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Theory of relaxation of magnetic clusters in a Stern-Gerlach setup
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We use a stochastic theory approach to discuss different scenarios such as ‘‘locked moment’’ and ‘‘super-
paramagnetic’’ behavior of magnetic clusters seen in Stern-Gerlach~SG! experiments. A dimensionless pa-
rameterltE ~wherel is an internal spin relaxation rate andtE is the time spent by the cluster in the field
gradient region! and the initial polarization of the cluster moment are shown to determine sensitively the
position of the cluster beam on the SG screen.@S0163-1829~98!08517-8#
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The study of magnetic clusters is a very active area
research in mesoscopic physics.1–5 Apart from their potential
importance in industrial applications, these clusters are in
esting in their own right for a fundamental understanding
their magnetism in general. A useful experimental techniq
for studying magnetic properties of clusters is to emp
them in a molecular beam in a Stern-Gerlach~SG! setup and
measure deflections on a detector. A proper analysis of
experiment is expected to reveal important information ab
the cluster size, anisotropy energies, magnetic moment
atom, temperature dependence of magnetization, and, a
all, thermal relaxation processes. In particular, it has b
found that magnetic clusters show two limiting characte
tics referred to as ‘‘locked moment’’ and ‘‘superparama
netic’’ behaviors depending on the orientational relaxation
the moment as it traverses the SG apparatus.3 In this paper
we provide a unified picture of these different scenar
based on a stochastic theory approach and discuss our
retical results in the light of experiments on transition-me
and rare-earth clusters.3–5

For the sake of definiteness we shall use the result for
deflection on the screen in the usual SG geometry~sketched
schematically in Fig. 1! as a reference. If the beam consis
of two-level atoms as in the historic experiment, the posit
deflection, say, for the ‘‘spin-up’’ atoms, is given by3

d5
m

m
B8~0!

LD

v2 S 11
1

2

L

D D , ~1!

wherem is the atomic moment,m is the mass of the atom
B8(0) is the gradient of the magnetic field@assumed to have
a constant partB0 which is much larger thanz0B8(0), z0
being the width of the beam#, the distancesL andD are as
indicated in the figure, andv2 is the mean-squared velocit
of the atoms. The latter depends on the ‘‘source temp
ture’’ Ts through the relationv25(kBTs)/m, kB being the
Boltzmann constant. Considering that the beam travers
lengthL in the magnetic field, we may already introduce t
notion of the experimental time scaletE5L/v. This will be
used later as a yardstick for discussing relaxation effe
which will be characterized by other time scales. Our obj
tive is to give a unified theory which encompasses bo
transition-metal clusters, i.e., those of cobalt, nickel, or ir
~believed to have ‘‘small’’ anisotropy energies!, and rare-
earth clusters, i.e., those of gadolinium~with ‘‘large’’ anisot-
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ropy energies!. The central issue is, what isd ~or more ac-
curately its average!, when the beam of clusters undergo
thermal relaxation during the traversal through the magn
field?

The model which captures our proposed physical pict
is the following: each cluster is viewed as a single-dom
magnetic particle~consisting of up to hundreds of atom!
with the individual atomic moments locked up in a give
direction, yielding a giant moment for the particle. Thus w
ignore, for the present discussion, intraparticle6 fluctuations.
The moment of the particle is, however, not fixed in dire
tion as it is expected to undergo thermal fluctuations~due to
a spin-lattice interaction!. The latter arise from a heat bat
which is maintained at a temperature that has been refe
to in the literature3–5 as the vibrational temperatureTv . The
effect of the thermal fluctuations is to relax the orientation
the magnetic moment of the particle, as in rotational Brow
ian motion.7

We should keep in mind that our Brownian particle~or,
precisely, the moment! is, in fact, under the influence of
potential which is a combination of the anisotropy ener
and the Zeeman energy. Assuming for the sake of simpli
that the anisotropy is uniaxial,8 the potential may be written

F~u!5N~K sin2u2B0m0 cosu!, ~2!

whereN is the number of atoms in the cluster,K andm0 are,
respectively, the anisotropy energy and magnetic mom
per atom, andu is the angle between direction of the mome

FIG. 1. A typical Stern-Gerlach setup.
10 244 © 1998 The American Physical Society
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and the applied magnetic field. For simplicity, we assume
magnetic field to be along the direction of anisotropy; t
assumption can, however, be relaxed easily. The equilibr
value of the magnetization is given by

M5Nm0^cosu&eq, ~3a!

where

^cosu&eq5

E
0

p

du sin u cosu exp~2F~u!/kBTv!

E
0

p

du sin u exp~2F~u!/kBTv!

.

~3b!

For very weak anisotropy (K'0), Eq. ~3! can be approxi-
mated by

^cosu&eq'
kBTv

NB0m0
2cothS NB0m0

kBTv
D . ~4!

On the other hand, if the anisotropy is very large, the m
ment is ‘‘locked’’ at the orientation 0 orp, and hence

^cosu&eq'tanhS NB0m0

kBTv
D . ~5!

Thus, in either of the limits,̂cosu&eq is independent ofK.
We turn our attention now to the main focus of our stud

namely, the relaxational dynamics of the moment. Insofa
the dynamics is viewed to be described by rotational Brow
ian motion,7 the underlying probability distributionP(u,t)
obeys a Fokker-Planck equation

t0

]

]t
P~u,t !5

1

sin u

]

]u Fsin uS 1

kBTv

]F

]u
P~u,t !

1
]P~u,t !

]u D G , 0<u<p, ~6!

wheret0 is simply a parameter that sets the basic time sc
of the process. Because the so-called drift term in
Fokker-Planck equation~6! is written in terms of the poten
tial F~u!, Eq. ~6! is guaranteed to yield forP(u,t) in the
asymptotic ~i.e., t→`! limit, the equilibrium distribution
function

Peq~u!5
exp~2F~u!/kBTv!

E
0

p

du sin u exp@2F~u!/kBTv#

. ~7!

Evidently, it is this quantity which is used to evaluate E
~3b!.

The Fokker-Planck equation is the starting point of o
analysis. However, it is important to emphasize that t
equation describes the stochastic dynamics of an ‘‘intern
variable such as the orientation of the magnetic moment
such, it would haveno influence on the barycentric motion o
the cluster were it not for the inhomogeneous magnetic fi
present in the SG setup. Thus we need to tie up our prev
discussions with the kinematics of the cluster center-of-m
motion along thez axis. The latter is naturally governed b
the acceleration
e
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a~ t !5
Nm0B8~0!

M
cosu~ t !, ~8!

which is a stochastic process, becauseu(t) is. Thus the rel-
evant quantity to calculate is the mean velocity in thez di-
rection, given by n̄z(t)5b*08^cosu(t8)&dt8, where b
5Nm0B8(0)/M , M is the mass of the cluster, and we a
sumen̄z(0)50. The angular bracketed quantity is defined
^cosu(t)&5*0

pdu sinu cosu P(u,t). Knowing n̄z(t), the SG
deflection can be evaluated as

d5E
0

tE
n̄z~ t !dt1

D

v
n̄z~tE!, ~9!

wheretE is the experimental time scale defined in the pa
graph below Eq.~1!.

The exact expression for^cosu(t)& requires the most gen
eral solution of Eq.~6! which is analytically intractable. We
believe, however, that a range of cluster behavior can
described within the so-called transition state theory
Kramers which works very well within high barrier an
weak thermal noise limit.9,10 In that region, the solution of
Eq. ~6!, with the initial conditionu5u0 at t50 can be ap-
proximately written as11

P~u,t !5Peq~u!1@d~cosu2cosu0!2Peq~u!#e2lt,
~10!

wherePeq(u) is given by Eq.~7!. The rate parameterl is the
dominant eigenvalue in the Kramers regime which can
estimated from a variational treatment. The result is7

l5
p

t0
S 2NK

pkBTv
D 3/2

expF2
NK

kBTv
S 11

B0
2m0

2

4K2 D G
3H coshS NB0m0

kBTv
D2

B0m0

2K
sinhS NB0m0

kBTv
D J , ~11!

which is valid only whenB0m0/2K<1. In the absence of the
Zeeman interaction,l reduces to the well-known Ne´el
formula12

l~B050!5
p

t0
S 2NK

pkBTv
D 3/2

expF2
NK

kBTv
G . ~12!

While employing Eq.~10! for evaluatingd from Eq.~9!, it is
convenient to take an average over the initial cluster ori
tation u0 , to be denoted aŝcosu0&. For a polarized~unpo-
larized! beam^cosu0&51(0). We then obtain

d5
bD

v
^cosu0&H 1

l
~12e2ltE!

1
v

Dl FtE2
1

l
~12e2ltE!G J

1b^cosu&eqH 1

2
tE

21
D

v S 12
v

Dl D
3FtE2

1

l
~12e2ltE!G J . ~13!

Equation~13! is our final result, which will form the basis o
our further analysis of different regimes of relaxation. Befo
we carry out this analysis, it is important to check that in t
static limit ( l50), Eq. ~13! does reduce to Eq.~1! for a
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polarized beam, as expected. We now discuss the two
treme limits of Eq.~13! in terms of the dimensionless param
eterltE that characterizes the interplay of thermal relaxat
time in relation to the experimental time scale.

~i! Slow relaxation(ltE!1): In this limit the SG dis-
placementd is given by

d'
bDtE

v F ^cosu0&S 11
vtE

2D D2
1

2
ltES 11

vtE

3D D
3~^cosu0&2^cosu&eq!G . ~14!

~ii ! Fast relaxation(ltE@1):

d'
bDtE

v F S 11
vtE

2D D ^cosu&eq1
1

ltE
S 11

vtE

D D
3~^cosu0&2^cosu&eq!G . ~15!

Several comments may now be made on the basis of
above results.~a! As the relaxation picks up from the ex
treme static limit (l50), there is a discernible shift ind,
and the direction of the shift with respect toz50, the center
of the screen, depends on the sign ofq5(^cosu0&
2^cosu&eq. ~b! In the extreme rapid relaxation limit, the de
flection is proportional to the average magnetization of
cluster@cf. Eq. ~15!#. This is expected because the magne
moment tumbles over so frequently during the traversa
the cluster through the gradient field that the magnetiza
equilibrates to the vibration temperature. This regime
known to be characterized by superparamagn
relaxation.4,5 Direction of the shift for finiteltE also de-
pends on the sign ofq. ~c! The fast relaxation limit is par-
ticularly relevant for transition-metal clusters for which th
anisotropy is low. In addition, for a partially polarized bea
if kBTv is much larger than the Zeeman energy, th
^cosu&eq is vanishingly small@cf. Eq. ~7!# and can be ne-
glected compared to 1/ltE^cosu0&. In that case@cf. Eq.
~15!#,

lim
l→ large

d'b
D

vl
^cosu0&, ~16!

whereD/L is also suitably large. Hence the deflection is no
inversely proportional tov or to ATs , Ts being the source
temperature. In contrast, in the static limit~perhaps appropri-
ate to the rare-earth clusters in which the moments
‘‘locked’’ !, the deflection is inversely proportional tov2 or
to Ts . This may be used to experimentally discern the lo
to high-anisotropy behavior.

In Fig. 2 we plot as a function ofa5ltE ~which is a
measure the ratio of the time the cluster spends inside
gradient magnet to the relaxation time! the dimensionless
quantity

d̄5
d

btE
2
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where d05m0B8(0)LD/mv2, for different values of p
5^cosu&eq and^cosu0&51. Typical experimental values ar
B051.034 T, B8(0)5310.1 T/m, D51.183 m, L50.25 m,
andTvib in the range 100–300 K. In Fig. 2, the small-a limit
corresponds to the ‘‘locked’’ moment regime, whereas
large-a limit corresponds to the ‘‘superparamagnetic’’ r
gime. If p'1, then the displacement is quite insensitive
the value ofa. On the other hand, the rate of decrease od̄
with a is extremely rapid for smaller values of the avera
momentp. The characteristic value ofa that separates the
slow and fast relaxation regimes is about 3 for smaller val
of p.

A few challenging theoretical problems remains open.~1!
The Fokker-Planck equation~9! has been solved here withi
the transition state theory of Kramers.9 A more general solu-
tion requires a more sophisticated treatment.13 ~2! Within the
present model one can also look at the distribution ind ~line
shape! to compare with experiment.~3! The present mode
assumes that the magnetization vector of the cluster is a
dered rotor, i.e., inertial effects have been ignored, as in
overdamped limit of the Brownian motion. There may
cases with magnetic clusters in which a complete ph
space dynamics will be necessary involving ‘‘spin-rotation
coupling. This aspect may shed light on the issue of ro
tional temperature mentioned in the literature.2 ~4! Finally, at
ultralow temperatures and with large anisotropy, the m
netic moment of the cluster may quantum mechanically t
nel from one energy minimum to another.14 To what extent
is such mesoscopic quantum tunneling important for SG
periments is an open issue.

S.D. would like to thank the Department of Physics a
Astronomy at Michigan State University for providing a ve
congenial environment in which the work was carried o
This work was partially supported by NSF Grant N
CHE9633798.

FIG. 2. Stern-Gerlach deflectiond ~measured in units ofd0

defined in the text! for a polarized beam, i.e.,̂cosu0&51, as a
function ofa5ltE , wheretE is the time the cluster spends insid
the magnetic field gradient andl is a characteristic spin orienta
tional relaxation rate. The different curves correspond to differ
values of the thermal average momentp5^cosu&eq.
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