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a↔b phase transition in tin: A theoretical study based on density-functional perturbation theory
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The free energies of thea andb phases of tin are calculated in the harmonic approximation using density-
functional theory and density-functional perturbation theory, within the local-density approximation. At
T50 K the free energy of theb phase lies'359 cal/mole above that of thea structure. The narrower
frequency range spanned by the vibrational band in theb phase makes its entropy larger at high temperature.
As a consequence, the free energies of the two phases equal each other at a temperature of 38 °C, in close
agreement with the observed transition temperatureTc'13 °C. @S0163-1829~98!03714-X#
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Tin is commonly found in one of two allotropic forms: A
ambient pressure, the stable phase at low temperatu
a-Sn ~gray tin! which is a zero-gap semiconductor havin
the diamond structure; when the temperature is raised ab
Tc'13 °C, the crystal transforms into theb phase~white
tin! which is a body-centered tetragonal metal.1 The a↔b
transition in tin is possibly the simplest and prototypical ca
of an entropy-driven structural transformation which is d
termined by the~harmonic! vibrational properties of the two
phases of the material. Vibrational entropies are relevan
many other situations such as, for instance, the commo
observed stability of the body-centered cubic phase of me
at high temperature2 and the description of martensitic tran
formations in transition-metal alloys.3,4 The existing theoret-
ical investigations of the temperature-induceda↔b phase
transition rely on semiempirical lattice-dynamical models
ted to neutron-diffraction data and on other experimental
puts such as the specific heats which are used to estimat
value of the free-energy difference atT50.5–7 In this paper
the a↔b transition in tin is studied by using moder
electronic-structure techniques without making use of a
experimental inputs. The relevant free-energies are obta
in the harmonic approximation from static internal energ
and vibrational frequencies in the two different phases,
computed by density-functional theory~DFT!8 and density-
functional perturbation theory~DFPT!,9 respectively. Our re-
sults show that the combination of the~quasi!harmonic ap-
proximation and DFPT provides an accurate and effici
tool for the study of finite-temperature solid-solid pha
transformations.

Over the past twenty years, structural phase transition
simple solids have been among the most successful be
marks of modern electronic-structure techniques based
density-functional theory.8 Because of the difficulties o
570163-1829/98/57~17!/10421~3!/$15.00
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properly accounting for dynamical effects, however, the
investigations have been mainly limited to pressure-indu
~zero-temperature! transitions. The free-energy calculation
necessary to evaluate the relative stability of two differe
phases of a material at finite temperature have long esca
any ab initio approach and only a few attempts have a
peared in the literature which make use of first-princip
molecular dynamics and thermodynamic-integrati
techniques.10 Well below the melting point, however, th
lattice contribution to the free energy is mainly determin
by the harmonic vibrational frequencies of the system a
can be easily calculated without any thermodynamic integ
tion, once the latter are known. Recently, theab initio cal-
culation of free energies in the harmonic~or, more generally,
quasiharmonic! approximation has been successfully appli
to the study of the lattice expansion in simple semicond
tors,11 of the temperature dependence of the surface re
ation in some metals,12 as well as to some related phenome
such as the dependence of the crystal volume upon isot
composition.13 At low temperatures, the estimate of free e
ergies via molecular dynamics is plagued by ergodicity pr
lems and furthermore it cannot account for quantum ze
point effects which may be important in some cases. In
sense, free-energy calculations based on the harmonic
proximation or on molecular dynamics and thermodynam
integration are complementary in that near or above the m
ing point the latter technique naturally accounts for anh
monic effects, and it is the only possible choice, while at lo
temperature the former is both less expensive and more
curate. The predictive power of free-energy calculatio
based on the harmonic approximation has been greatly
hanced by DFPT which is now allowing the determination
the vibrational properties of solids with an unpreceden
degree of accuracy.14
10 421 © 1998 The American Physical Society
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As the transition temperature of thea↔b transition in tin
is '60% of the melting temperature, we do not expect,
this case, anharmonic effects to play any important role.
free energies of the two phases have been thus calculat
the harmonic approximation which reads

F~V,T!5E0~V!1kBT(
n

lnF2sinhS \vn

2kBT
D G , ~1!

whereE0(V) is the static crystal energy—easily accessi
to standard local-density-functional calculations8—kB is the
Boltzman’s constant, and thev ’s are normal-mode frequen
cies which have been calculated using DFPT.

Our calculations have been performed within the pla
wave~PW! pseudopotential method,8 using norm-conserving
pseudopotentials from Ref. 15 and basis sets including P
up to a kinetic-energy cutoff of 14 Ry. Brillouin-zone~BZ!
integrations have been performed with the Gauss
smearing special-point technique,16,17using a Gaussian width
of 0.01 and 0.02 Ry for thea andb structures, respectively
which at convergence require 60 and 163 special point
the irreducible wedge of the BZ.

The calculated equilibrium lattice parameters of the t
phases are~experimental data from Ref. 18 are reported
parenthesis!: aa56.38 Å ~6.48!, ab55.70 Å ~5.82!, (c/a)b
50.544~0.546!. The corresponding bulk moduli are~experi-
mental data from Refs. 19 and 20!: Ba547 GPa~53! and
Bb561 GPa~55!. The static energy of thea structure lies
516 cal/mole below that of theb phase. Taking into accoun
zero-point contributions to the internal energy, atT50 K the
a phase results to be more stable than theb one by 359
cal/mole. An indirect estimate of the experimental value
this quantity was obtained by integrating the experimenta
know constant-pressure specific heats with respect to t
perature, and resulted to be 339 cal/mole.7 As one can see

FIG. 1. Calculated phonon dispersions~continuous lines! for the
a ~upper panel! and b ~lower panel! phases of tin. Experimenta
data from neutron diffraction~from Refs. 23 and 24 for thea andb
phases, respectively! are reported with diamonds.
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all these data are in close agreement with available exp
mental values, as well as with previous calculations ma
using the pseudopotential7,21 or the linear muffin-tin orbital22

methods.
In Fig. 1 we display our calculated phonon dispersions

the a and b phases of tin. Besides the excellent agreem
with available neutron-diffraction experimental data,23,24 the
main feature to be noticed is the different range spanned
the vibrational bands in the two phases, which extend up
'200 cm21 in gray tin, while it is limited to'140 cm21 in
white tin. The corresponding phonon density of states
displayed in Fig. 2.

The fact that the structure with a larger static energy
smaller vibrational frequencies indicates that a phase tra

FIG. 2. Calculated vibrational density of states for thea ~con-
tinuous line! andb ~dashed line! structures of tin.

FIG. 3. Zero-pressure free-energy~solid lines! and internal-
energy~dashed lines! curves for thea andb phases of tin as func-
tions of temperature. The thin vertical dotted line indicates the t
oretical transition temperature, while the experimental value forTc

is shown by the arrow.l05359 cal/mole is theT50 K free-energy
difference—including the zero-point contribution—whilel5482
cal/mole indicates the latent heat absorbed in thea↔b transition.
Finally, the inset displays the temperature dependence of the v
tional entropies of the two phases.
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tion may occur when raising the temperature, as a con
quence of the larger value of its entropy at high temperatu
In fact, in this regime the difference between the intern
energies of the two phases tends to a constant because o
equipartition law, and hence their relative stability is det
mined by the difference between the entropies. For the s
of simplicity, suppose that each structure (a or b) is char-
acterized by a single vibrational frequency~Einstein model!:
the difference between the entropies of the two structu
tends then toDS`'3kBln(vb /va). Thus, at sufficiently
high temperature the entropic contribution to the free ene
difference 2TDS` takes over the difference between th
internal energies, and theb phase becomes more stable~pro-
vided the transition temperature so obtained is well bel
the melting point of the two phases, so that the harmo
approximation is well justified!.

This behavior is clearly illustrated in Fig. 3 where th
internal energy and the free energies of the two structures
displayed. The internal energies of the two phases incre
with temperature and their difference saturates to a va
which is '35% larger than atT50 K. The free-energy
curves bend down, and their difference decrease quas
early with temperature vanishing atTc538 °C. The inset
shows the corresponding entropies. The asymptotic valu
the difference between the entropies in the two phases
responds to a ratiova /vb'1.3, as defined by the abov
oversimplified Einstein model, and in fair agreement with t
ratio between the vibrational band edges of the two pha
The theoretical value for the transition temperature,Tc
538 °C, is in excellent agreement with the experimenta
observed valueTc

exp513 °C. This agreement is even bett
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than one could have expected, and it strongly depends on
accuracy of the calculated value forl0. In fact, the two free-
energy curves are almost tangent when they cross an
slight vertical displacement of one of the two~such as it
would be determined by a slightly different value of the dif
ference between the static energies of the two structuresl0)
would result in sizable variation of the transition tempera
ture. We estimate the error onl0—as due to the pseudopo-
tential approximation—to be of the order of 30 cal/mole
resulting in an uncertainty of 20° on the predicted transitio
temperature. At the same time, we find that the calculation
the entropy difference between the two structures is less s
sitive to the fine details of the calculation, as it results fro
its logarithmic dependence on the vibrational frequencie
The numerical accuracy on the latter, as due to the pseu
potential approximation and other factors, is estimated to
of the order of 1%, resulting in an additional 5° of uncer
tainty in the calculated critical temperature.

The quality of the agreement between theory and expe
ment achieved for thea↔b transition in tin is such as to
give confidence in the predictive power of free-energy ca
culations based on the harmonic approximation and vib
tional frequencies calculated from first principles, and it in
dicates that this is the method of choice in all those cas
where the relevant phenomena occur at temperatures w
below the melting point.
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