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a— B phase transition in tin: A theoretical study based on density-functional perturbation theory
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The free energies of the and 8 phases of tin are calculated in the harmonic approximation using density-
functional theory and density-functional perturbation theory, within the local-density approximation. At
T=0 K the free energy of thes phase lies~359 cal/mole above that of the structure. The narrower
frequency range spanned by the vibrational band indhghase makes its entropy larger at high temperature.

As a consequence, the free energies of the two phases equal each other at a temperature of 38 °C, in close
agreement with the observed transition temperafyre13 °C.[S0163-18208)03714-X

Tin is commonly found in one of two allotropic forms: At properly accounting for dynamical effects, however, these
ambient pressure, the stable phase at low temperature iisvestigations have been mainly limited to pressure-induced
a-Sn (gray tin) which is a zero-gap semiconductor having (zero-temperatujetransitions. The free-energy calculations
the diamond structure; when the temperature is raised aboveecessary to evaluate the relative stability of two different
T.~13 °C, the crystal transforms into th® phase(white  phases of a material at finite temperature have long escaped
tin) which is a body-centered tetragonal métdlhe a«<»  any ab initio approach and only a few attempts have ap-
transition in tin is possibly the simplest and prototypical casepeared in the literature which make use of first-principles
of an entropy-driven structural transformation which is de-molecular dynamics and thermodynamic-integration
termined by theharmonig vibrational properties of the two techniques® Well below the melting point, however, the
phases of the material. Vibrational entropies are relevant ihattice contribution to the free energy is mainly determined
many other situations such as, for instance, the commonlpy the harmonic vibrational frequencies of the system and
observed stability of the body-centered cubic phase of metalsan be easily calculated without any thermodynamic integra-
at high temperatufeand the description of martensitic trans- tion, once the latter are known. Recently, gie initio cal-
formations in transition-metal alloy’s! The existing theoret- culation of free energies in the harmortar, more generally,
ical investigations of the temperature-induced- 8 phase quasiharmonicapproximation has been successfully applied
transition rely on semiempirical lattice-dynamical models fit-to the study of the lattice expansion in simple semiconduc-
ted to neutron-diffraction data and on other experimental intors!! of the temperature dependence of the surface relax-
puts such as the specific heats which are used to estimate th&on in some metal’ as well as to some related phenomena
value of the free-energy difference B=0.5"" In this paper such as the dependence of the crystal volume upon isotopic
the e« B transition in tin is studied by using modern compositiont® At low temperatures, the estimate of free en-
electronic-structure techniques without making use of anyergies via molecular dynamics is plagued by ergodicity prob-
experimental inputs. The relevant free-energies are obtaindéms and furthermore it cannot account for quantum zero-
in the harmonic approximation from static internal energiespoint effects which may be important in some cases. In a
and vibrational frequencies in the two different phases, asense, free-energy calculations based on the harmonic ap-
computed by density-functional theot FT)® and density- proximation or on molecular dynamics and thermodynamic
functional perturbation theorfDFPT),® respectively. Our re-  integration are complementary in that near or above the melt-
sults show that the combination of tliguasjharmonic ap- ing point the latter technique naturally accounts for anhar-
proximation and DFPT provides an accurate and efficientnonic effects, and it is the only possible choice, while at low
tool for the study of finite-temperature solid-solid phasetemperature the former is both less expensive and more ac-
transformations. curate. The predictive power of free-energy calculations

Over the past twenty years, structural phase transitions ihased on the harmonic approximation has been greatly en-
simple solids have been among the most successful benchanced by DFPT which is now allowing the determination of
marks of modern electronic-structure techniques based othe vibrational properties of solids with an unprecedented
density-functional theor§. Because of the difficulties of degree of accuracy.
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FIG. 1. Calculated phonon dispersiag®ntinuous linesfor the In Fig. 1 we display our calculated phonon dispersions for

a (upper pangland 8 (lower panel phases of tin. Experimental the a and 8 phases of tin. Besides the excellent agreement
data from neutron diffractiotfrom Refs. 23 and 24 for the and@  with available neutron-diffraction experimental dat&; the

phases, respectivglare reported with diamonds. main feature to be noticed is the different range spanned by
the vibrational bands in the two phases, which extend up to
As the transition temperature of the— g transition in tin -~ ~200 cm * in gray tin, while it is limited to~140 cm ! in

is ~60% of the melting temperature, we do not expect, inwhite tin. The corresponding phonon density of states are
this case, anharmonic effects to play any important role. Thelisplayed in Fig. 2.

free energies of the two phases have been thus calculated in The fact that the structure with a larger static energy has
the harmonic approximation which reads smaller vibrational frequencies indicates that a phase transi-
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where Ey(V) is the static crystal energy—easily accessible 1000 //"' /,//
to standard local-density-functional calculatibaskg isthe | 7 -
Boltzman’s constant, and the’s are normal-mode frequen- -

cies which have been calculated using DFPT.

Our calculations have been performed within the plane-
wave (PW) pseudopotential methddysing norm-conserving
pseudopotentials from Ref. 15 and basis sets including PW’s
up to a kinetic-energy cutoff of 14 Ry. Brillouin-zon8Z2)
integrations have been performed with the Gaussian-
smearing special-point techniglfel’ using a Gaussian width
of 0.01 and 0.02 Ry for ther and B structures, respectively,
which at convergence require 60 and 163 special points in
the irreducible wedge of the BZ. e e e w00

The calculated equilibrium lattice parameters of the two —3000 Temperature (k) l
phases aréexperimental data from Ref. 18 are reported in L : :
parenthesis a,=6.38 A (6.48, a;=5.70 A (5.82, (c/a)g 0 100 200 300 400
=0.544(0.546. The corresponding bulk moduli atexperi- Temperature (K)
mental data from Refs. 19 and 2®,=47 GPa(53) and
Bz=61 GPa(55). The static energy of the structure lies

F(V,T)=Ey(V)+kgT>, In
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FIG. 3. Zero-pressure free-energgolid lineg and internal-

o energy(dashed linescurves for thew and 8 phases of tin as func-
516 cal/mole below that of thg phase. Taking into account jons of temperature. The thin vertical dotted line indicates the the-

zero-point contributions to the internal energyTat0 Kthe  gretical transition temperature, while the experimental valueTfor

« phase results to be more stable than ghene by 359 s shown by the arrowh ,=359 cal/mole is thd =0 K free-energy
cal/mole. An indirect estimate of the experimental value forgdifference—including the zero-point contribution—while= 482

this quantity was obtained by integrating the experimentallycal/mole indicates the latent heat absorbed indhe 8 transition.
know constant-pressure specific heats with respect to tenfinally, the inset displays the temperature dependence of the vibra-
perature, and resulted to be 339 cal/moles one can see, tional entropies of the two phases.
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tion may occur when raising the temperature, as a consehan one could have expected, and it strongly depends on the
guence of the larger value of its entropy at high temperatureaccuracy of the calculated value fog. In fact, the two free-

In fact, in this regime the difference between the internalenergy curves are almost tangent when they cross and a
energies of the two phases tends to a constant because of #igjht vertical displacement of one of the tweuch as it
equipartition law, and hence their relative stability is deter-would be determined by a slightly different value of the dif-
mined by the difference between the entropies. For the sakgrence between the static energies of the two structugpes

of simplicity, suppose that each structure ¢r ) is char- i result in sizable variation of the transition tempera-
acterized by a single vibrational frequen@instein modet 1 ,re. \We estimate the error o—as due to the pseudopo-
the difference between the entropies of the two structureg, tia approximation—to be of the order of 30 cal/mole,

tgnds then tOAS‘”%?’kBln(wﬁ/wa)'.Thys’ at sufficiently resulting in an uncertainty of 20° on the predicted transition
high temperature the entropic contribution to the free energ¥emperature. At the same time, we find that the calculation of

?nl?;erzeaﬂceen;r-ri %a;%kﬁ; oxgggleecdc;:;egg?ﬁgrgi?geen_the the entropy difference between the two structures is less sen-
ges, b heC sitive to the fine details of the calculation, as it results from

vided the transition temperature so obtained is well below o Lo ;
the melting point of the two phases, so that the harmoni ts Iogarlthr_mc dependence on the vibrational frequencies.
approximation is well justified he ngmerlcal accuracy on the latter, as dye tq the pseudo-
This behavior is ciearly illustrated in Fig. 3 where the potential approximation aqd o'gher factor.s., is estimated to be
internal energy and the free energies of the two structures af the order of 1%, resulting in an additional 5° of uncer-
displayed. The internal energies of the two phases incread@inty in the calculated critical temperature. _
with temperature and their difference saturates to a value The quality of the agreement between theory and experi-
which is ~35% larger than aff=0 K. The free-energy Ment achieved for thev— g transition in tin is such as to
curves bend down, and their difference decrease quasilirgive confidence in the predictive power of free-energy cal-
early with temperature vanishing @,=38 °C. The inset culations based on the harmonic approximation and vibra-
shows the corresponding entropies. The asymptotic value dfonal frequencies calculated from first principles, and it in-
the difference between the entropies in the two phases codicates that this is the method of choice in all those cases
responds to a ratiaw,/wz~1.3, as defined by the above where the relevant phenomena occur at temperatures well
oversimplified Einstein model, and in fair agreement with thebelow the melting point.
ratio between the vibrational band edges of the two phases. )
The theoretical value for the transition temperatufe, One of us(P.P) wishes to thank D. Strauch for useful
=38 °C, is in excellent agreement with the experimenta"ydiSCUSSions. This work has been done in part withinlthe
observed valud®P=13 °C. This agreement is even better Ziativa Trasversale Calcolo Parallelof the INFM.
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