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Evidence for a genuine ferromagnetic to paramagnetic reentrant phase transition
in a Potts spin-glass model
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Many experimental and theoretical efforts have been devoted in the past 20 years to searching for a genuine
thermodynamic reentrant phase transition from a ferromagnetic to either a paramagnetic or spin-glass phase in
disordered ferromagnets. So far, no real system or theoretical model of a short-range spin-glass system has
been shown convincingly to display such a reentrant transition. We present here results from Migdal-Kadanoff
real-space renormalization-group calculations that provide strong evidence for ferromagnetic to paramagnetic
reentrance in Potts spin glasses on hierarchical lattices. Our results imply that there is no fundamental reason
to rule out thermodynamic reentrant phase transitions in all non-mean-field randomly frustrated systems, and
may open the possibility that true reentrance might occur in some yet to be discovered real randomly frustrated
materials[S0163-18208)06217-1

I. Introduction All real materials contain a certain amount netism occurs only on short length scales, and the system
of frozen-in random disorder. Often, random disorder leadslisplays, instead, full-blown spin-glass behavior below a
to randomly competing, or frustrated, interactidrRandom  glass transition temperaturg, 209
frustration is detrimental to the type of order that an other- At the theoretical level, it is also currently believed that
wise idealized pure material would display for zero disorderreentrance does not occur any random bond spin-glass
Randomly frustrated systems are ubiquitous in condensednodel’=%! This is certainly the case for the infinite range
matter physics. Examples include: magnetic systtmixed  Ising, XY, and Heisenberg modelsin two- and three-
molecular crystal,superconducting Josephson junctions indimensional Ising and Heisenberg models, high-temperature
an applied magnetic fiefiliquid crystals in porous medi, series expansiolt;*® Monte Carlo simulationd,”® and re-
and partially UV polymerized membrangs. cent defect-wall energy calculatidisind no reentrant be-

One of the main issues at stake in all frustrated systems isavior either. Recently, compelling renormalization-
how the low-temperature phase of the pure material is afgroup®*® and quenched gauge symmetry argum@rits
fected by weak disorder, and how that state evolves witthave been put forward for a broad class of spin-glass models,
increasing disorder level. In particular, one of the most in-which include the Ising spin gladsand the gauge glass
triguing questions is whether a weakly frustrated system camodel for disordered Josephson-junction arrays and vortex
lose upon cooling the long-range ordered phase establisheglass in disordered type-Il superconductdt$?°?? and
at higher temperature and return,reenter into a thermally ~ which strongly argue against reentrance. Some of the details
disordered phase, or go into a randomly frozen glassy phasef these predictions have been quantitatively tested by high-
Because of their relative simplicity over other systems, andemperature series expansiort® while possibly the most
because of the large number of systems readily availabldetailed checks have been obtained from real-space Migdal-
with easily controllable level of disorder, random magnetsKadanoff renormalization grougMKRG) calculations of
are ideal systems to study the effects of weak frustration antsing spin-glass models on so-callechierarchical
to investigate the above question. It was originally thoughtattices!®~*? Even in the case of the two-dimensionéy
that several weakly frustrated ferromagnets, such asodel with random Dzyaloshinskii-Moriya couplings, which
Eu,Sr,_,S and amorphous-Re,Mn,, were displaying a for a long-time was believed to be a good candidate for re-
reentrant transition from a ferromagnetically long-range or-entrant behaviot:> evidence is now rapidly accumulating
dered phase to a randomly frozen spin-glass phase upahat reentrance does not occur in that system efthe?®
cooling and for a finite range of disorder.,> However, after Summing up, it appears that the case against reentrance in
20 years of extensive experimental research, it is now gerrandomlyfrustrated systems and non-mean-field theoretical
erally believed that a true thermodynamic reentrant phasmodel$* is at this time simply overwhelming. In fact, the
transition from a long-range ordered ferromagnéficphase  evidence is sufficiently strong that it could be interpreted as
to either a spin-glaséSG) or paramagneti¢P) phase does an indication that some profound, though yet unknown, rea-
not occur in real magnetic materidls, Once established at sor(s) formally forbid reentrance irall spin glasseseven
the P-F Curie temperaturg: ferromagnetic order remains those which do not exhibit a quenched gauge
down to zero temperature, though with the possibility of ainvariance'*?151"This is not impossible given that our un-
transversespin-freezing transition &, (0<T, <T.) in XY  derstanding of the nature of the ground dgitand of the
and Heisenberg systems, which does not destroy the ferrdew-lying excitations in glassy systems is still limited. In this
magnetic ordef-° Above a critical disorder level, ferromag- paper we present a counterexample to this common belief,
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what we believe is the first strong evidence for a reentrantion of the o— 1) spins. This results in a new effective cou-
transition in a simpleon-mean-fielépin glass model where pling J;;(1+1), at the RG decimation step
thermal fluctuations and the question of lower-critical spatial

dimension play a key rol& Specifically, we consider the exp(BIM(I+1)}

three-state ferromagnetic Potts model with a concentration

of random antiferromagnetic bonds on hierarchical lattices. 1+ Q 3
We investigate the thermodynamic behavior of this model =P(1+QH{exp(BIN(1))—1}) —1

using the MKRG scheme, which is an exact method for hi-

erarchical lattice$® We present results which show that this and 8= 1/kgT. In dimensiond, b@~Y such parallel paths of
model exhibit ferromagnetic to paramagnetic reentrance for § ponds inBa. series, each V\'Iith its end-to-end couplifg
finite concentration range of antiferromagnetic bonds. Reeny. 1), are then added together to gisee new coupling
trance is made possible by the fact that the system prefers to

lower its free energy through short-range antiferromagnetic n=p(@-1)
(AF) correlations rather than to preserve long-range ferro- - _ (n)
magnetic order. Since the lower critical dimension for anti- Ji(1+1) n; PE+L). @

ferromagnetic long-range order for tkge=3 Potts model on

hierarchical lattices is &’ the system can be reentrant in two In practice, the procedure is implemented by first creating a
and three dimensions. It is interesting to note that the MKRGQarge pool ofN (N~ 1(f) bare couplingsJ;;(1=0), distrib-
method has in the past been used as one of the key methodted according to Eq2). Then,b couplings are randomly

in establishing the absence of reentrance in I$h&*  picked out of that pool combined to create a serial coupling
XY,® and possibly also in Dzyaloshinskii-Moriy&Y spin ~ J"(I+1) as given by Eq(3). Then,b(®~Y) such couplings

glasses:19-20:23 J"(1+1) are added together to give one new couplig
II. Model and methodThe Hamiltonian for theQ-state  +1). The procedure is repeatbltimes to repopulate a new
Potts model is pool of N couplingsJ;;(1+1) at RG stepl(+1).

The nature of the magnetic phase at a given temperdture

and concentratiorx of antiferromagnetic bonds is deter-

ij 5‘Ti o (1) mined by monitoring thé dependence of the average value
J(I) and the widthAJ(l) of the distribution ofN bonds

Jij(1). As | —co, J andAJ evolve in the various phases as

H=-> J

(i)

whereJ;;>0 for ferromagnetic couplings anlj; <0 for an-
tiferromagnetic oness,, o, is the Kronecker delta: the spin,

o, at lattice sitd can takeQ statesQ=0,1,2...Q—1. The
bond energy between two spins-s];; if the two spins are

in the same state;=o;, and zero otherwise. The familiar
Ising model is equivalent to @=2 state Potts model with a
shift of total energy of the system, and a rescaling of the
exchange coupling;; by a factor 2. Although “less popu-
lar” than the Ising model, the three-state Potts model is also
important in modeling real condensed-matter systems. For
example, the two-dimensional antiferromagnetic three-state limJ— — oo IimA—_J—>0 antiferromagnetic,  (7)
Potts model on the frustratdcagomelattice captures some | oo |—oe J

of the essentials of the low-temperature thermodynamics of

the Heisenberg antiferromagnet on that latfi¢Also, it has —

limJ—0, limAJ—0: paramagnetic, (5)

| —o0 | —o0

— Al
limJ— +o, lim——0: ferromagnetic, (6)

| —o0 | —o0

been suggested that the orientational freezing in molecular limAJ— o, Iimi—>0: spin glass. (8)
glasses, such as NAr and KBr-KCN, can be partially de- | o RN

scribed by a three-dimensional three-state Potts spin-glass

model? To allow for the existence of an antiferromagnetic phase, we

Here we consider the situation where the bodiglsn Eq.  must work with odd values df, as even values df “frus-
(1) are distributed randomly, and given by a quenched biasetiate” the antiferromagnetic phases and map an initial star-

bimodal probability distributionP(J;;): tup antiferromagnetically biase®(J;;) into a ferromagnetic
phase already at iteration step 1. Here we focus on hierarchi-
P(Jij) =x8(J;; — )+ (1—x) 8(J;; +J). (2)  cal lattices withb=3.

lll. Results The temperature vs concentration of antifer-
A bond between sites andj has a probabilityx to be fer-  romagnetic bonds phase diagram for the three-dimensional
romagnetic and of strength and a probability +x of be-  d=3 case(with b=3) is shown in Fig. 1. The phases have
ing AF and of strength—-J. We study the thermodynamic been determined according to the criteria given above.
properties of this system on hierarchical lattices using thé=irstly, there is no AF or SG phase at nonzero temperature in
MKRG scheme1214192930ne considers a sequencetof this system in the whole rangeskx<1. The most remark-
Jij bonds in series, each we labBK (k=1,2,..b), where able feature of this phase diagram is the existence of a reen-
(b—1) spins are summed ovéwe have dropped the sub- trant ferromagnetic to paramagnetic phase transition for the
script ij). The above Hamiltonian preserves its invariantrangex e[0.765,0.85%. The value of 0.855 obtained by ex-
form (apart from a spin-independent teromder the decima- trapolating these nonzero temperature results agrees with the
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FIG. 1. Temperaturel concentrationx of antiferromagnetic bonds FIG. 2. Iteration numbet dependence of the average couplid@)

phase diagram for th© =3 state Potts spin glass onda= 3, b=3 hierar-  slightly in the paramagnetic phase close to the ugperve A,x=0.80,T
chical lattices. Ferromagnetic to paramagnetic reentrance occurs in the range0.70) and lower reentrariturve B,x=0.80,T=0.30) P-F phase bound-
0.765<x<0.855. There is no spin-glass or antiferromagnetic phase in thisry.

model at nonzero temperature. o o
code, the upper limit for overflow for double-precision cal-

culations on a 32-bit machine moves from 3¥0 to
:)ne obtatlned by 't%[?atgg tlhe MKRS equatlonbs abo;efsjt ZerQ_ 1 (f10% % a tremendous improvement. With this modifica-
er;pera ure exactly. Similar results were obtaine tion, the MKRG iterations become for all practical purposes
- devoid of overflow limitations. Our results with this version
14,19,29,30
As observed and discussed in other pafets] of the MKRG scheme gave an identical phase boundary to

thedMlKRGl scheme is d|ff|cu!|E to |mplt_arrrr11ent for Sg'”'grl?ss the one obtained using straightforward conventional double-
models at low temperaturéasT— 0+). The reason for this grecmon calculations on a 32-bit machine. The results in

is as follows. The occurrence of a ferromagnetlc phase i ig. 1 for T/J=<0.25 were actually obtained with the “im
monitored by the criteriofid— +,AJ/J—0]. In practice  proved” version of the MKRG scheme. We are therefore
the ferromagnetic phase is detected when numerical overflowonfident that the reentrant phase transition displayed by the
occurs ag— < on the ferromagnetic side of the-fi- bound- Q=3 bimodal Potts spin-glass model on tve 3 hierarchi-

ary. In a spin-glass model, where the distribution ofca| |attice ind=2 andd=3 is a genuine one, and not an
exp{BJ;(1)} is broad at low temperature in the ferromagneticartifact due to limitation imposed by numerical overflow at
phase close to either the P-F or F-SG boundary, one encoufbw temperatures.

ters overflow at iteration stely,, way beforeJ(l) has in- The reentrance found here implies that the long-range fer-
creased by several order of magnitude comparedi(fo Fomagnetic phase has higher entropy than the low-
=0). In previous MKRG studies of spin glase@141%nhe  temperature paramagnetic phase. How can we understand
F-P or the F-SG phase boundary did not give any “peculiar’this? A first hint can be obtained by considering the behavior
reentrant boundary, and thextrapolatedfinite-temperature of the flow ofJ(I) close to the upper and lowéreentrant

F-P or F-SG boundary down t6=0 agreed with explicit F-P boundarysee Fig. 2 We see thad(l) approached(l
MKRG calculations aff=0. Consequently, there has been —»)—0+ monotonouslyas | — close to the upper P-F
until now no incentive to push the limit of the numerics in boundary(curve A). However,J(I) swings negative for in-
MKRG calculations of spin glasses @&s-0+. However, in  termediate length scaleurve B for all temperatures below
our case here, with this reentrant behavior, one could béhe lower (reentrant P-F boundary before eventually ap-
concerned that the lower reentrant portion of the phasgroaching the trivial paramagnetic fixed poiitl —«)=0.
boundary is a numerical artifact. Specifically, it woagri- In other words, the system establishes short-range antiferro-
ori seem possible that the flow between 0.765 and 0.85Bagnetic correlations in the reentrant portion of the phase
seems to indicate a paramagnetic phase according to the cdiagram forT<0.60 and 0.755x<0.855.

terion given above for £I=<I,,, but actually, be found to Interestingly, for the Potts model, a ground state with an-
“reverse itself” for a valuel > 1., with | ,> | max, if NUMeri-  tiferromagnetic correlations in presence of random ferromag-
cal overflow bounds allowed it to be seen, and such that theetic bonds hadower entropy than a ferromagnetic state
asymptotic large length scale behavior for 0.Z66<0.855 with random antiferromagnetic bonds. Consider three spins,
was ferromagnetic in the limit—c. In such a scenario, the o3, 0, ando; with ferromagnetic bondd,, andJ,;. If one
reentrant region would result from a combination of shortof the bonds is, instead, antiferromagnet, becomes an
length scale physics added to a finite limit to overflowidle and entropy-carrying spin with zero effective average
bounds imposed by the computer used for the calculationsexchange field af=0 from ferromagnetically alignedr,

To address this issue, we parametrized each of thand o3;. However, for oy and o3 antiferromagnetically
exp{8J;(1)} “coupling terms” via a two-component vector aligned via the othetb®=2) bonds, o, is in a unique
exp{B;;(1}=1{M;;(1),E; ()}, whereM;;(1) andE;;(l) are the (nonidle state for a ferromagnetid,, bond and an antifer-
mantissa and the exponent, in base 10, off 8%{l)}. The = romagneticJ,; bond. Consequently, antiferromagnetically
MKRG computer code was then rewritten in terms of directcorrelated triplets of spinso(;,0,03) carry lower entropy
algebraic mantissa operations and exponent shifting operda presence of random ferromagnetic bonds than a ferromag-
tions. With this improved version of the MKRG computer netic state with random antiferromagnetic bonds. The anti-
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ferromagnetic state also hdewer energy (E=-—J), as 6 N L L B R
compared to the ferromagnetic configuratide=<{0). Na- 14 L s A
ively, in order to minimize the free energlf,=E—TS, this 12 L5, i
observation suggests that, upon cooling, local antiferromag- g
netic correlations should become more and more favorable o i
since entropy is less important at low temperatures. This T os - 7
makes plausible that the system, at low temperatures, prefers 06 - Ferro |
to form ferromagnetic domains that are antiferromagnetically 04 L i
aligned(e.g., on intermediate length scales, as found in Fig. 1
2) rather than to keep the long-range ferromagnetic order %2 'antiferromagnetic—"BK" * )
0.0 1 | 1 1 | 1 1 |

established at higher temperatures. However, and this is an
important point, true long-range antiferromagnetic order can-
not occur since it is known that the lower critical dimension  FiG. 3. Temperaturel concentrationx of antiferromagnetic bonds
for antiferromagnetic order on thee=3 hierarchical lattice is phase diagram for th@=3 state Potts spin glass orda=4, b=3 hierar-
four (d=4).27 Thus, for a certain concentration range of chical Igttice. The antiferromagnetiC‘B_K” phase _refers to the gr!tiferro- '
random AF bonds, reentrant behavior from a ferromagnetiglagnetlcally ordered phase characterized by a fixed point at finite coupling
phase to a paramagnetic phase with local antiferromagne'u‘g':°°):710'946 61(Ref. 30.

correlations can occur. ld=4 (Fig. 3), the F—P reentrance
disappears and gives rise, instead, as expected from the p
vious argument, to an-FAF transition upon cooling, where
here “AF" refers to the Berker-Kadanoff phase character-
ized by a nontrivial attractive fixed point at nonzero
temperaturé’

IV. Conclusion In conclusion, we have shown that the
Q=23 Potts spin-glass model on two- and three-dimension
hle_rarchlcal lattices underg_oes a ferromagnetlc _to PAraMagpn i our results will stimulate further studies in that direction.
netic reentrance upon cooling. This reentrance is du@)to
the combination of antiferromagnetically correlated spins at We thank P. Holdsworth, J. Machta, H. Nishimori, Y.
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for ferromagnetic order for th€@ =3 Potts ferromagnet is
'Stie. Consequently, reentrance occurslat0 in two- and
three-dimensional such lattices. The results presented here
demonstrate that there is fundamentaleason forbidding a
thermodynamic reentrant phase transitionaih randomly
frustrated systems. Our results open the possibility that reen-
a;ljrance might occur in some yet to be discovered real ran-
omly frustrated systems with Euclidean lattiéé§Ve hope
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