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First-principles theory of Ta up to 10 Mbar pressure: Structural and mechanical properties
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Fundamental high-pressure structural and mechanical properties of Ta have been investigated theoretically
over a wide pressure range, 0210 Mbar, by means ofab initio electronic-structure calculations. The calcula-
tions are fully relativistic and use a state-of-the-art treatment of gradient corrections to the exchange-
correlation potential and energy within density-functional theory. The calculated zero-temperature equation of
state for bcc Ta is in good agreement with diamond-anvil-cell measurements up to 750 kbar and with reduced
shock data to 2.3 Mbar. The crystal-structure stability among bcc, fcc, hcp, andA15 phases has been studied
as a function of compression and the observed ambient-pressure bcc phase is found to be thermodynamically
stable throughout the entire 0210 Mbar range. At the upper end of this range, a metastable fcc phase develops
with positive elastic moduli and a decreasing fcc2bcc energy difference, suggesting that at even higher
pressures above 10 Mbar, fcc Ta will become stable over the bcc phase. Elastic constants, theH- andN-point
zone-boundary phonons, and the ideal shear strength have also been calculated for bcc Ta up to 10 Mbar
pressure. The elastic moduli and phonons are in good agreement with experiment at ambient pressure and
remain real and positive for all compressions studied, demonstrating that the bcc phase is mechanically stable
in this regime. The calculated elastic constants validate the assumed pressure scaling of the shear modulus in
the Steinberg-Guinan strength model of Ta, while the calculated values of ideal shear strength provide an upper
bound to the high-pressure yield stress.@S0163-1829~98!01117-5#
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I. INTRODUCTION

The thermodynamic and mechanical properties of tan
lum ~Ta! have been of long standing scientific and applic
tions interest in both the high-pressure and materials phy
communities. From the high-pressure community, a la
amount of experimental equation-of-state data exist on
metal, including shock Hugoniot data up to 10 Mbar1–3 and
static compression data in the diamond-anvil cell to 7
kbar.4,5 From the materials community, there is a corr
sponding wealth of data on the mechanical properties of
at or near ambient pressure, including, for example, ex
sive static test data on the temperature and strain-rate de
dence of the yield stress in Ta polycrystals6 and detailed
studies of the plastic deformation behavior of single-crys
bcc metals including Ta.7 In addition, there have been ultra
sonic measurements of the ambient-pressure elastic mo
and their pressure derivatives in Ta and other bcc met8

and dynamic mechanical test data on Ta to pressures as
as 2.3 Mbar.9 These data have been used to construct p
nomenological constitutive models of strength in Ta a
other metals for high-pressure applications.9,10

Theoretically, there has not been heretofore a large co
sponding effort to study the fundamental properties of
especially those at high pressure. Although Ta is a protot
bcc transition metal, its 5d relativistic character make it
quantitative behavior somewhat more challenging forab ini-
tio theory. Moreover, rigorous approaches to treat mech
cal properties in metals have generally lagged behind th
570163-1829/98/57~17!/10340~11!/$15.00
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of thermodynamic properties. This reflects the fact that m
chanical properties depend on phenomena at multiple len
scales ranging from atomistic to continuum, whereas therm
dynamic properties are determined primarily at the atomi
level and can be directly addressed with quantu
mechanical methods. Recently, however, with the rapid
continuing development of large scale computing capab
ties, there has been a growing interest in attempting to bri
the length scales and address mechanical properties fro
fundamental perspective as well.11 At the same time, ad-
vances in diamond-anvil-cell research hold promise that b
the elastic moduli12,13and yield strength14,15 in metals can be
directly measured at megabar pressures. Both of these fa
have helped renew interest in studying the mechanical p
erties of Ta at high pressure.

The purpose of this paper is to present a comprehen
first-principles study of the structural, elastic, vibration
and ideal-strength properties of bcc Ta in the 0210 Mbar
pressure range at zero temperature. These fundamental
erties not only under pin the high-pressure thermodyna
and mechanical behavior of the metal as a whole but
addition, they can be used to constrain and validate co
sponding interatomic potentials that can directly extend
range of applications to include finite-temperature equati
of-state properties and the treatment of extended defects
as screw dislocations, which control plasticity and other m
chanical properties in bcc metals. Our approach is based
an ab initio, fully relativistic treatment of the electronic
structure of the metal and uses a state-of-the-art implem
10 340 © 1998 The American Physical Society
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tation of density-functional theory16,17 including gradient
corrections to the exchange and correlation potential and
ergy. Within this framework, the equilibrium volume of th
metal is calculated to about 1% accuracy and the corresp
ing equation of state is also shown to be in good agreem
with experiment, as are the ambient-pressure elastic mo
and zone-boundary phonon frequencies. We further dem
strate that the observed ambient-pressure bcc phase rem
both thermodynamically and mechanically stable over
entire 10 Mbar range considered, and that a metastable
phase appears at the upper end of this range and will pos
become lower in energy than bcc at still higher pressu
The calculated high-pressure behavior of the elastic mo
is used to estimate the expected pressure dependence
shear modulusG in polycrystalline Ta and thereby to test th
assumed pressure dependence in the phenomenolo
Steinberg-Guinan strength model,10 which scales the yield
stress withG. As an upper bound to the high-pressure yie
stress, we also consider the pressure dependence of the
shear strength of the metal, defined as the minimum st
required to shear the perfect bcc crystal into itself for
observed twinning geometry.

The outline of the paper is as follows. In Sec. II we gi
a brief overview of the computational approach used in
ab initio electronic-structure calculations. Then in Sec.
we discuss the low-temperature equation of state of Ta, w
in Sec. IV we investigate the high-pressure structural ph
stability of the metal. The pressure dependence of the
elastic constants and zone-boundary phonons is consid
in Sec. V. Then in Sec. VI we use the calculated elas
constants to analyze the assumed pressure dependence
Steinberg-Guinan strength model as applied to Ta and
also consider the corresponding ideal shear strength of
Ta. Concluding remarks are given in Sec. VII.

II. COMPUTATIONAL APPROACH

The following section briefly summarizes the details
our ab initio electronic-structure calculations. Our compu
tional method is based on the first-principles dens
functional theory16,17and yields the total energy of a period
system without any experimental input other than the ato
number~73 for Ta!. In principle, this theory only involves
one approximation, namely, the assumed form of the den
functional for the exchange and correlation energy of
electrons. Historically, this functional has usually be
treated within the local-density approximation17 ~LDA !, but
here we have chosen to use what we believe is the m
accurate treatment available to date, namely, the genera
gradient approximation~GGA! of Perdewet al.18 In practice,
other approximations are often also used in conjunction w
any actual computational method. In the present work,
have made a special effort to remove such additional
proximations. In particular,~i! the electron charge densit
and the one-electron potential are allowed to have any g
metrical shape and are calculated self-consistently;~ii ! all
relativistic terms, including the spin-orbit coupling, are i
cluded in the Hamiltonian; and~iii ! the numerical basis se
used is extended to a so-called ‘‘double basis’’ set in orde
minimize truncation errors in the expansion of the on
electron wave functions. The importance of the GG
n-
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exchange-correlation treatment, the shape-independent
tron density and potential, and the spin-orbit coupling ha
been studied in detail for Ta in the context of the predic
equilibrium volume and zero-temperature equation of sta
as will be discussed below in Sec. III.

The present method incorporates nonsphericity to
charge density and potential by representing the crystal w
nonoverlapping spheres~of a variable, optimum size! sur-
rounding each atomic site and a general shaped inters
region between the spheres. Hence, we deal with two ty
of geometrical regions in the calculations. Inside the sphe
the wave functions are represented as Bloch sums of
called linear muffin-tin orbitals and are expanded by me
of structure constants. The kinetic energy is not restricted
be zero in the interstitial region and the wave function e
pansion contains Hankel and Neumann functions~depending
on sign of the kinetic energy! together with Bessel functions
The analytical expressions for these expansions can be fo
elsewhere.19 The whole approach is usually called a fu
potential linear muffin-tin orbital~FP-LMTO! method, be-
cause of the use of linear muffin-tin orbitals in the wa
function expansions and the fact that the potential conta
no shape approximation. In order to represent the wave fu
tions in Ta as accurately as possible we have defined h
in a single energy panel, 5s, 5p, and 4f semi-core states
and 6s, 6p, 5d, and 5f valence states. The aforeme
tioned ‘‘double basis set’’ has been used, i.e., two kine
energy parameters (k2) appropriate for the tails of the 5s,
5p, and 4f states, and the valence states have been u
Because of the spin-orbit interaction, our calculations
volve diagonalizing matrices with dimension 108 per atom

With such an electronic-structure method that accura
calculates the total energy of a periodic system, it is reas
ably straightforward to compute the zero-temperature eq
tion of state, crystal structure stabilities, elastic consta
and high-symmetry zone-boundary phonons, although ca
lation of the elastic constants and phonons is computat
ally rather intensive. The approach that has been follow
here for these computations is similar to that used rece
for a study of iron up to megabar pressures20 and we there-
fore make only a few selected comments here and refer
interested reader to that publication for additional deta
The calculation of the ideal shear strength, on the other ha
is new in the present context and we discuss its calcula
separately in Sec. VI. Except as indicated, all calculatio
presented here have been performed with the same exte
~double! basis set described above, the same~GGA!
exchange-correlation functional, and the same fully relativ
tic treatment with the spin-orbit coupling included.

In obtaining the equation of state for bcc Ta, total en
gies have been calculated for 21 volumes~corresponding to
steps smaller than 1 Å3). As was discussed previously fo
iron,20 the total energy converges slowly with respect to t
k-point sampling used in the appropriate summations o
the Brillouin zone~BZ! at high pressures. Here we have us
up to 150k points in the irreducible~1/48th! part of the BZ.
The 21 total energy points were then locally fit in a lea
squares manner using the Murnaghan equation-of-s
form.21 Specifically, the energy-volume data were divid
into overlapping sets containing five energy-volume poi
each for which the four variational parameters of the M
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10 342 57PER SÖDERLIND AND JOHN A. MORIARTY
naghan form were individually fitted. In the interior of th
data interval, the parameters so determined were then us
calculate the pressure and bulk modulus at the middle
each five-point set. This procedure was modified for
high-end and low-end boundary points where instead
closest five points inside the data interval were used. He
a total of 17 fits with 4 variational parameters each w
done. For the boundary points the described procedure
course not as accurate as for the other points. At the h
volume end this was not a problem since we could calcu
some energy points well above the equilibrium volume a
use these as boundary points. At the high-pressure end
procedure could potentially introduce small errors due to
fitting. However, at high pressure this ‘‘local-fit’’ scheme
expected to give similar results to those obtained from
global fit ~one Murnaghan fit for all 21 points!, and this is in
fact the case here. The root-mean-square~rms! errors for the
‘‘global’’ and ‘‘local’’ fits are about 0.1 mRy and 5mRy,
respectively.

The structural energies for the bcc, fcc, hcp, and theA15
~8 atoms per unit cell! phases of Ta have been calculated
to 10 Mbar. In our theoretical treatment, volume, and n
pressure, is the independent variable for the total-energy
culations. In principle, the Gibbs free energy as a function
pressure for the two phases in a phase transition shoul
considered. However, the volume change at a metallic so
solid phase transitionDV is usually small (; 1 %!, and the
difference between Gibbs free-energy differences at cons
pressure and total-energy differences a constant volume
the order of (DV)2 and typically negligible.22 Hence we con-
sider only total-energy differences and calculate the pres
through the bcc Ta EOS. This approximation is not imp
tant because the bcc phase remains lower in energy than
of the other phases studied throughout the entire pres
range. Again, care was taken in converging each total-en
result with respect to the number ofk points. We have used
150 ~bcc!, 150~fcc!, 162~hcp!, and 45 (A15) k points in the
respective irreducible BZ of the four structures considere

The calculation of the bcc shear elastic constants, C8 and
C44, has been done in a manner similar to that for iron20 and
as in that case, convergence of the total energies requir
large number ofk points~2176 and 1620, respectively!. The
calculation of zone-boundary phonons for bcc Ta was a
similar except that a bcc structure has not been previo
considered in this context and we therefore mention a
details here and in Appendix A. The bcc phonons have b
obtained using the frozen-phonon method,23 in which the
total energy is calculated as a function of static displa
ments of the atoms corresponding to the phonon under
sideration. From the shift in total energyDE induced by a
small atomic displacement, the angular phonon freque
(vq) can be calculated using the relation

DE5
1

2
M ~uqvq!2, ~1!

whereM is the atomic mass for Ta anduq is the amplitude
of the displacement. In this study we only have conside
phonons at two high-symmetry points in the BZ, namely,
H point 2p/a(1,0,0), wherea is the lattice constant, and th
N point p/a(1,1,0). For theH-point phonons, the longitudi
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nal and transverse modes are degenerate due to symm
but not for theN-point phonons whose transverse modes
denote asT1 andT2 and longitudinal mode asL. Hence, we
have considered four phonon modes as a function of pres
up to 10 Mbar. Four different displacements, inducing n
more than 223 mRy shift in the total energy, were typicall
used to fit Eq.~1!. Details on how these displacements we
chosen are given in Appendix A together with the respect
Bravais lattices we have used for theH andN phonons. The
number ofk points for these 2-atom/cell calculations we
about 6002900 in the irreducible part of the BZ, dependin
on the actual phonon mode.

III. EQUATION OF STATE

In this section we present a detailed analysis of the p
sure versus volume or zero-temperature equation of s
~EOS! of bcc Ta, including both our central FP-LMTO resu
and its sensitivity to various approximations. The results d
cussed have been obtained from the ‘‘local-fit’’ scheme
scribed in the previous section. However, it may be of int
est to some readers to see our central EOS result repres
by a global Murnaghan fit as well. The global Murnagh
expression for the total energy can be written as

Etot~V!5S B0V

B08
D F 1

B08
S V0

V D B08

11G1E0 . ~2!

The four fitting parameters correspond to measurable qu
tities: B0 and B08 are the bulk modulus and its pressure d
rivative, respectively,V0 is the equilibrium volume andE0 is
an additive constant related to the cohesive energy. For
our global least-squares fit givesV0517.70 Å3, B052.18
Mbar, andB0853.2. These values are similar but not identic
to those obtained from the ‘‘local-fit’’ scheme:V0517.68
Å 3, B052.03 Mbar, andB0854.3. This reflects the limita-
tions of the Murnaghan functional form when applied to su
a large pressure range. Other global EOS schemes ma
may not do better. We find, for example, that the univers
equation-of-state~UEOS! scheme of Vinetet al.,24 which
similarly employsV0, B0, andB08 as parameters, only give
an accurate fit to the present Ta EOS to about 2 Mbar. H
ever, a modified UEOS scheme25 with three additional pa-
rameters~corresponding to higher pressure derivatives! does
adequately describe the Ta EOS over the entire 0210 Mbar
range and with parameter values close to those of our ‘‘loc
fit’’ scheme:V0517.68 Å3, B052.07 Mbar, andB0854.4.

In order to perform sensitivity tests and to compare w
previous theoretical results for the equation of state for
we have considered the effects of common approximati
that have been widely used for electronic structure calcu
tions. Specifically, we have considered an LDA approach
the exchange-correlation functional suggested by von B
and Hedin26 in addition to the GGA proposed by Perdew a
co-workers.18 We also have switched on and off the spi
orbit ~SO! interaction in our calculations, with the no spin
orbit case ~NSO! corresponding to the familiar semi- o
scalar-relativistic approximation. In Fig. 1 we compare o
calculated EOSs of Ta up to 1 Mbar for the four possib
combinations of these two approximations with experimen
diamond-anvil-cell~DAC! data5 taken at room temperature
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Note that the calculation that in principle should be the m
accurate, i.e., the GGA1 SO result with a gradient-correcte
exchange-correlation functional and with the spin-orbit int
action included, reproduces the experimental data most
curately overall. This calculation also reproduces the e
mated experimental zero-temperature equilibrium volum27

to within about 1%, as shown in Table I. Interestingly, t
LDA without spin-orbit coupling also gives a reasonab
good overall description here and definitely better res
than the LDA with spin-orbit coupling, which underest
mates the zero-temperature equilibrium volume significan
for Ta, as also shown in Table I. Clearly, the scalar rela
istic treatment compensates for errors in the LDA to so
extent. These results suggest that unless an electro
structure calculation for Ta includes a gradient-correc
exchange-correlation functional, it is probably not a go
idea to include spin-orbit coupling. Finally, it is also reass
ing to note from Table I that the LDA calculation performe
by Wu et al.28 without spin-orbit coupling, using an indepen
dent FP-LMTO method,29 gives a very similar equilibrium
volume for Ta~17.33 Å3) compared to our correspondin
LDA-NSO calculation~17.25 Å3).

In addition to the two aforementioned approximations,

FIG. 1. Theoretical~FP-LMTO! and experimental~DAC! equa-
tions of state for Ta below 1 Mbar. Theory including gradie
corrections and spin-orbit coupling~GGA 1 SO, see main text!
gives an equilibrium volume~17.68 Å3) closest to experimen
~17.88 Å3).
t

-
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s

y
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e

so-called atomic sphere approximation~ASA!, where a
spherically symmetric potential and charge density is
sumed in addition to other approximations,30 has been
widely used to calculate equations of state for many met
For this reason we also have performed LMTO-ASA calc
lations of the equilibrium volume for Ta as a further point
reference. These calculations also can be either scalar
tivistic ~Pauli Hamiltonian with relativistic terms excep
spin-orbit coupling! or fully relativistic ~Dirac Hamiltonian
with relativistic terms including the spin-orbit coupling!. The
results of these calculations are shown in Table I and t
indicate larger equilibrium volumes of 18.7 Å3 ~scalar rela-
tivistic! and 18.6 Å3 ~fully relativistic!. Here we have again
used the von Barth and Hedin exchange-correlat
functional.26 It has been shown previously that gradient co
rections to that functional worsen the results for methods
neglect nonspherical charge density31 and for that reason we
did not perform LMTO-ASA calculations with the GGA
Although Ta is not an especially favorable case, the com
nation of the ASA and the LDA is often a good one f
equation-of-state calculations, since these approximat
have a consistent, but opposite effect upon the calcula
equilibrium volume of a metal. The LDA overestimate
chemical bonding while the ASA underestimates this bo
ing, leading to a cancelation of errors with a relatively sm
net effect on the calculated equilibrium volume. It has be
noted32 that the ASA tends to increase the calculated eq
librium volumes, often concealing the disagreement of
full-potential LDA with experiment. One should remembe
however, that the total energies calculated for open cry
structures or used to obtain elastic constants and fro
phonons are not sufficiently accurate with the ASA.

It is also interesting to note in Table I that the spin-or
interaction has a larger effect on decreasing the equilibr
volume for LMTO calculations done with the full potentia
as compared to calculations performed within the ASA. W
speculate that the semicore states, defined in our FP-LM
calculations but not in the LMTO-ASA calculations, a
more sensitive to the spin-orbit splitting leading to an
crease in the chemical bonding. Similar observations h
been made for the actinide metals, where spin-orbit coup
increases the atomic volume when the semi-core states
neglected. When they are included, however, the net effec
the spin-orbit interaction has on the equilibrium volume
small for metals such as Pu.
TABLE I. Calculated equilibrium volumes Vtheory ~in Å 3) for Ta obtained from LMTO calculations in
various approximations. Estimated zero-temperature experimental volume Vexpt is 17.88 Å3.

Method Exchange-correlation Spin-orbit coupling Vtheory
Vtheory2Vexpt

Vexpt

FP-LMTO GGA YES 17.68 21.1%
FP-LMTO LDA YES 16.76 26.3%
FP-LMTO GGA NO 18.21 1.8%
FP-LMTO LDA NO 17.25 23.5%
FP-LMTO a LDA NO 17.33 23.1%
LMTO-ASA LDA YES 18.60 4.0%
LMTO-ASA LDA NO 18.70 4.6%

aWu et al. ~Ref. 28!.
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It is encouraging to note that of all the above calculatio
the preferred and most accurate theoretical treatment~FP-
LMTO-GGA-SO, with spin-orbit coupling included! indeed
is reproducing the experimental data best for the equatio
state and equilibrium volume of Ta. To test the accuracy
this treatment at somewhat higher pressures, we have c
pared our calculated EOS with the shock-derived ze
temperature isotherm of McQueenet al.,1 which extends to
2.3 Mbar. This comparison is shown in Fig. 2. The agr
ment is clearly excellent.

IV. CRYSTAL STRUCTURE STABILITIES

Using our preferred FP-LMTO-GGA-SO theoretical trea
ment, we have studied the stability of four crystal structu
in Ta over the 0210 Mbar pressure range. In addition to th
observed bcc structure, we have considered the close-pa
fcc and hcp structures and also the low-symmetryA15 struc-
ture. The latter structure occurs frequently in group-V a
-VI transition-metal binary compounds, and there also
been recent experimental evidence in Ta that theA15 phase
can be solidified from the supercooled liquid.33 Correspond-
ing first-principles calculations33 have confirmed that the to
tal energy of theA15 phase in Ta is close to that of the b
phase at the equilibrium volume. In Fig. 3, we show t
results from our total-energy calculations. Here we plot

FIG. 2. Preferred theoretical zero-temperature equation of s
~FP-LMTO-GGA-SO! compared against that derived from expe
mental shock-wave measurements~Ref. 1!.

FIG. 3. Total energies in Ta as a function of volume for t
ideal hcp, fcc, andA15 structures relative to the observed bcc str
ture. On top of the figure the bcc pressure, as obtained from
present Ta EOS, is shown.
,

of
f
m-
-

-

s

ed

d
s

e

energies of the fcc, hcp, andA15 structures relative to that o
the bcc ground-state as a function of volume. Correspond
numerical values are given in Table II. In these calculatio
we have kept thec/a axial ratio in the hcp structure at th
ideal value, since optimizing this ratio would lower the h
energy only slightly. This was directly verified for one vo
ume~102.2 a.u.5 15.14 Å3), where the optimizedc/a ratio
was calculated to be about 1.80, with a corresponding lo
ering of the hcp energy by about 4 mRy/atom. At this vo
ume, the minimum hcp energy is still about 27 mRy high
than the bcc energy~see Table II!. Also note in Fig. 3 that
the A15 structure is indeed very close in energy to the b
structure at low pressures, whereas both the fcc and
structures lie much higher in energy. The trend suggests
at slightly more expanded conditions theA152bcc energy
difference would, in fact, pass through zero. Extrapolat
from Table II, we find that this should occur at a volume
about 132.7 a.u.~19.66 Å3), which is very close to the ob
served solid volume of 133.2 a.u.~19.74 Å3) for the bcc
phase at melt.34 With increasing pressure, on the other han
the bcc structure becomes rapidly more stable with respe
the other three structures. At high pressures above 4 M
however, the hcp2fcc energy difference levels off and be
comes nearly constant, while the fcc2bcc energy difference
maximizes and then begins to slowly decline.

The large energy difference between the bcc and

te

FIG. 4. Tetragonal shear constantC8 and fcc2bcc crystal-
structure energy difference for Ta as a function of pressure
obtained from the Ta EOS.

-
e

TABLE II. Theoretical structural energies~FP-LMTO-GGA-
SO! for Ta under compression. Volumes are in a.u., pressure
Mbar, and energy differences in mRy/atom. For conversion of v
umes to Å3 units,V~Å 3) 5 0.14818V~a.u.!.

Volume Pressure fcc2bcc hcp2bcc A152bcc

124.8 20.08 17.4 22.6 2.8
118.9 0.005 20.2 24.7 4.9
113.1 0.12 23.1 27.0 7.2
102.2 0.45 29.5 31.4 12.7
91.95 0.90 35.9 36.3 18.8
82.45 1.53 43.3 42.3 25.5
73.62 2.48 51.3 48.1 33.5
65.44 3.89 56.1 52.8 42.5
57.91 6.00 55.9 54.3 52.9
49.65 10.0 48.6 54.5 72.3
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structures is typical for a metal with a high tetragonal sh
constantC8. In fact, it has been previously demonstrated t
these two properties scale fairly well for mostd-transition
metals.35 Although the bulk modulus shows a parabo
variation with atomic number as one proceeds throu
the 4d or 5d transition series, with a maximum in the midd
of the series, the variation ofC8 is not parabolic. Instead th
fcc2bcc energy difference is the most important controlli
factor and this energy difference is determined primarily
the d-band energy. However, the scaling principle betwe
the fcc2bcc energy difference andC8 noted at ambient con
ditions has not been tested heretofore as a function of p
sure. In Fig. 4 we plot both these quantities for Ta up to
Mbar. The fcc2bcc energy difference is increasing wi
pressure and up to about 4 Mbar the scaling principles h
fairly well. At higher pressures where the fcc2bcc energy
difference maximizes and then begins to decrease, the te
onal shear constant continues to increase with pressure
nearly linear fashion. This peculiar behavior can be trace
the shape of the so-called Bain transformation path. T
path defines the total energy as a function of tetragonal
tortion of a bct unit cell where the distortion parameter is
c/a axial ratio. For the valuesc/a51 andc/a5A2 we re-
cover the bcc and the fcc crystal structures, respectively.
curvature of this path atc/a51 gives the bcc tetragona
elastic constantC8. The curvature~and thereforeC8) is of
course related to the fcc2bcc energy difference, and if thi
path has the general shape shown for Ta at 2.5 Mbar in
5, thenC8 and the fcc2bcc energy difference are found t

FIG. 5. Calculated total energy for bct Ta at 2.5 and 10 Mbar
a function of c/a axial ratio ~the Bain transformation path!. The
high symmetry valuesc/a51 andc/a5A2 correspond to the bcc
and fcc crystal structures, respectively.
r
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be roughly proportional. However, at higher pressure (; 10
Mbar! in Ta the Bain path becomes distorted near the
end, so that the curvatures atc/a51 and c/a5A2 have
completely different magnitudes. In fact, the fcc structure
this pressure has a small butpositivecurvature indicating a
positive fcc C8. For all d-transition metals at ambien
pressure36 and also for Ta up to about 2–3 Mbar, the Ba
path has a symmetric shape where the curvature is very s
lar in magnitude forc/a51 ~bcc! and c/a5A2 ~fcc! but
with different signs. For Ta at ultrahigh pressure, this gene
form of the Bain path is altered as the fccC8 changes sign
from negative to positive. The underlying reason for th
change in behavior appears to be related to the fact tha
electrostatic contribution to the total energy becomes
creasingly more important at ultrahigh pressure and this c
tribution works to stabilize high-symmetry closed-pack
structures such as fcc. At lower pressures, on the other h
the band-structure energy and its difference as a func
of crystal structure is more important. In fact, it has be
shown that band-filling effects can explain the behavior
the fcc2bcc energy difference and alsoC8 for d-transition
metals and their alloys.37 Since the fccC8 becomes positive
at about 10 Mbar in Ta, we also considered an orthorhom
~or trigonal! distortion of the fcc structure corresponding
the other shear elastic constantC44. We have found that this
distortion also increases the total energy, so thatC44 is posi-
tive as well. Hence, mechanical stability is developed for
Ta at ultrahigh pressure. Coupled with the decreasing m
nitude of the fcc2bcc energy difference in this pressure r
gime, this suggests that the fcc phase may eventually bec
stable over the bcc phase at still higher pressures.

A scenario in which Ta transforms to the fcc structure
some ultrahigh pressure is interesting since this meta
clearly very stable in the bcc phase over a very large pres
range, at least 0210 Mbar, and elementary arguments bas
on the expectedd-band filling andsp→d electron transfer38

suggest that bcc should remain the ultimate high-press
phase. However, it has been predicted by Ahujaet al.39 that
d-transition metals with ad band occupation between 2 an
5 electrons per atom could be stabilized in the fcc struct
if the hybridization between semicore 5p and valence 5d
states is strong enough at high pressure. Tantalum has a
3.4 5d electrons per atom at the equilibrium volume and t
occupation is increasing with pressure viasp→d electron
transfer due to broadening of the bands and the relative l
ering of the 5d bands compared to the 6s and 6p bands.
Hence, Ta is lying in the 225 d-electron range for which the
fcc structure would be stabilized due to 5p-5d hybridization.

s

-
z. For
TABLE III. Theoretical moduli and phonons~FP-LMTO-GGA-SO! for bcc Ta under compression. Vol
umes are in a.u., pressures, bulk and elastic moduli in Mbar, and zone-boundary phonons in TH
conversion of volumes to Å3 units,V~Å 3) 5 0.14818V~a.u.!.

Volume Pressure B C8 C44 L T1 T2 H

118.9 0.005 2.03 0.59 0.93 4.79 2.68 4.52 5.49
102.2 0.45 3.70 0.91 1.20 6.78 3.36 5.02 6.96
73.62 2.48 10.1 2.38 2.69 12.0 5.45 6.40 10.2
57.91 6.00 20.4 4.03 6.92 15.6 6.71 8.24 13.2
49.65 10.0 33.8 5.45 12.1 17.2 8.0 9.66 16.0
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10 346 57PER SÖDERLIND AND JOHN A. MORIARTY
It is clear from Fig. 3, however, that the pressure required
this transition~bcc→ fcc! is well above our highest studie
pressure, 10 Mbar.

V. ELASTIC CONSTANTS AND PHONONS

In this section we report our calculated results for t
elastic constants and high-symmetry zone-boundary phon
of bcc Ta. Here we have again used our preferred
LMTO-GGA-SO treatment, which gives the most accura
results for the equation of state. The calculation of the sh
elastic constants involves computing the change in total
ergy for appropriate small applied strains and the spec
procedure developed for cubic metals has been detailed
previous paper.37 Our results for these quantities, as well
the bulk modulus obtained from the zero-temperature E
are given in Table III and Fig. 6 over the 0210 Mbar pres-
sure range. The bulk modulusB and the shear elastic modu
C8 and C44 are everywhere calculated to be positive a
show smooth monotonic behavior as a function of press
This indicates full mechanical stability for bcc Ta over t
entire 0210 Mbar pressure range. Note that in Fig. 6 w
have scaledB by a factor of 10 so that its magnitude b
comes more similar toC8 andC44. At ambient pressure, ou
calculated bulk and shear moduli are in good agreement
ultrasonic measurements,8 as shown in Table IV. Unde
compression,C44 increases more rapidly with pressure th
C8. This indicates that Ta is increasingly anisotropic at h
pressure, and the anisotropy ratio

A5C44/C8 ~3!

increases from 1.58 at ambient pressure to a value of 2.2
10 Mbar. Although such an increase is somewhat counte

FIG. 6. Bulk modulusB and shear elastic constantsC8 andC44

as a function of pressure for bcc Ta.
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tuitive, it is not uncommon in metals. For example, we ha
found qualitatively similar behavior in high-pressure iron20

Experiments to measure the high-pressure elastic cons
of Ta are currently in progress.13

In addition to the elastic constants, we have also stud
the H- andN-point zone-boundary phonons in bcc Ta up
10 Mbar, by means of the frozen-phonon method~see Sec. II
and the Appendix!, and the results are given in Table III an
Fig. 7. Note from the figure that at low pressure the frequ
cies of theH-point phonon and the longitudinal modeL of
theN-point phonons are rising rapidly and cross at about
Mbar, but above about 2 Mbar all of the calculated phono
show a very similar~almost linear! pressure dependence. A
ambient pressure, our calculated results are in good ag
ment with those obtained from room-temperature inela
neutron scattering measurements,40 as shown in Table IV.
TheN-point phonons for Ta at the equilibrium volume we
also recently calculated using anab initio pseudopotential
method~PP-LDA-NSO! by Wu et al.,28 and as shown in the
same table, these results agree favorably with ours. An in
esting aspect of the experimental data is the accidental
generacy found for theL and T2 phonons. The qualitative
origin of this degeneracy can be seen from Fig. 7, where
frequency of theL mode is seen to be rapidly approachin
that of theT2 mode near zero pressure. In our calculation
zero pressure, however, theL and T2 frequencies differ by
about 5% and in the calculation of Wuet al.28 by about 12%.
This outcome partly reflects the sensitivity of theL mode to
volume at low pressure. If we extrapolate our results fro
the calculated zero-temperature equilibrium volume of 11
a.u. to the observed room-temperature equilibrium volume

FIG. 7. High-symmetryH, L, T1 , and T2 zone-boundary
phonons~see text! for bcc Ta as a function of pressure.
TABLE IV. Theoretical and experimental ambient-pressure bulk and shear elastic moduli~in Mbar! and
zone-boundary phonons~in THz! for bcc Ta.

Treatment B C8 C44 L T1 T2 H

PP-LDA-NSOa 2.11 4.72 2.74 4.17
FP-LMTO-LDA-NSOa 1.98
FP-LMTO-GGA-SO 2.03 0.59 0.93 4.79 2.68 4.52 5.49
Experimentb 1.96 0.525 0.825 4.3560.08 2.6360.08 4.3560.06 5.0360.07

aWu et al. ~Ref. 28!.
bModuli from Kataharaet al. ~Ref. 8! and phonons from Woods~Ref. 40!.
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121.6 a.u., theL phonon frequency is reduced to about 4.
THz and the observed accidental degeneracy betweenL and
T2 is nearly achieved.

VI. SHEAR STRENGTH

In this section we first use our calculated bcc elastic c
stants to analyze the assumed pressure dependence o
well known Steinberg-Guinan~SG! strength model10 as ap-
plied to polycrystalline Ta and then discuss our calculat
of the ideal strength of the bcc metal. This will allow us
put approximate lower and upper bounds on the hi
pressure yield strength of Ta.

The phenomenological SG strength model assumes
the yield stress of a metal scales linearly with its avera
shear modulusG in the form

Y5Y0f ~ep!G~P,T!/G0 , ~4!

whereY0 is a constant~1.63 GPa5 0.0163 Mbar for Ta! and
f is a bounded function of plastic strainep , such that

1< f ~ep!<Ymax/Y0 , ~5!

with Ymax a second constant~1.93 GPa for Ta!. In addition,
simple assumptions are made about how the shear mod
G varies with pressureP and temperatureT. The tempera-
ture dependence ofG is modest compared to its pressu
dependence, so we focus only on the latter. AtT5300 K, it
is assumed that

G~P,300!5G0~11A0P/h1/3!, ~6!

where

A05
1

G0

dG0

dP
, ~7!

h is the compression factorV0 /V, and the subscript zero
denotesP50. The constantsG0 andA0 are determined from
the measured values of the shear modulus and its first de
tive at ambient conditions. Apart from theh1/3 term, Eq.~6!
is a first-order Taylor series expansion in the pressure.
additional term is suggested from Thomas-Fermi theory
the high compression limit41 and serves to boundG at high
pressure.

To compare our first-principles results with Eq.~6!, we
define a single shear modulus for the metal as the sim
Voigt average of the two bcc shear elastic constants:

GV~P!5@2C8~P!13C44~P!#/5. ~8!

If the ambient-pressure experimental shear-moduli d8

are inserted into Eq.~8!, one infersGV(0)50.705 Mbar and
AV(0)5@GV(0)#21dGV(0)/dP51.45 ~Mbar! 21, which are
close to the values ofG050.69 Mbar and A051.41
~Mbar! 21 used in the SG model for Ta,10 so we regard this
as an adequate averaging procedure. In Fig. 8 we dire
compareGV(P) with the SG model over the 0210 Mbar
pressure range, using the presentab initio FP-LMTO values
of C8 andC44 in Eq. ~8! and also the corresponding bcc EO
to evaluate theh1/3 term in Eq.~6!. Overall, the agreement i
remarkably good, although above about 6 Mbar the pres
theory predicts a somewhat faster rise in the shear mod
-
the

n

-

at
e

lus

a-

e
n

le

a

tly

nt
us

than does the SG model. We make no attempt here to
dress the adequacy of the SG model itself for the yield str
Y, except to remark that available experimental evidence10,15

suggests thatY increases faster with pressure than does
shear modulusG. Thus we believe a reasonable lower bou
for the high-pressure yield strength is

Y0GV~P!/GV~0!, ~9!

whereY0 is taken from the SG model andGV is taken from
theory via Eq.~8!.

A corresponding upper bound can be established by c
sidering the ideal theoretical shear strength of the perfect
crystal, in the complete absence on any dislocations or g
boundaries. A specific procedure to calculate this quan
for real materials has been suggested and applied to fcc
bcc metals by Paxtonet al.42 The ideal shear strength is de
fined to be the critical stresstc separating elastic and plast
deformation under the continuous homogeneous shearin
the perfect crystal into itself via the observed twinning mod
For bcc crystals, this mode is specified by the shear direc
h 5@ 1̄1̄1# and the normal planeK5(112). Neglecting any
relaxation normal toK , the atomic positions during the de
formation can be analytically related to the amount of sh
x. Specifically, the calculation may be carried out entire
using a single atom per unit cell and periodic boundary c
ditions, with the basis vectors of the sheared crystal given

a15
1

2
@ 1̄11#1

1

6

x

s
@ 1̄1̄1#, ~10a!

a25
1

2
@11̄1#1

1

6

x

s
@ 1̄1̄1#, ~10b!

a35
1

2
@111̄#. ~10c!

At x5s51/A2, one hasa15 1
3 @ 2̄12# and a25 1

3 @12̄2#, so
that an exact bcc twin has been created. Along the twinn
path one calculates a symmetric energy barrier,

W~x!5~Etot@V,x#2Etot@V,0# !/N, ~11!

FIG. 8. High-pressure shear modulus for Ta as calculated f
the present FP-LMTO elastic moduli via Eq.~8! and from the
Steinberg-Guinan model via Eq.~6!.
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10 348 57PER SÖDERLIND AND JOHN A. MORIARTY
with a barrier heightWc at x5s/2. The corresponding stres
is given by

t~x!5
1

V

dW~x!

dx
. ~12!

The ideal shear strength is identified with the maximum c
culated stress along the twinning path,tc5t(xc), wherexc
is the critical shear separating regimes of elastic and pla
deformation of the crystal. Paxtonet al.42 carried out this
procedure for five bcc transition metals at ambient press
excluding Ta, using an independent FP-LMTO meth
These calculations were non-self-consistent, however,
employed the so-called Harris-Foulkes approximation to
tain the potential, which they claim reproduces a full se
consistent calculation oftc in vanadium to within about 5%
This simplification also allowed these authors to consi
relaxation effects, but these were found to be small in
cases and did not changetc by a significant amount. In the
present work, therefore, we have considered only the u
laxed case.

Our ideal shear strength calculations for Ta have b
carried out in a very similar manner to our calculations of

FIG. 9. Calculated ideal shear strength in bcc Ta at a volum
102.2 a.u. Upper panel shows the energy barrierW(x) and the
lower panel the shear stresst(x).
l-

tic
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e-

n
e

crystal structure stabilities described in Secs. II and IV. H
we have used Eqs.~10a!–~10c! to define the one-atom/ce
crystal structure for which we then perform a total ener
calculation. For each volumeV considered, we have calcu
lated the total energy for 11 relative shears (x/s) in the in-
terval 0 <x/s<0.5, noting that the interval 0.5<x/s<1.0
can be obtained by symmetry~i.e.,x/s and 12x/s define the
same crystal structure!. This energy path as a function ofx/s
was so calculated for five different volumes. For the sma
volumes we used up to about 2000k points in the irreducible
part ~1/4th! of the Brillouin zone to safely converge the tot
energy. Representative results for the resulting energy ba
W(x) and shear stresst(x) at a single volume are plotted i
Fig. 9. Note in the upper panel of Fig. 9 that our calculat
W(x) varies very smoothly with shearx. This allowed us to
easily numerically differentiate this energy to obtain t
shear stresst(x), shown in the lower panel of Fig. 9.

Calculated values of the barrier heightWc , critical stress
tc , critical shearxc , and the shear modulus in the^111&
direction

G1115~2C81C44!/3 ~13!

are listed in Table V. The barrier height and critical stre
display the expected monotonic increase with increas
pressure and decreasing volume. The relative critical sh
xc /s remains in the approximate range 0.2620.28 and close
to the value 0.25 one would have ift(x) were a pure sine
function, as in the elementary Frenkel model of ide
strength.43 The relative critical stresstc /G111 remains in the
approximate range 0.1020.15, which is consistent with both
the Frenkel model and the 0.1220.17 range of values found
by Paxtonet al.42 for the other bcc transition metals at am
bient pressure.

The upper bound to the high-pressure yield strength
simply be taken astc(P) and compared with the lowe
bound defined in Eq.~9!. In Fig. 10 we plot bothtc(P) and
Y0GV(P)/GV(0) as a function of pressure over the 0210
Mbar range. The striking feature of this result is that the t
bounds are not widely separated and differ only by a fac
of 4–7 over the whole pressure range. Diamond-anvil-c
experiments to measure the high-pressure yield strengt
Ta are currently in progress.15

VII. CONCLUSIONS

In this work we have used what we believe is the m
accurate version of density-functional theory currently ava
able to predict a number of important high-pressure, ze

of
TABLE V. Calculated ideal shear strength parameters for bcc Ta: barrier heightWc in eV, critical shear
xc , critical stresstc , and shear modulusG111 in GPa. For conversion of volumes to Å3 units, V~Å 3) 5
0.14818V~a.u.!. Note 100 GPa5 1 Mbar.

Volume Wc xc /s tc G111 tc /G111

118.9 0.194 0.258 7.37 70.3 0.105
102.2 0.276 0.265 12.4 101 0.123
73.62 0.566 0.280 36.2 248 0.146
57.91 0.837 0.274 66.5 499 0.133
49.65 0.952 0.260 89.9 767 0.117
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temperature properties of Ta up to 10 Mbar. Our fully re
tivistic FP-LMTO method with GGA exchange an
correlation yields a quantitatively accurate equilibrium v
ume and equation of state for this metal and could serv
the basis for developing a more global finite-temperat
EOS in the future. We have further shown that the obser
bcc structure in Ta should remain both thermodynamica
and mechanically stable over the entire 0210 Mbar range
considered, but that a bcc→ fcc phase transition is possibl
at ultrahigh pressure well above 10 Mbar. In the stable
phase, both the elastic moduli and high-symmetry zo
boundary phonons display smooth monotonic behavior w
pressure, but increasing elastic anisotropy is predicted
this could have important consequences for the high-pres
mechanical properties of Ta. The calculated elastic mo
have also served to confirm the assumed pressure de
dence of the shear modulus in the phenomenolog
Steinberg-Guinan strength model for Ta and in conjunct
with that model provide an approximate lower bound on
expected high-pressure yield strength of this metal. Calc
tions of the ideal shear strength of the perfect bcc m
reveal Frenkel-like behavior and provide a corresponding
proximate upper bound to the high-pressure yield stren
These bounds are reasonably closely spaced and should
as a useful guide to future experimental and theoretical
vestigations.

Our ab initio FP-LMTO results should also be useful
developing corresponding many-body, angular-force in
atomic potentials for Ta via model generalized pseudopo
tial theory44 ~MGPT!, as has been done previously for iron20

and molybdenum~Mo!.44 We envisage that such MGPT po
tentials will be able to provide the ion-thermal compone
of thermodynamic properties over 0210 Mbar pressure
range, including the finite temperature bcc EOS, melting,
the EOS of the molten liquid metal. We further intend
extend the FP-LMTO calculations to finite temperature
treat the corresponding electron-thermal components of s
properties, which can be quite significant in the central b
transition metals.44 With regard to mechanical properties, w
expect to be able to use the same MGPT potentials to s
relevant point and extended defects in Ta, including
structure and energetics of dislocations, as we have d
successfully for Mo.45 We envisage that such calculation
could form the required atomistic basis for a rigorous mu
scale treatment of the yield stress and plastic flow in
Finally, it may also be possible to address a few of the s

FIG. 10. Approximate upper and lower bounds on the yi
strength of Ta as a function of pressure, as discussed in the te
-
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pler defect problems with ourab initio FP-LMTO method as
well. In this regard, we are currently engaged in prelimina
FP-LMTO calculations of the vacancy formation energy.
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APPENDIX

In this appendix, we give details regarding the Brav
lattices we have used for our bcc frozen phonon calculati
and also the displacements applied. We have studied thH
and N points in the Brillouin zone because for these hi
symmetry zone-boundary phonons it suffices to study
doubled unit cell. For the Bravais lattice of theH phonon we
have used the simple cubic unit cell

R5S 1 0 0

0 1 0

0 0 1
D . ~A1!

For theN phonon we instead have used the Bravais latt
defined by

R5S 2 1
2

1
2

1
2

1
2 2 1

2
1
2

1 1 0
D . ~A2!

These Bravais lattices are here given in units of the lat
constanta. The doubled cell for both theH andN phonons

have atoms in equilibrium positions (0,0,0) and (1
2 , 1

2 , 1
2 ).

~Atomic positions are here represented in their respec
Bravais lattice coordinates.! In the frozen-phonon method
the energy increase (DE) associated with a phonon displac
ment,uq5uuqua defined by the normalized wave vectorq, is
calculated and the corresponding angular frequency can
obtained by means of Eq.~1!. In general, one can use th
following displacements of the atoms: for theH-point pho-

non (0,0,u) and (1
2 , 1

2 , 1
2 2u); for the two transverse modes o

theN point phonon (2u,u,0) and (12 1u, 1
2 2u, 1

2 ) for T1 and

(u,u,0) and (12 2u, 1
2 2u, 1

2 ) for T2; and for the longitudinal

N-point phonon (0,0,u) and (1
2 , 1

2 , 1
2 2u). In practice, we let

one of the atoms be fixed and displace the other by the r

tive displacement between the two, e.g., (1
2 , 1

2 , 1
2 22u) for the

H-point phonon. By calculating total energies and extract
DE, the angular frequency can be obtained from the h
monic relation

vq5A 2DE

Mu2uqu2a2
. ~A3!

.
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37P. Söderlind, O. Eriksson, J.M. Wills, and A.M. Boring, Phys

Rev. B48, 5844~1993!.
38J.A. Moriarty, Phys. Rev. B45, 2004~1992!.
39R. Ahuja, P. So¨derlind, J. Trygg, J. Melsen, J.M. Wills, B. Jo

hansson, and O. Eriksson, Phys. Rev. B50, 14 690~1994!.
40A.D.B. Woods, Phys. Rev.136, A781 ~1964!.
41M. Guinan and D. Steinberg, J. Phys. Chem. Solids36, 829

~1975!.
42A.T. Paxton, P. Gumbsch, and M. Methfessel, Philos. Mag. L

63, 267 ~1991!.
43C. Kittel, Introduction to Solid State Physics, 5th ed.~Wiley, New

York, 1976!, p. 565.
44J.A. Moriarty, Phys. Rev. B49, 12 431~1994!; 42, 1609~1990!.
45W. Xu and J.A. Moriarty, Phys. Rev. B54, 6941~1996!; Comput.

Mat. Sci. ~to be published!.


