PHYSICAL REVIEW B VOLUME 57, NUMBER 17 1 MAY 1998-I|

Multifractal and critical properties of the Ising model
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Multifractal properties of the two-dimensional Ising model are studied by means df(thespectra of
singularities of probability measures supported by energy spectra. These measures are determined through
calculations of energy degeneracies for finite-size systems upXd 23pins in cases of square and triangular
lattices and up to 22 22 spins in the case of the hexagonal lattice. The calculations are performed in an exact
manner using the transfer-matrix method. It is argued that, in the thermodynamic limit, the scaling exponent
amax associated with the most probable energy of the system takes at the critical temperature a minimum value
and, consequently, it is argued that a given system reveals a phase transition at a finite tempesgfure if
possesses a minimum at the finite temperature. It is also shown that, in the thermodynamic limit, the spectrum
f(a) shrinks when the critical temperature is approach80163-18208)05317-X

The multifractal formalism, developed for studying com- tices are assumed to be of the shape of squares and rhombes,
plex fractal systems in terms of probability thedrjbearsin  respectively. Each system on the hexagonal lattice with free
some sense resemblance to statistical mechanics. Howevéqundary conditions is taken as being obtained from the one
contrary to statistical mechanics, which describes system@n the respective hexagonal lattice with cylindrical boundary
having an enormously large number of degrees of freedont,onditions by cutting all bonds along a straight line, parallel
the multifractal formalism has been introduced in the contexto the axis of the rotational symmetry of the cylinder. The
of systems whose complexity does not result from high di-spin variabless;=*1,i=1,2,...nXn, are assumed to be
mensions of their phase spaces. As a matter of fact, thisoupled by nearest-neighbor interactias-J/kgT with J
formalism has originally been applied to characterize multi-=0 being the exchange integral afidienoting the tempera-
fractal properties of chaotic trajectories generated by oneture.
and two-dimensional nonlinear dynamical systémslever- Generally, energy levels of the model under study here
theless, this approach can be used in various cases wheaee highly degenerate. It should be pointed out that, for the
fractals occur, no matter what their origin and how large thenXn system, there are"2" spin configurations, but the
dimensions of spaces in which they are embedded. number of different energy levels amounts only Kb,

In this paper, the multifractal formalism is applied to de- =c,nxXn with 0<c,<2 being dependent on the lattice
scribe probability measures of energy levels of the two-symmetry and boundary conditiofis addition to then de-
dimensional Ising model in a zero magnetic field. The meapendence The degeneracies of energy levels of the consid-
sures are obtained at particular temperatures, for finite-sizered model are determined here using the transfer-matrix
nx n systems with free and cylindrical boundary conditions.method®~’ In the case of thexxn Ising systems, this ap-
(The term cylindrical boundary conditions is used here forproach relies on a construction of larger systems from
edge constraints of finite-size two-dimensional lattices withsmaller ones by attaching successive chains gpins. Con-
periodic boundary conditions in one direction and with freesequently, this allows one to determine all possible energy
boundary conditions in the second directjoRroperties of levels at each construction stage and to calculate exactly cor-
the probability measures are investigated using the spectr@sponding degeneracies in a recursive \{fay details see,
f(a) of their singularitiegwith the Hdder exponentr being  e.g., Ref. 7. The recursion relation for the degeneracies
dependent on the temperaturé is shown that these mea- pﬁﬁ"”)(y') of energies of a subsystem of the siz& (m
sures display a multifractal character and that the multifractal, 1) 1<m<n—1, (consisting ofm+ 1 interacting chains,
spectraf («) found for them change in a specific way as théeach of the lengtm) with k' upsetting bonds, i.e., bonds
temperature varies, enabling one to determine for a givan connecting antiparallel spifin the ferromagnetic cageand

pseudocritical temperature. Numerical results obtained fogith a spin configuration &y’ <2" of the last added chain
successiven indicate that this pseudocritical temperature of spins is given by

tends to the true critical temperature as the thermodynamic

limit is approached. Accordingly, it is also shown that the 2N Ny,

specific behavior of the spectféa) near criticality provides (M+1), o~ _ (m) P e

a possibility of formulating new criteria for the occurrence of Doy )_721 go Dok k=l =1y,

phase transitions on the grounds of multifractal properties of

systems of discrete energies. where é is the Kroneckers function, N,,, denotes the largest
The zero-field Ising model considered in this Brief Reportpossible number of upset bonds in th&m subsystem| ,,

is defined omX n square, triangular, and hexagonal latticesis the number of upset couplings in the last added chain in

with free and cylindrical boundary conditions. In the case ofspin configurationy’, while j, ,, stands for the number of

the free boundary conditions, the square and triangular latipset bonds linking the ladi.e., (m+1)th] chain in the
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configurationy’ to the former(mth) chain in the configura- (O T

tion y. Obviously, the above formula can be used in the cases 1.0 | =
of both types of boundary conditions assumed in this paper. 0.9 |
As is well known, an essential limitation of the recursive 08l i
method of calculating energy degeneracies lies in the finite 07 L
memory of computer§.The largest systems considered be- ~ o6l ‘
low are of size 1X 12 in the case of square as well as trian- S
gular lattices and of the size 222 in the case of the hex- =05y
agonal lattice. Note that in the case of hexagonal symmetry, 041
energy degeneracies can be computed for much larger sys- 0.3
tems than in cases of square and triangular symmetries. This 0.2
follows from the fact that systems on hexagonal lattices of 0.1 f
sizesnXn, n=4,6,..., can beconsidered as chains of go Ly
spins, such that any two neighboring chains are coupled by -61 63 07 11 15 1.9
only n/2 bonds(the notatiom X n for the size of systems on x

hexagonal lattices does not reflect their shapes FIG. 1. The spectrd(«) for the nxn hexagonal Ising system

The multifractal properties of the studied finite-size ISing ith cylindrical boundary conditions and with the interaction pa-
model are described here by applying the multifractal for-rgmeterk =0.5, forn=4.6,...,16 anch=22.

malism to investigate singularities of probability measures of
energy spectra of the model. The energy spectrum of a |t should be pointed out that the scaling exponepts in-

Xn system is determined by troduced here in a somewhat different way than within the
- conventional formalism. Due to the special definition
Ei"(K)= —K(W,—m;) (1) adopted in this papdiEgs. (5) and (6)], the indexa; is de-

termined as a finite quantity for afl (provided thatK re-

mains finitg. Note that the scaling parametg}, does not
depend orK and thereby the index; reflects entirely the
dependence of{"(K) on K. The spectrd(a) characteriz-

with i=1,2,...M, enumerating successive energy levels,
W, denoting the total number of bonds, ang being the
number of upset bonds associated with ittteenergy level

(mj;>m;, i=1,2,...M,_1). Then, the normalized prob- . A :
ability that thenx n system takes on the ener@;?”)(K) is Ing t_he distribution of exponenta can be found using the
: relations(cf. Ref. 2
given by
n f(a(q,K))=a/a(q,K)—7(q,K), (7
P (K)=D{"e E"/Z,(K), 2
— -1
where a(q,K)=[(d/dq) 7(q,K)] ®
. with the filtering parameterge (—,~) and 7(q,K) being
- 2 - determined by requiring that the “generalized” partition
Di™'= 21 Dy () (3 function
=
M
is the degeneracy of thigh energy level and o y
generasy » Lo(@K) =/ ™S [p(K) " ©
M, -
_gm
Zn(K):Zl e & (0 (4)  satisfies the condition thdt,(q,K)=1 for all q andK.
' The typical shape of the spectréw) is illustrated in Fig.
is the partition function of the system. 1 by an example of the spectra obtained for hexagonal sys-

According to a general scheme of the multifractaltems of different sizes, foK=0.5. One should notice a
analysis? the probability measurp(™(K) can be expressed rather fast convergence of the curvdga) when n
as increases.(It must be stressed that the distribution of energy
levels is nonuniform for alkK <cc and for alln.) As shown
pfn)(K)N/lfai (5) in Fig. 1, the spectré( «) found for studied probability mea-
" sures display a form that is characteristic for multifractal sets
with /, standing for the scaling parameter and the scalindcf. Ref. 2. Note that the maximum value of the spectra
exponenta; being dependent oK andn. Since the energy f(a) is given byf(a(0K))=1 for eachK <« and for each

rescaling factor n, because the total number of energy lewdis=1//,.
An interesting question that arises is an examination of
[EM,(K)—EM(K)JEM(K)—EM (K)]~1M,,, the variation of multifractal properties of the studied model

as the temperature changes, especially within the critical re-
wherei=1,2,...M,—1, E? (K) and E? (K) denote the gion. Some characterization of this variation can be obtained
maximal and minimal energy levels, respectively, the scalinddy investigating theK dependence of the maximal value of
parameter/,, is assumed to be the scaling exponert, given by a ,,,{(K)= a(«,K). It follows
from Egs. (5) and (6) that a,,(K) is associated with the
a=1M,,. (6) maximum value of the probability of energy levéis., with
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TABLE I. Values of the pseudocritical interaction parameter TABLE lll. Same as Table | fonXn hexagonal systems.
K¢(n) and the scaling exponeni(«,K.(n)) for nXn triangular

Ising systems with free edgésolumns 2, 3 and with cylindrical n Kc(n) a(e,K(n)) K¢(n) a(»,K.(n))
boundary conditiongcolumns 4, 5. The exact value foK. is also
included. 4 0648952 1759205  0.485448  1.588 654
6 0681212 1763004 0608574  1.604431
n K(n)  a@KJ(n)  Kdn)  aeK(n) 8 0694351 1759375  0.631877  1.633861
10  0.689488 1754697  0.634475  1.652013
3 0231049 1349077 0224990  1.197228 15 (g9p180  1.751037  0.643669  1.656 944
4 0287525 1308834 0261659  1.282935  ;,  (ggg479 1748199  0.650186  1.663 261
5 0287997 1339515 0270285 1283349 414  (g90026  1.746037  0.650200  1.668 020
6 0281961 1364884 0282889 1324890 15  (0gg7753 1744387  0.653078  1.671810
70280660 1385632 0279722 1352916 55  0gge528 1743003  0.654124  1.674989
8 0283227 1399824 0282855 1380898  ,5  (gg5846 1742079  0.655369  1.677 692
9 0286814 1410811 0280947  1.397 473

Ke= 0.658 479
10 0.286 998 1.419720 0.280 622 1.414 631

11 0.285 555 1.427 066 0.281 089 1.425 669
12 0.285 607 1.433 395 0.280 685 1.437 415
Ke= 0.274 653

drical boundary conditions, the tendency to enlarge the
pseudocritical temperature, due to couplings between nearby
spins by paths encircling the cylinder, is to some extent bal-
anced by the tendency to diminish the pseudocritical tem-
a[')erature owing to the occurrence of free edges in the direc-
tion parallel to the axis of rotation symmetry of the cylinder.
The change of multicritical properties of the finite-size
ng model near the pseudocritical temperature can be de-
scribed by determining the dependencex¢f,K) onK and

by investigating the shape of thf¢«) spectra for different
values ofK. The functiona(e,K) is plotted in Fig. 2 for
Eivstems of different symmetries, in the case of cylindrical

the energy region of the most concentrated probability me
surg. The dependence af,,,,(K) on K proves to be rather
nontrivial. Indeed,a,,(K) possesses for eaah a unique
minimum at a finite value of the interaction parameterg;
K¢(n). Numerical results obtained fdf.(n) suggest that
this quantity is convergent to the true critical coupling pa-
rameterK, as n tends to infinity. ThereforeK.(n) deter-
mined for any finiten is called here the pseudocritical inter-
action parameter, and the corresponding temperature
named the pseudocritical temperature. Obviously, this pseu
ocritical temperature is, in general, different from those in-
troduced earlier, on the basis of different methdd&alues

of K;(n) and«(°,K) calculated for systems of various sym-

metries are listed in Tables I, Il, and Ill. Note that the devia- _ ; ; ;
tion of K(n) from K., calculated for the largest of the @min(K)=ama(K), where the indexamy(K) is associated

) ¢ c . - with the most rarefied measure of energy levels, and then the
considered hexagonal systems with cylindrical boundaryS

N : t t | multifractal i ight
conditions is less than 0.5%. However, the studied systemg(zggegoe;enoinrggfz‘(;nlu()l rgiz,;a?/rsoﬂﬁ:a di(irs::agncebeof

turn out to be too small in order to determine the asymptOtiCminima at finite temperatures also in the case of chains of

behavior ofK (n) [and a(x~,K.(n))] for n—oo. : | “neiah . : Y .
It is evident thatk (n)> K. for systems with free edges spins coupled by nearest-neighbor interactions. However, it

and that values oK (n) obtained in the case of cylindrical
boundary conditions are, in general, closer to the respective
exact critical parameter valud§, than in the case of free

oundary conditions. The existence of minima of the index
a(»,K) at some temperature values that converge to a non-
zero (and finite value asn—« appears to be a distinctive
feature of systems exhibiting phase transitions at finite tem-
peratures. It is clear that, at zero temperature, one has

4.0

edges. This follows from the fact that, in systems with cylin- 33
TABLE Il. Same as Table | fonXn square systems. - 3.0 :
S :

n Kc(n) a(*,K(n)) Kc(n) a(»,K¢(n)) \8; 2.5 i
3 0.274 653 1.504 573 0.268 240 1.424 591 S 20 L
4 0.473 063 1.520 452 0.360 389 1.404 840
5 0.476 390 1.526 245 0.398 589 1.408 224 1.5 F
6 0.482 758 1.552 993 0.430 762 1.451 235
7 0482233 1566928 0437128  1.450387 Y
8 0.482 600 1.576 441 0.440 933 1.493 011 00 021 04 06T 08 10
9 0.478 968 1.583 899 0.445 369 1.490 148 K

10 0.478 229 1.589 707 0.441138 1.517 369 FIG. 2. The scaling exponent(e,K) vs K for systems on

11 0.475 645 1.594 420 0.444 107 1.514 397 Iattices with cylindrical boundary conditionéa) the 12< 12 trian-

12 0.472 222 1.598 316 0.445 378 1.533 785 gular lattice,(b) the 12< 12 square latticgc) the 22< 22 hexagonal
Ke= 0.440 689 lattice. The arrows indicate respective values of the pseudocritical
temperature.
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proves that, in this case, interaction parameter values at 1.1 T e
which the minima occur tend to zero as2thenn— [in 1.0 |
contradistinction to the case ofX n spin systems, for which o9l
K¢(n) tends to a nonzero limit as—oo]. |

One can easily show that, for each finkke the exponent 0.8
amin(K) vanishes very fast am grows. Consequently, the —~ 0.7 L
width of f(«), defined for particular values d€ asw(K) S I 1
o - ¥ 0.6 ¢ ]
= dmadK)— amin(K), takes a minimum value at some non- i
zero temperature, dependentranAs can easily be seen, this 0.5 ¢ (a)
temperature value tends to the critical temperaturenas 0.4 | (b) ]
—oo, and its deviation from the respective pseudocritical (e) ]
temperature decreases very rapidly wherncreases. The 037 ]

change of the shape of tHé«) spectra under a variation of 0.2 — —— i

K is illustrated in Fig. 3, for the case of the 222 system -0.r 03 07 11 1.5 1.8 23

on a hexagonal lattice. This figure exemplifies a shrinking of a

thef(a) spectra as the temperature varies towards respective FIG. 3. The spectrd(«) for the 22x 22 hexagonal lattice with

pseudocritical temperatures. cylindrical boundary conditions, for different values of the interac-
Thus, the analysis of multifractal properties of probability tion parameter: (a) K=K (22), (b) K=K(22)-0.2, (c) K

measures of energies implies the following new criteria of=K.(22)+0.2, whereK.(22) denotes here the pseudocritical cou-

phase transitions: a system with discrete energies undergopéng parameter determined for the 222 hexagonal system with

a phase transition at a finite temperature if the scaling expceylindrical boundary conditions.

nent a(«,K) and/or the widthw(K) of the f(«) spectrum

determined for the system displays a minimum at the finiteshoyid be noted, however, that the criteria have been intro-
temperature, as the thermodynamic limit is approached. lyced on the basis of studies of the model which exhibits
should be pointed out that these criteria differ essentiallyynase transition of the second order. Therefore, it would be
from the ones introduced recently on the basis of an analysigeresting to investigate multifractal properties of systems
of the so-called density of states functions, determined fofeyealing phase transitions of the first order. Generally, one
finite-size systems’ The analysis of these functions requires can conclude that the application of the multifractal formal-

taking into account magnetic energies of considered systemsm to study probability measures of energies of discrete
and is then carried out in the dependence on the temperatUg§odels considered within statistical mechanics can yield new

and the magnetic field. . _ insight into the properties of these systems.
In summary, investigations of interrelations between mul-

tifractal and critical properties of systems considered here This research was supported by the Polish Committee for
have led to formulating new criteria for phase transitions. ItScientific Research under Grant No. 8 T11F 010 08p04.
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