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Multifractal and critical properties of the Ising model
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Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 60-179 Poznan´, Poland

~Received 21 November 1997!

Multifractal properties of the two-dimensional Ising model are studied by means of thef (a) spectra of
singularities of probability measures supported by energy spectra. These measures are determined through
calculations of energy degeneracies for finite-size systems up to 12312 spins in cases of square and triangular
lattices and up to 22322 spins in the case of the hexagonal lattice. The calculations are performed in an exact
manner using the transfer-matrix method. It is argued that, in the thermodynamic limit, the scaling exponent
amax associated with the most probable energy of the system takes at the critical temperature a minimum value
and, consequently, it is argued that a given system reveals a phase transition at a finite temperature ifamax

possesses a minimum at the finite temperature. It is also shown that, in the thermodynamic limit, the spectrum
f (a) shrinks when the critical temperature is approached.@S0163-1829~98!05317-X#
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The multifractal formalism, developed for studying com
plex fractal systems in terms of probability theory,1,2 bears in
some sense resemblance to statistical mechanics. How
contrary to statistical mechanics, which describes syst
having an enormously large number of degrees of freed
the multifractal formalism has been introduced in the cont
of systems whose complexity does not result from high
mensions of their phase spaces. As a matter of fact,
formalism has originally been applied to characterize mu
fractal properties of chaotic trajectories generated by o
and two-dimensional nonlinear dynamical systems.2,3 Never-
theless, this approach can be used in various cases w
fractals occur, no matter what their origin and how large
dimensions of spaces in which they are embedded.4

In this paper, the multifractal formalism is applied to d
scribe probability measures of energy levels of the tw
dimensional Ising model in a zero magnetic field. The m
sures are obtained at particular temperatures, for finite-
n3n systems with free and cylindrical boundary condition
~The term cylindrical boundary conditions is used here
edge constraints of finite-size two-dimensional lattices w
periodic boundary conditions in one direction and with fr
boundary conditions in the second direction.! Properties of
the probability measures are investigated using the spe
f (a) of their singularities~with the Hölder exponenta being
dependent on the temperature!. It is shown that these mea
sures display a multifractal character and that the multifra
spectraf (a) found for them change in a specific way as t
temperature varies, enabling one to determine for a givenn a
pseudocritical temperature. Numerical results obtained
successiven indicate that this pseudocritical temperatu
tends to the true critical temperature as the thermodyna
limit is approached. Accordingly, it is also shown that t
specific behavior of the spectraf (a) near criticality provides
a possibility of formulating new criteria for the occurrence
phase transitions on the grounds of multifractal propertie
systems of discrete energies.

The zero-field Ising model considered in this Brief Rep
is defined onn3n square, triangular, and hexagonal lattic
with free and cylindrical boundary conditions. In the case
the free boundary conditions, the square and triangular
570163-1829/98/57~17!/10240~4!/$15.00
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tices are assumed to be of the shape of squares and rhom
respectively. Each system on the hexagonal lattice with f
boundary conditions is taken as being obtained from the
on the respective hexagonal lattice with cylindrical bound
conditions by cutting all bonds along a straight line, para
to the axis of the rotational symmetry of the cylinder. T
spin variablessi561, i 51,2, . . . ,n3n, are assumed to be
coupled by nearest-neighbor interactionsK5J/kBT with J
>0 being the exchange integral andT denoting the tempera
ture.

Generally, energy levels of the model under study h
are highly degenerate. It should be pointed out that, for
n3n system, there are 2n3n spin configurations, but the
number of different energy levels amounts only toMn
5cnn3n with 0,cn,2 being dependent on the lattic
symmetry and boundary conditions~in addition to then de-
pendence!. The degeneracies of energy levels of the cons
ered model are determined here using the transfer-ma
method.5–7 In the case of then3n Ising systems, this ap
proach relies on a construction of larger systems fr
smaller ones by attaching successive chains ofn spins. Con-
sequently, this allows one to determine all possible ene
levels at each construction stage and to calculate exactly
responding degeneracies in a recursive way~for details see,
e.g., Ref. 7!. The recursion relation for the degeneraci
Dk8

(m11)(g8) of energies of a subsystem of the sizen3(m
11), 1<m<n21, ~consisting ofm11 interacting chains,
each of the lengthn! with k8 upsetting bonds, i.e., bond
connecting antiparallel spin~in the ferromagnetic case!, and
with a spin configuration 1<g8<2n of the last added chain
of spins is given by5

Dk8
~m11!

~g8!5 (
g51

2n

(
k50

Nm

Dk
~m!~g!d~k82k2 l g82 j g,g8!,

whered is the Kroneckerd function,Nm denotes the larges
possible number of upset bonds in then3m subsystem,l g8
is the number of upset couplings in the last added chain
spin configurationg8, while j g,g8 stands for the number o
upset bonds linking the last@i.e., (m11)th# chain in the
10 240 © 1998 The American Physical Society
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configurationg8 to the former~mth! chain in the configura-
tion g. Obviously, the above formula can be used in the ca
of both types of boundary conditions assumed in this pa

As is well known, an essential limitation of the recursi
method of calculating energy degeneracies lies in the fi
memory of computers.7 The largest systems considered b
low are of size 12312 in the case of square as well as tria
gular lattices and of the size 22322 in the case of the hex
agonal lattice. Note that in the case of hexagonal symme
energy degeneracies can be computed for much larger
tems than in cases of square and triangular symmetries.
follows from the fact that systems on hexagonal lattices
sizesn3n, n54,6, . . . , can beconsidered as chains ofn
spins, such that any two neighboring chains are coupled
only n/2 bonds~the notationn3n for the size of systems on
hexagonal lattices does not reflect their shapes!.

The multifractal properties of the studied finite-size Isi
model are described here by applying the multifractal f
malism to investigate singularities of probability measures
energy spectra of the model. The energy spectrum ofn
3n system is determined by

Ei
~n!~K !52K~Wn2mi ! ~1!

with i 51,2, . . . ,Mn enumerating successive energy leve
Wn denoting the total number of bonds, andmi being the
number of upset bonds associated with thei th energy level
(mi 11.mi , i 51,2, . . . ,Mn21!. Then, the normalized prob
ability that then3n system takes on the energyEi

(n)(K) is
given by

pi
~n!~K !5Di

~n!e2Ei
~n!

~K !/Zn~K !, ~2!

where

Di
~n!5 (

g51

2n

Dmi

~n!~g! ~3!

is the degeneracy of thei th energy level and

Zn~K !5(
i 51

Mn

e2Ei
~n!

~K ! ~4!

is the partition function of the system.
According to a general scheme of the multifrac

analysis,2 the probability measurepi
(n)(K) can be expresse

as

pi
~n!~K !;l n

1/a i ~5!

with l n standing for the scaling parameter and the sca
exponenta i being dependent onK andn. Since the energy
rescaling factor

@Ei 11
~n! ~K !2Ei

~n!~K !#/@Emax
~n! ~K !2Emin

~n! ~K !#;1/Mn ,

where i 51,2, . . . ,Mn21, Emax
(n) (K) and Emin

(n) (K) denote the
maximal and minimal energy levels, respectively, the sca
parameterl n is assumed to be

l n51/Mn . ~6!
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It should be pointed out that the scaling exponenta i is in-
troduced here in a somewhat different way than within
conventional formalism.2 Due to the special definition
adopted in this paper@Eqs. ~5! and ~6!#, the indexa i is de-
termined as a finite quantity for alln ~provided thatK re-
mains finite!. Note that the scaling parameterl n does not
depend onK and thereby the indexa i reflects entirely the
dependence ofpi

(n)(K) on K. The spectraf (a) characteriz-
ing the distribution of exponentsa can be found using the
relations~cf. Ref. 2!

f „a~q,K !…5q/a~q,K !2t~q,K !, ~7!

a~q,K !5@~d/dq! t~q,K !#21 ~8!

with the filtering parameterqP(2`,`) and t(q,K) being
determined by requiring that the ‘‘generalized’’ partitio
function

Gn~q,K !5l n
2t~q,K !(

i 51

Mn

@pi
~n!~K !#q ~9!

satisfies the condition thatGn(q,K)51 for all q andK.
The typical shape of the spectraf (a) is illustrated in Fig.

1 by an example of the spectra obtained for hexagonal
tems of different sizes, forK50.5. One should notice a
rather fast convergence of the curvesf (a) when n
increases.8 ~It must be stressed that the distribution of ener
levels is nonuniform for allK,` and for alln.! As shown
in Fig. 1, the spectraf (a) found for studied probability mea
sures display a form that is characteristic for multifractal s
~cf. Ref. 2!. Note that the maximum value of the spect
f (a) is given by f „a(0,K)…51 for eachK,` and for each
n, because the total number of energy levelsMn51/l n .

An interesting question that arises is an examination
the variation of multifractal properties of the studied mod
as the temperature changes, especially within the critical
gion. Some characterization of this variation can be obtai
by investigating theK dependence of the maximal value
the scaling exponenta, given byamax(K)5a(`,K). It follows
from Eqs. ~5! and ~6! that amax(K) is associated with the
maximum value of the probability of energy levels~i.e., with

FIG. 1. The spectraf (a) for the n3n hexagonal Ising system
with cylindrical boundary conditions and with the interaction p
rameterK50.5, for n54,6, . . . ,16 andn522.



e
r

te

a

r-
e
u

in

-
ia
e
ar
em
ti

s
l
ti

in

the
arby
al-
m-

rec-
r.
e
de-

cal
ex
on-

e
m-
has

the

f
of

r, it

ter

9
7
5

tical

10 242 57BRIEF REPORTS
the energy region of the most concentrated probability m
sure!. The dependence ofamax(K) on K proves to be rathe
nontrivial. Indeed,amax(K) possesses for eachn a unique
minimum at a finite value of the interaction parame
Kc(n). Numerical results obtained forKc(n) suggest that
this quantity is convergent to the true critical coupling p
rameterKc as n tends to infinity. Therefore,Kc(n) deter-
mined for any finiten is called here the pseudocritical inte
action parameter, and the corresponding temperatur
named the pseudocritical temperature. Obviously, this pse
ocritical temperature is, in general, different from those
troduced earlier, on the basis of different methods.9 Values
of Kc(n) anda(`,K) calculated for systems of various sym
metries are listed in Tables I, II, and III. Note that the dev
tion of Kc(n) from Kc , calculated for the largest of th
considered hexagonal systems with cylindrical bound
conditions is less than 0.5%. However, the studied syst
turn out to be too small in order to determine the asympto
behavior ofKc(n) @anda„`,Kc(n)…# for n→`.

It is evident thatKc(n).Kc for systems with free edge
and that values ofKc(n) obtained in the case of cylindrica
boundary conditions are, in general, closer to the respec
exact critical parameter valuesKc than in the case of free
edges. This follows from the fact that, in systems with cyl

TABLE I. Values of the pseudocritical interaction parame
Kc(n) and the scaling exponenta„`,Kc(n)… for n3n triangular
Ising systems with free edges~columns 2, 3! and with cylindrical
boundary conditions~columns 4, 5!. The exact value forKc is also
included.

n Kc(n) a„`,Kc(n)… Kc(n) a„`,Kc(n)…

3 0.231 049 1.349 077 0.224 990 1.197 228
4 0.287 525 1.308 834 0.261 659 1.282 935
5 0.287 997 1.339 515 0.270 285 1.283 349
6 0.281 961 1.364 884 0.282 889 1.324 890
7 0.280 660 1.385 632 0.279 722 1.352 916
8 0.283 227 1.399 824 0.282 855 1.380 898
9 0.286 814 1.410 811 0.280 947 1.397 473

10 0.286 998 1.419 720 0.280 622 1.414 631
11 0.285 555 1.427 066 0.281 089 1.425 669
12 0.285 607 1.433 395 0.280 685 1.437 415

Kc5 0.274 653

TABLE II. Same as Table I forn3n square systems.

n Kc(n) a„`,Kc(n)… Kc(n) a„`,Kc(n)…

3 0.274 653 1.504 573 0.268 240 1.424 591
4 0.473 063 1.520 452 0.360 389 1.404 840
5 0.476 390 1.526 245 0.398 589 1.408 224
6 0.482 758 1.552 993 0.430 762 1.451 235
7 0.482 233 1.566 928 0.437 128 1.450 387
8 0.482 600 1.576 441 0.440 933 1.493 011
9 0.478 968 1.583 899 0.445 369 1.490 148

10 0.478 229 1.589 707 0.441 138 1.517 36
11 0.475 645 1.594 420 0.444 107 1.514 39
12 0.472 222 1.598 316 0.445 378 1.533 78

Kc5 0.440 689
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drical boundary conditions, the tendency to enlarge
pseudocritical temperature, due to couplings between ne
spins by paths encircling the cylinder, is to some extent b
anced by the tendency to diminish the pseudocritical te
perature owing to the occurrence of free edges in the di
tion parallel to the axis of rotation symmetry of the cylinde

The change of multicritical properties of the finite-siz
Ising model near the pseudocritical temperature can be
scribed by determining the dependence ofa(`,K) on K and
by investigating the shape of thef (a) spectra for different
values ofK. The functiona(`,K) is plotted in Fig. 2 for
systems of different symmetries, in the case of cylindri
boundary conditions. The existence of minima of the ind
a(`,K) at some temperature values that converge to a n
zero ~and finite! value asn→` appears to be a distinctiv
feature of systems exhibiting phase transitions at finite te
peratures. It is clear that, at zero temperature, one
amin(K)5amax(K), where the indexamin(K) is associated
with the most rarefied measure of energy levels, and then
system does not reveal multifractal properties.2 As might be
expected, the indexa(`,K) displays the existence o
minima at finite temperatures also in the case of chains
spins coupled by nearest-neighbor interactions. Howeve

TABLE III. Same as Table I forn3n hexagonal systems.

n Kc(n) a„`,Kc(n)… Kc(n) a„`,Kc(n)…

4 0.648 952 1.759 205 0.485 448 1.588 654
6 0.681 212 1.763 004 0.608 574 1.604 431
8 0.694 351 1.759 375 0.631 877 1.633 861

10 0.689 488 1.754 697 0.634 475 1.652 013
12 0.696 180 1.751 037 0.643 669 1.656 944
14 0.689 479 1.748 199 0.650 186 1.663 261
16 0.690 026 1.746 037 0.650 200 1.668 020
18 0.687 753 1.744 387 0.653 078 1.671 810
20 0.686 528 1.743 093 0.654 124 1.674 989
22 0.685 846 1.742 079 0.655 369 1.677 692

Kc5 0.658 479

FIG. 2. The scaling exponenta(`,K) vs K for systems on
lattices with cylindrical boundary conditions:~a! the 12312 trian-
gular lattice,~b! the 12312 square lattice,~c! the 22322 hexagonal
lattice. The arrows indicate respective values of the pseudocri
temperature.
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proves that, in this case, interaction parameter value
which the minima occur tend to zero as 2/n whenn→` @in
contradistinction to the case ofn3n spin systems, for which
Kc(n) tends to a nonzero limit asn→`#.

One can easily show that, for each finiteK, the exponent
amin(K) vanishes very fast asn grows. Consequently, th
width of f (a), defined for particular values ofK as w(K)
5amax(K)2amin(K), takes a minimum value at some no
zero temperature, dependent onn. As can easily be seen, th
temperature value tends to the critical temperature an
→`, and its deviation from the respective pseudocriti
temperature decreases very rapidly whenn increases. The
change of the shape of thef (a) spectra under a variation o
K is illustrated in Fig. 3, for the case of the 22322 system
on a hexagonal lattice. This figure exemplifies a shrinking
the f (a) spectra as the temperature varies towards respe
pseudocritical temperatures.

Thus, the analysis of multifractal properties of probabil
measures of energies implies the following new criteria
phase transitions: a system with discrete energies under
a phase transition at a finite temperature if the scaling ex
nent a(`,K) and/or the widthw(K) of the f (a) spectrum
determined for the system displays a minimum at the fin
temperature, as the thermodynamic limit is approached
should be pointed out that these criteria differ essenti
from the ones introduced recently on the basis of an anal
of the so-called density of states functions, determined
finite-size systems.10 The analysis of these functions requir
taking into account magnetic energies of considered syst
and is then carried out in the dependence on the tempera
and the magnetic field.

In summary, investigations of interrelations between m
tifractal and critical properties of systems considered h
have led to formulating new criteria for phase transitions
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should be noted, however, that the criteria have been in
duced on the basis of studies of the model which exhib
phase transition of the second order. Therefore, it would
interesting to investigate multifractal properties of syste
revealing phase transitions of the first order. Generally,
can conclude that the application of the multifractal form
ism to study probability measures of energies of discr
models considered within statistical mechanics can yield n
insight into the properties of these systems.

This research was supported by the Polish Committee
Scientific Research under Grant No. 8 T11F 010 08p04.

FIG. 3. The spectraf (a) for the 22322 hexagonal lattice with
cylindrical boundary conditions, for different values of the intera
tion parameter: ~a! K5Kc(22), ~b! K5Kc(22)20.2, ~c! K
5Kc(22)10.2, whereKc(22) denotes here the pseudocritical co
pling parameter determined for the 22322 hexagonal system with
cylindrical boundary conditions.
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