PHYSICAL REVIEW B VOLUME 57, NUMBER 2 1 JANUARY 1998-11

Low-temperature properties of the spin-1 antiferromagnetic Heisenberg chain
with bond alternation
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We investigate the low-temperature properties of the spin-1 antiferromagnetic Heisenberg chain with bond
alternation by the quantum Monte Carlo meth@aop algorithm). The strength of bond alternation at the
gapless point is estimated 8s=0.2595+ 0.0005. We confirm numerically that the low-temperature properties
at the gapless point are consistent with field-theoretical predictions. The numerical results are compared with
those of the spin-1/2 antiferromagnetic Heisenberg chain and recent experimental results for
[{Ni(333-te}(u-N3)},](ClO,), [333-tet=tetraamineN,N’-bis(3-aminopropy}-1,3-propanediamirie
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I. INTRODUCTION probably an experimental realization of the gapless point of

the Affleck-Haldane conjecture. In order to clarify this fea-

For one-dimensional quantum spin chains, there are sonigre in more detail, it is necessary to show explicitly how the
theoretical predictions that have been confirmed experimeriniform susceptibility behaves in the low-temperature re-
tally. One example is the Haldane conjectbiidaldane in- gime for S1BA at the gapless point. Hence, the purpose of
vestigated the (3) nonlinears- model, and predicted that an this paper is to clarify the range of temperatures for which
excitation gap opens for integer Spin chains but not for ha|f.the f|e|d-the0ret|c.a| predlCUOﬂ IS Valld, and to What eXter.]t
odd integer spin chains. This conjecture was confirmed by1BA can explain the low-temperature properties of this

numerical calculation&;*and the Haldane gap was observed compound. _ _ .
experimentally’~’ Another example of such theoretical pre- - OF the gapless point of S1BA, Singh and Gelfand applied

dictions is the presence of logarithmic corrections at ver series expansion technique, aqd estimated the critical value
P g y’;f the strength of bond alternatiofi as §,=0.25+0.031°

low temperatures for the spin-1/2 antiferromagnetic Heisen- : . .
i ) i Later, Kato and Tanaka applied the density-matrix renormal-
berg chain ($AH). This feature was predicted by the ization group(DMRG) method, and obtained clear evidence
renormalization-group approdthand was confirmed nu- of the Affleck-Haldane conjectur®. They estimated the
merically by the Bethe ansat?.Later, this behavior was critical value §, more accurately ag.=0.25+0.01. As for
observed experimentalﬁ}.ln this way, the presence of loga- the excitation spectrum, Yamamoto performed the quantum
rithmic corrections at very low temperatures for the spin-1/2Monte Carlo simulatiorfworld-line algorithm, and obtained
antiferromagnetic Heisenberg chain was established. the dispersion relatiotf Totsukaet al. investigated the low-
There is another interesting prediction that has been oblying excitation spectrum by exact diagonalization, and ana-
served experimentally quite recentf/This is the so-called lyzed the results using the conformal field thebtyThey
Affleck-Haldane conjectur€** Affleck extended Haldane’s estimated the critical value af as 5,= 0.254+ 0.008.
argument to the bond-alternating chains, and predicted that Before investigating the low-temperature properties at the
there will be 2S gapless points for the spi@-antiferromag- gapless point, we have to determine the critical values of
netic Heisenberg chain with bond alternation. Later, for themore accurately. In Sec. Ill, we estimafg from the low-
spin-1 case, the central charget the gapless point is esti- temperature behavior of the uniform susceptibility and the
mated asc=1 by numerical calculations= '’ This implies  staggered susceptibility. In Sec. IV, we analyze the low-
that the low-lying excitations at the gapless point are detemperature properties of S1BA at the gapless point based on
scribed by the levelk=1 SU2) Wess-Zumino-Witten the field-theoretical prediction. Comparisons with numerical
(WZW) model. As a result, the same qualitative low- results of the spin-1/2 antiferromagnetic Heisenberg
temperature properties as those of the spin-1/2 antiferromaghain are also made. In Sec. V, the numerical results
netic Heisenberg chain are expected at the gapless poirdre compared with recent experimental results for
Recent experiments for[{Ni(333-ted(u-N3)},](ClOs),,  [{Ni(333-ted(u-N3)},](ClOs),.
[333-tet=tetra-amine N,N-bis(3-aminopropy)-1,3-propane- In the present paper, we consider S1BA defined by the
diaming show that this compound has a structure that isfollowing Hamiltonian:
effectively described by the spin-1 antiferromagnetic Heisen-
berg chain with bond alternatiof®1BA),'® and that the be-
havior of the uniform susceptibility is close to what is ex- — (— )i )
pected at the gapless pofit.Thus, this compound is " JEi 1= (217015 S, @9
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FIG. 1. Uniform susceptibility(q=0;T) (a) staggered suscep-
tibility x(gq=;T) (b) and the staggered structure factor
S(q=;T) (c) of S1IBA as a function of temperatufie The sym-
bols are 64-site data. The 96-site data for<®&<0.25
(0.25<6=<0.5) are joined by soliddotted lines. The thick solid
line corresponds to 96-site data 6+ 0.25.

where S denotes the spin operator at sitevith spin one
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FIG. 2. Uniform susceptibilityy(q=0;T) of S1BA as a func-
tion of inverse temperaturg. The solid lines correspond to the fit

asy(q=0;T)e (1/\T) exp(—A/T). Open and solid symbols denote
96-site data. Crosses denote 64-site data.

We use the quantum Monte Canl@MC) method(loop
algorithm.?° The simulations have been performed in the
grand-canonical ensemble. We have typically rus 16°
Monte Carlo steps for measurements aftet8* steps. We
have made extrapolation for the Trotter slite (A7—0) as
a+bA7? using the data ah r=1/6, 1/7, and 1/8. The sys-
tem sizes we have investigated &re 32, 64, 96, 192, 320,
and 400. We have performed calculations up to inverse tem-
peratureg=100.

II. FINITE-TEMPERATURE PROPERTIES OF S1BA

First, let us look over global features of S1BA for finite
temperatures. Figure 1 shows the uniform susceptibility
x(q=0;T), the staggered susceptibilig(g=7;T), and the
staggered structure fact®&q=m;T) defined as

x(a= OTET—<(E s>> ,

T

(2.2)
) 2
x(a= wT)_TL<(§J‘, 1)'s§i,j)/|v|)> . (22
T

2.3

S(q=mT)= <(2( 1)82) >T,

whereSf j) denotes the component of the spin at site, {)
in the (LL 1)-dimensional space-time, aidl is the number

of Trotter slices defined asl=g/A 7. Here,(---); denotes
the thermal average at temperatdre

The uniform susceptibility y(q=0;T) in the low-
temperature regime is fitted well byx(q=0;T)

 (1/\/T) exp(—A/T), except fors=0.25, as shown in Fig. 2.
This behavior is expected when the dispersion relation is

(S=1). The length of the chain and the temperature areE(q)|q_,o=aq2+A,21 whereq is the momentum measured
denoted byt andT, respectively. We set=1 as the energy from the lowest triplet state aralis a constant. Thus, except

unit.

for 6=0.25, the low-energy excitation may be explained by
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] e . & FIG. 4. Uniform (a) and staggeredb) susceptibility of SIBA
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N— - .
&R 160 E i i .
T } : N . : form susceptibility y(q=0;T) reaches a maximum at the
145 1 E > T critical point if the temperature is low enough. In Figag
N A%{m} ~~~~~~~~~~~~ . we show thes dependence of the uniform susceptibility. The
140 | B : E maximum is located nea?=0.2595 with little size and tem-
K 0.01 perature dependence.
135 4" . . L T= U Another criterion for the critical poind, is that the stag-
0.255 0.256 0.257 0.258 0.259 0.260 0.261 0.262 0.263 gered susceptibility (q=;T) is a maximum at the critical
5 point at sufficiently low temperaturé§ We show thes de-

pendence of the staggered susceptibility in Fi@).3Near
6=0.2595, y(q=;T) also reaches a maximum with little
size and temperature dependence. Thus, we estimate the
critical value of § as 6,=0.2595+ 0.0005.

In order to show the validity of this estimation, we com-
pare the low-temperature behaviors gfg=0;T) and
x(q=m;T) at §=0.2595 with those a6=0.250 and 0.255
in Fig. 4. This figure clearly shows that=0.2595 is closer
to the critical pointsd, than §=0.250 ands=0.255.

FIG. 3. Uniform(a) and staggereth) susceptibility of S1BA as
a function of 8. The bold lines are guides to the eye.

a magnon excitation with a finite excitation gap>%? This
excitation gap A gradually decreases as approaches
8.=0.25. As for the staggered susceptibilitgq= 7;T) and
the staggered structure fact@(gq=m;T), the maximum
value becomes larger @approache$.~=0.25. This behav-
ior is expected from the Affleck-Haldane conjecture and is

17,23

consistent with various numerical resuits? IV. LOW-TEMPERATURE PROPERTIES

AT THE CRITICAL POINT

In this section, we investigate the low-temperature prop-
erties of S1BA at the critical point, assuming that it is de-
In this section, we accurately determine the critical valuescribed by thek=1 SU2) WZW model(with a marginally

5.. One criterion is based on the expectation that the uniirrelevant operator'

lIl. ESTIMATION OF THE CRITICAL POINT
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FIG. 5. Uniform susceptibility y(q=0;T) of S3AH for

0<T=0.2. The crosses denote the result obtained by Bethe ansatz
cited from Ref. 10. The dotted line corresponds to the fit assuming

Eq. (4.1). We choosely=2.3. Solid and open symbols denote the
data obtained by QMC loop algorithm. The inset showg=0;T)

of S%AH for 0<T=<2. The solid line in the inset is obtained by
Bethe ansatzRef. 10.

A. Uniform susceptibility

Before investigating the low-temperature behavior of the

uniform susceptibility of S1BA at the gapless point, we

briefly review the case of the spin-1/2 antiferromagnetic

Heisenberg chain (@\H) as an example that is described by
the k=1 SW2) WZW model. Figure 5 shows the tempera-
ture dependence of the uniform susceptibijtyg=0;T) for
SLAH. 1% The dotted line corresponds to the fit assuming Eq
(4.1), which is expected from the renormalization-group
approact1°
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FIG. 6. Uniform susceptibility x(q=0;T) of S1BA at
6=0.2595 for 0<T=<0.4. The data atT=0 are obtained as
x(q=0;T=0)=1/(27v), where v=2.46+0.08 (Ref. 16 and
v=2.39 (Ref. 19. The dashed line corresponds to the linear fit
using the data for 0.62T<0.2. The inset showg(q=0;T) for
0<T=<5.
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FIG. 7. Staggered susceptibility(q=m;T) of S1BA at
6=0.2595 in the low-temperature regim@ Linear plot and(b)
logarithmic plot. The solid line corresponds to the fit assuming Eq.
(4.2). We estimateT ,=8.9. The inset in@ shows the inverse of
x(q=m;T). The inset in(b) shows the logarithmic plot of

[x(q=m;T)T]? for S%AH obtained by QMC loop algorithm. We
estimateT,=9.8 for SAH.

1
47rv

1
IN(To/T)

x(q=0;T)=

27v

In[In(To/T)+1/2]
2[In(To/T)]?

+0(1[In(To/T)1?).

4.9

The second term in Ed4.1) is the leading logarithmic cor-
rection term due to the marginally irrelevant operator

(«J.-Jg). One of the features due to this logarithmic cor-
rection is the infinite slope in the low-temperature limit. As a
result, naive extrapolation ¢gf(q=0;T) asT—0, using the
data in the low-temperature regime (092=<0.2), does not
coincide with the zero-temperature uniform susceptibility
x(q=0;T=0)=1/(27v).*® Another feature is the existence
of an inflection point in the low-temperature regime. For

SIAH, the inflection point is neal =0.0871°
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FIG. 8. Staggered structure fact@(q=;T) of S1BA at
8=0.2595 in the low-temperature regim@) Linear plot and(b) Here, we consider the S1BA case. Figures 7 and 8 show the
logarithmic plot. The solid line corresponds to the fit assuming Eqtemperature dependence of the staggered susceptibility
(4.3). We estimatel =20.6. The inset i@ shows the inverse of x(q=;T) and the staggered structure facgjg= m;T) for
S(q=mm;T). The inset in(b) shows the logarithmic plot of S1BA at the gapless point in the low-temperature regime.
[S(q=m;T)]?? for S3AH obtained by QMC loop algorithm. We These figures suggest that the low-temperature behaviors of
estimateT¢=21.5 for SAAH. x(q=m;T) and S(q=;T) for S1BA at the critical point

are qualitatively the same as those @f\Sl. [For compari-

son, in the insets of Figs.([#) and §b), we show the $AH
Let us consider the S1BA case. Figure 6 shows the temease] Thus, the behaviors of(q=m;T) and S(q=m;T)
perature dependence of the uniform susceptibilityalso support that S1BA at the critical point belongs to the
x(q=0;T) for S1BA at the critical point §=0.2595). This universality class of th&=1 SU2) WZW model.
figure supports the existence of the logarithmic correction in
the sense that naive extrapolation »fq=0;T) as T—0
does not coincide with the zero-temperature uniform suscep- V. COMPARISON WITH EXPERIMENTAL DATA

tibility x(q=0;T=0)=1/(27v), and that there exists an  |n this section, numerical results are compared with the
inflection point neaif =0.2. We have tried to fit the numeri- experimental data for[{Ni(333-te}(u-N3)},](ClO,), .2
cal data as E(XA.].), and estimated’ozo.34. This value of Figure 9 shows the temperature dependence of the
T, is smaller than that of \H by about one order of uniform susceptibility for the powder sample of
magnitude™’ [{Ni(333-te}(u-N3)},](ClO,),,. The global feature of the
experimental data is very similar to that of the numerical
results for S1BA at the gapless point. This suggests that this
B. Staggered susceptibility and staggered structure factor compound is effectively described by S1BA near the critical
point. A small difference in the low-temperature regime may
Next, we consider the low-temperature behaviors of thebe due to small anisotropy effects or off-criticality of this
staggered susceptibility(q=;T) and the staggered struc- compound.

S(q=m;T)=[In(Ts/T)]%> 4.3



57 LOW-TEMPERATURE PROPERTIES OF THE SPIN-. . 1051

VI. SUMMARY received an e-prinfcond-mat/9705179from Kitazawa and

We have reported the numerical results for the spin-1 anl_\lomura. They estimated,=0.2598 by exact diagonaliza-

tiferromagnetic Heisenberg chain with bond aIternationtlon' Their estimation is quite consistent with ours.
(S1BA) obtained by quantum Monte Car{tmop algorithm).
We have estimated the strength of bond alternation at the
gapless point a$.=0.2595+0.0005. At the gapless point,
we have confirmed that the low-temperature properties are The authors would like to thank K. Kawano and K. No-
effectively described by thie=1 SU(2) WZW model(witha  mura for helpful discussions and useful comments. One of
marginally irrelevant operathr The numerical results for the authorgM.K.) thanks D. Lidsky for reading of the manu-
S1BA at the critical point well explain recent experimental script. Part of the calculations were performed on the Intel
results for [{Ni(333-te}(u-N3)},1(ClO,),, indicating that Japan PARAGON at Institute for Solid State Physics, Uni-
this compound is close to the gapless point of the Affleck-versity of Tokyo. This research was supported in part by
Haldane conjecture. Grants-in-Aid for Scientific Research Fund from the Minis-
Note added in proofAfter submission of this work, we try of Education, Science and Cultu@8640445%.
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