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Fundamental high-pressure structural and mechanical properties of Ta have been investigated theoretically
over a wide pressure range;-Q0 Mbar, by means odb initio electronic-structure calculations. The calcula-
tions are fully relativistic and use a state-of-the-art treatment of gradient corrections to the exchange-
correlation potential and energy within density-functional theory. The calculated zero-temperature equation of
state for bcc Ta is in good agreement with diamond-anvil-cell measurements up to 750 kbar and with reduced
shock data to 2.3 Mbar. The crystal-structure stability among bcc, fcc, hcpABhghases has been studied
as a function of compression and the observed ambient-pressure bcc phase is found to be thermodynamically
stable throughout the entire-0L0 Mbar range. At the upper end of this range, a metastable fcc phase develops
with positive elastic moduli and a decreasing fdacc energy difference, suggesting that at even higher
pressures above 10 Mbar, fcc Ta will become stable over the becc phase. Elastic constahtsrtiél-point
zone-boundary phonons, and the ideal shear strength have also been calculated for bcc Ta up to 10 Mbar
pressure. The elastic moduli and phonons are in good agreement with experiment at ambient pressure and
remain real and positive for all compressions studied, demonstrating that the bcc phase is mechanically stable
in this regime. The calculated elastic constants validate the assumed pressure scaling of the shear modulus in
the Steinberg-Guinan strength model of Ta, while the calculated values of ideal shear strength provide an upper
bound to the high-pressure yield strefs80163-182@08)01117-5

[. INTRODUCTION of thermodynamic properties. This reflects the fact that me-
chanical properties depend on phenomena at multiple length
The thermodynamic and mechanical properties of tantascales ranging from atomistic to continuum, whereas thermo-
lum (Ta) have been of long standing scientific and applica-dynamic properties are determined primarily at the atomistic
tions interest in both the high-pressure and materials physidevel and can be directly addressed with quantum-
communities. From the high-pressure community, a largenechanical methods. Recently, however, with the rapid and
amount of experimental equation-of-state data exist on thisontinuing development of large scale computing capabili-
metal, including shock Hugoniot data up to 10 Mbdrand ties, there has been a growing interest in attempting to bridge
static compression data in the diamond-anvil cell to 750he length scales and address mechanical properties from a
kbar®® From the materials community, there is a corre-fundamental perspective as wellAt the same time, ad-
sponding wealth of data on the mechanical properties of Taances in diamond-anvil-cell research hold promise that both
at or near ambient pressure, including, for example, exterthe elastic modul?*3and yield strengtf*1°in metals can be
sive static test data on the temperature and strain-rate depetiirectly measured at megabar pressures. Both of these factors
dence of the yield stress in Ta polycrysfaBnd detailed have helped renew interest in studying the mechanical prop-
studies of the plastic deformation behavior of single-crystakrties of Ta at high pressure.
bce metals including TAlIn addition, there have been ultra-  The purpose of this paper is to present a comprehensive
sonic measurements of the ambient-pressure elastic moddiist-principles study of the structural, elastic, vibrational,
and their pressure derivatives in Ta and other bcc nfetalsand ideal-strength properties of bce Ta in the ID Mbar
and dynamic mechanical test data on Ta to pressures as highessure range at zero temperature. These fundamental prop-
as 2.3 Mbar. These data have been used to construct pheerties not only under pin the high-pressure thermodynamic
nomenological constitutive models of strength in Ta andand mechanical behavior of the metal as a whole but, in
other metals for high-pressure applicatids. addition, they can be used to constrain and validate corre-
Theoretically, there has not been heretofore a large corresponding interatomic potentials that can directly extend the
sponding effort to study the fundamental properties of Tarange of applications to include finite-temperature equation-
especially those at high pressure. Although Ta is a prototypef-state properties and the treatment of extended defects such
bcc transition metal, its & relativistic character make its as screw dislocations, which control plasticity and other me-
guantitative behavior somewhat more challengingaloiini-  chanical properties in bcc metals. Our approach is based on
tio theory. Moreover, rigorous approaches to treat mechanian ab initio, fully relativistic treatment of the electronic
cal properties in metals have generally lagged behind thosgtructure of the metal and uses a state-of-the-art implemen-
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tation of density-functional theot§!’ including gradient exchange-correlation treatment, the shape-independent elec-
corrections to the exchange and correlation potential and enron density and potential, and the spin-orbit coupling have
ergy. Within this framework, the equilibrium volume of the been studied in detail for Ta in the context of the predicted
metal is calculated to about 1% accuracy and the correspong@quilibrium volume and zero-temperature equation of state,
ing equation of state is also shown to be in good agreemenis will be discussed below in Sec. .

with experiment, as are the ambient-pressure elastic moduli The present method incorporates nonsphericity to the
and zone-boundary phonon frequencies. We further demonsharge density and potential by representing the crystal with
strate that the observed ambient-pressure bcc phase remajfisnoverlapping sphere®f a variable, optimum sizesur-

both thermodynamically and mechanically stable over the,nging each atomic site and a general shaped interstitial

entire 10 Mbar range considered, ar_1d that a meta_stable _f%gion between the spheres. Hence, we deal with two types
phase appears at the upper end of this range and will possibjt geometrical regions in the calculations. Inside the spheres,

become lower in energy than bcc at still higher pressurésne wave functions are represented as Bloch sums of so-
The calculated high-pressure behavior of the elastic moduliyjied linear muffin-tin orbitals and are expanded by means

is used to estimate the expected pressure dependence of tesirycture constants. The kinetic energy is not restricted to
shear modulu& in polycrystalline Ta and thereby to test the e zerg in the interstitial region and the wave function ex-
assumed pressure dependence in the phenomenologiGiinsion contains Hankel and Neumann functitepending
Steinberg-Guinan strength mod€iwhich scales the yield ¢, sign of the kinetic energyogether with Bessel functions.
stress withG. As an upper bound to the high-pressure yieldThe analytical expressions for these expansions can be found
stress, we also consider the pressure dependence of the idg@lewherd® The whole approach is usually called a full-
shear strength of the metal, defined as the minimum Stre%ﬁ)tential linear muffin-tin orbitalFP-LMTO) method, be-
required to shear the perfect bce crystal into itself for thecayse of the use of linear muffin-tin orbitals in the wave
observed twinning geometry. _ function expansions and the fact that the potential contains
The outline of the paper is as follows. In Sec. Il we give 15 shape approximation. In order to represent the wave func-
a brief overview of the computational approach used in OUkjons in Ta as accurately as possible we have defined here,

ab initio electronic-structure calculations. Then in Sec. Il 5 single energy panel,s55p, and 4 semi-core states
we discuss the low-temperature equation of state of Ta, whilg,q g 6p, 5d, and F valence states. The aforemen-

in Sec. IV we investigate the high-pressure structural phasgoned “double basis set” has been used. i.e.. two kinetic
stab|!|ty of the metal. The pressure dependence of the bcénergy parameters«f) appropriate for the tails of thess
elastic constants and zone-boundary phonons is considergg and 4 states. and the valence states have been used.

in Sec. V. Then in Sec. VI we use the calculated elastiGzecayse of the spin-orbit interaction, our calculations in-

constants to analyze the assumed pressure dependence of {ag e diagonalizing matrices with dimension 108 per atom.

Steinberg-Guinan strength model as applied to Ta and We \jth sych an electronic-structure method that accurately

also consider the corresponding ideal shear strength of begcyjates the total energy of a periodic system, it is reason-
Ta. Concluding remarks are given in Sec. VII. ably straightforward to compute the zero-temperature equa-
tion of state, crystal structure stabilities, elastic constants,
and high-symmetry zone-boundary phonons, although calcu-
lation of the elastic constants and phonons is computation-
The following section briefly summarizes the details ofally rather intensive. The approach that has been followed
our ab initio electronic-structure calculations. Our computa-here for these computations is similar to that used recently
tional method is based on the first-principles density-for a study of iron up to megabar pressdfesnd we there-
functional theory®”and yields the total energy of a periodic fore make only a few selected comments here and refer the
system without any experimental input other than the atomidinterested reader to that publication for additional details.
number(73 for T. In principle, this theory only involves The calculation of the ideal shear strength, on the other hand,
one approximation, namely, the assumed form of the densitis new in the present context and we discuss its calculation
functional for the exchange and correlation energy of theseparately in Sec. VI. Except as indicated, all calculations
electrons. Historically, this functional has usually beenpresented here have been performed with the same extended
treated within the local-density approximattériLDA), but  (double basis set described above, the sat@GA)
here we have chosen to use what we believe is the mosixchange-correlation functional, and the same fully relativis-
accurate treatment available to date, namely, the generalizéi@ treatment with the spin-orbit coupling included.
gradient approximatiofiGGA) of Perdewet al® In practice, In obtaining the equation of state for bcc Ta, total ener-
other approximations are often also used in conjunction wittgies have been calculated for 21 voluniesrresponding to
any actual computational method. In the present work, westeps smaller than 1 B. As was discussed previously for
have made a special effort to remove such additional api¥on,® the total energy converges slowly with respect to the
proximations. In particular(i) the electron charge density k-point sampling used in the appropriate summations over
and the one-electron potential are allowed to have any gedhe Brillouin zone(BZ) at high pressures. Here we have used
metrical shape and are calculated self-consisteriiy;all up to 150k points in the irreduciblé€1/48th part of the BZ.
relativistic terms, including the spin-orbit coupling, are in- The 21 total energy points were then locally fit in a least-
cluded in the Hamiltonian; angii) the numerical basis set squares manner using the Murnaghan equation-of-state
used is extended to a so-called “double basis” set in order tdorm.?! Specifically, the energy-volume data were divided
minimize truncation errors in the expansion of the one-into overlapping sets containing five energy-volume points
electron wave functions. The importance of the GGAeach for which the four variational parameters of the Mur-

. COMPUTATIONAL APPROACH
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naghan form were individually fitted. In the interior of the nal and transverse modes are degenerate due to symmetry,
data interval, the parameters so determined were then usedtat not for theN-point phonons whose transverse modes we
calculate the pressure and bulk modulus at the middle oflenote ag’; andT, and longitudinal mode as. Hence, we
each five-point set. This procedure was modified for thehave considered four phonon modes as a function of pressure
high-end and low-end boundary points where instead thep to 10 Mbar. Four different displacements, inducing not
closest five points inside the data interval were used. Hencenore than 2-3 mRy shift in the total energy, were typically

a total of 17 fits with 4 variational parameters each wereused to fit Eq(1). Details on how these displacements were
done. For the boundary points the described procedure is @hosen are given in Appendix A together with the respective
course not as accurate as for the other points. At the highBravais lattices we have used for tHeandN phonons. The
volume end this was not a problem since we could calculateumber ofk points for these 2-atom/cell calculations were
some energy points well above the equilibrium volume andabout 606-900 in the irreducible part of the BZ, depending
use these as boundary points. At the high-pressure end this the actual phonon mode.

procedure could potentially introduce small errors due to the

fitting. HOWEVEII', at hlgh pressure this “Iocal-fit”.scheme is lIl. EQUATION OF STATE
expected to give similar results to those obtained from a _ . . _
global fit (one Murnaghan fit for all 21 pointsand this is in In this section we present a detailed analysis of the pres-

fact the case here. The root-mean-square) errors for the Sure versus volume or zero-temperature equation of state

“g|oba|” and “local” fits are about 0.1 mRy and SRy, (EO$ of bcc Ta, including both our central FP-LMTO result
respectively. and its sensitivity to various approximations. The results dis-

The structural energies for the bce, fcc, hep, andAhs cussed have been obtained from the “local-fit” scheme de-
(8 atoms per unit Ce"phases of Ta have been calculated upscribed in the preViOUS section. However, it may be of inter-
to 10 Mbar. In our theoretical treatment, volume, and not€st to some readers to see our central EOS result represented
pressure, is the independent variable for the total-energy calty & global Murnaghan fit as well. The global Murnaghan
culations. In principle, the Gibbs free energy as a function ofxpression for the total energy can be written as
pressure for the two phases in a phase transition should be
considered. However, the volume change at a metallic solid- 1V,
solid phase transitiodV is usually small & 1 %), and the B_() 2
difference between Gibbs free-energy differences at constant
pressure and total-energy differences a constant volume is akhe four fitting parameters correspond to measurable quan-
the order of AV)? and typically negligiblé? Hence we con- tities: By, and Bj are the bulk modulus and its pressure de-
sider only total-energy differences and calculate the pressumivative, respectivelyy is the equilibrium volume ang, is
through the bcc Ta EOS. This approximation is not impor-an additive constant related to the cohesive energy. For Ta
tant because the bcc phase remains lower in energy than aoyr global least-squares fit givag=17.70 A%, B;=2.18
of the other phases studied throughout the entire pressuidbar, andB,=3.2. These values are similar but not identical
range. Again, care was taken in converging each total-energy those obtained from the “local-fit” schem&/,=17.68
result with respect to the number bfpoints. We have used A3 B,=2.03 Mbar, andB,=4.3. This reflects the limita-
150 (bcg), 150(fcc), 162 (hcp), and 45 A15) k points in the  tions of the Murnaghan functional form when applied to such
respective irreducible BZ of the four structures considered. g large pressure range. Other global EOS schemes may or

The calculation of the bce shear elastic constantsa@d  may not do better. We find, for example, that the universal-
Cy4, has been done in a manner similar to that foriff@md  equation-of-statUEOS scheme of Vinetet al,?* which
as in that case, convergence of the total energies requiredsgmilarly employsV,, B, and B, as parameters, only gives
large number ok points(2176 and 1620, respectivelyThe  an accurate fit to the present Ta EOS to about 2 Mbar. How-
calculation of zone-boundary phonons for bcc Ta was als@ver, a modified UEOS schefiewith three additional pa-
similar except that a bcc structure has not been preVi0US|yameterdcorresponding to h|gher pressure derivat}\MeS
considered in this context and we therefore mention a fewydequately describe the Ta EOS over the entirdlO Mbar
details here and in Appendix A. The bce phonons have beefange and with parameter values close to those of our “local-
obtained using the frozen-phonon metffddn which the it scheme:V,=17.68 A%, By=2.07 Mbar, andB}=4.4.
total energy is calculated as a function of static displace- |, order to perform sensitivity tests and to compare with
ments of the atoms corresponding to the phonon under cofsrevious theoretical results for the equation of state for Ta,
sideration. From the shift in total energyE induced by @ \ye have considered the effects of common approximations
small atomic displacement, the angular phonon frequencyhat have been widely used for electronic structure calcula-
(wg) can be calculated using the relation tions. Specifically, we have considered an LDA approach to
the exchange-correlation functional suggested by von Barth
and Hedi® in addition to the GGA proposed by Perdew and
co-workerst® We also have switched on and off the spin-
orbit (SO interaction in our calculations, with the no spin-
whereM is the atomic mass for Ta ang, is the amplitude orbit case(NSO) corresponding to the familiar semi- or
of the displacement. In this study we only have consideredcalar-relativistic approximation. In Fig. 1 we compare our
phonons at two high-symmetry points in the BZ, namely, thecalculated EOSs of Ta up to 1 Mbar for the four possible
H point 27r/a(1,0,0), whera is the lattice constant, and the combinations of these two approximations with experimental
N point 7/a(1,1,0). For theH-point phonons, the longitudi- diamond-anvil-cel(DAC) dat& taken at room temperature.
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so-called atomic sphere approximatidASA), where a
spherically symmetric potential and charge density is as-
sumed in addition to other approximatiotishas been
widely used to calculate equations of state for many metals.
For this reason we also have performed LMTO-ASA calcu-
lations of the equilibrium volume for Ta as a further point of
reference. These calculations also can be either scalar rela-
tivistic (Pauli Hamiltonian with relativistic terms except
spin-orbit coupling or fully relativistic (Dirac Hamiltonian
with relativistic terms including the spin-orbit couplinghe
results of these calculations are shown in Table | and they
indicate larger equilibrium volumes of 18.7°Ascalar rela-
. . ‘ . tivistic) and 18.6 & (fully relativistic). Here we have again
14 15 16 17 used the von Barth and Hedin exchange-correlation
Volume ( A%) functional?® It has been shown previously that gradient cor-
rections to that functional worsen the results for methods that
FIG. 1. TheoreticaFP-LMTO) and experimentaDAC) equa-  neglect nonspherical charge den%“itgmd for that reason we
tions of state for Ta below 1 Mbar. Theory including gradient did not perform LMTO-ASA calculations with the GGA.
corrections and spin-orbit couplingsGA + SO, see main text  Although Ta is not an especially favorable case, the combi-
gives an equilibrium volumg17.68 A3) closest to experiment nation of the ASA and the LDA is often a good one for
(17.88 ). equation-of-state calculations, since these approximations
have a consistent, but opposite effect upon the calculated
Note that the calculation that in principle should be the mosequilibrium volume of a metal. The LDA overestimates
accurate, i.e., the GGA SO result with a gradient-corrected chemical bonding while the ASA underestimates this bond-
exchange-correlation functional and with the spin-orbit inter-ing, leading to a cancelation of errors with a relatively small
action included, reproduces the experimental data most acet effect on the calculated equilibrium volume. It has been
curately overall. This calculation also reproduces the estinoted? that the ASA tends to increase the calculated equi-
mated experimental zero-temperature equilibrium voltfme librium volumes, often concealing the disagreement of the
to within about 1%, as shown in Table I. Interestingly, thefull-potential LDA with experiment. One should remember,
LDA without spin-orbit coupling also gives a reasonably however, that the total energies calculated for open crystal
good overall description here and definitely better resultstructures or used to obtain elastic constants and frozen
than the LDA with spin-orbit coupling, which underesti- phonons are not sufficiently accurate with the ASA.
mates the zero-temperature equilibrium volume significantly It is also interesting to note in Table | that the spin-orbit
for Ta, as also shown in Table I. Clearly, the scalar relativ-interaction has a larger effect on decreasing the equilibrium
istic treatment compensates for errors in the LDA to somevolume for LMTO calculations done with the full potential
extent. These results suggest that unless an electronias compared to calculations performed within the ASA. We
structure calculation for Ta includes a gradient-correctedspeculate that the semicore states, defined in our FP-LMTO
exchange-correlation functional, it is probably not a goodcalculations but not in the LMTO-ASA calculations, are
idea to include spin-orbit coupling. Finally, it is also reassur-more sensitive to the spin-orbit splitting leading to an in-
ing to note from Table | that the LDA calculation performed crease in the chemical bonding. Similar observations have
by Wu et al 28 without spin-orbit coupling, using an indepen- been made for the actinide metals, where spin-orbit coupling
dent FP-LMTO method? gives a very similar equilibrium increases the atomic volume when the semi-core states are
volume for Ta(17.33 A%) compared to our corresponding neglected. When they are included, however, the net effect of
LDA-NSO calculation(17.25 A%). the spin-orbit interaction has on the equilibrium volume is
In addition to the two aforementioned approximations, thesmall for metals such as Pu.

750

500

250

Pressure ( kbar )

TABLE |. Calculated equilibrium volumes Veory (in A3) for Ta obtained from LMTO calculations in
various approximations. Estimated zero-temperature experimental volymgsv/17.88 B.

Method Exchange-correlation Spin-orbit coupling  Vineory V‘h%\t/exm
exp
FP-LMTO GGA YES 17.68 -1.1%
FP-LMTO LDA YES 16.76 —6.3%
FP-LMTO GGA NO 18.21 1.8%
FP-LMTO LDA NO 17.25 —3.5%
FP-LMTO? LDA NO 17.33 -3.1%
LMTO-ASA LDA YES 18.60 4.0%
LMTO-ASA LDA NO 18.70 4.6%

AVu et al. (Ref. 28.
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TABLE 1l. Theoretical structural energied~P-LMTO-GGA-

o - SO) for Ta under compression. Volumes are in a.u., pressures in
L * Reduced shock data | . . .
N Theory Ta Mbar, and energy differences in mRy/atom. For conversion of vol-
_§ 2L i umes to & units, V(A3) = 0.14818V(a.u).
p>
}.: i ) Volume Pressure feebcc hcp-bcce Al15—-bcc
= 1} i
2 124.8 -0.08 17.4 22.6 2.8
L i b 118.9 0.005 20.2 24.7 4.9
Ao 113.1 0.12 23.1 27.0 7.2
. , L 102.2 0.45 29.5 314 12.7
12 14 16 ., 18 91.95 0.90 35.9 36.3 18.8
. 3
Atomic Volume (A”) 82.45 1.53 43.3 42.3 25.5
FIG. 2. Preferred theoretical zero-temperature equation of staté3-62 2.48 51.3 48.1 335
(FP-LMTO-GGA-SQ compared against that derived from experi- 65.44 3.89 56.1 52.8 42.5
mental shock-wave measureme(fRef. 1). 57.91 6.00 55.9 54.3 52.9
49.65 10.0 48.6 54.5 72.3

It is encouraging to note that of all the above calculations;
the preferred and most accurate theoretical treatnieRt
LMTO-GGA-SO, with spin-orbit coupling includedndeed energies of the fcc, hcp, amkll5 structures relative to that of
is reproducing the experimental data best for the equation dhe bcc ground-state as a function of volume. Corresponding
state and equilibrium volume of Ta. To test the accuracy ohumerical values are given in Table Il. In these calculations,
this treatment at somewhat higher pressures, we have come have kept the/a axial ratio in the hcp structure at the
pared our calculated EOS with the shock-derived zeroideal value, since optimizing this ratio would lower the hcp
temperature isotherm of McQuee al,! which extends to  energy only slightly. This was directly verified for one vol-
2.3 Mbar. This comparison is shown in Fig. 2. The agreeume(102.2 a.u= 15.14 A%, where the optimized/a ratio

ment is clearly excellent. was calculated to be about 1.80, with a corresponding low-
ering of the hcp energy by about 4 mRy/atom. At this vol-
IV. CRYSTAL STRUCTURE STABILITIES ume, the minimum hcp energy is still about 27 mRy higher

than the bcc energgsee Table ). Also note in Fig. 3 that
Using our preferred FP-LMTO-GGA-SO theoretical treat-the A15 structure is indeed very close in energy to the bcc

ment, we have studied the stability of four crystal structureSstrycture at low pressures, whereas both the fcc and hcp
in Ta over the 6-10 Mbar pressure range. In addition to the structures lie much higher in energy. The trend suggests that
observed bcc structure, we have considered the close-packgg slightly more expanded conditions the5—bcc energy
fcc and hep structures and also the low-symm@thp struc-  difference would, in fact, pass through zero. Extrapolating
ture. The latter structure occurs frequently in group-V androm Table 11, we find that this should occur at a volume of
-VI transition-metal binary compounds, and there also hagphout 132.7 a.u(19.66 A3), which is very close to the ob-
been recent experimental evidence in Ta thatAti® phase gerved solid volume of 133.2 a.19.74 A%) for the bcc
can be solidified from the supercooled liqdidiCorrespond-  phase at mef With increasing pressure, on the other hand,
ing first-principles calculation$ have confirmed that the to- the hec structure becomes rapidly more stable with respect to
tal energy of theA15 phase in Ta is close to that of the bcc the other three structures. At high pressures above 4 Mbar,
phase at the equilibrium volume. In Fig. 3, we show thenowever, the hcp fcc energy difference levels off and be-
results from our total-energy calculations. Here we plot theggmes nearly constant, while the febce energy difference

maximizes and then begins to slowly decline.

Pressure ( Mbar ) The large energy difference between the bcc and fcc
10 6 4 2 1 05 0
I T T

= T I I T
E o ‘ R =
E L _ [ T T T T T T T ] ?
Z 60+ ] s| Ta 1%0°¢
E sl ] _ D — 170 m
[}
8 40+ ] B {60 o3
[}
8 300 . = 3¢ 1% &
3 )
T 99l —e—fcc-bee J g | 140 %
2 —o—hep - bee O 2r 130 &
5 10 - o A15-bee ) | 172
|84 | | | 1 1 | § 420 %
8§ 10 12 14 16 18 , L . L N
Volume ( A*) 0 10

2 4 6 8

Pressure ( Mbar )
FIG. 3. Total energies in Ta as a function of volume for the

ideal hcp, fcc, and\15 structures relative to the observed bec struc-  FIG. 4. Tetragonal shear consta@t and fcc-bcc crystal-

ture. On top of the figure the bcc pressure, as obtained from thetructure energy difference for Ta as a function of pressure, as

present Ta EOS, is shown. obtained from the Ta EOS.
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T ‘ ' ' ‘ ' be roughly proportional. However, at higher pressure X0
50 L T ] Mbar) in Ta the Bain path becomes distorted near the fcc
a ) end, so that the curvatures ata=1 andc/a=+2 have
1 completely different magnitudes. In fact, the fcc structure at
this pressure has a small bpibsitive curvature indicating a
positive fcc C'. For all d-transition metals at ambient
pressuré® and also for Ta up to about 2—3 Mbar, the Bain
path has a symmetric shape where the curvature is very simi-
lar in magnitude forc/a=1 (bcd and c/a=+2 (fcc) but
. with different signs. For Ta at ultrahigh pressure, this general
. . . . form of the Bain path is altered as the f€¢ changes sign
'019 i 111 12 13 14 15 from negative to positive. The underlying reason for this
change in behavior appears to be related to the fact that the
electrostatic contribution to the total energy becomes in-
FIG. 5. Calculated total energy for bct Ta at 2.5 and 10 Mbar ascreasingly more important at ultrahigh pressure and this con-
a function ofc/a axial ratio (the Bain transformation pathThe  tribution works to stabilize high-symmetry closed-packed
high symmetry values/a=1 andc/a= 2 correspond to the bce  structures such as fcc. At lower pressures, on the other hand,
and fcc crystal structures, respectively. the band-structure energy and its difference as a function
of crystal structure is more important. In fact, it has been
structures is typical for a metal with a high tetragonal sheashown that band-filling effects can explain the behavior of
constaniC’. In fact, it has been previously demonstrated thatthe fcc—bcc energy difference and al€’ for d-transition
these two properties scale fairly well for madttransition  metals and their alloy¥. Since the fcaC’ becomes positive
metals®® Although the bulk modulus shows a parabolic at about 10 Mbar in Ta, we also considered an orthorhombic
variation with atomic number as one proceeds througHor trigona) distortion of the fcc structure corresponding to
the 4d or 5d transition series, with a maximum in the middle the other shear elastic consta&ly,. We have found that this
of the series, the variation @’ is not parabolic. Instead the distortion also increases the total energy, so @atis posi-
fcc—bec energy difference is the most important controllingtive as well. Hence, mechanical stability is developed for fcc
factor and this energy difference is determined primarily byTa at ultrahigh pressure. Coupled with the decreasing mag-
the d-band energy. However, the scaling principle betweemitude of the fce-bcc energy difference in this pressure re-
the fcc—bcec energy difference an@d’ noted at ambient con- gime, this suggests that the fcc phase may eventually become
ditions has not been tested heretofore as a function of prestable over the bcc phase at still higher pressures.
sure. In Fig. 4 we plot both these quantities for Ta up to 10 A scenario in which Ta transforms to the fcc structure at
Mbar. The fce-bcc energy difference is increasing with some ultrahigh pressure is interesting since this metal is
pressure and up to about 4 Mbar the scaling principles holdslearly very stable in the bcc phase over a very large pressure
fairly well. At higher pressures where the febcc energy range, at least-010 Mbar, and elementary arguments based
difference maximizes and then begins to decrease, the tetragn the expected-band filling andsp—d electron transféf
onal shear constant continues to increase with pressure insaiggest that bcc should remain the ultimate high-pressure
nearly linear fashion. This peculiar behavior can be traced tphase. However, it has been predicted by Atefjal>° that
the shape of the so-called Bain transformation path. Thigl-transition metals with @ band occupation between 2 and
path defines the total energy as a function of tetragonal diss electrons per atom could be stabilized in the fcc structure
tortion of a bct unit cell where the distortion parameter is theif the hybridization between semicorep 5and valence &
c/a axial ratio. For the values/a=1 andc/a=+2 we re- states is strong enough at high pressure. Tantalum has about
cover the bcc and the fcc crystal structures, respectively. Th&.4 5 electrons per atom at the equilibrium volume and this
curvature of this path at/a=1 gives the bcc tetragonal occupation is increasing with pressure 6a—d electron
elastic constan€’. The curvaturgand thereforeC’) is of  transfer due to broadening of the bands and the relative low-
course related to the fecbcc energy difference, and if this ering of the B bands compared to thes@nd @ bands.
path has the general shape shown for Ta at 2.5 Mbar in Figdence, Ta is lying in the 2 5 d-electron range for which the
5, thenC’ and the fce-bcc energy difference are found to fcc structure would be stabilized due tp-5d hybridization.

fec

----- 2.5 Mbar
—— 10 Mbar

30 +

20 +

Energy difference ( mRy )

c/a axial ratio

TABLE lll. Theoretical moduli and phonong&P-LMTO-GGA-SQ for bcc Ta under compression. Vol-
umes are in a.u., pressures, bulk and elastic moduli in Mbar, and zone-boundary phonons in THz. For
conversion of volumes to Aunits, V(A% = 0.14818V(a.u).

Volume Pressure B c’ Cusy L T, T, H

118.9 0.005 2.03 0.59 0.93 4.79 2.68 4.52 5.49
102.2 0.45 3.70 0.91 1.20 6.78 3.36 5.02 6.96
73.62 2.48 10.1 2.38 2.69 12.0 5.45 6.40 10.2
57.91 6.00 20.4 4.03 6.92 15.6 6.71 8.24 13.2

49.65 10.0 33.8 5.45 121 17.2 8.0 9.66 16.0




10 346 PER SMERLIND AND JOHN A. MORIARTY 57

~~ T T T T T T T T T T
i
g 12} N Ta -
p= o H
Z 10} = 15 L ]
8 >~
s 8 5
2 6l 2 10l ]
= 3 T
[°) o 2
O 4L L T
Q = '
*@* 2+ § 5L ]
! =]
K 0 2 4 6 8 10 £
Pressure ( Mbar ) . . . . . s
0 2 4 6 8 10

FIG. 6. Bulk modulusB and shear elastic constars$ andC,, Pressure ( Mbar )
as a function of pressure for bcc Ta.
FIG. 7. High-symmetryH, L, T,, and T, zone-boundary
It is clear from Fig. 3, however, that the pressure required fophonons(see text for bee Ta as a function of pressure.
this transition(bcc — fcc) is well above our highest studied

pressure, 10 Mbar. tuitive, it is not uncommon in metals. For example, we have

found qualitatively similar behavior in high-pressure ifdn.
V. ELASTIC CONSTANTS AND PHONONS Experiments to measure the high-pressure elastic constants

In this section we report our calculated results for theOf Ta are _currently n progreéé. .
elastic constants and high-symmetry zone-boundary phonons In addition to_ the elastic constants, we h{ave also studied
of bcc Ta. Here we have again used our preferred FptheH-andN-point zone-boundary phonons in bce Ta up to
LMTO-GGA-SO treatment, which gives the most accuratel0 Mbar, by means of the frozen-phonon metitsets Sec. Il
results for the equation of state. The calculation of the shea"?_nd the Appendix and_the results are given in Table Il and
elastic constants involves computing the change in total ent9- 7- Note from the figure that at low pressure the frequen-
ergy for appropriate small applied strains and the specifi€€S Of theH-point phonon and the longitudinal modeof
procedure developed for cubic metals has been detailed in8€N-Point phonons are rising rapidly and cross at about 0.5
previous pape?’ Our results for these quantities, as well asMbar, but above about 2 Mbar all of the calculated phonons
the bulk modulus obtained from the zero-temperature EOSSNOW a very similaalmost lineay pressure dependence. At
are given in Table Il and Fig. 6 over the-0.0 Mbar pres- amblent_ pressure, our calculated results are in goc_>d agree-
sure range. The bulk modul@and the shear elastic moduli ment with thosg obtained from room-temperature inelastic
C’ and C,, are everywhere calculated to be positive angneutron spattenng measuremefftgs s'h.ovxlln in Table IV.
show smooth monotonic behavior as a function of pressure! € N-point phonons for Ta at the equilibrium volume were
This indicates full mechanical stability for bcc Ta over the iSO recently calculated using ab initio pseudopotential
entire 0- 10 Mbar pressure range. Note that in Fig. 6 weMethod(PP-LDA-NSQ by Wuet al,” and as shown in the
have scaled by a factor of 10 so that its magnitude be- same table, these results agree favorably with ours. An inter-
comes more similar t€’ andC,,. At ambient pressure, our esting aspect of the experimental data is the acud_en?al de-
calculated bulk and shear moduli are in good agreement witgeneracy f_ound for thé and T, phonons. Th_e qualitative
ultrasonic measuremerftsas shown in Table IV. Under ©Md"n of this degeneracy_can be seen f“’”! Fig. 7, Whe“? the
compressionC,, increases more rapidly with pressure thanTequency of thel mode is seen to be rapidly approaching
C'. This indicates that Ta is increasingly anisotropic at highthat of theT, mode near zero pressure. In our calculation at

ressure, and the anisotropy ratio zero pressure, however, theand T, frequencies differ by
P by about 5% and in the calculation of Wi al?® by about 12%.
A=C,,/C’ (3)  This outcome partly reflects the sensitivity of themode to

volume at low pressure. If we extrapolate our results from
increases from 1.58 at ambient pressure to a value of 2.22 #te calculated zero-temperature equilibrium volume of 118.9
10 Mbar. Although such an increase is somewhat counterina.u. to the observed room-temperature equilibrium volume of

TABLE IV. Theoretical and experimental ambient-pressure bulk and shear elastic rfiaddlbar) and
zone-boundary phonorig THz) for bee Ta.

Treatment B Cc’ Cus L T, T, H
PP-LDA-NSO? 211 4.72 2.74 4.17
FP-LMTO-LDA-NSO?  1.98

FP-LMTO-GGA-SO 203 059 0093 4.79 2.68 4.52 5.49
Experimenf 196 0525 0.825 4.350.08 2.63-0.08 4.35:0.06 5.03:-0.07

a\u et al. (Ref. 28.
®Moduli from Kataharaet al. (Ref. § and phonons from Wood®Ref. 40.
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121.6 a.u., th&. phonon frequency is reduced to about 4.54 ' T T ' '
THz and the observed accidental degeneracy betwesamnd
T, is nearly achieved.

—_
S
<
i)
= FP-LMTO theory .-
g 6 .-~ ’SG model |
VI. SHEAR STRENGTH % I
o]
- - . . o 4 r 1
In this section we first use our calculated bcc elastic con- g
stants to analyze the assumed pressure dependence of the § .
=
[75]

well known Steinberg-GuinafSG) strength modéf as ap-
plied to polycrystalline Ta and then discuss our calculation ' L ' : '
- . . 2 4 6 8 10

of the ideal strength of the bcc metal. This will allow us to Pressure ( Mbar )
put approximate lower and upper bounds on the high-
pressure yield strength of Ta.

The phenomenological SG strength model assumes that FIG. 8. High-pressure shear modulus for Ta as calculated from
the yield stress of a metal scales linearly with its averagehe present FP-LMTO elastic moduli via E¢8) and from the

shear modulu&s in the form Steinberg-Guinan model via E¢p).

Y=Yof(e,) G(P,T)/Go, (4) than does the SG model. We make no attempt here to ad-
whereY, is a constan1.63 GPa= 0.0163 Mbar for Taand  dress the adequacy of the SG model itself for the yield stress
f is a bounded function of plastic strai, such that Y, except to remark that available experimental evid&hte

suggests thaY increases faster with pressure than does the
1<f(ep)<Ymax/ Yo, (5) shear modulu§s. Thus we believe a reasonable lower bound

with Y. @ second constarit.93 GPa for Ta In addition, for the high-pressure yield strength is

simple assumptions are made about how the shear modulus
G varies with pressur® and temperaturd. The tempera-
ture dependence db is modest compared to its pressure
dependence, so we focus only on the latterTAt300 K, it

is assumed that

YoGv(P)/Gy(0), (€)

whereY is taken from the SG model ar@y, is taken from
theory via Eq.(8).
A corresponding upper bound can be established by con-
G(P,300=Go(1+ AP/ 73), 6) sidering the ideal theoretical shear strength of the perfect bcc
crystal, in the complete absence on any dislocations or grain
where boundaries. A specific procedure to calculate this quantity
for real materials has been suggested and applied to fcc and
_ 139G (77 bec metals by Paxtost al*? The ideal shear strength is de-
"Gy dP’ fined to be the critical stress. separating elastic and plastic
. . . deformation under the continuous homogeneous shearing of
7 iS the compression factd¥,/V, and the subscript zero the perfect crystal into itself via the observed twinning mode.

denotesP=0. The constant&, andA, are determ_me_d from . For bcc crystals, this mode is specified by the shear direction
the measured values of the shear modulus and its first deriva-

tive at ambient conditions. Apart from thg'® term, Eq.(6) 7 =[H1] and the normal plan& =(112). Neglecting any
is a first-order Taylor series expansion in the pressure. Thiflaxation normal &, the atomic positions during the de-
additional term is suggested from Thomas-Fermi theory ifformation can be analytically related to the amount of shear

the high compression linfit and serves to boun@ at high~ - Specifically, the calculation may be carried out entirely
pressure. using a single atom per unit cell and periodic boundary con-

To compare our first-principles results with E@), we ditions, with the basis vectors of the sheared crystal given by

define a single shear modulus for the metal as the simple
Voigt average of the two bcc shear elastic constants: a :}[1—11“ 1 f[ﬁl] (109
12 6s ’
Gy(P)=[2C'(P)+3C44(P)]/5. (8

If the ambient-pressure experimental shear-moduli ®data 1 —  1Ix

are inserted into Eq8), one infersG,,(0)=0.705 Mbar and 3225[111]+ 6 5[111]' (10D
Ay(0)=[Gy(0)] *dGy(0)/dP=1.45(Mbar ~*, which are

close to the values 0ofG;=0.69 Mbar and A,=1.41 1

(Mbar) ! used in the SG model for T4,s0 we regard this az==[111]. (100
as an adequate averaging procedure. In Fig. 8 we directly 2

compareG,,(P) with the SG model over the-010 Mbar _ _
pressure range, using the presabtinitio FP-LMTO values At X=s=1/J2, one hasa,;=3[212] and a,=5[122], so
of C’ andC,4,in Eq. (8) and also the corresponding bcc EOS that an exact bcc twin has been created. Along the twinning
to evaluate the;*’® term in Eq.(6). Overall, the agreement is Path one calculates a symmetric energy barrier,
remarkably good, although above about 6 Mbar the present

theory predicts a somewhat faster rise in the shear modulus W(X)=(E{ V,X]—E{ V,0])/N, (11
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crystal structure stabilities described in Secs. Il and IV. Here
8 we have used Eq$109—(10¢ to define the one-atom/cell

i crystal structure for which we then perform a total energy
calculation. For each volum¥ considered, we have calcu-
lated the total energy for 11 relative sheaxss] in the in-
terval 0 =<x/s=<0.5, noting that the interval O05x/s<1.0

1 can be obtained by symmetiye., x/s and 1-x/s define the

1 same crystal structureThis energy path as a function xfs

was so calculated for five different volumes. For the smaller
volumes we used up to about 200@oints in the irreducible

3 part (1/4th) of the Brillouin zone to safely converge the total
energy. Representative results for the resulting energy barrier
W(x) and shear stresgx) at a single volume are plotted in
Fig. 9. Note in the upper panel of Fig. 9 that our calculated
W(x) varies very smoothly with shear This allowed us to
easily numerically differentiate this energy to obtain the
shear stress(x), shown in the lower panel of Fig. 9.

] Calculated values of the barrier height., critical stress

0 02 07 os o8 1 . 7¢, Critical shearx;, and the shear modulus in tHa11)
Relative Shear x/s direction

0.25
0.2
0.15
0.1
0.05

Energy Barrier (eV)

Shear Stress ( GPa)

G111:(2C,+C44)/3 (13)
FIG. 9. Calculated ideal shear strength in bcc Ta at a volume of . . . . ..
102.2 a.u. Upper panel shows the energy baniéx) and the are listed in Table V. The barrier height and critical stress

lower panel the shear stresx) display the expected monotonic increase with increasing
' pressure and decreasing volume. The relative critical shear
X./s remains in the approximate range 0-26.28 and close

with a barrier heighi, at x=s/2. The corresponding stress : .
ghtile P 9 to the value 0.25 one would have #x) were a pure sine

's given by function, as in the elementary Frenkel model of ideal
1 dW(x) strengtH®® The relative critical stress,/G;; remains in the
(X)== (12 approximate range 0.100.15, which is consistent with both
Vodx the Frenkel model and the 0.2D.17 range of values found

42 "
The ideal shear strength is identified with the maximum calPY Paxtonet al:* for the other bcc transition metals at am-

Lo _ bient pressure.
culated stress along the twinning path= 7(x.), wherex, . .
is the critical shear separating regimes of elastic and plastic, The upper bound to the high-pressure yield strength can

deformation of the crystal. Paxtoet al*? carried out this SMPly be taken asr(P) and compared with the lower
procedure for five bce transition metals at ambient pressur¢?0und defined in Eq(9). In Fig. 10 we plot bothr¢(P) and

excluding Ta, using an independent FP-LMTO method.! 0Gv(P)/Gy(0) as a function of pressure over the-00

These calculations were non-self-consistent, however, an¥Par range. The striking feature of this result is that the two
employed the so-called Harris-Foulkes approximation to opPounds are not widely separated and differ only by a factor

tain the potential, which they claim reproduces a full self-Of 4—7 over the whole pressure range. Diamond-anvil-cell
consistent calculation of in vanadium to within about 5%. €XPeriments to measure the high-pressure yield strength of

This simplification also allowed these authors to consider & &€ currently in progress.
relaxation effects, but these were found to be small in all

cases and did not changeg by a significant amount. In the VII. CONCLUSIONS
present work, therefore, we have considered only the unre-
laxed case. In this work we have used what we believe is the most

Our ideal shear strength calculations for Ta have beemccurate version of density-functional theory currently avail-
carried out in a very similar manner to our calculations of theable to predict a number of important high-pressure, zero-

TABLE V. Calculated ideal shear strength parameters for bcc Ta: barrier Raight eV, critical shear
Xc, critical stressr,, and shear modulu§,,; in GPa. For conversion of volumes to*Ainits, V(A3%) =
0.14818V(a.u). Note 100 GPa= 1 Mbar.

Volume Wc XC /S Tc Glll TC/Glll

118.9 0.194 0.258 7.37 70.3 0.105
102.2 0.276 0.265 12.4 101 0.123
73.62 0.566 0.280 36.2 248 0.146
57.91 0.837 0.274 66.5 499 0.133

49.65 0.952 0.260 89.9 767 0.117
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’ ‘ ' T T pler defect problems with owb initio FP-LMTO method as
~ el ideal shear strength | well. In this regard., we are currently engaged_ in preliminary
%“_’ 80 | Ta ceal slleat streng FP-LMTO calculations of the vacancy formation energy.
= 60 .
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. . APPENDIX
FIG. 10. Approximate upper and lower bounds on the yield

strength of Ta as a function of pressure, as discussed in the text.  In this appendix, we give details regarding the Bravais
lattices we have used for our bcc frozen phonon calculations

temperature properties of Ta up to 10 Mbar. Our fully rela-and also the displacements applied. We have studietHthe

tivistc FP-LMTO method with GGA exchange and andN points in the Brillouin zone because for these high

correlation yields a quantitatively accurate equilibrium vol- symmetry zone-boundary phonons it suffices to study a

ume and equation of state for this metal and could serve agoubled unit cell. For the Bravais lattice of thephonon we

the basis for developing a more global finite-temperaturéhave used the simple cubic unit cell

EOS in the future. We have further shown that the observed

bcc structure in Ta should remain both thermodynamically

and mechanically stable over the entire 1D Mbar range 1

considered, but that a bee fcc phase transition is possible R=( 0

at ultrahigh pressure well above 10 Mbar. In the stable bcc 0

phase, both the elastic moduli and high-symmetry zone-

boundary phonons display smooth monotonic behavior with ] ] )

pressure, but increasing elastic anisotropy is predicted angor theN phonon we instead have used the Bravais lattice

this could have important consequences for the high-pressuftefined by

mechanical properties of Ta. The calculated elastic moduli

have also served to confirm the assumed pressure depen-

(A1)

o - O
~ O O

1 1 1
dence of the shear modulus in the phenomenological 2z 2
Steinberg-Guinan strength model for Ta and in conjunction R=| & -1 1 (A2)
with that model provide an approximate lower bound on the
expected high-pressure yield strength of this metal. Calcula- 1 10

tions of the ideal shear strength of the perfect bcc metal

reveal Frenkel-like behavior and provide a corresponding apThese Bravais lattices are here given in units of the lattice
proximate upper bound to the high-pressure yield strengthconstanta. The doubled cell for both thel andN phonons
These bounds are reasonably closely spaced and should sef®/e atoms in equilibrium positions (0,0,0) and,{,3).

as a useful guide to future experimental and theoretical intaqomic positions are here represented in their respective
vestigations. . Bravais lattice coordinatesin the frozen-phonon method
Our ab initio FP-LMTO results should also be useful in o energy increasé\E) associated with a phonon displace-

developing corresponding many-body, angular-force imer'ment,uqz ulg|a defined by the normalized wave vectpris

atomic potentials for Ta via model generalized pseUdOpOterEalculated and the corres ;
. . X ponding angular frequency can be
tial theory"* (MGPT), as has been done previously for ifon  Jpo:- o by means of Eq1). In general, one can use the

and_molyl_adenunﬁMo).““ We_enwsag_e that such MGPT po- following displacements of the atoms: for thipoint pho-
tentials will be able to provide the ion-thermal components P i
of thermodynamic properties over—-a0 Mbar pressure NoN (0.04) and G,z,z—u); for the two transverse modes of
range, including the finite temperature bcc EOS, melting, angheN point phonon ¢ u,u,0) and ¢ +u,3 —u,3) for T; and
the EOS of the molten liquid metal. We further intend to (y uy,0) and ¢ —u,%—u,%) for T,; and for the longitudinal
extend the FP-LMTO calculations to finite temperature to . 1011 .

treat the corresponding electron-thermal components of suc'N'pOInt phonon (O’M). and (5,5,?—u). In practice, we let
properties, which can be quite significant in the central bc®€ Of the atoms be fixed and displace the other by the rela-
transition metalé* With regard to mechanical properties, we tive displacement between the two, e.g¢., %, 3 —2u) for the
expect to be able to use the same MGPT potentials to studyl-point phonon. By calculating total energies and extracting
relevant point and extended defects in Ta, including theAE, the angular frequency can be obtained from the har-
structure and energetics of dislocations, as we have don@onic relation

successfully for Md® We envisage that such calculations

could form the required atomistic basis for a rigorous multi- SAE

scale treatment of the yield stress and plastic flow in Ta. o=\ — (A3)
Finally, it may also be possible to address a few of the sim- d Mu?|q|2a2
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