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Theory of relaxation of magnetic clusters in a Stern-Gerlach setup
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We use a stochastic theory approach to discuss different scenarios such as “locked moment” and “super-
paramagnetic” behavior of magnetic clusters seen in Stern-Ge(BGh experiments. A dimensionless pa-
rameterA 7g (where\ is an internal spin relaxation rate and is the time spent by the cluster in the field
gradient regioh and the initial polarization of the cluster moment are shown to determine sensitively the
position of the cluster beam on the SG scrd&0163-18208)08517-9

The study of magnetic clusters is a very active area ofopy energies The central issue is, what @ (or more ac-
research in mesoscopic physfcs Apart from their potential ~ curately its average when the beam of clusters undergoes
importance in industrial applications, these clusters are interthermal relaxation during the traversal through the magnetic
esting in their own right for a fundamental understanding offield?
their magnetism in general. A useful experimental techniqgue The model which captures our proposed physical picture
for studying magnetic properties of clusters is to employis the following: each cluster is viewed as a single-domain
them in a molecular beam in a Stern-Gerl&8i) setup and magnetic particle(consisting of up to hundreds of atoms
measure deflections on a detector. A proper analysis of thiwith the individual atomic moments locked up in a given
experiment is expected to reveal important information aboutlirection, yielding a giant moment for the particle. Thus we
the cluster size, anisotropy energies, magnetic moment pégnore, for the present discussion, intraparfidlactuations.
atom, temperature dependence of magnetization, and, abo¥fée moment of the particle is, however, not fixed in direc-
all, thermal relaxation processes. In particular, it has beetion as it is expected to undergo thermal fluctuatithse to
found that magnetic clusters show two limiting characteris-a spin-lattice interaction The latter arise from a heat bath
tics referred to as “locked moment” and “superparamag-which is maintained at a temperature that has been referred
netic” behaviors depending on the orientational relaxation ofto in the literaturé> as the vibrational temperatufle, . The
the moment as it traverses the SG apparatusthis paper effect of the thermal fluctuations is to relax the orientation of
we provide a unified picture of these different scenarioshe magnetic moment of the particle, as in rotational Brown-
based on a stochastic theory approach and discuss our théan motion’
retical results in the light of experiments on transition-metal We should keep in mind that our Brownian particte,
and rare-earth clustefs® precisely, the momepis, in fact, under the influence of a

For the sake of definiteness we shall use the result for thpotential which is a combination of the anisotropy energy
deflection on the screen in the usual SG geometkgtched and the Zeeman energy. Assuming for the sake of simplicity
schematically in Fig. las a reference. If the beam consiststhat the anisotropy is uniaxiflthe potential may be written
of two-level atoms as in the historic experiment, the positive

deflection, say, for the “spin-up” atoms, is given by ®(0)=N(K sirPd—Bgug €OS 6), 2
w LD 1L whereN is the number of atoms in the clustér,and g are,
d= m B'(0) -7 (1+ > 5), (1) respectively, the anisotropy energy and magnetic moment

per atom, and is the angle between direction of the moment

where u is the atomic momentn is the mass of the atom,
B’ (0) is the gradient of the magnetic fidldssumed to have Detector
a constant parBy which is much larger thazyB’(0), z,

being the width of the beamthe distance& andD are as
indicated in the figure, and? is the mean-squared velocity

of the atoms. The latter depends on the “source tempera-
ture” T, through the relationy?= (kgTo)/m, kg being the Oven
Boltzmann constant. Considering that the beam traverses ¢
lengthL in the magnetic field, we may already introduce the
notion of the experimental time scatg=L/v. This will be

used later as a yardstick for discussing relaxation effects

which will be characterized by other time scales. Our objec- P

tive is to give aunified theory which encompasses both

transition-metal clusters, i.e., those of cobalt, nickel, or iron

(believed to have “small” anisotropy energjesand rare-

earth clusters, i.e., those of gadolinigmith “large” anisot- FIG. 1. A typical Stern-Gerlach setup.
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and the applied magnetic field. For simplicity, we assume the NuoB'(0)
magnetic field to be along the direction of anisotropy; this = M cos 6(t), (8)
assumption can, however, be relaxed easily. The equilibrium
value of the magnetization is given by which is a stochastic process, becad$p is. Thus the rel-
evant quantity to calculate is the mean velocity in thdi-
M =N 0(COS ) g, (3@  rection, given by v,(t)=DbJfy(cosé(t’))dt’, where b
=NuoB’(0)/M, M is the mass of the cluster, and we as-
where sumev,(0)=0. The angular bracketed quantity is defined by
- (cosé(t))=/gdo sin 6 cosd P(,t). Knowing v,(t), the SG
f dé sin 0 cos 6 exp(—D(0)/kgT,) deflection can be evaluated as
(Cos 0) = - . e D__
fo dé sin 6 exp —P(6)/kgT,) d= fo v,(t)dt+ o v,(7E), 9

(3b) where 7¢ is the experimental time scale defined in the para-
graph below Eq(1).

For very weak anisotropyK~0), Eq.(3) can be approxi- The exact expression fgrosd(t)) requires the most gen-

mated by eral solution of Eq(6) which is analytically intractable. We
kT NBoso beIieye, howgver, that a range of clqs_ter behavior can be
(COS B)eq~ g —cotl-( ) (4)  described within the so-called transition state theory of

NBowo keT, Kramers which works very well within high barrier and

On the other hand, if the anisotropy is very large, the moWeak thermal noise limit1%In that region, the solution of

ment is “locked” at the orientation O ofr, and hence Eq. (_6), with th_e initial conditionf= 6, att=0 can be ap-
proximately written as

_ N By P(0,t)= Py 6)+[5(coS 68— COS ) — P )] M,
(COS B¢ tanl‘( KT, ) ) g ° d (10)

Thus, in either of the limits{cos ), is independent oK.~ WhereP{(6) is given by Eq(7). The rate parameteris the
We turn our attention now to the main focus of our study,dominant eigenvalue in the Kramers regime which can be
namely, the relaxational dynamics of the moment. Insofar agstimated from a variational treatment. The result is

the dynamics is viewed to be described by rotational Brown- - [ INK |32 NK B2,,2
ian motion! the underlying probability distributio(6,t) A= — <_) ex;{ - ( T O—sz”
obeys a Fokker-Planck equation 7o | kT, kT, 4K
NB B NB
d 1 oD I{ oto| Bomo . r( o,uo)]
_ N - 7= X4 cos - sin , (11
7o 7 P(O.)= g0 =5 | SIn 0( kaT, 90 P(6,t) kgT, 2K KgT,
P which is valid only wherByuo/2K=<1. In the absence of the
. d (G,t)” 0< o< (6) Zeeman interaction) reduces to the well-known Néé
a6 || ’ formulat?
where g is simply a parameter that sets the basic time scale [ 2NK |32 NK
of the process. Because the so-called drift term in the AN(Bo=0)=— expg — : (12)
To 7TkBTU kBTU

Fokker-Planck equatio(6) is written in terms of the poten-
tial ®(6), Eq. (6) is guaranteed to yield foP(6,t) in the  While employing Eq(10) for evaluatingd from Eq.(9), it is
asymptotic (i.e., t—o) limit, the equilibrium distribution ~convenient to take an average over the initial cluster orien-
function tation 6y, to be denoted a&coséy). For a polarizedunpo-
larized beam({cos#y)=1(0). We then obtain
exp(— D (0)/kgT,)

Ped 6)= —— : (7 4o bD 1 -
f d6 sin 6 exd — d(6)/kgT, ] = (cosbo) - (1-e )
0
Evidently, it is this quantity which is used to evaluate Eq. + v Te— E (1_e7\TE)}
(3b). DA A
The Fokker-Planck equation is the starting point of our 1 D v
analysis. However, it is important to emphasize that this +b(cos 9>eq[— T§+— 1—_)
equation describes the stochastic dynamics of an “internal” 2 v DA

variable such as the orientation of the magnetic moment. As

such, it would havao influence on the barycentric motion of X ] . (13

the cluster were it not for the inhomogeneous magnetic field

present in the SG setup. Thus we need to tie up our previousquation(13) is our final result, which will form the basis of
discussions with the kinematics of the cluster center-of-maseur further analysis of different regimes of relaxation. Before
motion along thez axis. The latter is naturally governed by we carry out this analysis, it is important to check that in the
the acceleration static limit (A=0), Eq. (13) does reduce to Eq1) for a

T —1(1—e—”E)
E )
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polarized beam, as expected. We now discuss the two ex 1.1
treme limits of Eq(13) in terms of the dimensionless param- Lo p=10
eter\ r¢ that characterizes the interplay of thermal relaxation ’
time in relation to the experimental time scale. 0.9
(i) Slow relaxation(A7e<1): In this limit the SG dis- p=08
placemend is given by 0.8
0-74 p=06
bD7e vrg| 1 UTE (_1 0.6
d=~ T <00500> 1+ ﬁ) — E )\TE 1+ 3_D
0.5 p=04
X ({cos 0y) —(cos 0)eq)} : (14 044
0.5 - p=02
(ii) Fast relaxation(A 7g>1): 09
. T T T T T T T 1 I
0 1 2 3 4 5 6 7 8 9 10
bDTE UVTE 1 UVTE
o
~ +—— +— |1+ —
d 1 ZD)(cosa)eq M_E(l 5

FIG. 2. Stern-Gerlach deflectiod (measured in units ofl,
defined in the tejtfor a polarized beam, i.e{coséy)=1, as a
X ((cos fp) —(COS O)¢g) |- (15 function of a=\ g, wherer¢ is the time the cluster spends inside
the magnetic field gradient and is a characteristic spin orienta-
Several comments may now be made on the basis of théonal relaxation rate. The different curves correspond to different
above results(a) As the relaxation picks up from the ex- Vvalues of the thermal average moment (osf)eq.
treme static limit §=0), there is a discernible shift id,
and the direction of the shift with respectze-0, the center \where do= B’ (0)LD/muv?, for different values ofp

of the screen, depends on the sign qf=((cosfy)  =(cos6),,and(cosfy,)=1. Typical experimental values are
—(C0Sf)eq. (D) In the extreme rapid relaxation limit, the de- g —1.034 T, B’(0)=310.1 T/m,D=1.183m,L=0.25m,
flection is proportional to the average magnetization of theandTvib in the range 100—-300 K. In Fig. 2, the smallimit
cluster[cf. Eq. (15)]. This is expected because the mag”eticcorresponds to the “locked” moment regime, whereas the
moment tumbles over so frequently during the traversal Ofargea limit corresponds to the “superparamagnetic” re-
the cluster through the gradient field that the magnetizati(_)@ime_ If p~1, then the displacement is quite insensitive to

equilibrates to the vibration. temperature. This regime IShe value ofe. On the other hand, the rate of decreasel of
known_ t4°5 be _charactenze(_j by i _superparamagnetl(\:Nith a is extremely rapid for smaller values of the average
relaxation.™ Direction of the shift for finitex 7z also de- momentp. The characteristic value af that separates the
pends on the sign of. (c) .T.he fast relaxation limit IS Pal” 10w and fast relaxation regimes is about 3 for smaller values
ticularly relevant for transition-metal clusters for which the of p

anisotropy is low. In addition, for a partially polarized beam, A few challenging theoretical problems remains op@.

i kB;_” 1S mu'cr;]' IaTger th”anf tge Z7eemag energy, thenThe Fokker-Planck equatio®) has been solved here within
<(|:°S >deq IS vanis dlng yﬂima [cf. ql. ( )r]] an canf eEne- the transition state theory of Krameré more general solu-
glected compared to Afg(coséy). In that case[cf. Eq. tion requires a more sophisticated treatméri®) Within the

(19] present model one can also look at the distributiod iffine
shape to compare with experimen{3) The present model
lim d~b B (cos 6p), (16) assumes tha_t thg magnetization vector of the cluster is a hin-
UA dered rotor, i.e., inertial effects have been ignored, as in the
overdamped limit of the Brownian motion. There may be
whereD/L is also suitably large. Hence the deflection is nowcases with magnetic clusters in which a complete phase
inversely proportional ta or to \Ts, T being the source space dynamics will be necessary involving “spin-rotation”
temperature. In contrast, in the static lirqierhaps appropri- coupling. This aspect may shed light on the issue of rota-
ate to the rare-earth clusters in which the moments ar&ional temperature mentioned in the literatén@) Finally, at
“locked” ), the deflection is inversely proportional t& or  ultralow temperatures and with large anisotropy, the mag-
to T,. This may be used to experimentally discern the low-netic moment of the cluster may quantum mechanically tun-
to high-anisotropy behavior. nel from one energy minimum to anothérTo what extent
In Fig. 2 we plot as a function ofe=\7¢ (which is a is such mesoscopic quantum tunneling important for SG ex-
measure the ratio of the time the cluster spends inside theeriments is an open issue.
gradient magnet to the relaxation timthe dimensionless
guantity

N—large
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