t) again at oddn only ~b!, and the
charge densitiesqn(t) at odd sites only~c! for a chain of 70 units
and parameter set Ib, starting from the singly-charged chain
the optimized polaron distortion placed close to chain end.
e

]Ri j

]u~k!
5

1

Ri j
@rI~ i !2rI~ j !#@gI ~ i !d ik2gI ~ j !d jk#. ~A9!

Note, that this definition of the generalized displacement
ordinates does not lead to a bond angleg of 120° for the
equidistant chain@u( i )50#, but to an angle of 124°, which
is a nevertheless reasonable value for that quantity.

th

FIG. 14. Kinetic energy and error in energy conservation for
time simulations: ~a! singly-charged chain, starting from equilib
rium, parameter set Ia~see Fig. 10!, ~b! doubly-charged chain, start
ing from equilibrium, parameter set Ia~see Fig. 11!, ~c! singly-
charged chain, starting with polaron at the chain end, paramete
Ia ~see Fig. 12!, ~d! as before, parameter set Ib~see Fig. 13!.

FIG. 15. Optimized geometry ofcis-hexatriene~HF/MP2 with
6-31G** basis!.
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APPENDIX B: s-ELECTRON ENERGY

The s bond can be assumed as being well localized,
thus the totals-electron energy can be written as a sum
pair potentials between next neighbors. We use a Taylor
pansion of the energy of as bond between uniti and j in the
bond lengthRi ,i 11 truncated after the harmonic term:

Es5E0
s1A (

i 51

N21

~Ri ,i 112R0!1
K

2 (
i 51

N21

~Ri ,i 112R0!2

5E0
s1Ei ,i 11

s , ~B1!

whereR0 denotes the equilibrium length of a free CC sing
bond and we use the valueR051.54 Å ~see, e.g., Ref. 53!.

Since we need only relative energies and energy der
tives for our study, we can setE0

s50. For the determination
of the other two parameters we impose two conditions on
s potential. First of all the potential has to have its minimu
at Ri ,i 115R0 by definition for all i . This leads to the condi
tion

dEi ,i 11
s

dRi ,i 11
50⇒A50. ~B2!

The remaining parameterK follows from the condition that
the total energy of a chain has to be minimal in the idea
dimerized geometry of theA phase@u( i )5u0 in our case#:

(
i 51

N21 S ]Ep

]u~ i !U
u~ i !5u0

1
]Enn

]u~ i !U
u~ i !5u0

1
]Es

]u~ i !U
u~ i !5u0

D 50.

~B3!

This condition yields forK the expression

K52
( i 51

N ~@]Ep/]u~ i !#uu~ i !5u0
1@]Enn/]u~ i !#uu~ i !5u0

!

( i 51
N21( j 51

N ~Ri ,i 112R0!@]Ri ,i 11 /]u~ j !#uu~ j !5u0

.

~B4!

This expression allows us to compute uniquely the value
K for a given set of parameters and a given length of
chain, ensuring thus that theA phase is an energy minimum
Note, that in contrast totPA the minimum of the potential is
not exactly atu( i )50 for odd-numbered chains, but we ha

dEs

du U
u50

Þ0. ~B5!

The deviation of the position of the maximum ofEs from the
equidistant chain is only 0.002 32 Å.

FIG. 16. Details of the geometry ofcPA used for the definition
of the coordinateu( i ).
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APPENDIX C: GRADIENTS OF THE p ENERGY

Förner54,55 had derived an analytical expression for t
calculation of the gradient of thep-electron energy in the
case of the UHF method from the converged density ma
ces (P

=

s). Using the variational theorem on which the UH
method is based one can show that

]EUHF

]u~ j !
5

]EUHF
p 1]EUHF

nn

]u~ j !

5
1

2 (
t51

N

~12d j t !
]g j t

]u~ j !
$Pj j ~Ptt22zt!

1Ptt~Pj j 22zj !12ztzj22@~Pjt
a !21~Pjt

b !2#%

12(
t51

N
]b j t

]u~ j !
Pjt ;

Pjt[Pjt
a 1Pjt

b ~C1!

holds, where thezj are the charges of the ionic cores at u
j ~here the ions are all CH1 ions and thuszj51!. The de-
rivatives of theg j t and theb j t can be trivially calculated
analytically.

Unfortunately, this simple expression holds strictly on
for the UHF case, while in AUHF there would occur in a
dition a very complicated term which contains derivatives
the density-matrix elements. Therefore, one can use alte
tively the numerical derivative

]EAUHF@u~1!,...,u~N!#

]u~ j !
'

1

2h
$Ej

AUHF~2h!2Ej
AUHF~1h!%,

Ej
AUHF~6h!5EAUHF@u~1!,...,u~ j !6h,...,u~N!#. ~C2!

The necessary magnitude ofh can be estimated analyticall
~see Ref. 46!. In Ref. 46 also other methods for the calcul
tion of numerical derivatives are described, for example
extrapolation forh approaching zero. However, for the a
plication of such methods the determination of the AUH
energy for at least 10–12 values ofh is necessary, and thu
they would be too costly computationally, especially f
larger chains. The optimum value forh can be also estimate
from comparisons between numerical and analytical gra
ents of the UHF method where Eq.~C1! is exact.

We investigated numerically if Eq.~C1! could be used as
an approximation to the true gradient also in the AUH
model. It turned out that in the case of geometry optimiz
tions and time simulations, the error made by application
Eq. ~C1! to AUHF is negligibly small. The error in the ge
ometries obtained, in fact, is beyond the convergence c
rion. However, Eq.~C1! cannot be used in cases where t
zeroes of derivatives have to be computed as exactly as
sible, which is necessary for the parametrization. Since
this case we only need to treat short chains, the applica
of Eq. ~C2! does not lead to computational problems.



in
rt

ev

T.

.
th

l-

ett

d

k,
em

n-

id,

.
A.
l-
F.
e,
s,
in-
on,

57 10 525POLARONS AND BIPOLARONS INcis-POLYACETYLENE
*Author to whom correspondence should be addressed: K
Fahd University of Petroleum and Minerals, Chemistry Depa
ment, Dhahran 31261, Saudi Arabia.

1A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, R
Mod. Phys.60, 781 ~1988!.

2R. E. Peierls,Quantum Theory of Solids~Clarendon, Oxford,
1955!.

3W.-P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.42,
1698 ~1979!.

4W.-P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B22,
2988 ~1980!.

5M. Takayama, Y. R. Lin-Liu, and K. Maki, Phys. Rev. B21,
2388 ~1980!.

6H. Thomann, L. R. Dalton, Y. Tomkiewicz, N. S. Shiren, and
C. Clarke, Phys. Rev. Lett.50, 533 ~1983!.

7H. Thomann, H. Kim, A. Morrobel-Sosa, L. R. Dalton, M. T
Jones, B. H. Robinson, T. Clarke, and Y. Tomkiewicz, Syn
Met. 9, 255 ~1984!.

8H. Thomann, J. E. Cline, B. M. Hofmann, H. Kim, A. Morrobe
Sosa, B. H. Robinson, and L. R. Dalton, J. Phys. Chem.89,
1994 ~1985!.

9A. J. Heeger and J. R. Schrieffer, Solid State Commun.48, 207
~1983!.

10Z. G. Soos and S. Ramashesha, Phys. Rev. Lett.50, 1938~1983!.
11M. Sasai, Synth. Met.9, 295 ~1984!.
12C.-L. Wang and F. Martino, Phys. Rev. B34, 5540~1986!.
13L. Ye, A. J. Freeman, D. E. Ellis, and B. Delley, Phys. Rev. B40,

6285 ~1989!.
14W. Förner, C. Wang, F. Martino, and J. Ladik, Phys. Rev. B37,

4567 ~1988!.
15W. Förner, Adv. Quantum Chem.25, 207 ~1994!.
16Y. Shimoi and S. Abe, Synth. Met.69, 687 ~1995!.
17L. Rodriguez-Monge and S. Larsson, J. Chem. Phys.102, 7106

~1995!.
18G. Rossi and W. F. Schneider, J. Chem. Phys.104, 9511~1996!.
19W. Förner, Chem. Phys.160, 173 ~1992!.
20T. Amos and L. C. Snyder, J. Chem. Phys.41, 1973~1773!.
21W. Förner, Chem. Phys.160, 189 ~1992!.
22J. L. Bredas, J.-M. Andre, and J. Delhalle, J. Mol. Struct.87, 237

~1982!.
23T. Ito, H. Shirakawa, and S. Ikeda, J. Polym. Sci., Polym. L

Ed. 13, 1943~1975!.
24 S. Suhai, J. Chem. Phys.73, 3843~1980!.
25L. W. Schacklette, R. R. Chance, D. M. Ivory, G. G. Miller, an

R. H. Baughman, Synth. Met.1, 307 ~1979!.
26K. K. Kanazawa, A. F. Diaz, R. H. Geiss, W. D. Gill, J. F. Kwa

J. A. Logan, J. F. Rabolt, and G. B. Street, J. Chem. Soc. Ch
Commun.1979, 347.
g
-

.

.

.

.

27S. A. Brazovskii and N. Kirova, JETP Lett.33, 4 ~1981!.
28A. J. Heeger, Comments Solid State Phys.10, 53 ~1981!.
29C.-L. Wang, Z. P. Su, and F. Martino, Phys. Rev. B33, 1512

~1986!.
30Y. Shimoi and S. Abe, Phys. Rev. B49, 14 113~1994!.
31A. Shimoi and S. Abe, Phys. Rev. B50, 14 781~1994!.
32M. Springborg, Phys. Rev. B33, 8475 ~1986!; Synth. Met.28,

D527 ~1989!.
33J. L. Bredas, R. R. Chance, and R. Silbey, Phys. Rev. B26, 5843

~1982!.
34G. Wen and W.-P. Su, Synth. Met.78, 195 ~1995!.
35R. Pariser and P. G. Parr, J. Chem. Phys.21, 660 ~1953!.
36R. Pariser and P. G. Parr, J. Chem. Phys.21, 707 ~1953!.
37J. A. Pople, Trans. Faraday Soc.49, 1375~1953!.
38J. Ladik, D. K. Rai, and K. Appel, J. Mol. Spectrosc.27, 72

~1968!.
39J. Ladik, Acta Phys. Acad. Sci. Hung.18, 186 ~1965!.
40J. Ladik,Quantenchemie~Enke, Stuttgart, 1973!.
41K. Ohno, Theor. Chim. Acta2, 219 ~1964!.
42W. Förner, Phys. Rev. B44, 11 743~1991!.
43F. Martino and J. Ladik, J. Chem. Phys.52, 2262~1970!.
44I. Mayer, J. Ladik, and B. Biczo, Int. J. Quantum Chem.7, 583

~1973!.
45T. Kovar, Master’s thesis, University Erlangen-Nu¨rnberg, Ger-

many, 1987.
46W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Fla

nery, Numerical Recipes in FORTRAN~Cambridge University
Press, Cambridge, 1995!.

47S. Suhai, Phys. Rev. B51, 16 553~1995!.
48A. Karpfen and R. Ho¨ller, Solid State Commun.37, 179 ~1981!.
49R. Dovesi, Int. J. Quantum Chem.26, 197 ~1984!.
50C. R. Fincher Jr., C. E. Chen, A. J. Heeger, A. G. MacDiarm

and J. B. Hastings, Phys. Rev. Lett.48, 100 ~1982!.
51H. Kahlert, O. Leitner, and G. Leising, Synth. Met.17, 467

~1987!.
52M. J. Frisch, G. W. Trucks, H. B. Schelegel, P. M. W. Gill, B. G

Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G.
Petersson, J. A. Montgomery, K. Raghavachari, M. A. A
Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Forseman,
Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacomb
C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andre
E. S. Replogle, R. Gomperts R. L. Martin, D. J. Fox, J. S. B
kley, D. J. Defreese, J. P. Baker, J. Steward, M. Head-Gord
C. Gonzalez, and J. A. Pople,GAUSSIAN94 Revision A.1, 1995.

53W. Förner, Synth. Met.30, 135 ~1989!.
54W. Förner, Solid State Commun.63, 941 ~1987!.
55W. Förner, Indian J. Chem. Sec. A~to be published!.


